Lattice Paths with States, and Counting Geometric Objects via Production Matrices

Günter Rote Freie Universität Berlin

ongoing joint work with Andrei Asinowski and Alexander Pilz

a non-crossing perfect matching

Extremal Combinatorial Geometry

can a set of n points have $\left\{\begin{array}{l}\text { at most? } \\ \text { at least? }\end{array}\right.$

https://adamsheffer.wordpress.com/numbers-of-plane-graphs/

Lower Bound: Explicit Construction

- Think of some type of regular construction
- Find a formula for the number of non-crossing X

a non-crossing perfect matching

Lower Bound: Explicit Construction

- Think of some type of regular construction
- Find a formula for the number of non-crossing X

Lower Bound: Explicit Construction

- Think of some type of regular construction
- Find a formula for the number of non-crossing X

the generalized double zigzag chain

Lattice Paths with States

- Finite set of states $Q=\{\bullet, \circ, \llbracket, \square, \Delta, \ldots\}$
- For each $q \in Q$, a set S_{q} of permissible steps $\left((i, j), q^{\prime}\right)$: From point (x, y) in state q, can go to $(x+i, y+j)$ in

Wanted: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis.

Formula for Lattice Paths with States

$(i, j) \mapsto t^{i} u^{j}$

\[

\]

Conjecture: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis is

$$
\sim \text { const } \cdot\left(1 / t^{*}\right)^{n} \cdot n^{-3 / 2},
$$

where
(1) $A\left(t^{*}, u^{*}\right)$ has largest (Perron-Frobenius) eigenvalue 1.

$$
[\Longrightarrow \operatorname{det}(A(t, u)-I)=0]
$$

(2) $u^{*}>0$ is chosen such that the value $t^{*}>0$ that fulfills (1) is as large as possible. $\quad\left[\Longrightarrow \frac{\partial}{\partial u} \operatorname{det}(A(t, u)-I)=0\right]$

Formula for Lattice Paths with States

$(i, j) \mapsto t^{i} u^{j}$

$$
\begin{aligned}
& A(t, u)= \\
& \left(\right)
\end{aligned}
$$

Conjecture: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis is

$$
\sim \text { const } \cdot\left(1 / t^{*}\right)^{n} \cdot n^{-3 / 2},
$$

under some obvious technical conditions:

- state graph is strongly connected
- no cycles in the lattice paths
- aperiodic

Method Pipeline

Method Pipeline

Method Pipeline

- Introduction. Point sets with many noncrossing X
- The lattice path formula with states (preview)
- Method pipeline
- Overview
- Example 1: Triangulations of a convex n-gon
- Production matrices
- Example 2: Noncrossing forests in a convex n-gon
- Example 3: The generalized double zigzag chain.
- Proof idea 1. Analytic combinatorics
- Proof idea 2. Random walk

Triangulations of a convex n-gon

Triangulations of a convex n-gon

Triangulation of n-gon with last vertex of degree $d_{n}=d$
\qquad
Triangulation of $(n+1)$-gon with last vertex of degree

$$
d_{n+1}=2 \text { or } 3 \text { or } 4 \text { or } \ldots \text { or } d \text {, or } d+1
$$

[Hurtado \& Noy 1999] "tree of triangulations"

Triangulations of a convex n-gon

Triangulation of n-gon with last vertex of degree $d_{n}=d$
\rightarrow
Triangulation of $(n+1)$-gon with last vertex of degree

$$
d_{n+1}=2 \text { or } 3 \text { or } 4 \text { or } \ldots \text { or } d \text {, or } d+1
$$

Fig. 4. Levels three to six of the tree of triangulations.

Triangulations of a convex n-gon

Triangulation of n-gon with last vertex of degree $d_{n}=d$
\rightarrow
Triangulation of $(n+1)$-gon with last vertex of degree

$$
d_{n+1}=2 \text { or } 3 \text { or } 4 \text { or } \ldots \text { or } d \text {, or } d+1
$$

Fig. 4. Levels three to six of the tree of triangulations.

