

Lattice Paths with States, and Counting Geometric Objects via Production Matrices

Günter Rote Freie Universität Berlin

ongoing joint work with Andrei Asinowski and Alexander Pilz

a non-crossing perfect matching

https://adamsheffer.wordpress.com/numbers-of-plane-graphs/

Lower Bound: Explicit Construction

- Think of some type of regular construction
- $\bullet\,$ Find a formula for the number of non-crossing X

Freie Universität

Lower Bound: Explicit Construction

- Think of some type of regular construction
- $\bullet\,$ Find a formula for the number of non-crossing X

Freie Universität

Lower Bound: Explicit Construction

- Think of some type of regular construction
- $\bullet\,$ Find a formula for the number of non-crossing X

Freie Universität

Lattice Paths with States

- Finite set of states $Q = \{\bullet, \circ, \bullet, \neg, \Box, \triangle, \ldots\}$
- For each q ∈ Q, a set S_q of permissible steps ((i, j), q'):
 From point (x, y) in state q, can go to (x + i, y + j) in state q'.

Formula for Lattice Paths with States

Freie Universität

Berlin

Conjecture: The number of paths from (0,0) in state q_0 to (n,0) in state q_1 that don't go below the x-axis is

$$\sim \operatorname{const} \cdot (1/t^*)^n \cdot n^{-3/2},$$

where

(1) $A(t^*, u^*)$ has largest (Perron-Frobenius) eigenvalue 1. [$\implies \det(A(t, u) - I) = 0$] (2) $u^* > 0$ is chosen such that the value $t^* > 0$ that fulfills (1) is as large as possible. [$\implies \frac{\partial}{\partial u} \det(A(t, u) - I) = 0$]

Formula for Lattice Paths with States

Freie Universität

Berlin

Conjecture: The number of paths from (0,0) in state q_0 to (n,0) in state q_1 that don't go below the x-axis is

$$\sim \operatorname{const} \cdot (1/t^*)^n \cdot n^{-3/2},$$

under some obvious *technical conditions*:

- state graph is strongly connected
- no cycles in the lattice paths
- aperiodic

Overview

- \bullet Introduction. Point sets with many noncrossing X
- The lattice path formula with states (preview)
- Method pipeline
- Overview
- Example 1: Triangulations of a convex *n*-gon
- Production matrices
- Example 2: Noncrossing forests in a convex *n*-gon
- Example 3: The generalized double zigzag chain.
- Proof idea 1. Analytic combinatorics
- Proof idea 2. Random walk

Freie Universität

Freie Universität

Günter Rote, Freie Universität Berlin Lattice Paths with States, and Counting Geometric Objects via Production Matrices Big Budapest Combinatorics and Geometry Seminar, September 13, 2023

3

Triangulation of *n*-gon with last vertex of degree $d_n = d$

Triangulations of a convex n-gon

n+1

Fig. 4. Levels three to six of the tree of triangulations.

Freie Universität

Berlin

Triangulation of (n + 1)-gon with last vertex of degree

Triangulation of *n*-gon with last vertex of degree $d_n = d \rightarrow$

 $d_{n+1} = 2$ or 3 or 4 or ... or d, or d+1

Triangulations of a convex n-gon

Lattice Paths with States, and Counting Geometric Objects via Production Matrices

Big Budapest Combinatorics and Geometry Seminar, September 13, 2023

Freie Universität

Berlin

Triangulation of *n*-gon with last vertex of degree $d_n = d$

Triangulation of (n + 1)-gon with last vertex of degree

$$d_{n+1} = 2$$
 or 3 or 4 or \ldots or d , or $d+1$

[Hurtado & Noy 1999] "tree of triangulations"

Fig. 4. Levels three to six of the tree of triangulations.

Triangulation of *n*-gon with last vertex of degree $d_n = d \rightarrow$

Triangulation of (n + 1)-gon with last vertex of degree

 $d_{n+1} = 2$ or 3 or 4 or \ldots or d, or d+1

Production matrices

Production matrices for enumeration

were introduced by Emeric Deutsch, Luca Ferrari, and Simone Rinaldi (2005).

were used for counting noncrossing graphs for points in convex position: Huemer, Seara, Silveira, and Pilz (2016) Huemer, Pilz, Seara, and Silveira (2017)

Making the degree finite

Making the degree finite

vertical steps

 \mathcal{D}

Irregularities at the boundary can be ignored.

