Grid Peeling and the Affine Curve-Shortening Flow (ACSF)

Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / ISTA
convex layers onion layers

Grid Peeling and the Affine

 Curve-Shortening Flow (ACSF)Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / ISTA
convex layers onion layers

Grid Peeling and the Affine

 Curve-Shortening Flow (ACSF)Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / ISTA

Grid Peeling and the Affine

 Curve-Shortening Flow (ACSF)Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / ISTA

grid peeling

Grid Peeling of the Square

[Sariel Har-Peled and Bernard Lidický 2013]

The $n \times n$ grid has $\Theta\left(n^{4 / 3}\right)$ convex layers.

Affine Curve-Shortening Flow (ACSF)

[L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel:
"Axioms and fundamental equations of image processing" 1993]
[G. Sapiro and A. Tannenbaum:
"Affine invariant scale-space." Int. J. Computer Vision 1993]

Peeling and the ACSF

Conjecture:
David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

Peeling and the ACSF

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow.
Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

Peeling and the ACSF

Peeling and the ACSF

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow.
Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $t \approx$ Grid peeling on $\frac{1}{n}$-grid after $C_{g} t n^{4 / 3}$ steps.

Conjecture: (Moritz Rüber and Günter Rote)

$$
C_{g}=\sqrt[3]{\frac{\pi^{2}}{2 \zeta(3)}} \approx 1.60120980542577
$$

Peeling and the ACSF

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow.
Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.
\rightarrow Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. (2020) random points

Peeling and the ACSF

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow.
Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.
\rightarrow Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. (2020) random points

Peeling and the ACSF

Jeff Calder and Charles K. Smart. The limit shape of convex hull peeling. 2020 10000 random points in the shaded region

Peeling and the ACSF

Conjecture:
David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow.
Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $t \approx$ Grid peeling on $\frac{1}{n}$-grid after $C_{g} t n^{4 / 3}$ steps.

Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. 169 (2020)
Theorem:
ACSF at time $t \approx$ Peeling on density- n^{2} set after $C_{r} t n^{4 / 3}$ steps.

$$
C_{g} \approx 1.6, \quad C_{r} \approx 1.3
$$

- Invariant under affine transformations?

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

The parabola!

$$
y=\frac{1}{20} x^{2}
$$

affine lattice-preserving shearing transformations

$$
y=\frac{1}{20} x^{2}
$$

affine lattice-preserving shearing transformations

$$
y=\frac{a_{N}}{a_{D}} x^{2}+\frac{b_{N}}{b_{D}} x+c
$$

Lemma:
Horizontal period $H=\operatorname{lcm}\left(a_{D}, b_{D}\right)$ or $H=\operatorname{lcm}\left(a_{D}, b_{D}\right) / 2$

Conics

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

Conics

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch 2020:

D		
或:		

Conics

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch 2020:

The n-th layer of \mathbb{N}^{2} is sandwiched between two hyperbolas:

- integer parameter $t \geq 1$
- $S_{t}:=\{$ all slopes a / b with $0<b \leq t\}$
- for each slope $a / b \in S_{t}$, take the longest integer vector

$$
\binom{x}{y}=k\binom{b}{a} \quad(k \in \mathbb{Z})
$$

with $0<x \leq t$

- integer parameter $t \geq 1$
- $S_{t}:=\{$ all slopes a / b with $0<b \leq t\}$
- for each slope $a / b \in S_{t}$, take the longest integer vector

$$
\binom{x}{y}=k\binom{b}{a} \quad(k \in \mathbb{Z})
$$

with $0<x \leq t$

- integer parameter $t \geq 1$
- $S_{t}:=\{$ all slopes a / b with $0<b \leq t\}$
- for each slope $a / b \in S_{t}$, take the longest integer vector

$$
\binom{x}{y}=k\binom{b}{a} \quad(k \in \mathbb{Z})
$$

with $0<x \leq t$

"The grid parabola"

$H_{1}, H_{2}, \ldots=1,4,11,22,43,64,107,150,211,274,385, \ldots$

$$
t=5
$$

"The grid parabola"
$t=5$
slope $\frac{1}{2}$

$$
y=f(x)-\frac{1}{2 H_{t}} x^{2}
$$

Theorem:
For odd t, the polygon repeats after t steps, one level higher. (For even t : after $t+1$ steps.)

禺
0

Asymptotic period
$H_{1}, H_{2}, \ldots=1,4,11,22,43,64,107,150,211,274,385, \ldots$
[OEIS A174405]

$$
H_{t}:=\sum_{0<y \leq x \leq t}\left\lfloor\frac{t}{x}\right\rfloor x=\sum_{1 \leq i \leq t} \sum_{d \mid i} d \varphi(d)
$$

$$
H_{t}=\frac{2 \zeta(3)}{\pi^{2}} t^{3}+O\left(t^{2} \log t\right)
$$

with $\zeta(3)=1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\frac{1}{4^{3}}+\cdots \approx 1.2020569$
[Sándor and Kramer 1999]

Time period for various parabolas

$$
y=a x^{2}+b x
$$

average vertical speed depending on a (various values of b)

Time period for various parabolas

$$
y=a x^{2}+b x
$$

average vertical speed depending on a (various values of b)

Time period for various parabolas

Time period for various parabolas

Time period for various parabolas

Random-set peeling

Jeff Calder and Charles K. Smart. The limit shape of convex hull peeling. 2020

semiconvex peeling, on a cylinder

Focus on one slope

Freie Universität (b) Berlin

What happens at a jump?

JUMP RULES:

- jump to the next grid line of slope s
- fill the extended $\operatorname{strip}\left[\bar{L}_{s}, \bar{R}_{s}\right]$ as much as possible

All possible grid lines of slope $s=2 / 5$

Two adjacent slopes s, s^{\prime}

