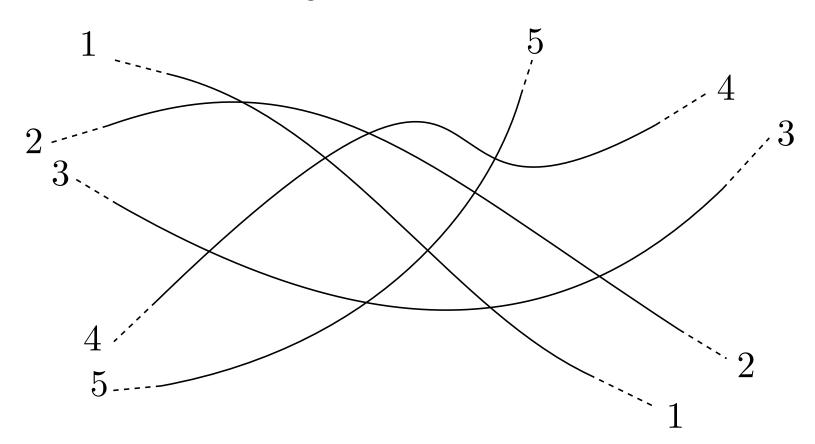
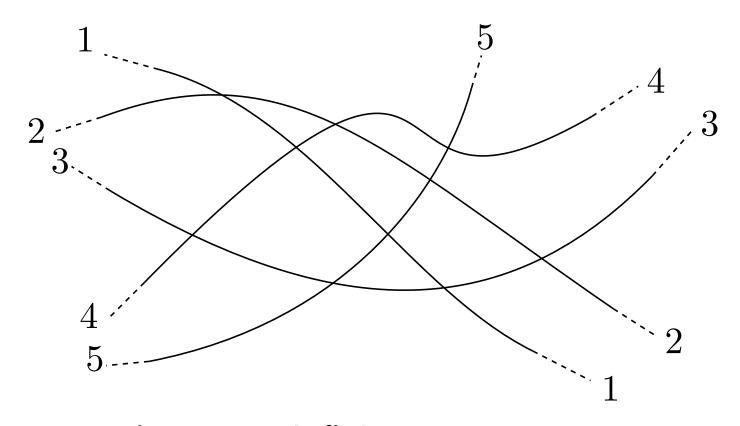


Enumeration and Counting of Pseudoline Arrangements

Günter Rote Freie Universität Berlin



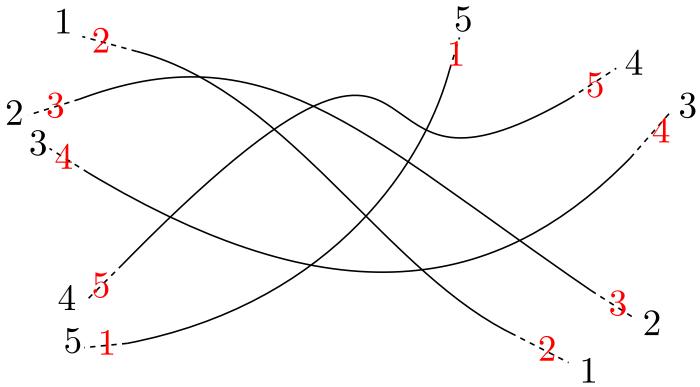
Pseudoline Arrangements



- *n* curves that go to infinity
- Two curves intersect exactly once, and they cross.
- simple pseudoline arrangements: no multiple crossings
- x-monotone curves