Freie Universität

Freie Universität

Freie Universität

Example 2a: Trees and Serendipity

Big Budapest Combinatorics and Geometry Seminar, September 13, 2023

Freie Universität

🖗 Berlin

Example 2a: Trees and Serendipity

Freie Universität

Example 2b: Graphs, and 2c: Paths

geometric graphs

paths

Freie Universität

🖗 Berlin

Huemer, Seara, Silveira, and Pilz (2016) Huemer, Pilz, Seara, and Silveira (2017)

Example 2b: Graphs, and 2c: Paths

Freie Universität

🖗 Berlin

Example 3: Geometric graphs

Freie Universität

Berlin

$P = R^{3} + SR^{2} + S(I+S)R + S(I+S)^{2}$

Example 3: Geometric graphs

 $P = R^3 + SR^2 + S(I+S)R + S(I+S)^2$

Example 3: Geometric graphs

 $P = R^3 + SR^2 + S(I+S)R + S(I+S)^2$

Günter Rote, Freie Universität Berlin

Lattice Paths with States, and Counting Geometric Objects via Production Matrices

Possible Proofs

Conjecture: The number of paths from (0,0) in state q_0 to (n,0) in state q_1 that don't go below the x-axis is

$$\sim \operatorname{const} \cdot (1/t^*)^n \cdot n^{-3/2},$$

Freie Universität

Berlin

where

(1) $A(t^*, u^*)$ has largest (Perron-Frobenius) eigenvalue 1. [$\implies \det(A(t, u) - I) = 0$] (2) u^* is chosen such that the value t^* that fulfills (1) is as

large as possible. $[\implies \frac{\partial}{\partial u} \det(A(t, u) - I) = 0]$

APPROACHES:

A) Analytic Combinatorics, "square-root-type" singularityB) Probabilistic interpretation, random walkC) Pedestrian, induction

Possible Proofs

Conjecture: The number of paths from (0,0) in state q_0 to (n,0) in state q_1 that don't go below the x-axis is

$$\sim \operatorname{const} \cdot (1/t^*)^n \cdot n^{-3/2},$$

where

(1) $A(t^*, u^*)$ has largest (Perron-Frobenius) eigenvalue 1. [$\implies \det(A(t, u) - I) = 0$] (2) u^* is chosen such that the value t^* that fulfills (1) is as large as possible. [$\implies \frac{\partial}{\partial u} \det(A(t, u) - I) = 0$]

APPROACHES:

A) Analytic Combinatorics, "square-root-type" singularity Special case 1: One state. All steps of the form (1, j). $\rightarrow t^1 u^j$ [Banderier and Flajolet, 2002] $[\det(A(t, u) - I) = t \cdot Q(u) - 1 = 0, Q'(u) = 0]$

Freie Universität

Analytic Combinatorics

Freie Universität

Special case 1: One state. All steps of the form (1, j). $\rightarrow t^1 u^j$ [Banderier and Flajolet, 2002]

$$[\det(A(t,u) - I) = t \cdot Q(u) - 1 = 0, \ Q'(u) = 0]$$

Special case 2: Lattice paths with forbidden patterns use the "vectorial kernel method" [Asinowski, Bacher, Banderier, Gittenberger, 2019]

Analytic Combinatorics

Special case 1: One state. All steps of the form (1, j). $\rightarrow t^1 u^j$ [Banderier and Flajolet, 2002]

Freie Universität

Berlin

$$[\det(A(t,u) - I) = t \cdot Q(u) - 1 = 0, \ Q'(u) = 0]$$

Special case 2: Lattice paths with forbidden patterns use the "vectorial kernel method" [Asinowski, Bacher, Banderier, Gittenberger, 2019]

Use an unambiguous context-free grammar

E.g.
$$D \rightarrow \varepsilon \mid +D-D$$
 for Dyck paths

Chomsky–Schützenberger enumeration theorem from 1963 \rightarrow generating function is algebraic.

Possible Proofs

Conjecture: The number of paths from (0,0) in state q_0 to (n,0) in state q_1 that don't go below the x-axis is

$$\sim \operatorname{const} \cdot (1/t^*)^n \cdot n^{-3/2},$$

Freie Universität

Berlin

where

(1) $A(t^*, u^*)$ has largest (Perron-Frobenius) eigenvalue 1. [$\implies \det(A(t, u) - I) = 0$] (2) u^* is chosen such that the value t^* that fulfills (1) is as

large as possible. $[\implies \frac{\partial}{\partial u} \det(A(t, u) - I) = 0]$

APPROACHES:

A) Analytic Combinatorics, "square-root-type" singularityB) Probabilistic interpretation, random walkC) Pedestrian, induction

Possible Proofs

Conjecture: The number of paths from (0,0) in state q_0 to (n,0) in state q_1 that don't go below the x-axis is

$$\sim \operatorname{const} \cdot (1/t^*)^n \cdot n^{-3/2},$$

where

(1) $A(t^*, u^*)$ has largest (Perron-Frobenius) eigenvalue 1. [$\implies \det(A(t, u) - I) = 0$]

