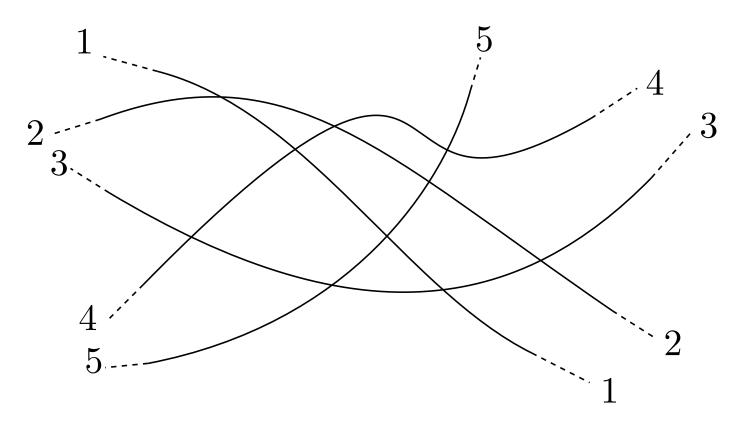
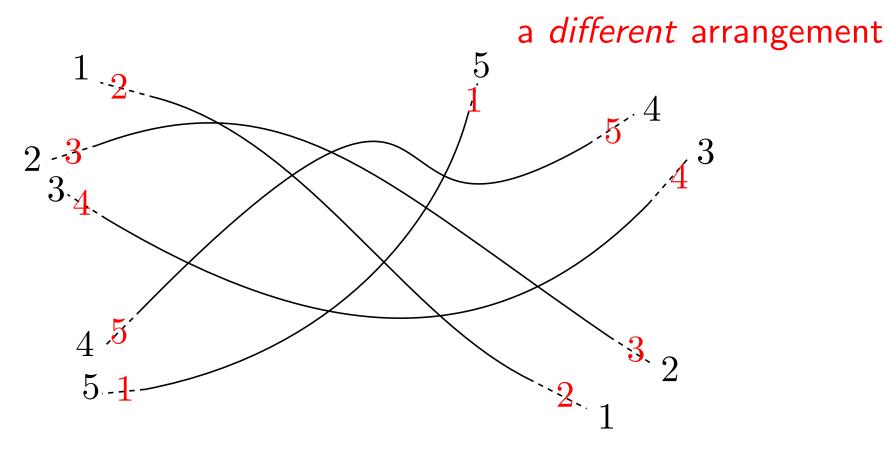


Pseudoline Arrangements



- *n* curves that go to infinity
- Two curves intersect exactly once, and they cross.
- *simple* pseudoline arrangements: no multiple crossings
- *x*-monotone curves

Pseudoline Arrangements



- *n* curves that go to infinity
- Two curves intersect exactly once, and they cross.
- *simple* pseudoline arrangements: no multiple crossings
- *x*-monotone curves

How many pseudoline arrangements?

n	# PsA's with n pseudolines	
1	1	1 > 3
2	1	2 2 2
3	2	$\langle 3 \rangle \langle 1 \rangle$
4	8	
5	62	$1 \sqrt{3}$
6	908	$2 \sim 2$
7	24698	$ _3 \frown 1 $
8	1232944	
9	112018190	
10	18410581880	OEIS A006245
11	5449192389984	
12	2894710651370536	
13	2752596959306389652	
14	4675651520558571537540	[Vuma Tanaka 2012]
15	14163808995580022218786390	} [Yuma Tanaka, 2013]
16	76413073725772593230461936736	[G. Rote, 2021]

How many pseudoline arrangements?

n	#PsA's with n pseudolines			
1 2 3 4	$^{0.25}$ [Cortés Kühnast, Felsner, Scheucher 2023+] 1 $\geq 2^{0.2083n^2}$ 1 [Dumitrescu, Mandal 2020] 2 \cdot 8		$\begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{bmatrix}$	
5 6 7	$\leq 2^{0.6571n^2}$ [Felsner, Valtr 2012]	62 908 24698	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1 \end{array} $	
8 9	1232944 112018190			
10 11 12	18410581880 5449192389984 2804710651270526		OEIS A006245	
13	2894710651370536 2752596959306389652			
14 15 16	4675651520558571537540 14163808995580022218786390 76413073725772593230461936736		} [Yuma Tanaka, 2013] [G. Rote, 2021]	

Outline

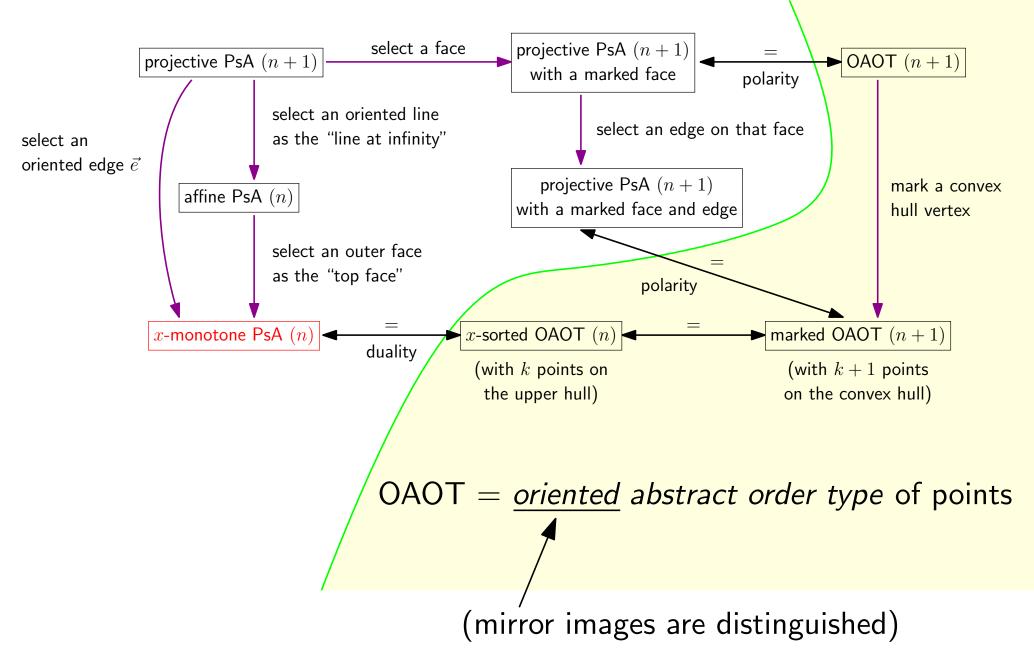
- What are we counting?
- 2-level-approach: Threading ℓ extra strands through a fixed arrangements of k pseudolines
- Partial pseudoline arrangements
- Sweep an arrangement (a bipolar orientation) with a rope

Freie Universität

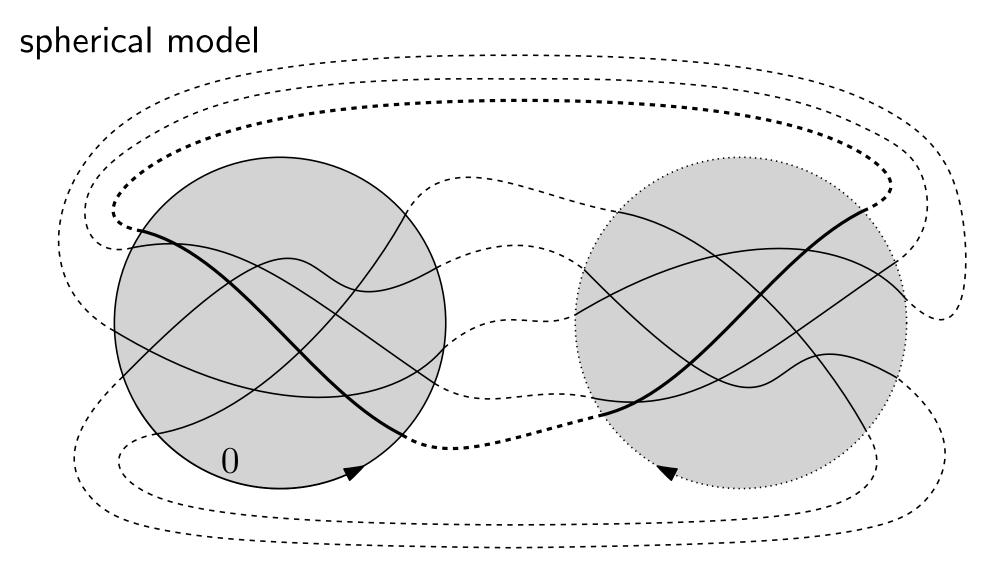
Berlin

Related concepts

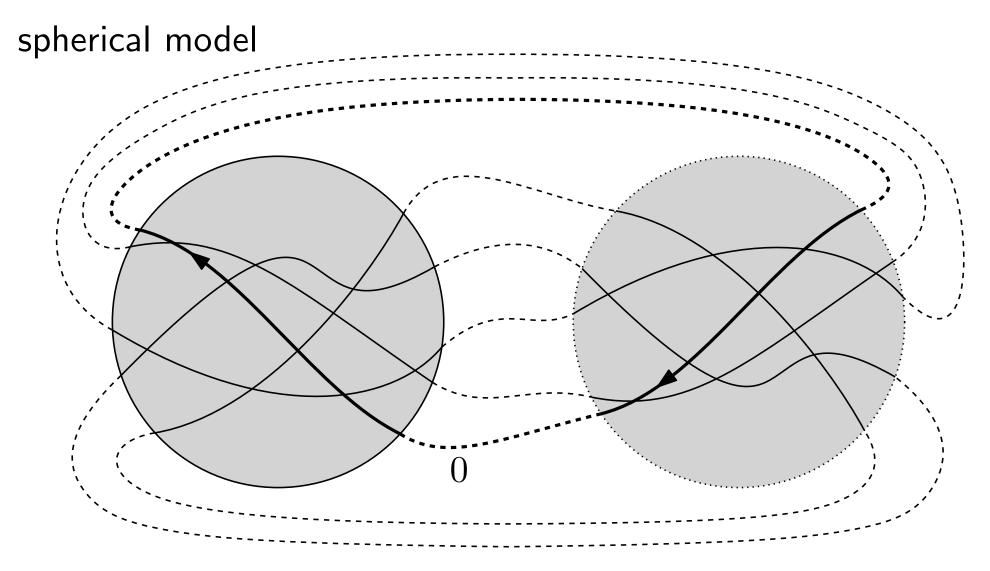
Freie Universität



Projective pseudoline arrangements

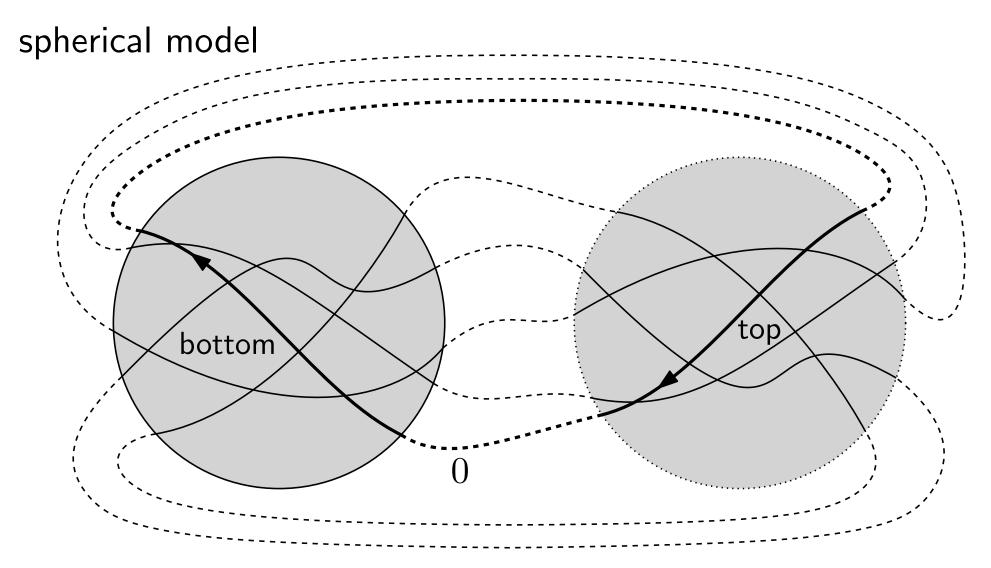


Projective pseudoline arrangements



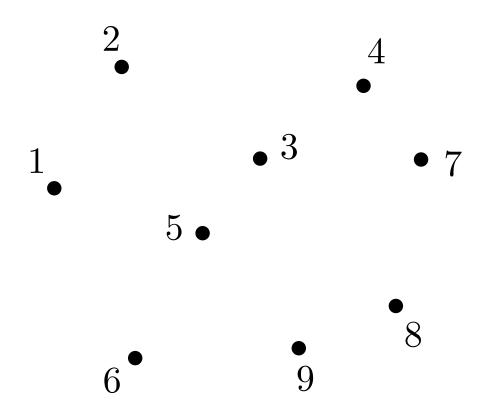
• *affine* pseudoline arrangement

Projective pseudoline arrangements

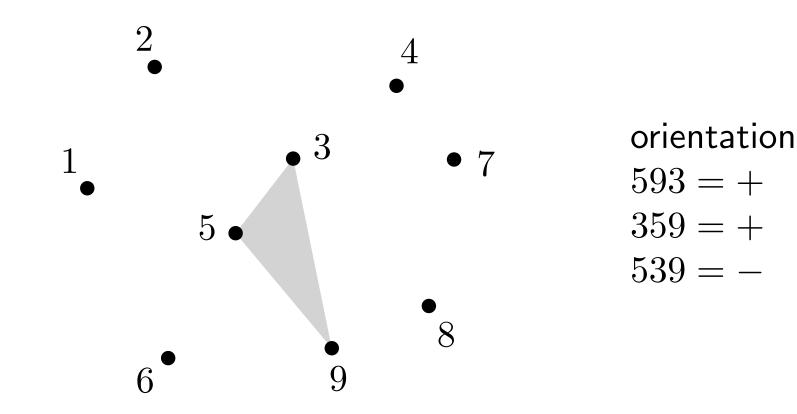


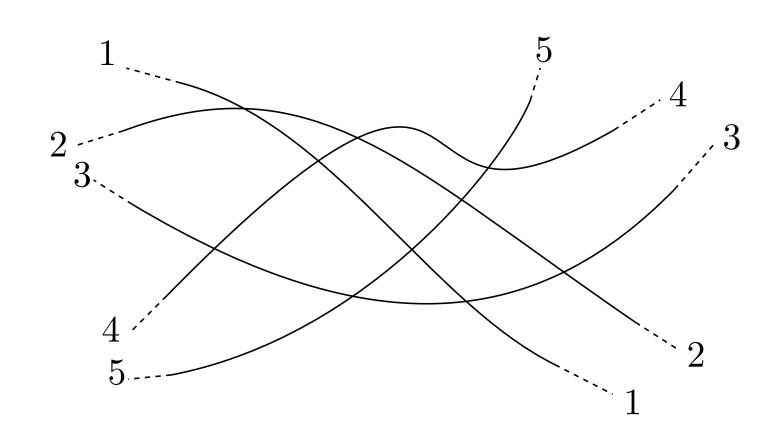
- affine pseudoline arrangement
- *x*-monotone pseudoline arrangement

