Lattice Paths with States, and

Counting Geometric Objects via Production Matrices
(a preliminary report on unproved results)

Günter Rote Freie Universität Berlin

 ongoing joint work with Andrei Asinowski and Alexander Pilz
a non-crossing perfect matching

Lattice Paths with States, and

 Counting Geometric Objects via Production Matrices(a preliminary report on unproved results)

Günter Rote Freie Universität Berlin

ongoing joint work with Andrei Asinowski and Alexander Pilz

Lattice Paths with States, and
 Counting Geometric Objects via Production Matrices

(a preliminary report on unproved results)

Günter Rote Freie Universität Berlin

ongoing joint work with Andrei Asinowski and Alexander Pilz

the generalized double zigzag chain

Lattice Paths with States

- Finite set of states $Q=\{\bullet, \circ, \llbracket, \square, \Delta, \ldots\}$
- For each $q \in Q$, a set S_{q} of permissible steps $\left((i, j), q^{\prime}\right)$: From point (x, y) in state q, can go to $(x+i, y+j)$ in

Wanted: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis.

Formula for Lattice Paths with States

$(i, j) \mapsto t^{i} u^{j}$

Conjecture: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis is

$$
\sim \text { const } \cdot\left(1 / t^{*}\right)^{n} \cdot n^{-3 / 2},
$$

where
(1) $A\left(t^{*}, u^{*}\right)$ has largest (Perron-Frobenius) eigenvalue 1.

$$
[\Longrightarrow \operatorname{det}(A(t, u)-I)=0]
$$

(2) $u^{*}>0$ is chosen such that the value $t^{*}>0$ that fulfills (1) is as large as possible. $\quad\left[\Longrightarrow \frac{\partial}{\partial u} \operatorname{det}(A(t, u)-I)=0\right]$

Formula for Lattice Paths with States

$(i, j) \mapsto t^{i} u^{j}$

Conjecture: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis is

$$
\sim \text { const } \cdot\left(1 / t^{*}\right)^{n} \cdot n^{-3 / 2},
$$

under some obvious technical conditions:

- state graph is strongly connected
- no cycles in the lattice paths
- aperiodic
- Introduction. Point sets with many noncrossing X
- The lattice path formula with states (preview)
- Overview
- Example 1: Triangulations of a convex n-gon
- Production matrices
- Example 2: Noncrossing forests in a convex n-gon
- Example 3: Geometric graphs on the generalized double zigzag chain.
- Proof idea 1. Analytic combinatorics
- Proof idea 2. Random walk

Triangulations of a convex n-gon

Triangulations of a convex n-gon

Triangulation of n-gon with last vertex of degree $d_{n}=d$
\qquad
Triangulation of $(n+1)$-gon with last vertex of degree

$$
\begin{array}{r}
d_{n+1}=2 \text { or } 3 \text { or } 4 \text { or } \ldots \text { or } d \text {, or } d+1 \\
\\
\quad \text { [Hurtado \& Noy 1999] } \\
\text { "tree of triangulations" }
\end{array}
$$

Triangulations of a convex n-gon

Triangulation of n-gon with last vertex of degree $d_{n}=d$

Triangulation of $(n+1)$-gon with last vertex of degree

$$
d_{n+1}=2 \text { or } 3 \text { or } 4 \text { or } \ldots \text { or } d \text {, or } d+1
$$

triangulation
 \uparrow
 lattice path

Production matrices

count paths in
a layered graph

The answer is

$$
\left.\begin{array}{llll}
\text { is } \\
\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right. & \ldots
\end{array}\right) \underbrace{\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & \ldots \\
1 & 1 & 1 & 1 & \ldots \\
0 & 1 & 1 & 1 & \ldots \\
0 & 0 & 1 & 1 & \ldots \\
0 & 0 & 0 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)}_{\text {the }} \text { "production matrix" } P
$$

Production matrices for enumeration

were introduced by Emeric Deutsch, Luca Ferrari, and Simone Rinaldi (2005).
were used for counting noncrossing graphs for points in convex position:

Huemer, Seara, Silveira, and Pilz (2016)
Huemer, Pilz, Seara, and Silveira (2017)

| $\left(\begin{array}{ccccc}0 & 1 & 1 & 1 & \ldots \\ 1 & 0 & 1 & 1 & \ldots \\ 0 & 1 & 0 & 1 & \ldots \\ 0 & 0 & 1 & 0 & \ldots \\ 0 & 0 & 0 & 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| matchings$\left(\begin{array}{cccccc}2 & 3 & 4 & 5 & \ldots \\ 1 & 2 & 3 & 4 & \ldots \\ 0 & 1 & 2 & 3 & \ldots \\ 0 & 0 & 1 & 2 & \ldots \\ 0 & 0 & 0 & 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$ |\(\left(\begin{array}{ccccc}1 \& 1 \& 1 \& 1 \& ···

1 \& 3 \& 4 \& 5 \& ···

0 \& 1 \& 3 \& 4 \& ···

0 \& 0 \& 1 \& 3 \& ···

0 \& 0 \& 0 \& 1 \& ···

\vdots \& \vdots \& \vdots \& \vdots \& \ddots\end{array}\right)\)

Number of paths is preserved.