(2) u^* is chosen such that the value t^* that fulfills (1) is as large as possible. $[\implies \frac{\partial}{\partial u} \det(A(t, u) - I) = 0]$

(3) Let \vec{v} and \vec{w} be left and right eigenvectors of $A(t^*, u^*)$ with eigenvalue 1. Then $\vec{v} \cdot \frac{\partial}{\partial u} A(t, u) \cdot \vec{w} = 0$ at (t^*, u^*) .

$$(1) \wedge (2) \Leftrightarrow (1) \wedge (3)$$
. (linear algebra)
 $(1) \Rightarrow N_{(x,y),q} \leq v_q t^{-x} u^{-y}$ by induction, $\Rightarrow N_{(n,0)} = O(t^{-n})$
 $(1) = A_{(x,y),q} \leq v_q t^{-x} u^{-y}$ by induction, $\Rightarrow N_{(n,0)} = O(t^{-n})$

Random walk

The effect of edge weights $t^i u^j$: *t*: Path weights from (0,0) to (n,0) are multiplied by t^n . *u*: Path weights from (0,0) to (n,0) are unaffected by u!

Freie Universität

Berlin

Use entries a_{qr} of A = A(t, u) as "weights" for a random walk. $A = \begin{pmatrix} 0.71 & 0.25 & 0.05 \\ 0.31 & 0.00 & 0.02 \\ 3.15 & 0.66 & 0.12 \end{pmatrix}$, eigenvalue 1, right eigenvector \vec{w}

Use right eigenvector \vec{w} to rescale: $p_{qr} := a_{qr} \frac{w_r}{w_q}$ \rightarrow stochastic matrix with transition probabilities p_{qr} Path weights from (0,0) to (n,0) are multiplied by w_{q_1}/w_{q_0} .

#paths = const $\cdot (1/t)^n \cdot \Pr[$ walk nonnegative & reaches (n, 0)]

Freie Universität

#paths = const $\cdot (1/t)^n \cdot \Pr[$ walk nonnegative & reaches (n, 0)]

The place where the walk hits the line x = n is approximately Gaussian.

If the mean is not 0, then this is exponentially small.

Use u to make the walk *balanced*. In $t^i u^j$, Up-steps (j > 0) are favored (u > 1) or penalized (u < 1) over down-steps.

Average vertical drift =
$$\sum_{q} \pi_q \cdot \sum_{((i,j),r)\in S_q} j \cdot p_{q,(i,j),r} \stackrel{!}{=} 0$$

stationary distribution over the states

Make the random walk balanced

Freie Universität

Local Limit Theorems

Still want to show, for a balanced walk:

 $\Pr[\text{walk nonnegative} \land \text{reaches} (n, 0)] \sim \text{const} \cdot n^{-3/2}$

Classical Local Limit Theorem:

Needs to be adapted to sign-restricted case ($y \ge 0$) and several states.

Local Limit Theorems

Still want to show, for a balanced walk:

 $\Pr[\text{walk nonnegative} \land \text{reaches} (n, 0)] \sim \text{const} \cdot n^{-3/2}$

Classical Local Limit Theorem:

Needs to be adapted to sign-restricted case ($y \ge 0$) and several states.

C) "Pedestrian" approach. Pioneered for a special case with two states in Asinowski and Rote (2018).

- $O((1/t^*)^n)$ by induction.
- $\Omega((1/t^* \varepsilon)^n)$ for every $\varepsilon > 0$, by induction.

• Count non-crossing perfect matchings in the generalized double zigzag chain

the generalized double zigzag chain

Freie Universität

• Count non-crossing perfect matchings in the generalized double zigzag chain

a non-crossing perfect matching

Freie Universität

🖗 Berlin

• Count non-crossing perfect matchings in the generalized double zigzag chain

a non-crossing perfect matching

Freie Universität

🖗 Berlin

• Count non-crossing perfect matchings in the generalized double zigzag chain

Freie Universität

Berlin

• Count non-crossing perfect matchings in the generalized double zigzag chain

Freie Universität

Berlin

• Count non-crossing perfect matchings in the generalized double zigzag chain

Freie Universität

Berlin

• Count non-crossing perfect matchings in the generalized double zigzag chain

Freie Universität

Berlin

Extensions and Questions

 t^*

- higher dimensions: jumps (i, j, k)
- jumps $(i,j) \in \mathbb{R}^2$, not necessarily on the grid
- Prove that the local maximum \boldsymbol{u}^* is a strong maximum
- real weights c ≥ 0 weights c < 0?
 other applications of production matrices or lattice paths with states