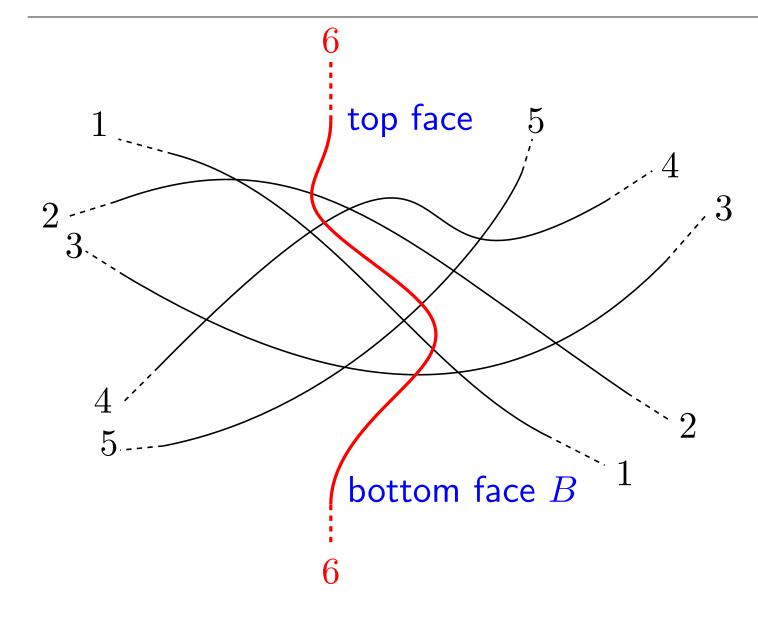
(Abstract) order types of points

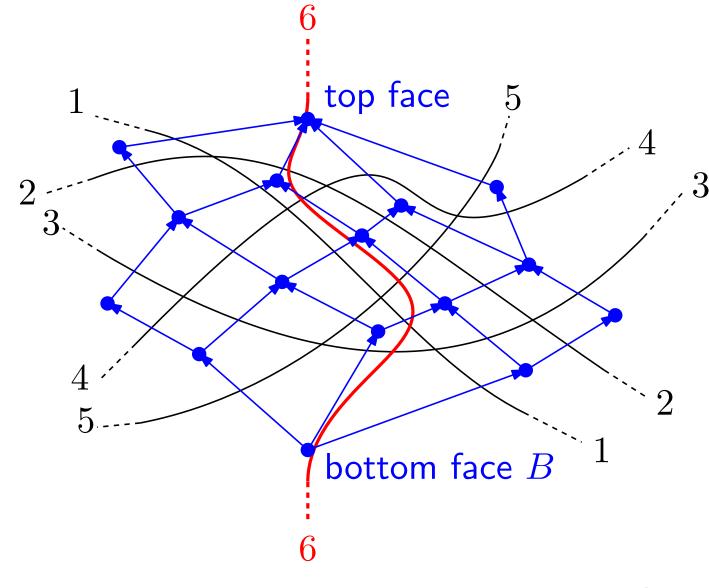


(Abstract) order types of points



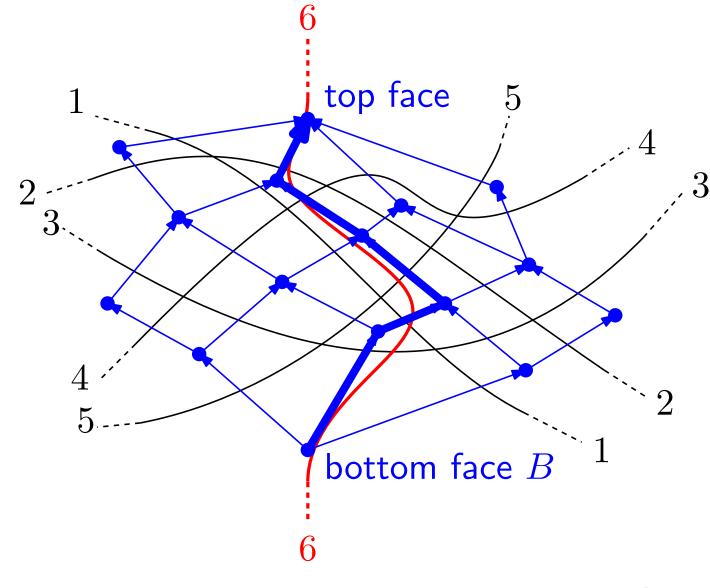






pseudoline n + 1 = path in the dual DAG

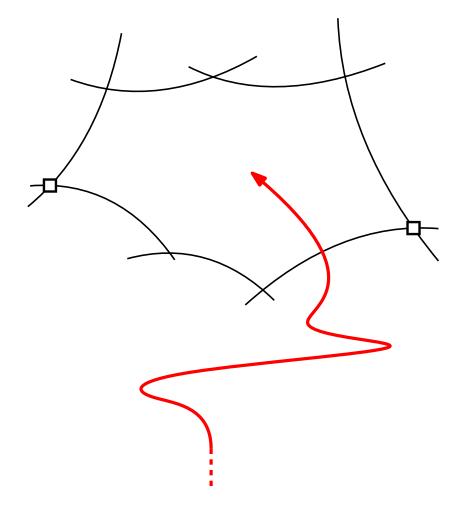
Günter Rote, Freie Universität Berlin



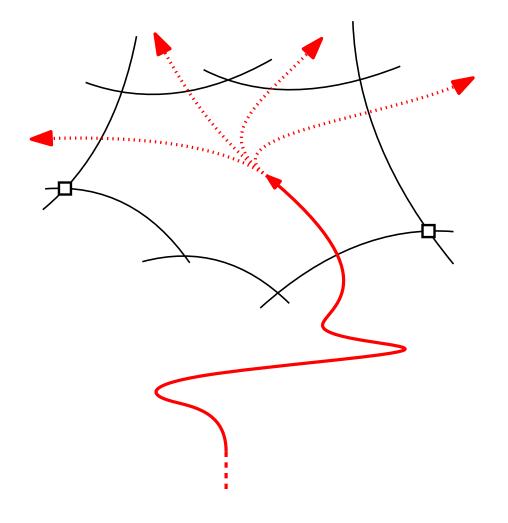
pseudoline n + 1 = path in the dual DAG

Günter Rote, Freie Universität Berlin

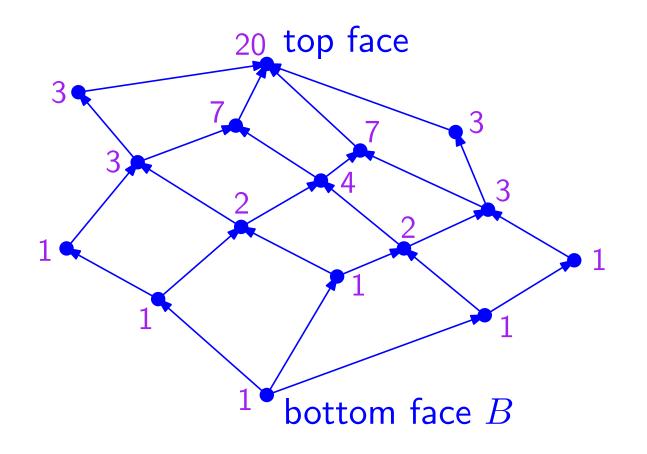
Generation (enumeration) is straightforward. (No dead ends!)



Generation (enumeration) is straightforward. (No dead ends!)



Counting is straightforward. (#paths from B in a DAG)



#paths $\leq 2.49^n$ [Felsner, Valtr 2012]

Freie Universität

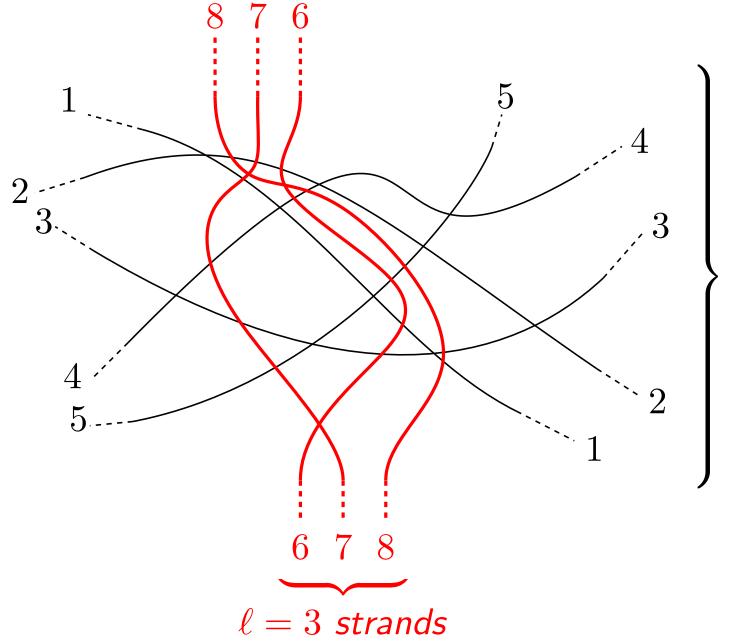
🖗 Berlin

#paths can be as large as 2.076^n . [O. Bílka 2010]

pseudoline n + 1 = path in the dual DAG

Günter Rote, Freie Universität Berlin

Threading several pseudolines at once



$$k = 5$$
 pseudolines

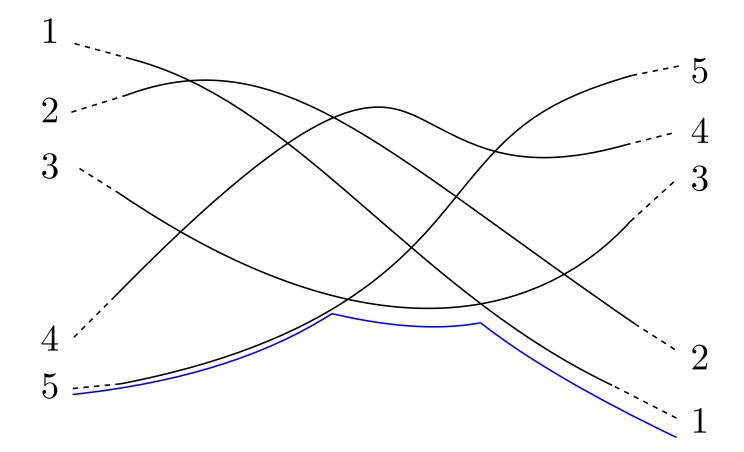
Freie Universität

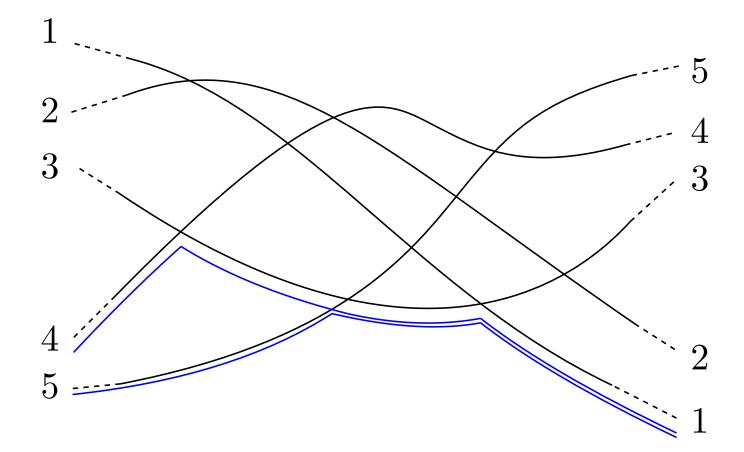
🖗 Berlin

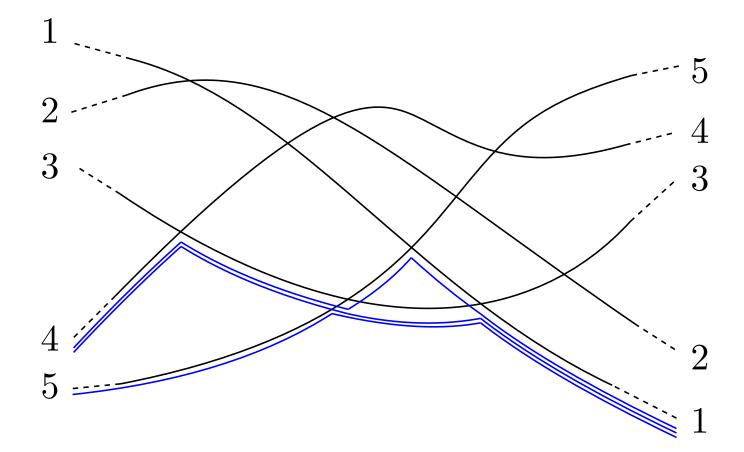
2-Level approach

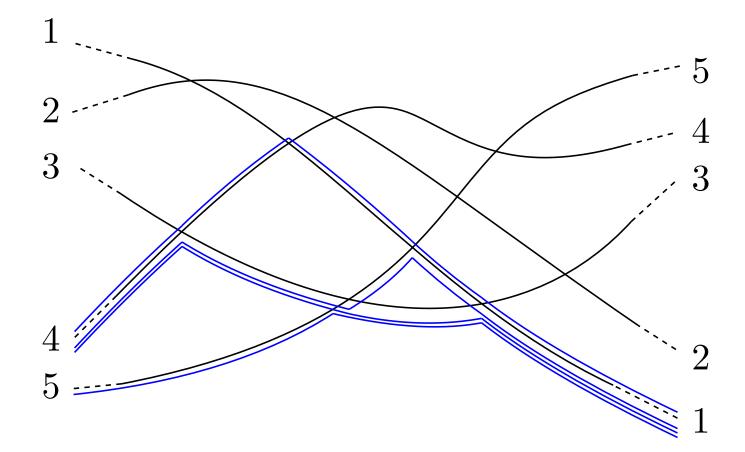
- Enumerate all arrangements of k pseudolines
- For each arrangement of k pseudolines:
 - Count the possibilites to thread ℓ extra strands