Shearing
\rightarrow Dyck paths
\rightarrow Catalan numbers

Number of paths is preserved.

Example 2: Forests

$$
P=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & \ldots \\
1 & 3 & 4 & 5 & 6 & \ldots \\
0 & 1 & 3 & 4 & 5 & \ldots \\
0 & 0 & 1 & 3 & 4 & \ldots \\
0 & 0 & 0 & 1 & 3 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Example 2: Forests

$$
P=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & \ldots \\
1 & 3 & 4 & 5 & 6 & \ldots \\
0 & 1 & 3 & 4 & 5 & \ldots \\
0 & 0 & 1 & 3 & 4 & \ldots \\
0 & 0 & 0 & 1 & 3 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Irregularities at the boundary can be ignored.

Example 2: Forests

$\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & \ldots\end{array}\right)$ Irregularities at the boundary can be ignored.

Example 2: Forests

$\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & \ldots\end{array}\right)$ Irregularities at the boundary

$$
P=\left(\begin{array}{cccccc}
1 & 3 & 4 & 5 & 6 & \ldots \\
0 & 1 & 3 & 4 & 5 & \ldots \\
0 & 0 & 1 & 3 & 4 & \ldots \\
0 & 0 & 0 & 1 & 3 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

can be ignored.

Example 2: Forests

$\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & \ldots\end{array}\right)$ Irregularities at the boundary
$P=\left(\begin{array}{cccccc}1 & 3 & 4 & 5 & 6 & \ldots \\ 0 & 1 & 3 & 4 & 5 & \ldots \\ 0 & 0 & 1 & 3 & 4 & \ldots \\ 0 & 0 & 0 & 1 & 3 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$ can be ignored.

Example 2: Forests

$$
P=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & \ldots \\
1 & 3 & 4 & 5 & 6 & \ldots \\
0 & 1 & 3 & 4 & 5 & \ldots \\
0 & 0 & 1 & 3 & 4 & \ldots \\
0 & 0 & 0 & 1 & 3 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \begin{aligned}
& \text { Irregularities at the boundary } \\
& \text { can be ignored. }
\end{aligned} \quad A=\left(\begin{array}{c|cc}
& \bullet & \circ \\
\hline \bullet & t^{3}+t u^{-2} & t u \\
\circ & t u & t u^{-2}
\end{array}\right)
$$

Solving for t^{*} and u^{*}

Solving for t^{*} and u^{*}

Solving for t^{*} and u^{*}

Example 3: Geometric graphs

the generalized double zigzag chain [Huemer, Pilz, and Silveira 2018]

$R=\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & \ldots \\ 0 & 2 & 2 & 2 & 2 & \ldots \\ 0 & 0 & 2 & 2 & 2 & \ldots \\ 0 & 0 & 0 & 2 & 2 & \ldots \\ 0 & 0 & 0 & 0 & 2 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right), S=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & \ldots \\ 1 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 1 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 1 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 1 & 0 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$
$P=R^{3}+S R^{2}+S(I+S) R+S(I+S)^{2}$

Example 3: Geometric graphs

$P=R^{3}+S R^{2}+S(I+S) R+S(I+S)^{2}$

$$
A=\left(\begin{array}{c|cccc}
& \bullet & \boldsymbol{■}_{1} & \boldsymbol{\varpi}_{2} & \boldsymbol{\varpi}_{3} \\
\hline \bullet & t\left(u+2 u^{2}+u^{3}\right) & 2 & 2 u & 2 u+2 u^{2} \\
\boldsymbol{\varpi}_{1} & 0 & u^{-1} & 2 & 0 \\
\boldsymbol{\varpi}_{2} & 0 & 0 & u^{-1} & 2 \\
\boldsymbol{■}_{3} & t & 0 & 0 & u^{-1}
\end{array}\right)
$$

Proofs

Conjecture: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis is

$$
\sim \text { const } \cdot\left(1 / t^{*}\right)^{n} \cdot n^{-3 / 2},
$$

where
(1) $A\left(t^{*}, u^{*}\right)$ has largest (Perron-Frobenius) eigenvalue 1.

$$
[\Longrightarrow \operatorname{det}(A(t, u)-I)=0]
$$

(2) u^{*} is chosen such that the value t^{*} that fulfills (1) is as large as possible. $\quad\left[\Longrightarrow \frac{\partial}{\partial u} \operatorname{det}(A(t, u)-I)=0\right]$
APPROACHES:
A) Analytic Combinatorics, "square-root-type" singularity
B) Probabilistic interpretation, random walk
C) Pedestrian, induction