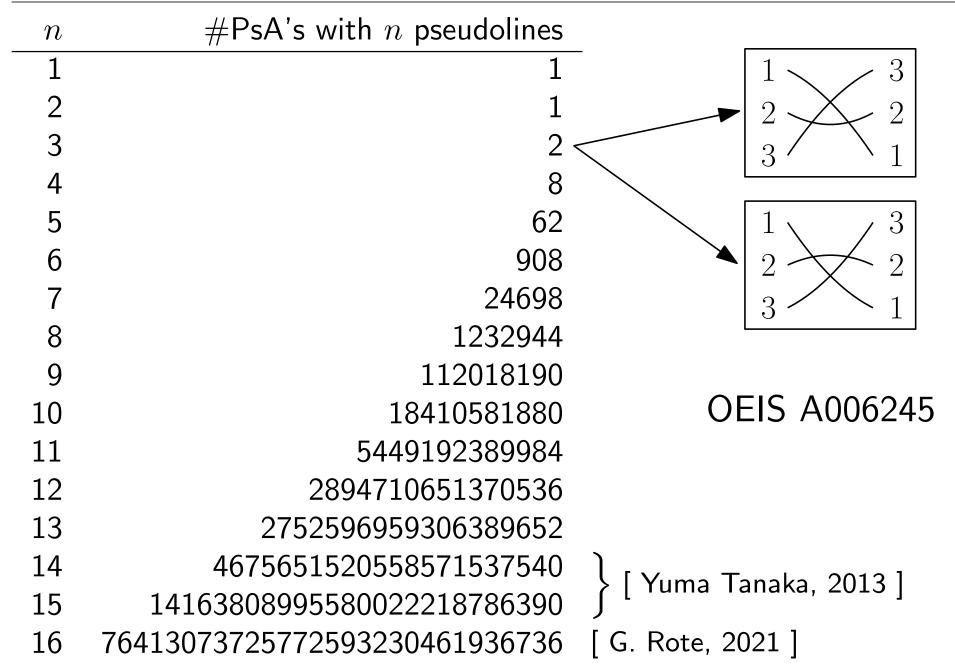
Pseudoline Arrangements

a different arrangement

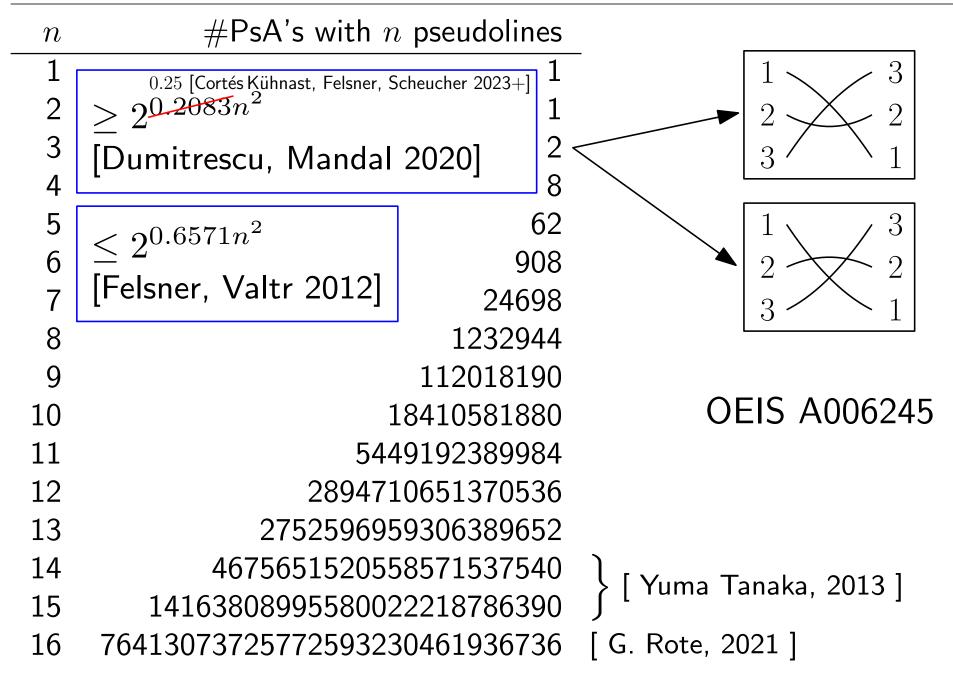


- *n* curves that go to infinity
- Two curves intersect exactly once, and they cross.
- simple pseudoline arrangements: no multiple crossings
- x-monotone curves

How many pseudoline arrangements?