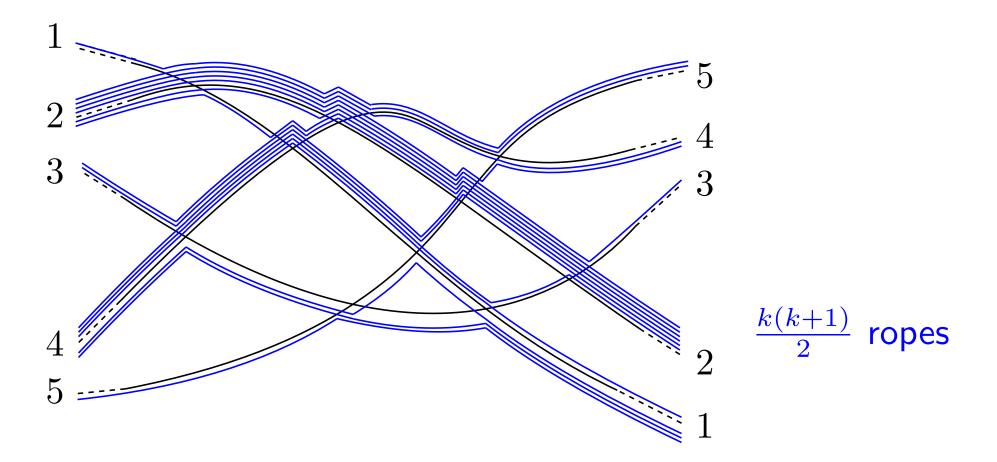
Preprocessing: to deal with (partial) arrangements with ℓ strands fast





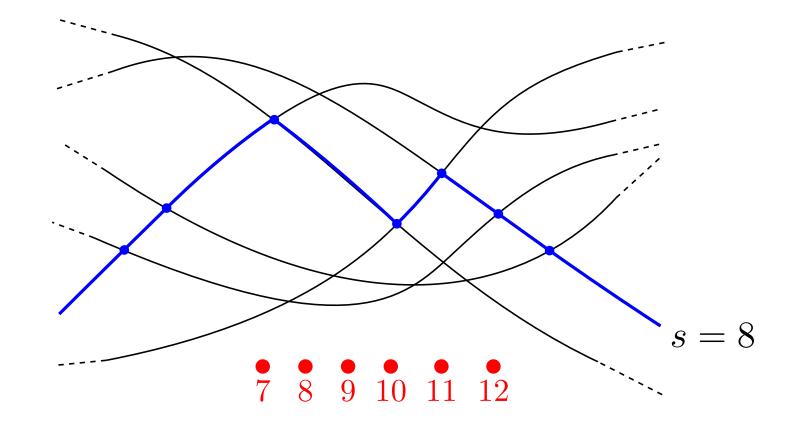


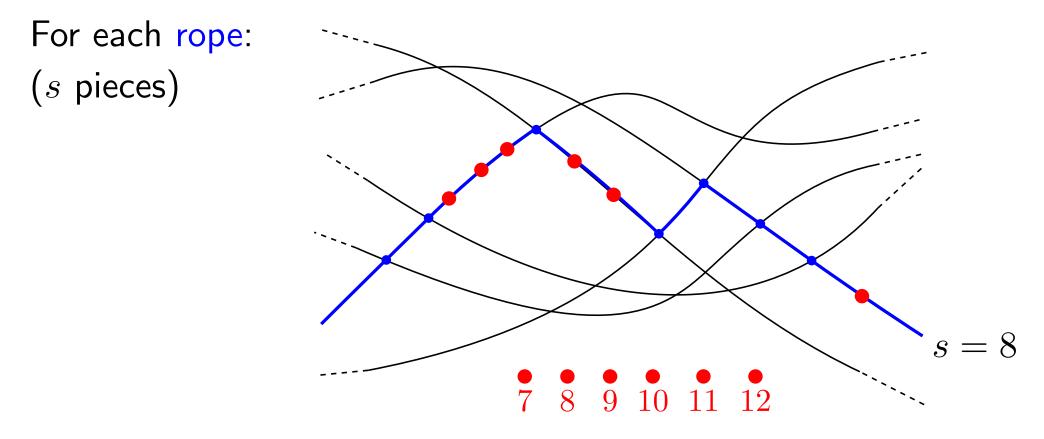




Take a fixed sweep by a sequence of ropes.

For each rope: (*s* pieces)

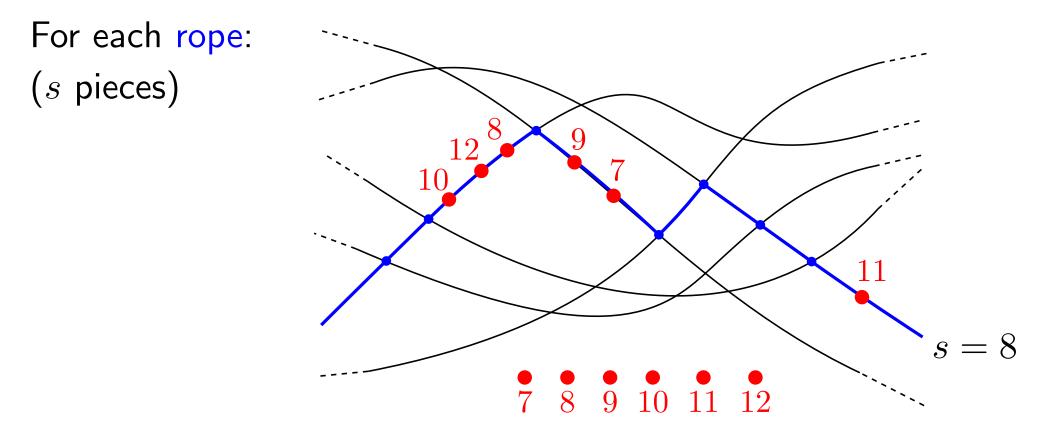




- For every distribution of the ℓ strands to the s pieces
- and for every permutation of the ℓ strands:

Store the number of possibilities to thread the ℓ strands from the bottom face to the rope.

$$\rightarrow s(s+1)(s+2)\dots(s+\ell-1)$$
 entries

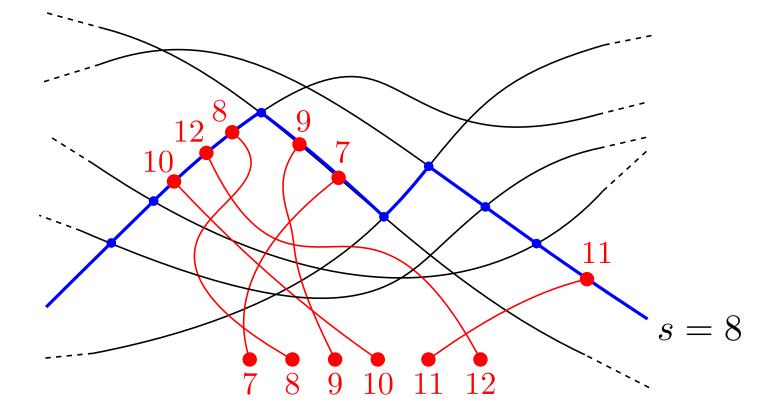


- For every distribution of the ℓ strands to the s pieces
- and for every permutation of the ℓ strands:

Store the number of possibilities to thread the ℓ strands from the bottom face to the rope.

$$\rightarrow s(s+1)(s+2)\dots(s+\ell-1)$$
 entries

For each rope: (s pieces)

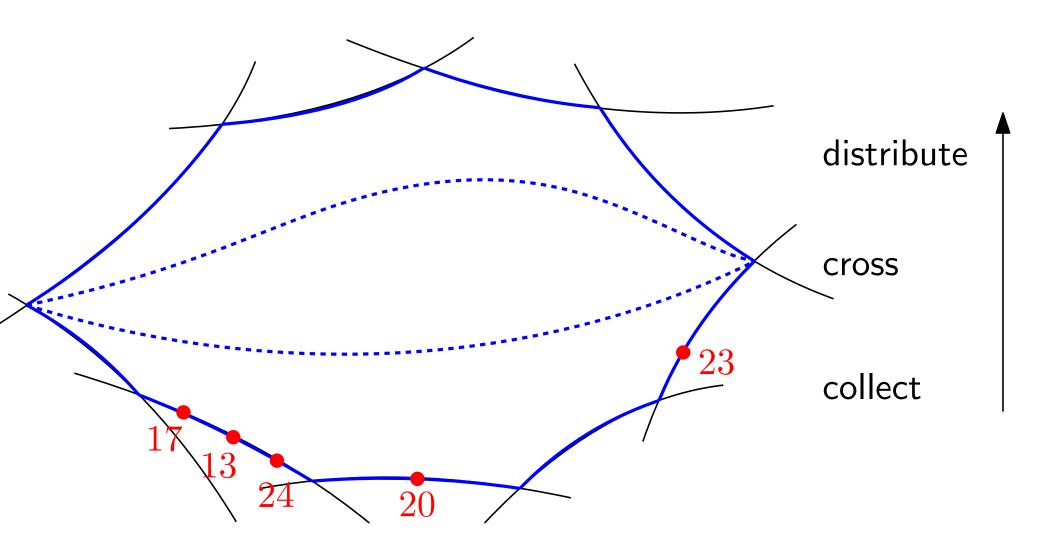


- For every distribution of the ℓ strands to the s pieces
- and for every permutation of the ℓ strands:

Store the number of possibilities to thread the ℓ strands from the bottom face to the rope.

$$\rightarrow s(s+1)(s+2)\dots(s+\ell-1)$$
 entries

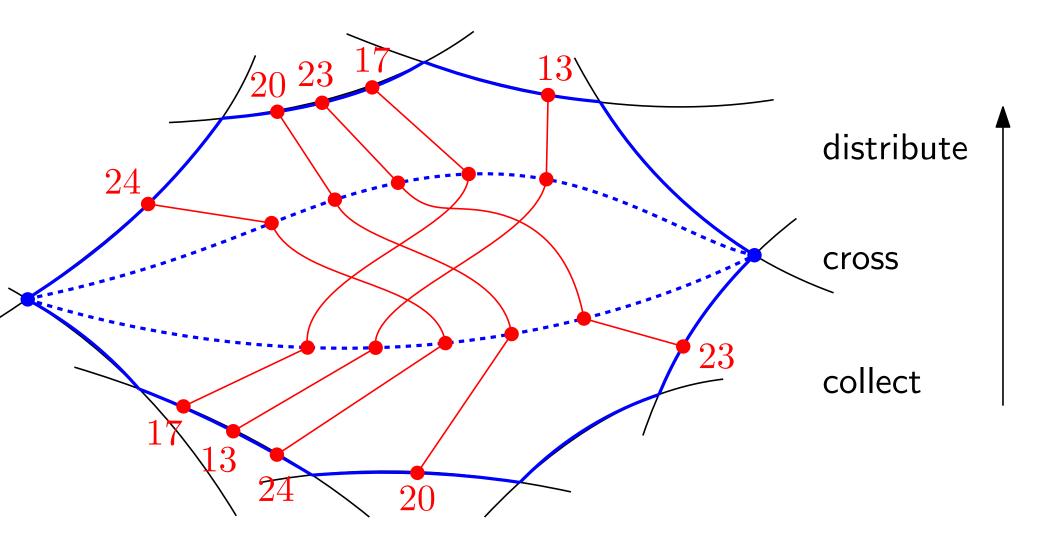
Advancing the rope across a face



What is the contribution to the next rope?