Proofs

Conjecture: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis is

$$
\sim \text { const } \cdot\left(1 / t^{*}\right)^{n} \cdot n^{-3 / 2},
$$

where
(1) $A\left(t^{*}, u^{*}\right)$ has largest (Perron-Frobenius) eigenvalue 1.

$$
[\Longrightarrow \operatorname{det}(A(t, u)-I)=0]
$$

(2) u^{*} is chosen such that the value t^{*} that fulfills (1) is as large as possible. $\quad\left[\Longrightarrow \frac{\partial}{\partial u} \operatorname{det}(A(t, u)-I)=0\right]$
APPROACHES:
A) Analytic Combinatorics, "square-root-type" singularity Special case: One state. All steps are of the form $(1, j)$.
[Banderier and Flajolet, 2002]
$\left[\operatorname{det}(A(t, u)-I)=t \cdot Q(u)-1=0, \quad Q^{\prime}(u)=0\right]$

Proofs

Conjecture: The number of paths from $(0,0)$ in state q_{0} to $(n, 0)$ in state q_{1} that don't go below the x-axis is

$$
\sim \text { const } \cdot\left(1 / t^{*}\right)^{n} \cdot n^{-3 / 2},
$$

where
(1) $A\left(t^{*}, u^{*}\right)$ has largest (Perron-Frobenius) eigenvalue 1.

$$
[\Longrightarrow \operatorname{det}(A(t, u)-I)=0]
$$

(2) u^{*} is chosen such that the value t^{*} that fulfills (1) is as large as possible. $\quad\left[\Longrightarrow \frac{\partial}{\partial u} \operatorname{det}(A(t, u)-I)=0\right]$
(3) Let \vec{v} and \vec{w} be left and right eigenvectors of $A(t, u)$ with eigenvalue 1. Then

$$
\vec{v} \cdot \frac{\partial}{\partial u} A(t, u) \cdot \vec{w}=0
$$

$(1) \wedge(2) \Leftrightarrow(1) \wedge(3)$. (linear algebra)
$(1) \Longrightarrow N_{(x, y), q} \leq v_{q} t^{-x} u^{-y}$ by easy induction.

Random walk

Use entries $a_{q r}$ of $A=A(t, u)$ as "weights" for a random walk. What is the effect of u in $t^{i} u^{j}$? Up-jumps $(j>0)$ are favored $(u>1)$ or penalized $(u<1)$ over down-jumps.
The weight of a path from $(0,0)$ to $(n, 0)$ is unaffected by u ! Every path weight is multiplied by t^{n}.
$\left(\begin{array}{ccc}0.71 & 0.25 & 0.05 \\ 0.31 & 0.0 & 0.02\end{array}\right) \quad$ Use right eigenvector \vec{w} to rescale $A=\left(\begin{array}{ccc}0.31 & 0.00 & 0.02 \\ 3.15 & 0.66 & 0.12\end{array}\right) \quad$ into probabilities: $p_{q r}=a_{q r} \frac{w_{r}}{w_{q}}$ $\begin{array}{lll}3.15 & 0.66 & 0.12\end{array} \rightarrow$ stochastic matrix
What does $\frac{\partial}{\partial u} A(t, u)$ mean? The expected vertical jump!
Step (8, 5): $\frac{\partial}{\partial u} t^{8} u^{5}=5 t^{8} u^{4} \Longrightarrow u \frac{\partial}{\partial u} t^{8} u^{5}=5 t^{8} u^{5}=5 a_{q r}$
"No-drift" condition: $\vec{v} \cdot\left(u \cdot \frac{\partial}{\partial u} A(t, u)\right) \cdot \vec{w}=0$ stationary distribution

Local Limit Theorems

Prob[sum of n i.i.d. random variables with mean 0 lies in some small region around 0$] \sim$ const $\cdot n^{-1 / 2}$
[Gnedenko]
Needs to be adapted to sign-restricted case $(y \geq 0)$ and several states.

Local Limit Theorems

$\operatorname{Prob}[$ sum of n i.i.d. random variables with mean 0 lies in some small region around 0] \sim const $\cdot n^{-1 / 2}$
[Gnedenko]
Needs to be adapted to sign-restricted case ($y \geq 0$) and several states.
"Pedestrian" approach. Pioneered for a special case with 2 states in Asinowski and Rote (2018).

- $O\left(\left(1 / t^{*}\right)^{n}\right)$ by induction.
- $\Omega\left(\left(1 / t^{*}-\varepsilon\right)^{n}\right)$ for every $\varepsilon>0$, by induction.

Extensions

- higher dimensions
- jumps $(i, j) \in \mathbb{R}^{2}$