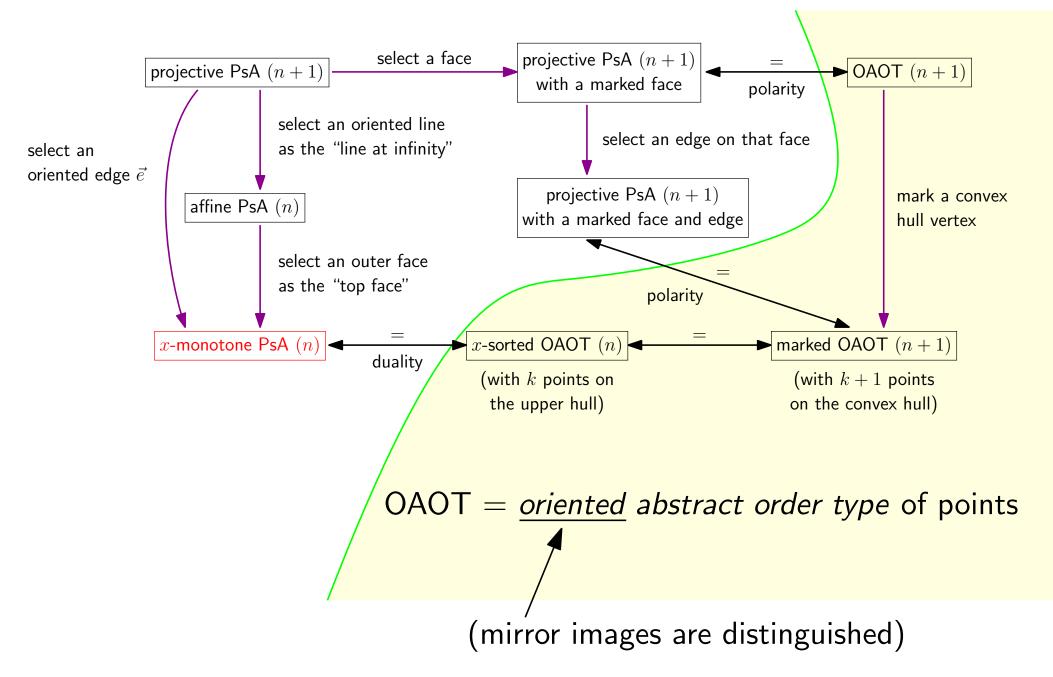
How many pseudoline arrangements?



Outline

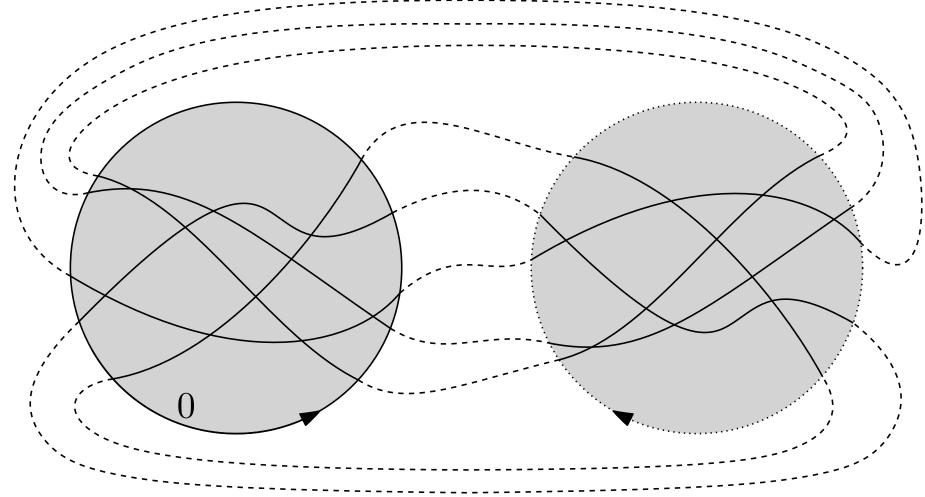
- Counting versus Enumeration
- What are we counting?
- 2-level-approach: Threading ℓ extra strands through a fixed arrangement of k pseudolines
- Partial pseudoline arrangements
- Sweep an arrangement (a bipolar orientation) with a rope