Günter Rote, Freie Universität Berlin

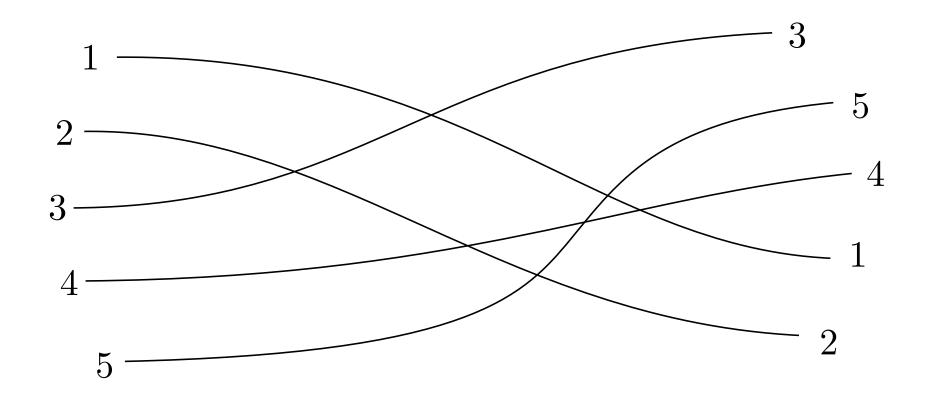
Advancing the rope across a face



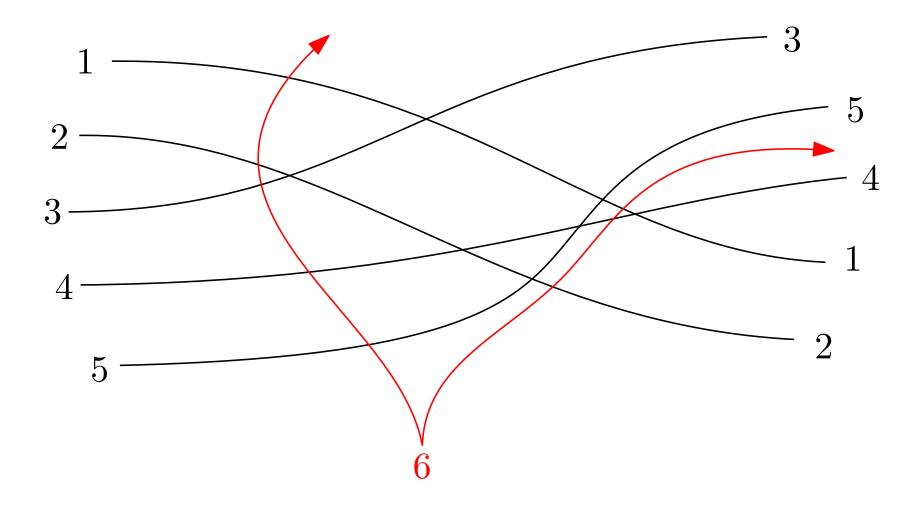
What is the contribution to the next rope?

Günter Rote, Freie Universität Berlin

The ℓ pseudolines may cross or not.

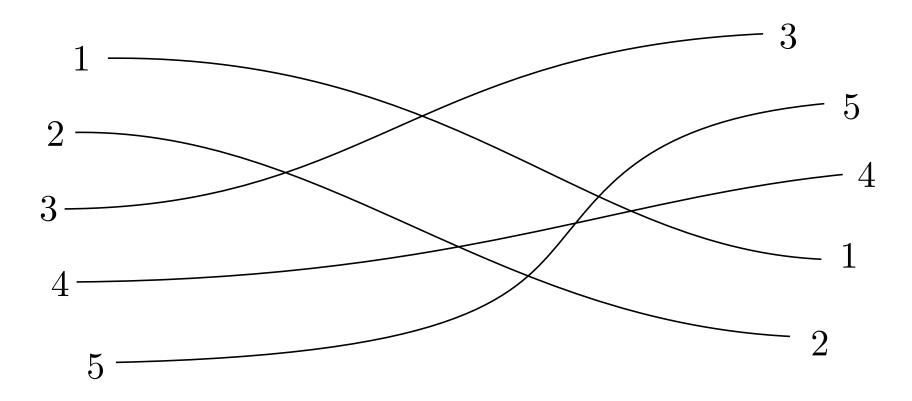


The ℓ pseudolines may cross or not.



Enumeration is as easy as for full PsA's.

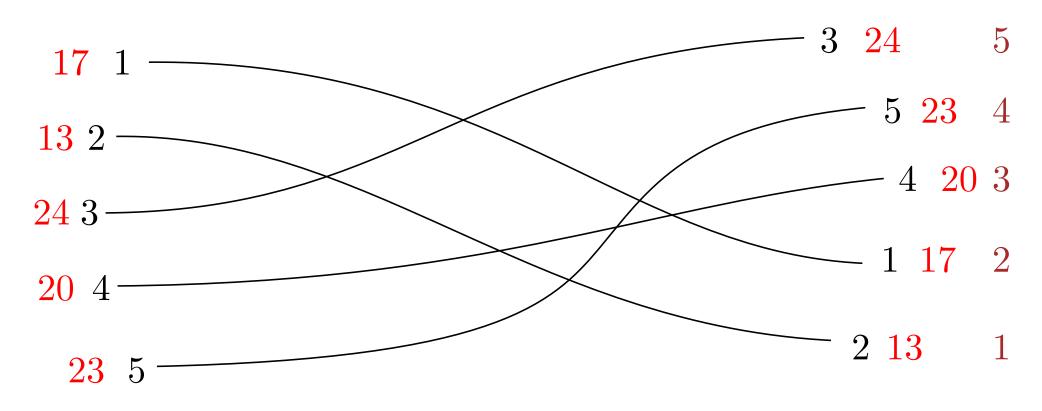
The ℓ pseudolines may cross or not.



Preprocessing: $\rightarrow \ell!$ array

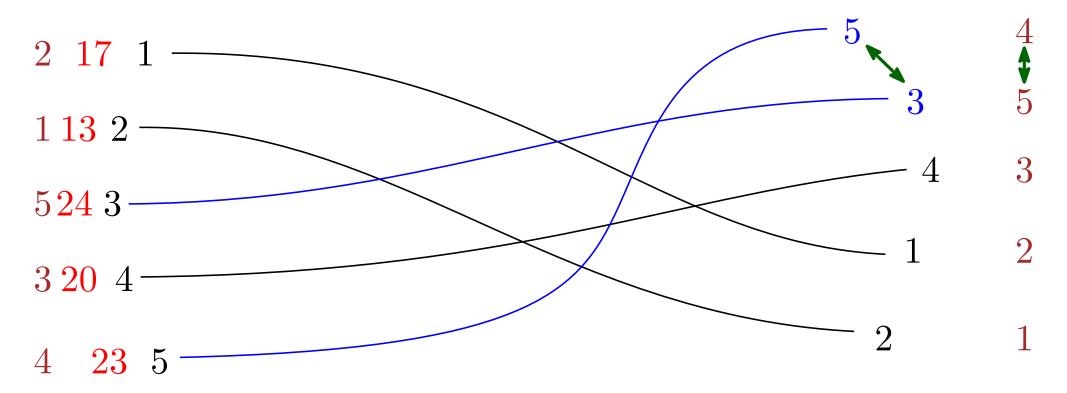
Günter Rote, Freie Universität Berlin

The ℓ pseudolines may cross or not.



Preprocessing: $\rightarrow \ell! \text{ array}$ $\rightarrow \ell! \times \ell! \text{ table (sparse!)}$

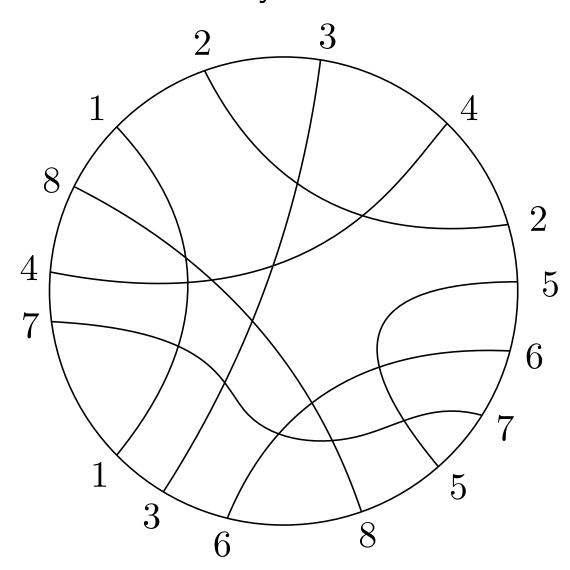
PARTIAL pseudoline arrangements



This is OK as a partial pseudoline arrangement, but not for the input sequence 17, 13, 27, 20, 23 = 2, 1, 5, 3, 4.

PARTIAL pseudoline arrangements

Distinguish: more general *partial pseudoline arrangements* that are not necessarily x-monotone:

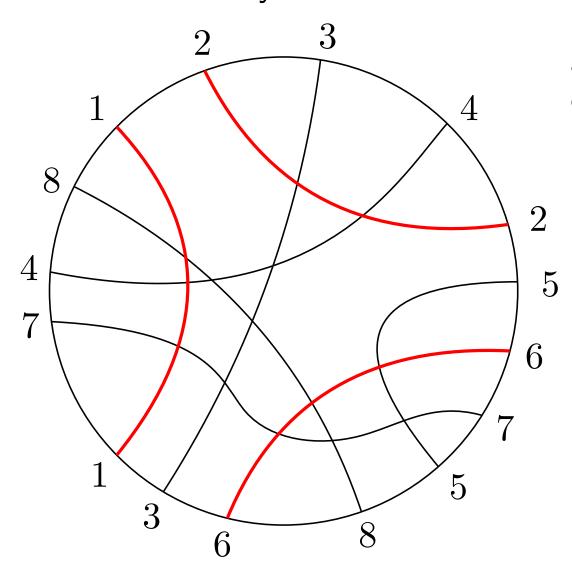


given by a *bipermutation* or (*matching*)

Freie Universität

PARTIAL pseudoline arrangements

Distinguish: more general *partial pseudoline arrangements* that are not necessarily x-monotone:



given by a *bipermutation* or (*matching*)

Freie Universität

Algorithm summary

For each PsA of k pseudolines:

- Compute a sweep by ropes
- For each rope:
 - For each distribution and permutation of the ℓ strands:
 - * Compute the contributions to the next rope, and accumulate them.

Network model

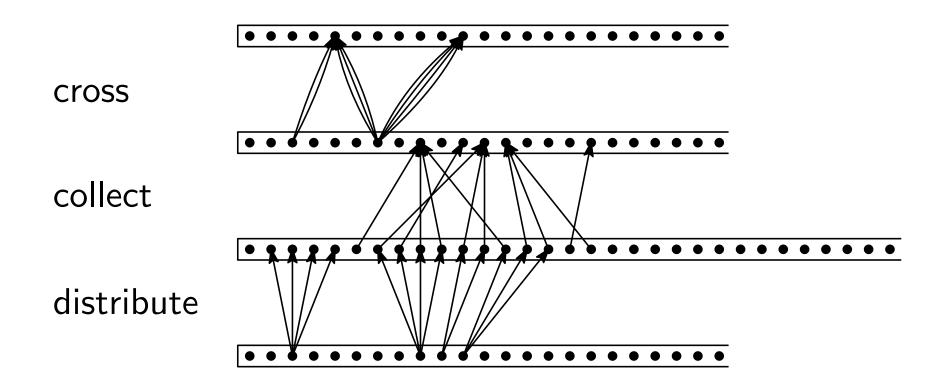
distribute

cross

collect

 $PSA \equiv source-to-sink path$

levels $\hat{\approx}$ ropes



Network model

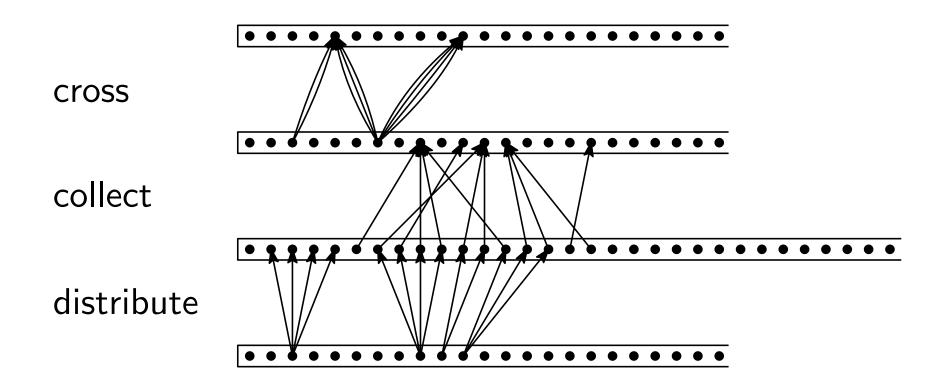
distribute

cross

collect

 $PSA \equiv source-to-sink path$

levels $\hat{\approx}$ ropes



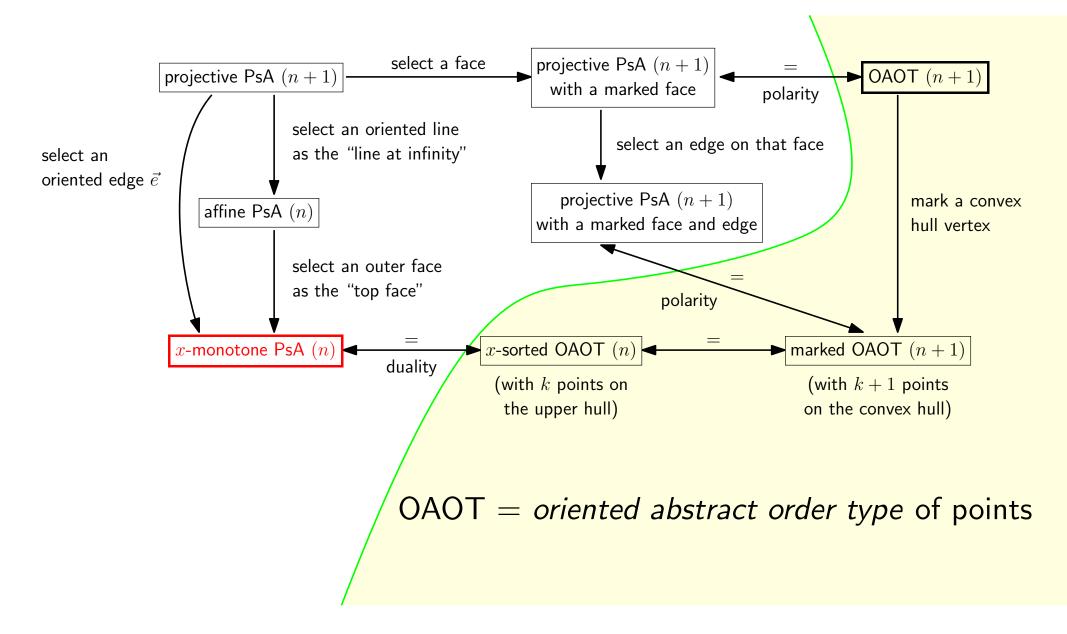
Some implementation details

- PYTHON, with scipy for large arrays of 32/64-bit integers
- modular arithmetic with 3 moduli: 2^{64} , two 30-bit numbers
- n = 16 = k + ℓ = 7 + 9. Large memory! Max. "rope" s = 7.
 256 GBytes is enough; 128 GBytes sometimes failed.
- easy to parallelize: 24,698 independent tasks
- total CPU time: about 5.5 months, using various workstations of different speeds
- CPU time for n = 15 = 6 + 9 (exploiting symmetry): 6 h.
 By contrast: PYTHON without scipy took 50 CPU days.
 (using a greedy rope)
- There is also a version in C (using CWEB) for the task of enumerating PsA's \rightarrow OAOT of 13 points [OEIS A006247]