Triangulation of n-gon with last vertex of degree $d_{n}=d$

Triangulation of $(n+1)$-gon with last vertex of degree

$$
d_{n+1}=2 \text { or } 3 \text { or } 4 \text { or } \ldots \text { or } d \text {, or } d+1
$$

Production matrices

count paths in
a layered graph

The answer is

$$
\left.\begin{array}{llll}
\mathrm{r} \text { is } \\
1 & 0 & 0 & \ldots
\end{array}\right) \underbrace{\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & \ldots \\
1 & 1 & 1 & 1 & 1 & \ldots \\
0 & 1 & 1 & 1 & 1 & \ldots \\
0 & 0 & 1 & 1 & 1 & \ldots \\
0 & 0 & 0 & 1 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)}_{\text {the }}\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right)
$$

Production matrices for enumeration

were introduced by Emeric Deutsch, Luca Ferrari, and Simone Rinaldi (2005).
were used for counting noncrossing graphs for points in convex position:

Huemer, Seara, Silveira, and Pilz (2016)
Huemer, Pilz, Seara, and Silveira (2017)

$\left(\begin{array}{ccccc} 0 & 1 & 1 & 1 & \ldots \\ 1 & 0 & 1 & 1 & \ldots \\ 0 & 1 & 0 & 1 & \ldots \\ 0 & 0 & 1 & 0 & \ldots \\ 0 & 0 & 0 & 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array}\right)$	$\left(\begin{array}{ccccc} 2 & 3 & 4 & 5 & \ldots \\ 1 & 2 & 3 & 4 & \ldots \\ 0 & 1 & 2 & 3 & \ldots \\ 0 & 0 & 1 & 2 & \ldots \\ 0 & 0 & 0 & 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array}\right)$	$\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & \ldots \\ 1 & 3 & 4 & 5 & \ldots \\ 0 & 1 & 3 & 4 & \ldots \\ 0 & 0 & 1 & 3 & \ldots \\ 0 & 0 & 0 & 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$
matchings	spanning trees	forests

Method I: vertical edges for partial summation

Shearing
\rightarrow Dyck paths
\rightarrow Catalan numbers

Number of paths is preserved:
1 forward step

+ any number of vertical steps

Example 2: Forests

$$
P=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & \ldots \\
1 & 3 & 4 & 5 & 6 & \ldots \\
0 & 1 & 3 & 4 & 5 & \ldots \\
0 & 0 & 1 & 3 & 4 & \ldots \\
0 & 0 & 0 & 1 & 3 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Example 2: Forests

$P=\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & \ldots \\ 1 & 3 & 4 & 5 & 6 & \cdots \\ 0 & 1 & 3 & 4 & 5 & \ldots \\ 0 & 0 & 1 & 3 & 4 & \ldots \\ 0 & 0 & 0 & 1 & 3 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right) \quad \begin{aligned} & \text { Irregularities at } \\ & \text { can be ignored. }\end{aligned}$

Example 2: Forests

$\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & \ldots\end{array}\right)$ Irregularities at the boundary can be ignored.

Example 2: Forests

$\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & \ldots\end{array}\right)$ Irregularities at the boundary can be ignored.

Method II:
 intermediate layers

Example 2: Forests

$\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & \ldots\end{array}\right)$ Irregularities at the boundary can be ignored.

Method II:
 intermediate layers

Example 2: Forests

$$
P=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & \ldots \\
1 & 3 & 4 & 5 & 6 & \ldots \\
0 & 1 & 3 & 4 & 5 & \ldots \\
0 & 0 & 1 & 3 & 4 & \ldots \\
0 & 0 & 0 & 1 & 3 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \begin{aligned}
& \text { Irregularities at the boundary } \\
& \text { can be ignored. }
\end{aligned} \quad A=\left(\begin{array}{c|cc}
& \bullet & \circ \\
\hline \bullet & t^{3}+t u^{-2} & t u \\
\circ & t u & t u^{-2}
\end{array}\right)
$$

Solving for t^{*} and u^{*}

Solving for t^{*} and u^{*}

Solving for t^{*} and u^{*}

Example 2a: Trees and Serendipity

$$
P=\left(\begin{array}{cccccc}
2 & 3 & 4 & 5 & 6 & \ldots \\
1 & 2 & 3 & 4 & 5 & \ldots \\
0 & 1 & 2 & 3 & 4 & \ldots \\
0 & 0 & 1 & 2 & 3 & \ldots \\
0 & 0 & 0 & 1 & 2 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The extra edge is not needed.