Related concepts



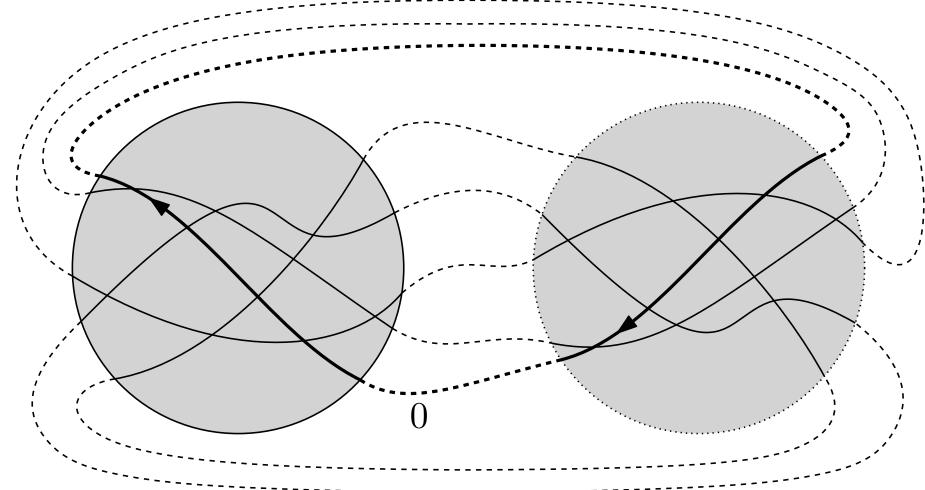
Projective pseudoline arrangements

spherical model



Projective pseudoline arrangements

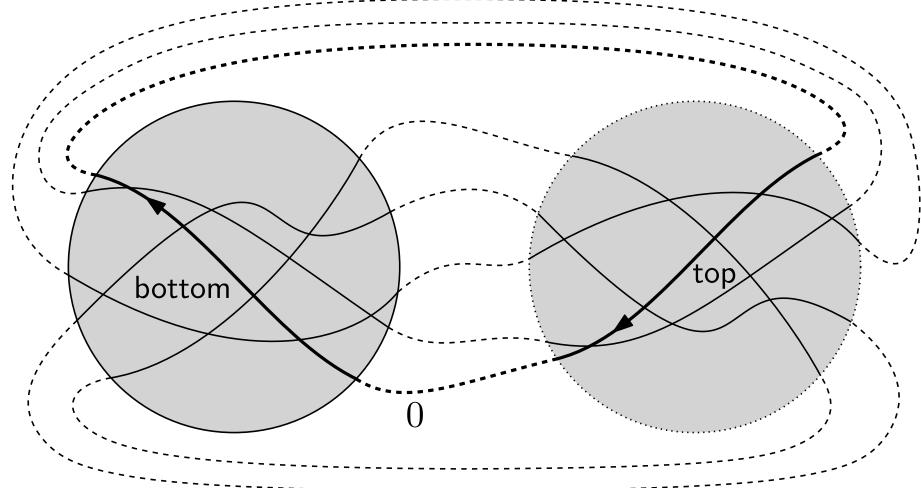
spherical model



• affine pseudoline arrangement

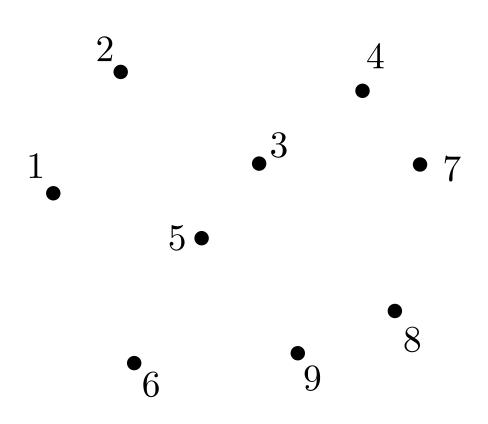
Projective pseudoline arrangements

spherical model



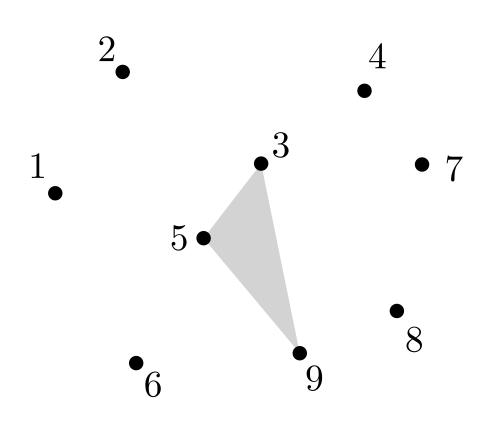
- affine pseudoline arrangement
- *x-monotone* pseudoline arrangement