Freie Universität

Berlin

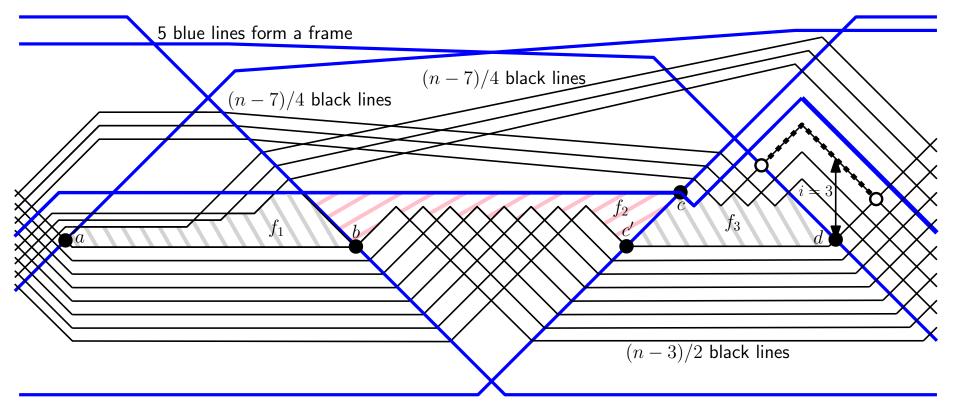
What else to enumerate

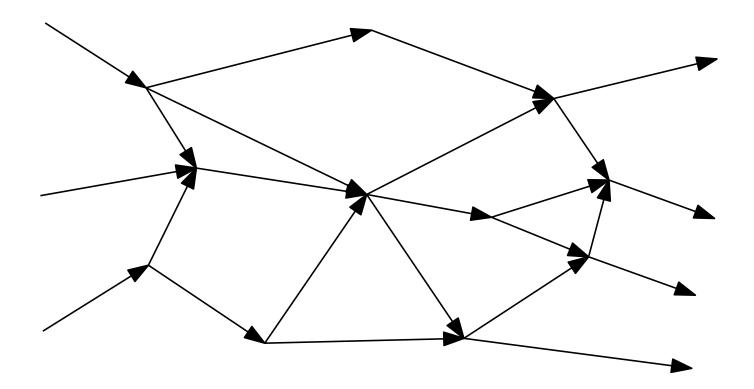


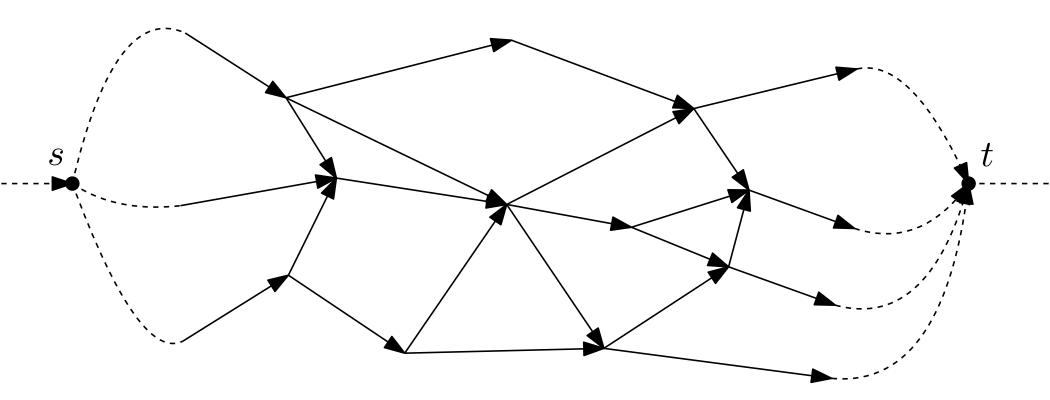
- Every arrangement requires $\geq n+1$ pieces (for $n \geq 3$).
- can always do with $\leq 2n-2$ pieces. (greedy sweep)
- Some arrangements require $\lfloor \frac{7n}{4} \rfloor 1$ pieces.
 - (This is the true maximum for $n \leq 9$.)
- NP-hard? (homotopy height, cutwidth)
 - [Biedl, Chambers, Kostitsyna, Rote, 2020/2022/2024?, unpublished]

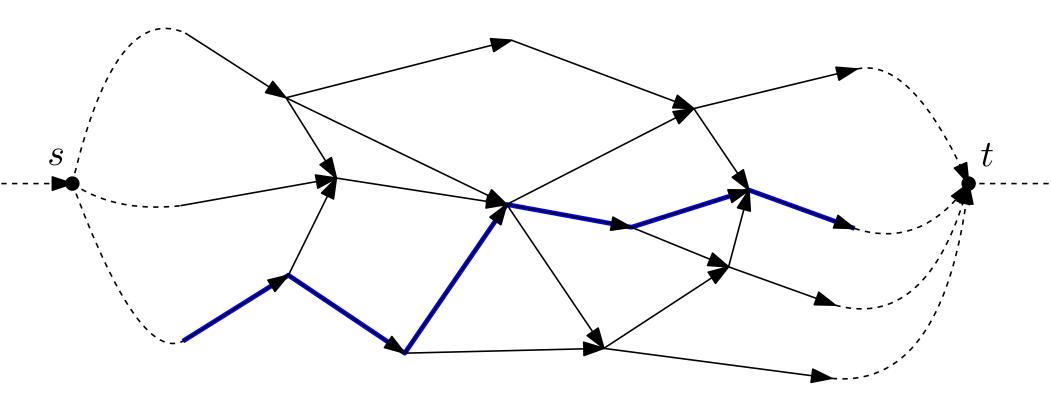
- Every arrangement requires $\geq n+1$ pieces (for $n \geq 3$).
- can always do with $\leq 2n-2$ pieces. (greedy sweep)
- Some arrangements require $\lfloor \frac{7n}{4} \rfloor 1$ pieces. (This is the true maximum for $n \le 9$.)
- NP-hard? (homotopy height, cutwidth)

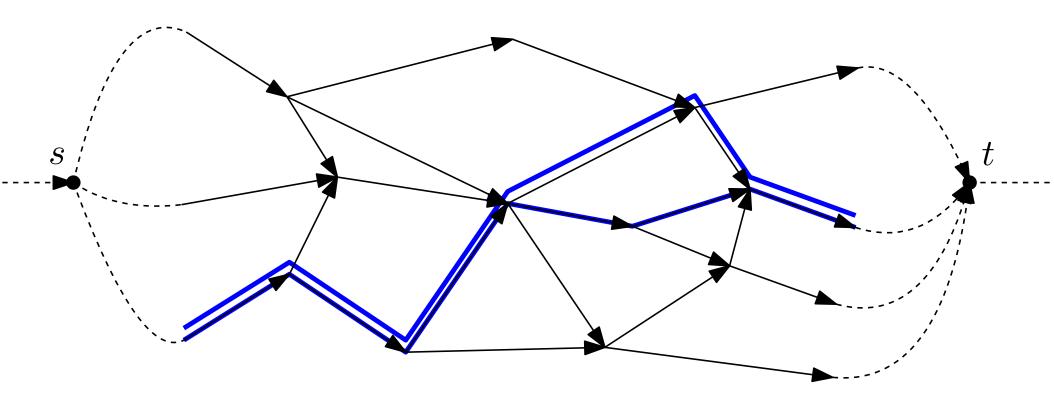
[[]Biedl, Chambers, Kostitsyna, Rote, 2020/2022/2024?, unpublished]



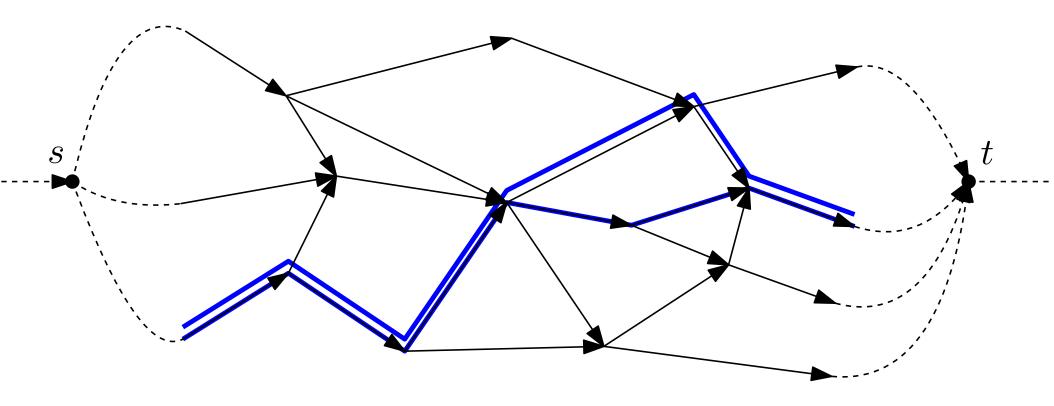






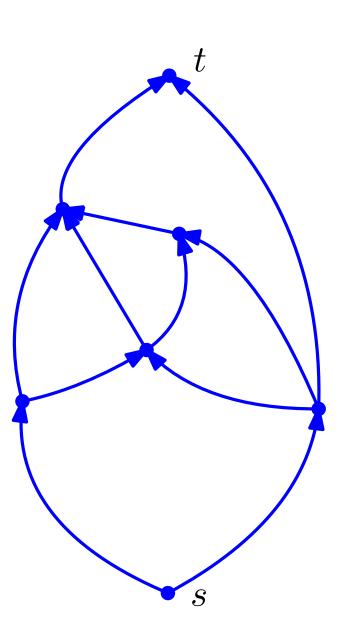


This is really about *bipolar orientations* (*s*-*t*-planar DAGs):



