

Freie Universität

Freie Universität

Freie Universität

Freie Universität

 $\{A, B, C, D\}$ is *free* if it can be redrawn on *every* 4-point set.

Freie Universität

🖗 Berlin

Free, Free-Collinear, Collinear

Free, Free-Collinear, Collinear

 $\begin{array}{ll} ({\sf trivial}) & ({\sf trivial}) \\ {\sf free} \Rightarrow {\sf free-collinear} \Rightarrow {\sf collinear} \end{array}$

Free, Free-Collinear, Collinear

Freie Universität

🖗 Berlin

$\mathsf{Free-Collinear} \implies \mathsf{Free}$

Free-Collinear \implies Free

Applications

- Freie Universität
- Partial simultaneous geometric embeddings
- Universal point subsets
- Column planarity
- Untangling:

Given a drawing of a planar graph with crossings: Find a *plane* redrawing while keeping *many vertices fixed*.

Applications

- Partial simultaneous geometric embeddings
- Universal point subsets
- Column planarity
- Untangling:

Given a drawing of a planar graph with crossings: Find a *plane* redrawing while keeping *many vertices fixed*.

Untangling

Given a drawing of a planar graph with crossings: Find a *plane* redrawing while keeping *many vertices fixed*.

THEOREM. If G has a free (now: collinear) set S, then we can leave $\Omega(\sqrt{|S|})$ vertices fixed. [Ravsky and Verbitsky 2011] [Bose, Dujmović, Hurtado, Langerman, Morin, Wood 2009]

COROLLARY: If G is a 3-connected triangulation, then $\Omega(\sqrt{n})$ vertices (*previously*: $\Omega(n^{1/4})$ vertices) can remain fixed. (Upper bound: $O(\sqrt{n \log^3 n})$ [Cibulka 2010])

Freie Universität

Every *n*-vertex planar graph has a collinear/free set of size $\Omega(\sqrt{n})$. [Bose, Dujmović, Hurtado, Langerman, Morin, Wood 2009] Proof by canonical order or by Schnyder decomposition.

Upper bound: $O(n^{0.986})$ [Ravsky and Verbitsky 2011] follows from 3-regular planar graphs without long cycles [Grünbaum and Walther 1973]

Every planar graph of *bounded degree* has a collinear/free set of size $\Omega(n^{0.8})$. [Dujmović and Morin 2019]

Testing whether a set is collinear (*now also:* free) is NP-hard. [Mchedlidze, Radermacher, Rutter 2017]

Proof Outline

Freie Universität

Given:

- a drawing with some vertices v_1, \ldots, v_k on a vertical line Y
- new y-coordinates $b_1 < \cdots < b_k$ for these vertices

Wanted:

• a redrawing with these *y*-coordinates

Proof Outline

Freie Universität

Given:

- a drawing with some vertices v_1, \ldots, v_k on a vertical line Y
- new y-coordinates $b_1 < \cdots < b_k$ for these vertices

Wanted:

• a redrawing with these *y*-coordinates

Proof Outline

Freie Universität

Given:

- a drawing with some vertices v_1, \ldots, v_k on a vertical line Y
- new y-coordinates $b_1 < \cdots < b_k$ for these vertices

Wanted:

- a redrawing with these *y*-coordinates
- (i) Special case:

Maximal graph such that all edges intersect Y.

- (ii) Treat edges e that do not intersect Y: Use several types of reductions
 - A. a) contract e into a single vertex v
 - b) draw the resulting graph
 - c) perturb v into two vertices with an edge between
 - B. *flip* the edge
 - C. Induction on separating triangles

Quadrilateralizations with no point on $Y_{\text{Freie Universität}}$

- (i.0) An even more special special case:
 - 1. Every edge crosses Y.
 - 2. No vertex lies on Y.
 - Edge e_i should intersect Y at b_i .

🖗 Berlin

Y

Quadrilateralizations with no point on $Y_{\text{Freie Universität}}$

- (i.0) An even more special special case:
 - 1. Every edge crosses Y.
 - 2. No vertex lies on Y.
 - Edge e_i should intersect Y at b_i .

Think of two close points on Y straddling e_i .

🖗 Berlin

Quadrilateralizations with no point on $Y_{\text{Freie Universität}}$

- (i.0) An even more special special case:
 - 1. Every edge crosses Y.
 - 2. No vertex lies on Y.
 - Edge e_i should intersect Y at b_i .

Think of two close points on Y straddling e_i .

• maximal graph with properties 1 and 2: \rightarrow quadrilateralization.

🖗 Berlin

Y

Parameterization by slope

Concurrency constraints

 s_i

а

$$\begin{vmatrix} 1 & 1 & 1 \\ b_i & b_j & b_k \\ s_i & s_j & s_k \end{vmatrix} = 0$$

$$(b_k - b_j) + s_j(b_i - b_k) + s_k(b_j - b_i) = 0$$

linear equation in s_i, s_j, s_k

Concurrency constraints

а

$$\begin{vmatrix} 1 & 1 & 1 \\ b_i & b_j & b_k \\ s_i & s_j & s_k \end{vmatrix} = 0$$
$$s_i(b_k - b_j) + s_j(b_i - b_k) + s_k(b_j - b_i) = 0$$
a *linear* equation in s_i, s_j, s_k

A vertex of degree d gives rise to d-2concurrency constraints.

Euler's formula $\rightarrow m-4$ equations in m variables

4 boundary equations to the rescue!

Boundary constraints

Set the 4 slopes s_1, s_k, s_ℓ, s_m of the outer boundary to fixed values.

 $\rightarrow m$ equations in m variables

Morphing to the target solution

Yinitial target drawing s_m drawing s_ℓ change b_i continuously follow the solution (s_1,\ldots,s_m) of the linear system s_k s_1

Freie Universität

Solution of the linear system

- The solution (s_1, \ldots, s_m) might not exist.
- The solution (s_1, \ldots, s_m) might not be unique.
- The drawing might have crossings.

LEMMA: In a *straight-line drawing*, if

- the cyclic order of edges around each vertex agrees with a given planar drawing,
- and every face is a non-crossing polygon, then the edges do not cross.

Freie Universität

Berlin

The cyclic order is correct because the order of b_i is fixed, EXCEPT if the edges intersect on the *other side* of Y.

Flipping to the other side?

Flipping to the other side?

Existence and uniqueness are established with similar arguments.

- The solution (s_1, \ldots, s_m) might not exist.
- The solution (s_1, \ldots, s_m) might not be unique.
- The drawing might have crossings. \checkmark

(i) Extension to points on YFreie Universität Berlin • maximal graphs such that Y intersects every edge, at least in an endpoint (so-called "A-graphs") \rightarrow triangle and quadrilateral faces Add some artificial proportionality constraints, in order to get m equations in m variables. (Ensure at the same time the correct cyclic order)

(ii) Edges that don't intersect Y

Use several types of reductions

- A. a) contract xy into a single vertex v
 - b) draw the resulting graph
 - c) perturb v into two vertices with an edge between
 - B. *flip* the edge xy
 - C. Induction on separating triangles