Example 2a: Trees and Serendipity

$$
P=\left(\begin{array}{cccccc}
2 & 3 & 4 & 5 & 6 & \ldots \\
1 & 2 & 3 & 4 & 5 & \ldots \\
0 & 1 & 2 & 3 & 4 & \ldots \\
0 & 0 & 1 & 2 & 3 & \ldots \\
0 & 0 & 0 & 1 & 2 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The extra edge is not needed.

Only one type of node! One state is sufficient.

Example 2b: Graphs, and 2c: Paths

Huemer, Seara, Silveira, and Pilz (2016) Huemer, Pilz, Seara, and Silveira (2017)

Example 2b: Graphs, and 2c: Paths

Huemer, Seara, Silveira, and Pilz (2016) Huemer, Pilz, Seara, and Silveira (2017)

Example 3: Geometric graphs

the generalized double zigzag chain [Huemer, Pilz, and Silveira 2018]

$R=\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & \ldots \\ 0 & 2 & 2 & 2 & 2 & \ldots \\ 0 & 0 & 2 & 2 & 2 & \ldots \\ 0 & 0 & 0 & 2 & 2 & \ldots \\ 0 & 0 & 0 & 0 & 2 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right), S=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & \ldots \\ 1 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 1 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 1 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 1 & 0 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$
$P=R^{3}+S R^{2}+S(I+S) R+S(I+S)^{2}$

Example 3: Geometric graphs

$$
P=R^{3}+S R^{2}+S(I+S) R+S(I+S)^{2}
$$

$$
R=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & \ldots \\
0 & 2 & 2 & 2 & \ldots \\
0 & 0 & 2 & 2 & \ldots \\
0 & 0 & 0 & 2 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad S=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \ldots \\
1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Example 3: Geometric graphs

$P=R^{3}+S R^{2}+S(I+S) R+S(I+S)^{2}$

$$
A=\left(\begin{array}{c|cccc}
& \bullet & \mathbf{\Xi}_{1} & \mathbf{\Xi}_{2} & \boldsymbol{\Xi}_{3} \\
\hline \bullet & t\left(u+2 u^{2}+u^{3}\right) & 2 & 2 u & 2 u+2 u^{2} \\
\mathbf{\Xi}_{1} & 0 & u^{-1} & 2 & 0 \\
\mathbf{\Xi}_{2} & 0 & 0 & u^{-1} & 2 \\
\mathbf{\square}_{3} & t & 0 & 0 & u^{-1}
\end{array}\right)
$$

$$
1 / t^{*}=44 \sqrt{2}+62 \approx 124.225
$$

Possible Proofs

Conjecture: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis is

$$
\sim \text { const } \cdot\left(1 / t^{*}\right)^{n} \cdot n^{-3 / 2},
$$

where
(1) $A\left(t^{*}, u^{*}\right)$ has largest (Perron-Frobenius) eigenvalue 1.

$$
[\Longrightarrow \operatorname{det}(A(t, u)-I)=0]
$$

(2) u^{*} is chosen such that the value t^{*} that fulfills (1) is as large as possible. $\quad\left[\Longrightarrow \frac{\partial}{\partial u} \operatorname{det}(A(t, u)-I)=0\right]$

APPROACHES:
A) Analytic Combinatorics, "square-root-type" singularity
B) Probabilistic interpretation, random walk
C) Pedestrian, induction

Possible Proofs

Conjecture: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis is

$$
\sim \text { const } \cdot\left(1 / t^{*}\right)^{n} \cdot n^{-3 / 2},
$$

where
(1) $A\left(t^{*}, u^{*}\right)$ has largest (Perron-Frobenius) eigenvalue 1.

$$
[\Longrightarrow \operatorname{det}(A(t, u)-I)=0]
$$

(2) u^{*} is chosen such that the value t^{*} that fulfills (1) is as large as possible. $\quad\left[\Longrightarrow \frac{\partial}{\partial u} \operatorname{det}(A(t, u)-I)=0\right]$

APPROACHES:
A) Analytic Combinatorics, "square-root-type" singularity Special case 1: One state. All steps of the form $(1, j) . \rightarrow t^{1} u^{j}$ [Banderier and Flajolet, 2002]
$\left[\operatorname{det}(A(t, u)-I)=t \cdot Q(u)-1=0, \quad Q^{\prime}(u)=0\right]$