"leftmost-first" greedy sweep

 \rightarrow coordinated simultaneous primal-dual sweep

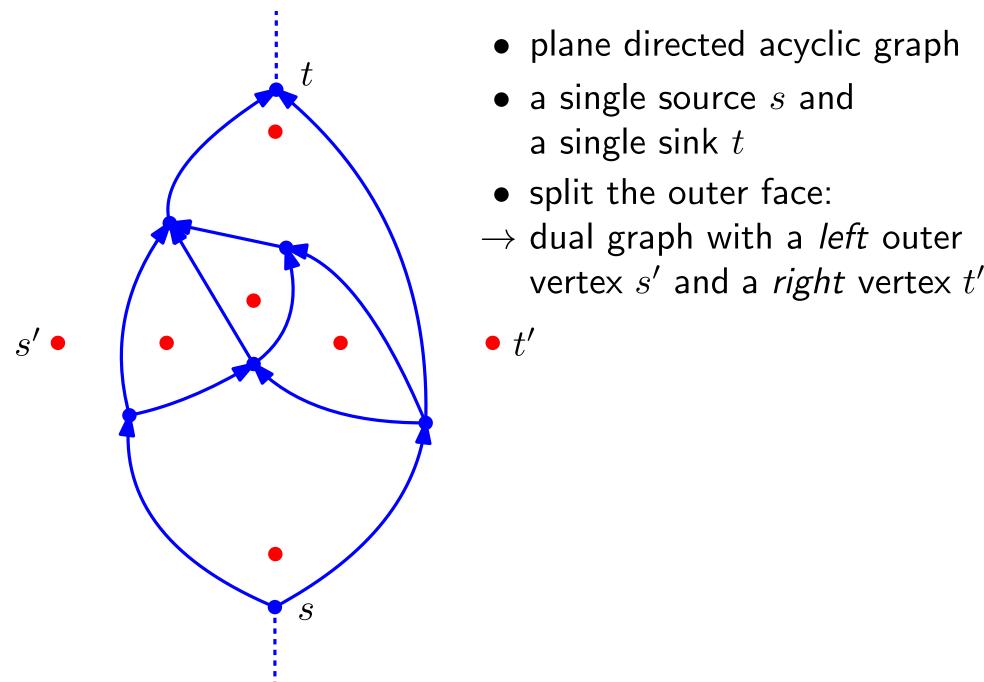


• plane directed acyclic graph

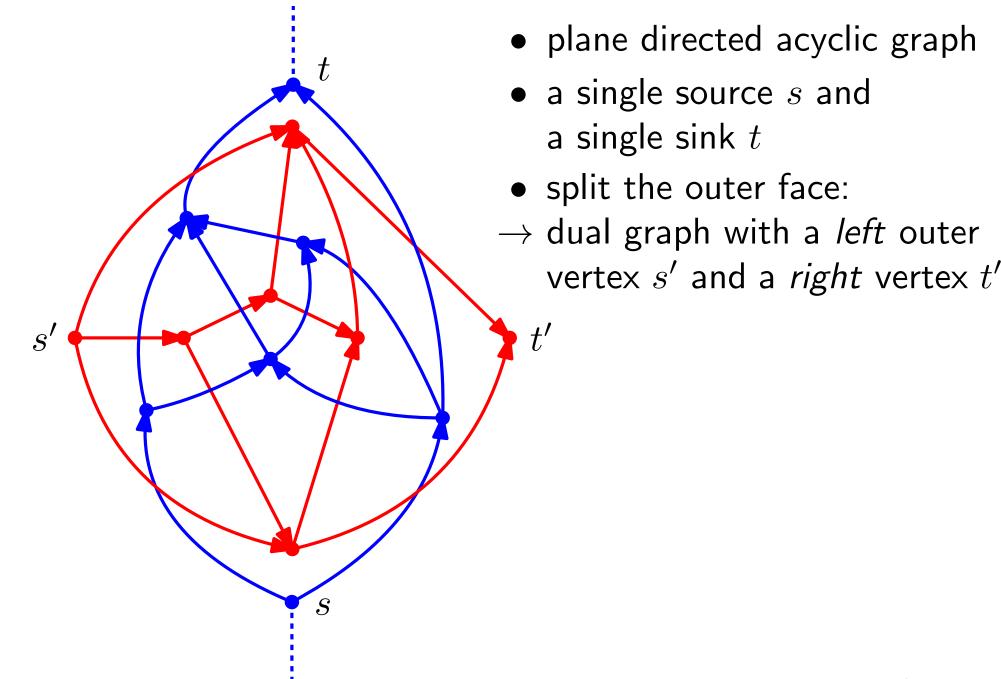
Freie Universität

🖗 Berlin

• a single source s and a single sink t

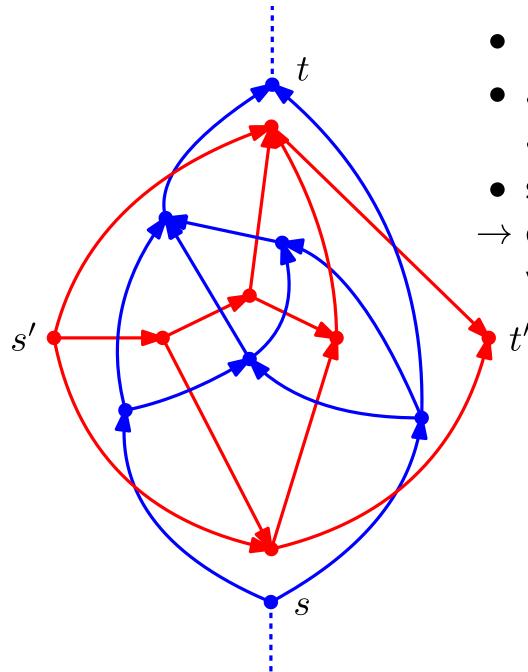


Freie Universität



Freie Universität

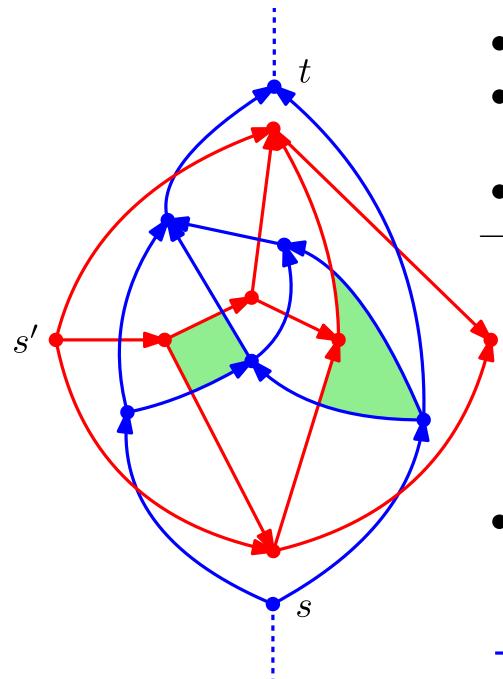
🗄 Berlin



• plane directed acyclic graph

Freie Universität

- a single source s and a single sink t
- split the outer face:
- \rightarrow dual graph with a *left* outer vertex s' and a *right* vertex t'
 - The dual graph is also a bipolar orientation. (may be a multigraph)



• plane directed acyclic graph

Freie Universität

Berlin

- a single source s and a single sink t
- split the outer face:

t'

- \rightarrow dual graph with a *left* outer vertex s' and a *right* vertex t'
 - The dual graph is also a bipolar orientation. (may be a multigraph)
 - All faces in the overlay of the two graphs are quadrilaterals:

 sweep the dual graph with an s'-t' rope from bottom to top

sweep over the *leftmost* possible face

Freie Universität

Berlin

s'

 sweep the dual graph with an s'-t' rope from bottom to top

sweep over the *leftmost* possible face

Freie Universität

Berlin

s'

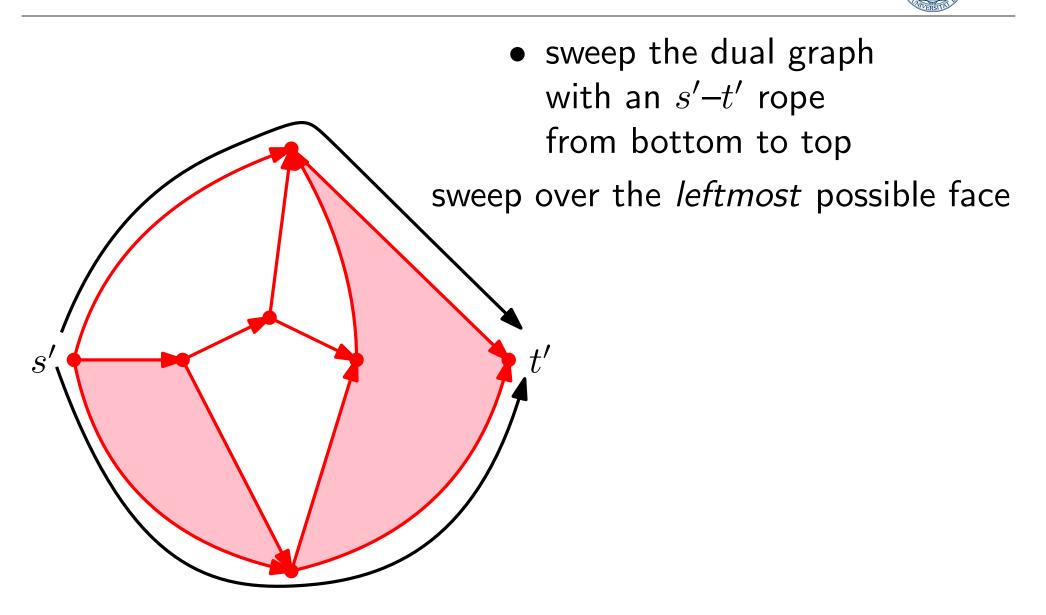
 sweep the dual graph with an s'-t' rope from bottom to top

sweep over the *leftmost* possible face

Freie Universität

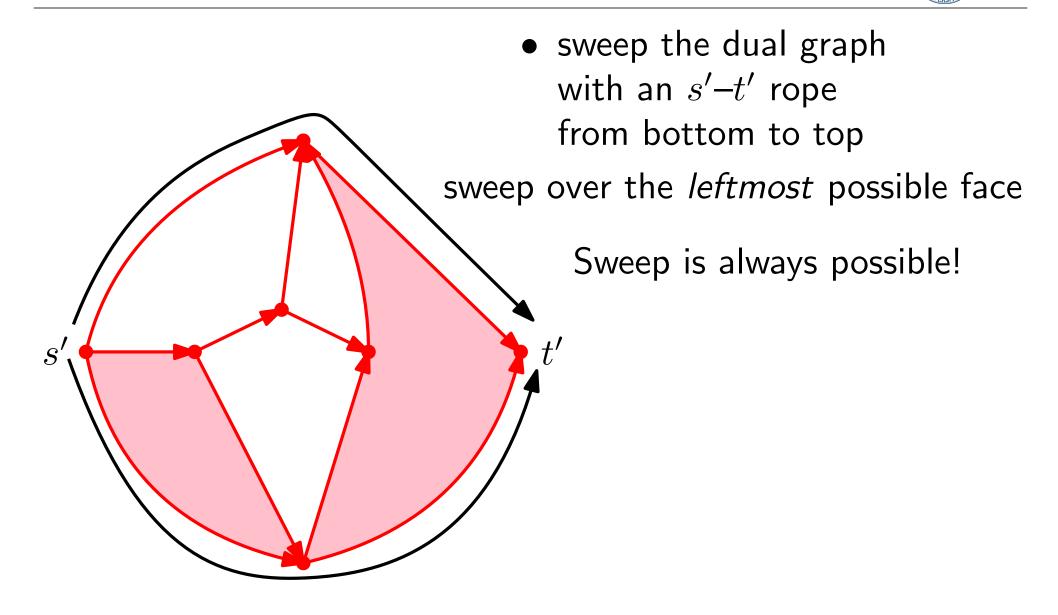
Berlin

s'

