

Grid Peeling and the Affine Curve-Shortening Flow (ACSF)

Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / ISTA

convex layers onion layers

Grid Peeling and the Affine Curve-Shortening Flow (ACSF)

Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / ISTA

Grid Peeling and the Affine Curve-Shortening Flow (ACSF)

Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / ISTA

Grid Peeling and the Affine Curve-Shortening Flow (ACSF)

Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / ISTA

grid peeling

Grid Peeling of the Square

[Sariel Har-Peled and Bernard Lidický 2013]

The $n \times n$ grid has $\Theta(n^{4/3})$ convex layers.

Affine Curve-Shortening Flow (ACSF)

[L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel:

"Axioms and fundamental equations of image processing" 1993

[G. Sapiro and A. Tannenbaum:

"Affine invariant scale-space." Int. J. Computer Vision $1993\]$

invariant under area-preserving affine transformations!

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $t \approx$ Grid peeling on $\frac{1}{n}$ -grid after $C_g t n^{4/3}$ steps.

Conjecture: (Moritz Rüber and Günter Rote)

$$C_g = \sqrt[3]{\frac{\pi^2}{2\zeta(3)}} \approx 1.60120980542577$$

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

 \rightarrow Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. (2020)

random points

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

 \rightarrow Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. (2020)

random points

Jeff Calder and Charles K. Smart. The limit shape of convex hull peeling. 2020

10000 random points in the shaded region

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $t \approx$ Grid peeling on $\frac{1}{n}$ -grid after $C_g t n^{4/3}$ steps.

Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. 169 (2020)

Theorem:

ACSF at time $t \approx$ Peeling on density- n^2 set after $C_r t n^{4/3}$ steps.

$$C_g \approx 1.6$$
, $C_r \approx 1.3$

Invariant under affine transformations?

The parabola!

The parabola!

$$y = \frac{1}{20}x^2$$

affine lattice-preserving shearing transformations

The parabola!

affine lattice-preserving

$$y = \frac{a_N}{a_D}x^2 + \frac{b_N}{b_D}x + c$$

Lemma:

Horizontal period $H = lcm(a_D, b_D)$ or $H = lcm(a_D, b_D)/2$

Conics

Conics maintain their shape under ACSF.

- Ellipses (and circles) *shrink* (and collapse to the center).
- Parabolas are translated.
- Hyperbolas *expand*.

Conics

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch 2020:

layers 5, 10, ..., 30 of \mathbb{N}^2

Conics

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch 2020:

THEOREM:

The n-th layer of \mathbb{N}^2 is sandwiched between two hyperbolas:

$$c_1 n^{3/2} \leq xy \leq c_2 n^{3/2}$$
 (except within $\sqrt{n} \log^2 n$ of the axes)

"The grid parabola"

- integer parameter $t \geq 1$
- $S_t := \{ \text{ all slopes } a/b \text{ with } 0 < b \leq t \}$
- for each slope $a/b \in S_t$, take the longest integer vector

$$\binom{x}{y} = k \binom{b}{a} \quad (k \in \mathbb{Z})$$

with $0 < x \le t$

 $_{ extstyle -}$ slope 2/5

t = 11

Example

"The grid parabola"

- integer parameter $t \ge 1$
- $S_t := \{ \text{ all slopes } a/b \text{ with } 0 < b \le t \}$
- for each slope $a/b \in S_t$, take the longest integer vector

$$\binom{x}{y} = k \binom{b}{a} \quad (k \in \mathbb{Z})$$

with $0 < x \le t$

Example

"The grid parabola"

- integer parameter $t \geq 1$
- $S_t := \{ \text{ all slopes } a/b \text{ with } 0 < b \leq t \}$
- for each slope $a/b \in S_t$, take the longest integer vector

$$\binom{x}{y} = k \binom{b}{a} \quad (k \in \mathbb{Z})$$

with $0 < x \le t$

Example

 $H_1, H_2, \ldots = 1, 4, 11, 22, 43, 64, 107, 150, 211, 274, 385, \ldots$

Theorem:

For odd t, the polygon repeats after t steps, one level higher. (For even t: after t+1 steps.)

Asymptotic period

$$H_1, H_2, \ldots = 1, 4, 11, 22, 43, 64, 107, 150, 211, 274, 385, \ldots$$
 [OEIS A174405]

$$H_t := \sum_{\substack{0 < y \le x \le t \\ \gcd(x,y)=1}} \left\lfloor \frac{t}{x} \right\rfloor x = \sum_{1 \le i \le t} \sum_{d|i} d\varphi(d)$$

$$H_t = \frac{2\zeta(3)}{\pi^2} t^3 + O(t^2 \log t)$$

with
$$\zeta(3) = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \dots \approx 1.2020569$$

[Sándor and Kramer 1999]

$$y = ax^2 + bx$$

average vertical speed depending on a (various values of b)

$$y = ax^2 + bx$$

average vertical speed depending on a (various values of b)

Random-set peeling

Jeff Calder and Charles K. Smart. The limit shape of convex hull peeling. 2020

semiconvex peeling, on a cylinder

Focus on one slope

What happens at a jump?

JUMP RULES:

- ullet jump to the *next* grid line of slope s
- ullet fill the extended strip $[\bar{L}_s,\bar{R}_s]$ as much as possible

All possible grid lines of slope s=2/5

Two adjacent slopes s, s'