Analytic Combinatorics

Special case 1: One state. All steps of the form $(1, j) . \rightarrow t^{1} u^{j}$ [Banderier and Flajolet, 2002]
$\left[\operatorname{det}(A(t, u)-I)=t \cdot Q(u)-1=0, \quad Q^{\prime}(u)=0\right]$
Special case 2: Lattice paths with forbidden patterns use the "vectorial kernel method"
[Asinowski, Bacher, Banderier, Gittenberger, 2019]

Analytic Combinatorics

Special case 1: One state. All steps of the form $(1, j) . \rightarrow t^{1} u^{j}$ [Banderier and Flajolet, 2002]
$\left[\operatorname{det}(A(t, u)-I)=t \cdot Q(u)-1=0, \quad Q^{\prime}(u)=0\right]$
Special case 2: Lattice paths with forbidden patterns use the "vectorial kernel method"
[Asinowski, Bacher, Banderier, Gittenberger, 2019]
Use an unambiguous context-free grammar
E.g.
$D \rightarrow \varepsilon \mid+D-D \quad$ for Dyck paths

Chomsky-Schützenberger enumeration theorem from 1963 \rightarrow generating function is algebraic.

Possible Proofs

Conjecture: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis is

$$
\sim \text { const } \cdot\left(1 / t^{*}\right)^{n} \cdot n^{-3 / 2},
$$

where
(1) $A\left(t^{*}, u^{*}\right)$ has largest (Perron-Frobenius) eigenvalue 1.

$$
[\Longrightarrow \operatorname{det}(A(t, u)-I)=0]
$$

(2) u^{*} is chosen such that the value t^{*} that fulfills (1) is as large as possible. $\quad\left[\Longrightarrow \frac{\partial}{\partial u} \operatorname{det}(A(t, u)-I)=0\right]$

APPROACHES:
A) Analytic Combinatorics, "square-root-type" singularity
B) Probabilistic interpretation, random walk
C) Pedestrian, induction

Possible Proofs

Conjecture: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis is

$$
\sim \text { const } \cdot\left(1 / t^{*}\right)^{n} \cdot n^{-3 / 2},
$$

where
(1) $A\left(t^{*}, u^{*}\right)$ has largest (Perron-Frobenius) eigenvalue 1.

$$
[\Longrightarrow \operatorname{det}(A(t, u)-I)=0]
$$

(2) u^{*} is chosen such that the value t^{*} that fulfills (1) is as large as possible. $\quad\left[\Longrightarrow \frac{\partial}{\partial u} \operatorname{det}(A(t, u)-I)=0\right]$
(3) Let \vec{v} and \vec{w} be left and right eigenvectors of $A\left(t^{*}, u^{*}\right)$ with eigenvalue 1 . Then

$$
\vec{v} \cdot \frac{\partial}{\partial u} A(t, u) \cdot \vec{w}=0 \text { at }\left(t^{*}, u^{*}\right) .
$$

$(1) \wedge(2) \Leftrightarrow(1) \wedge(3)$. (linear algebra)
(1) $\Rightarrow N_{(x, y), q} \leq v_{q} t^{-x} u^{-y}$ by induction, $\Rightarrow N_{(n, 0)}=O\left(t^{-n}\right)$ all paths to (x, y), including those that go negative

Random walk

The effect of edge weights $t^{i} u^{j}$:
t : Path weights from $(0,0)$ to $(n, 0)$ are multiplied by t^{n}.
u : Path weights from $(0,0)$ to $(n, 0)$ are unaffected by u !
Use entries $a_{q r}$ of $A=A(t, u)$ as "weights" for a random walk.
$A=\left(\begin{array}{ccc}0.71 & 0.25 & 0.05 \\ 0.31 & 0.00 & 0.02 \\ 3.15 & 0.66 & 0.12\end{array}\right)$, eigenvalue 1, right eigenvector \vec{w}
Use right eigenvector \vec{w} to rescale: $p_{q r}:=a_{q r} \frac{w_{r}}{w_{q}}$
\rightarrow stochastic matrix with transition probabilities $p_{q r}$
Path weights from $(0,0)$ to $(n, 0)$ are multiplied by $w_{q_{1}} / w_{q_{0}}$.
\#paths $=$ const $\cdot(1 / t)^{n} \cdot \operatorname{Pr}[$ walk nonnegative \& reaches $(n, 0)]$

$\#$ paths $=$ const $\cdot(1 / t)^{n} \cdot \operatorname{Pr}[$ walk nonnegative \& reaches $(n, 0)]$

The place where the walk hits the line $x=n$ is approximately Gaussian.