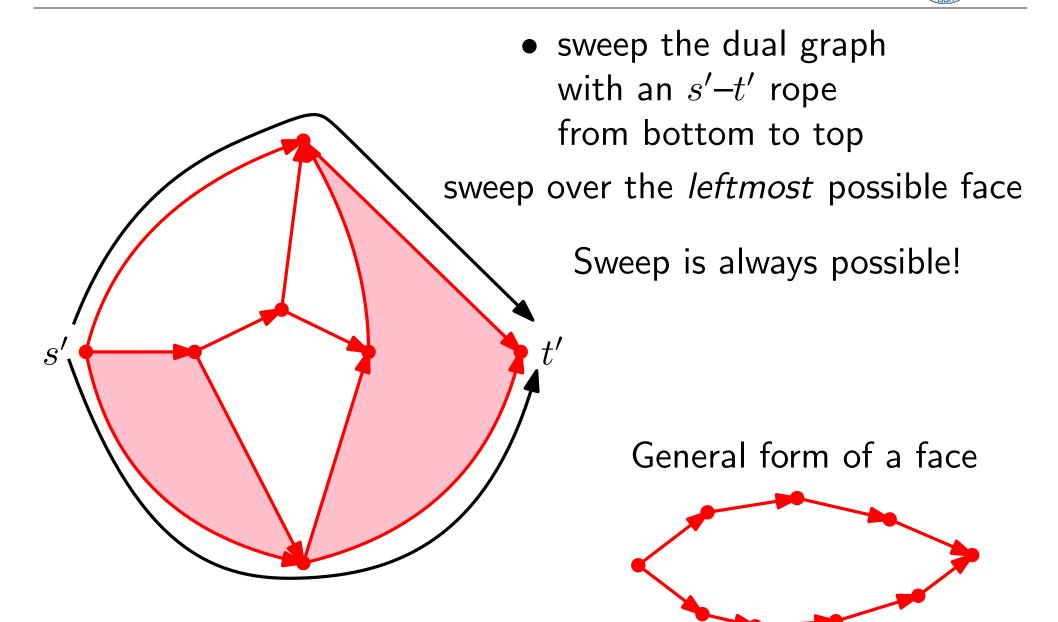


Freie Universität

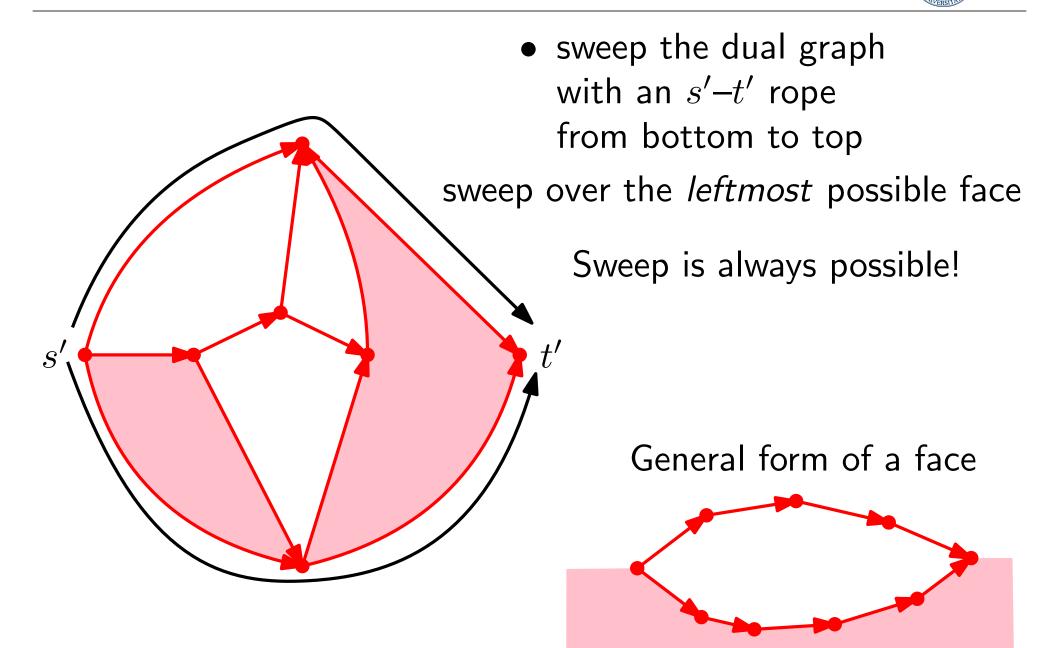
Berlin



Freie Universität



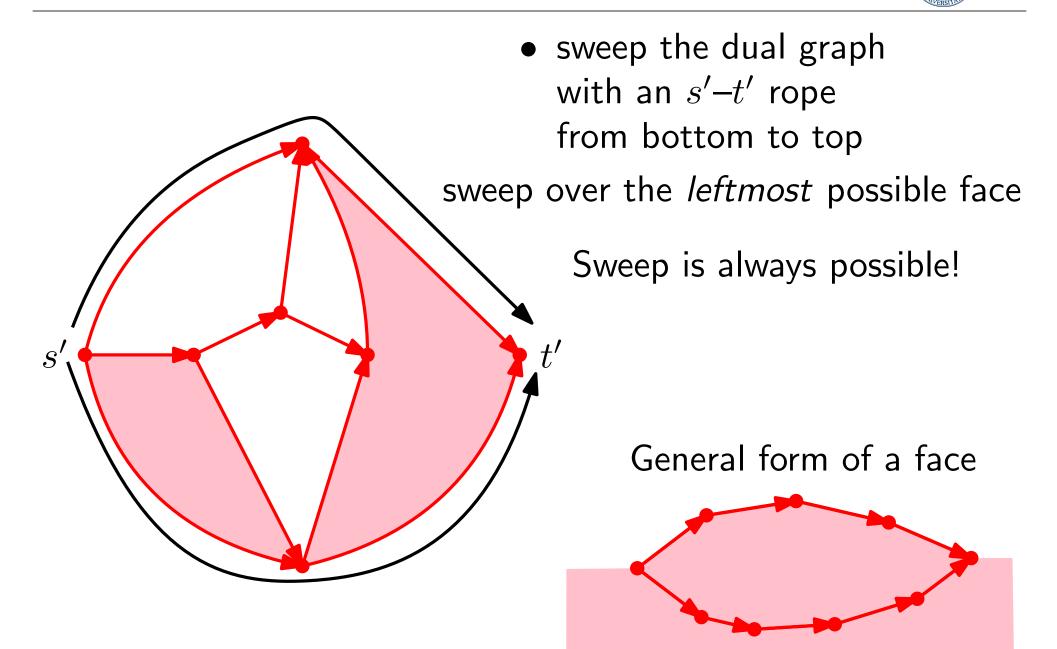
Freie Universität



Günter Rote, Freie Universität Berlin

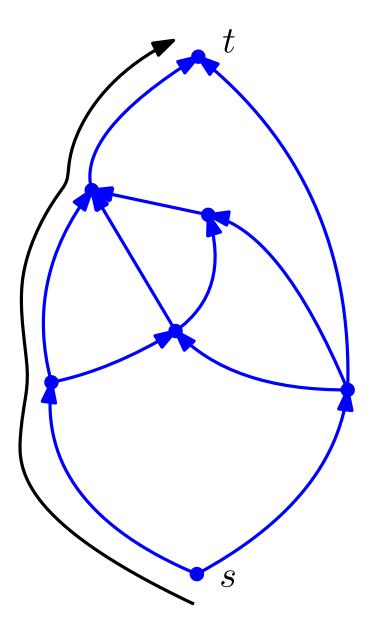
Convex and Discrete Geometry Workshop, Erdős Center, Budapest, September 4-8, 2023

Freie Universität

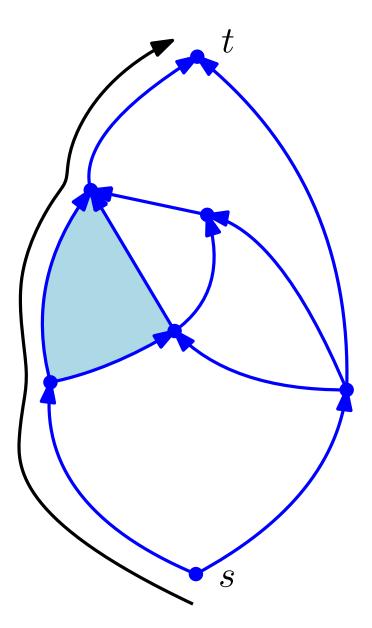


Günter Rote, Freie Universität Berlin

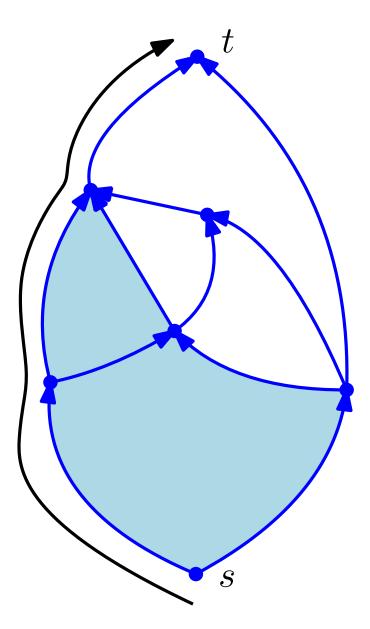
Freie Universität



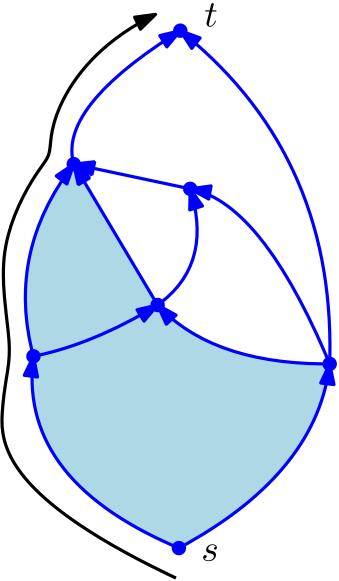
 sweep the primal graph with an s-t rope from left to right



 sweep the primal graph with an s-t rope from left to right

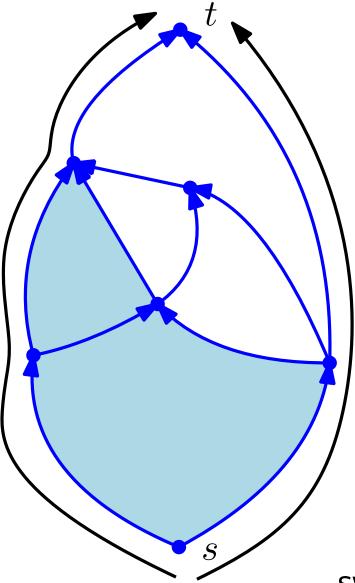


 sweep the primal graph with an s-t rope from left to right



 sweep the primal graph with an *s*-*t* rope from left to right

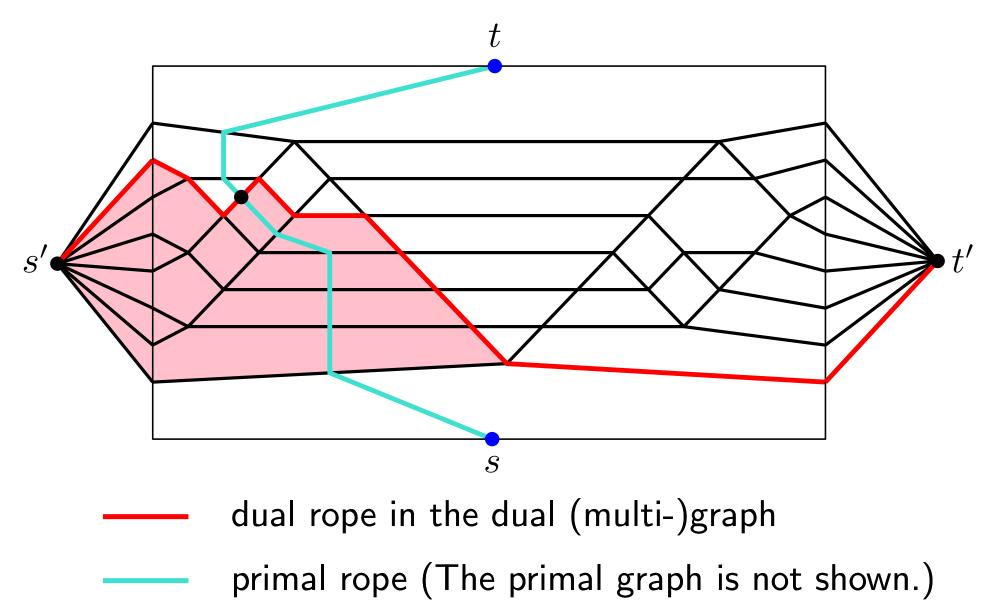
sweep over the *lowest* possible face



 sweep the primal graph with an s-t rope from left to right

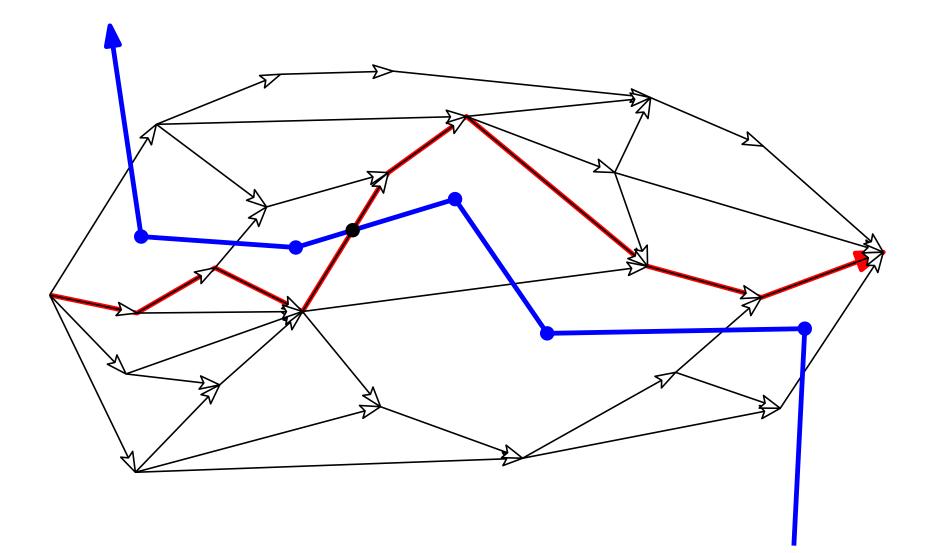
sweep over the *lowest* possible face

Animation



page.mi.fu-berlin.de/rote/Papers/slides/Wuerzburg-2020-Simultaneous-sweep-Animation.pdf

A snapshot

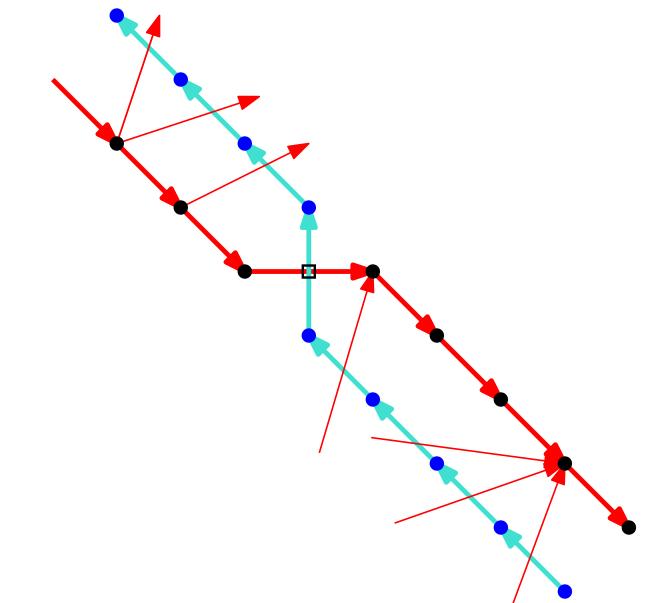


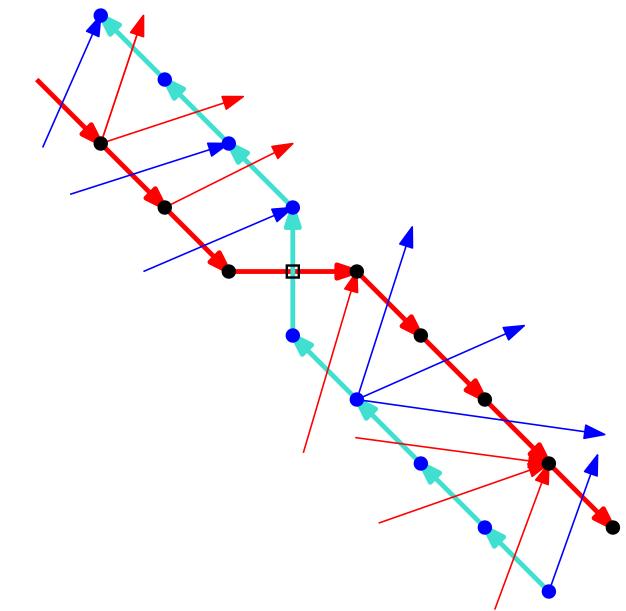
Coordinated sweep

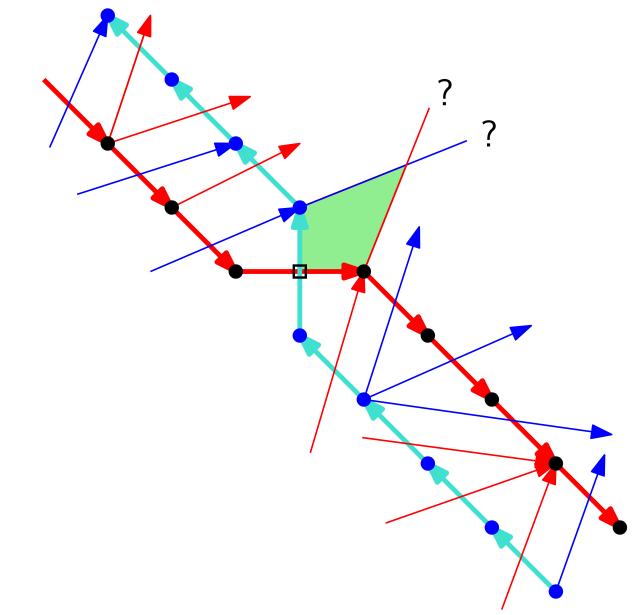
Freie Universität

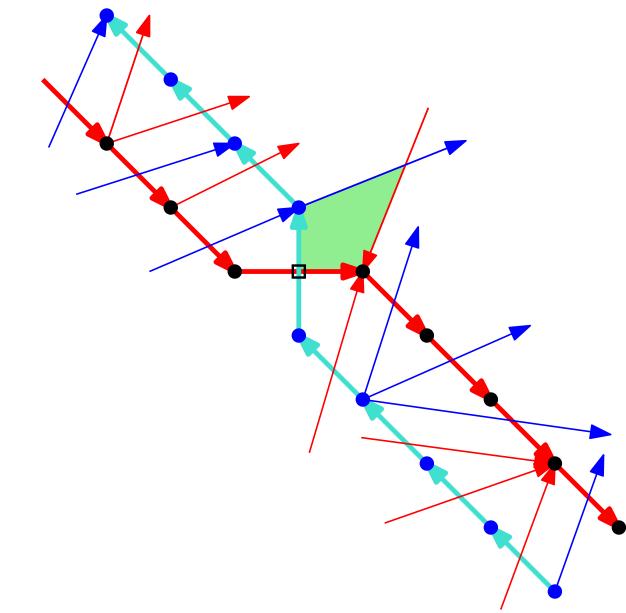
There is a (unique) coordinated primal-dual sweep with the following properties:

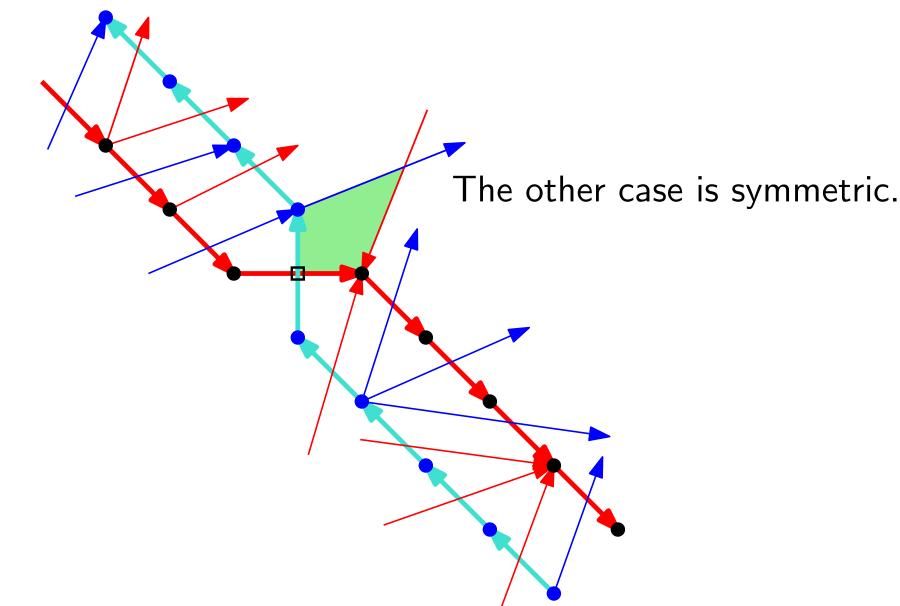
- The primal rope always crosses the dual rope exactly once.
- The primal and the dual rope stay "close" to each other.
- Exactly one rope can advance, depending on the situation at the crossing.
- Every primal-dual edge pair is visited exactly once.
- Each individual sweep is a leftmost/bottommost sweep.

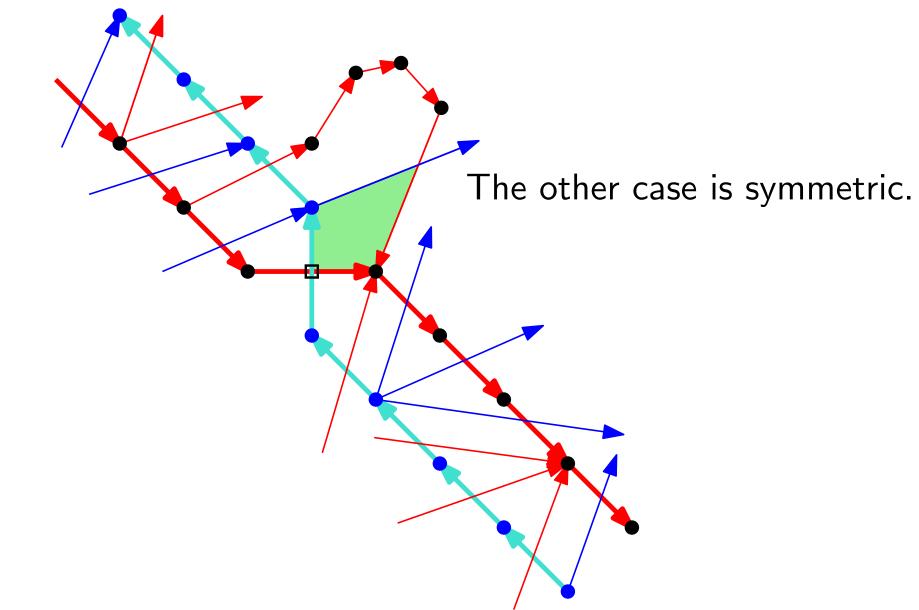


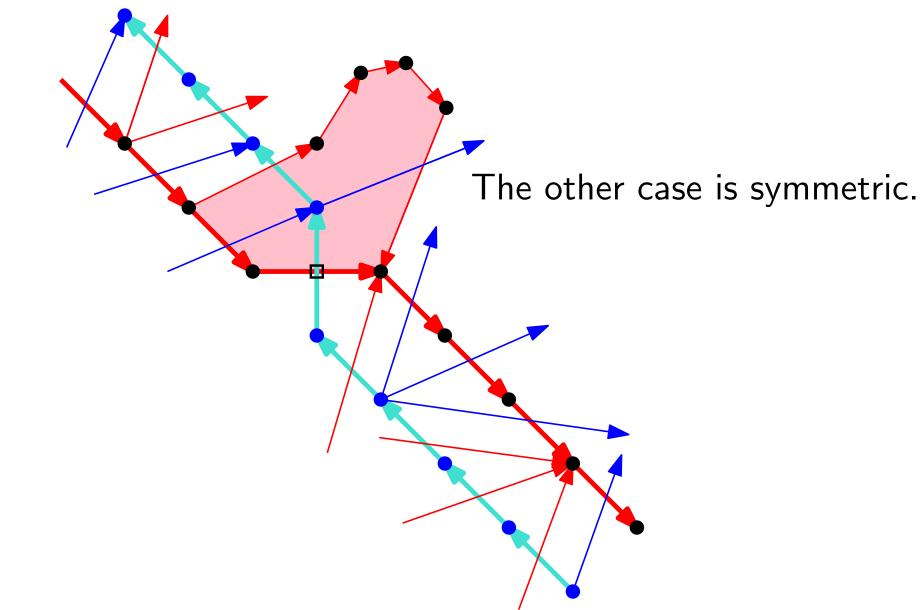


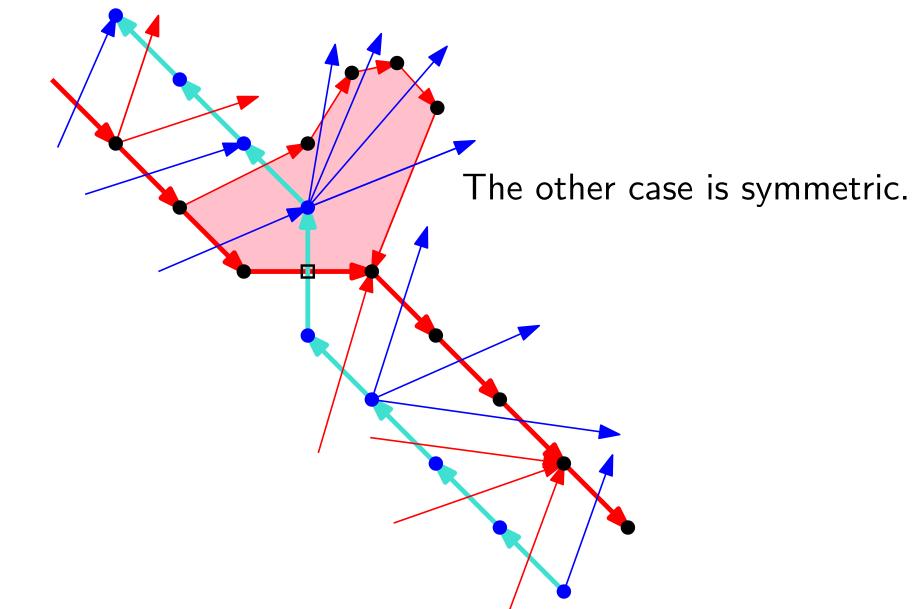








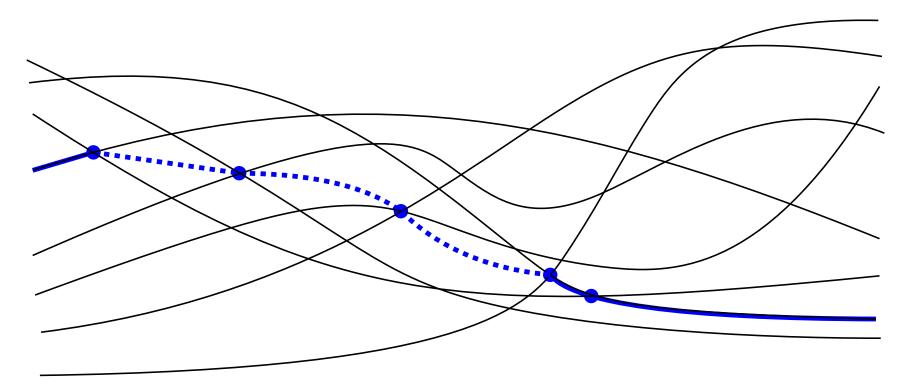




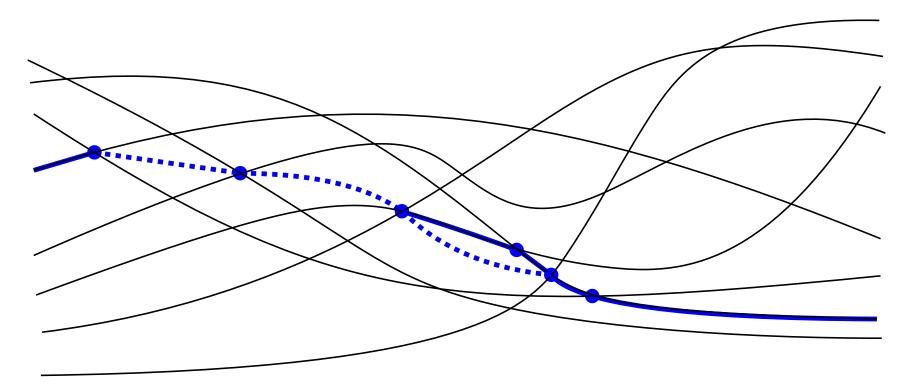
Questions:

- Consider the (primal/dual) rope length: In terms of which parameters can it be bounded?
- Consider a primal sweep in which several independent faces can be swept simultaneously:

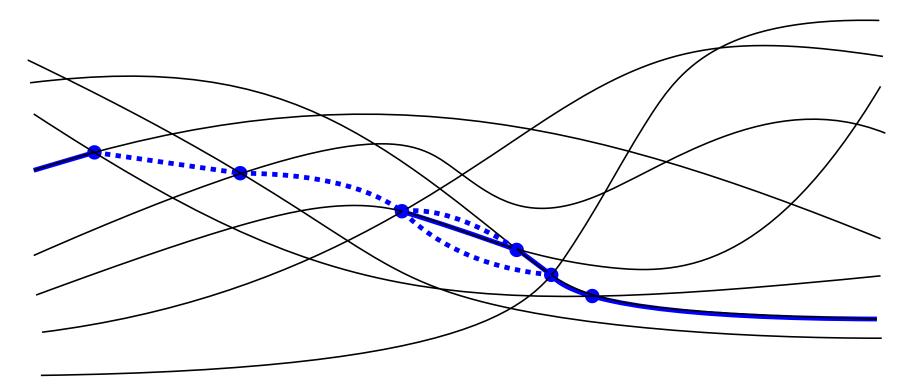
Can this reduce the required rope length?



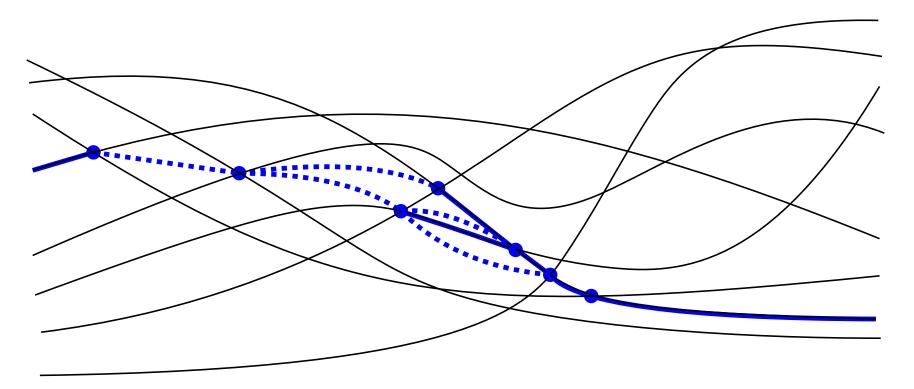
- Several *distribute* steps are done simultaneously, followed by *collects*
- *cross* steps are done individually



- Several *distribute* steps are done simultaneously, followed by *collects*
- *cross* steps are done individually



- Several *distribute* steps are done simultaneously, followed by *collects*
- *cross* steps are done individually



- Several *distribute* steps are done simultaneously, followed by *collects*
- *cross* steps are done individually