If the mean is not 0 , then this is exponentially small.
Use u to make the walk balanced. In $t^{i} u^{j}$, Up-steps $(j>0)$ are favored $(u>1)$ or penalized $(u<1)$ over down-steps.

Average vertical drift $=\sum_{q} \pi_{q} \cdot \sum_{((i, j), r) \in S_{q}} j \cdot p_{q,(i, j), r} \stackrel{!}{=} 0$
stationary distribution over the states

Average vertical drift $=\sum_{q} \pi_{q} \cdot \sum_{((i, j), r) \in S_{q}} j \cdot p_{q,(i, j), r} \stackrel{!}{=} 0$
$\frac{\partial}{\partial u}$ brings out the factor j from $t^{i} u^{j}$:
Example: Step $(8,5) \rightarrow a_{q r}=t^{8} u^{5}$

$$
\frac{\partial}{\partial u} t^{8} u^{5}=5 t^{8} u^{4} \Longrightarrow u \frac{\partial}{\partial u} t^{8} u^{5}=5 t^{8} u^{5}=5 a_{q r}
$$

"No-drift" condition: $\vec{v} \cdot\left(u \cdot \frac{\partial}{\partial u} A(t, u)\right) \cdot \vec{w}=0$
left eigenvector $=$ stationary distribution

Local Limit Theorems

Still want to show, for a balanced walk:
$\operatorname{Pr}[$ walk nonnegative \wedge reaches $(n, 0)] \sim$ const $\cdot n^{-3 / 2}$
Classical Local Limit Theorem:
$\operatorname{Prob}[$ sum of n i.i.d. random variables with mean 0 lies in some small region around 0] \sim const $\cdot n^{-1 / 2} \quad$ [Gnedenko, Stone]

Needs to be adapted to sign-restricted case $(y \geq 0)$ and several states.

Local Limit Theorems

Still want to show, for a balanced walk:
$\operatorname{Pr}[$ walk nonnegative \wedge reaches $(n, 0)] \sim$ const $\cdot n^{-3 / 2}$
Classical Local Limit Theorem:
$\operatorname{Prob}[$ sum of n i.i.d. random variables with mean 0 lies in some small region around 0] \sim const $\cdot n^{-1 / 2} \quad$ [Gnedenko, Stone]

Needs to be adapted to sign-restricted case $(y \geq 0)$ and several states.
C) "Pedestrian" approach. Pioneered for a special case with two states in Asinowski and Rote (2018).

- $O\left(\left(1 / t^{*}\right)^{n}\right)$ by induction.
- $\Omega\left(\left(1 / t^{*}-\varepsilon\right)^{n}\right)$ for every $\varepsilon>0$, by induction.
- Count non-crossing perfect matchings in the generalized double zigzag chain

the generalized double zigzag chain
- Count non-crossing perfect matchings in the generalized double zigzag chain

a non-crossing perfect matching
- Count non-crossing perfect matchings in the generalized double zigzag chain

a non-crossing perfect matching
- Count non-crossing perfect matchings in the generalized double zigzag chain
- Count down-free matchings in a single zigzag chain

- Count non-crossing perfect matchings in the generalized double zigzag chain
- Count down-free matchings in a single zigzag chain

- Count non-crossing perfect matchings in the generalized double zigzag chain
- Count down-free matchings in a single zigzag chain

- Count non-crossing perfect matchings in the generalized double zigzag chain
- Count down-free matchings in a single zigzag chain

Extensions and Questions

- higher dimensions: jumps (i, j, k)
- jumps $(i, j) \in \mathbb{R}^{2}$, not necessarily on the grid
- Prove that the local maximum u^{*} is a strong maximum
- real weights $c \geq 0$ weights $c<0$?
- other applications of production matrices or lattice paths with states