(Abstract) order types of points



a.k.a. oriented matroids

(Abstract) order types of points



a.k.a. oriented matroids

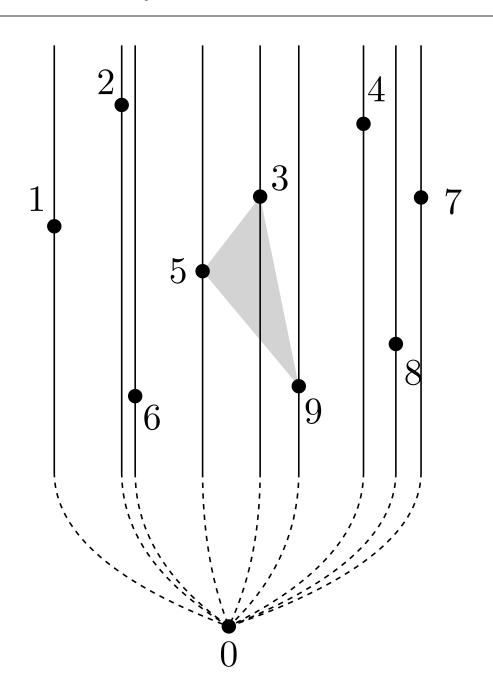
orientation

$$593 = +$$

$$359 = +$$

$$539 = -$$

(Abstract) order types of points



a.k.a. oriented matroids

orientation

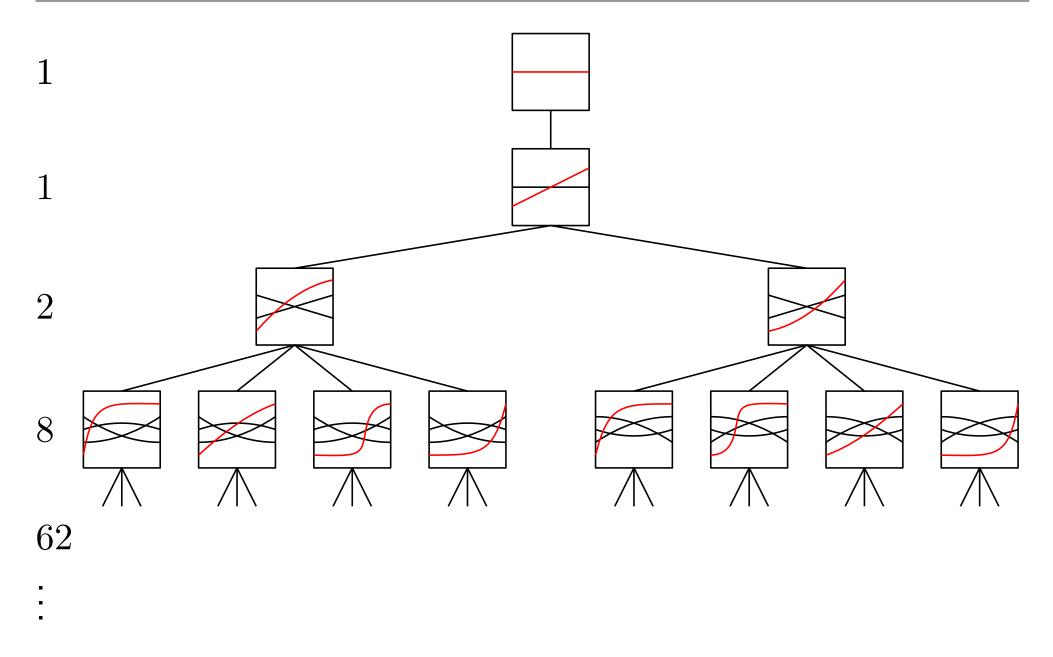
$$593 = +$$

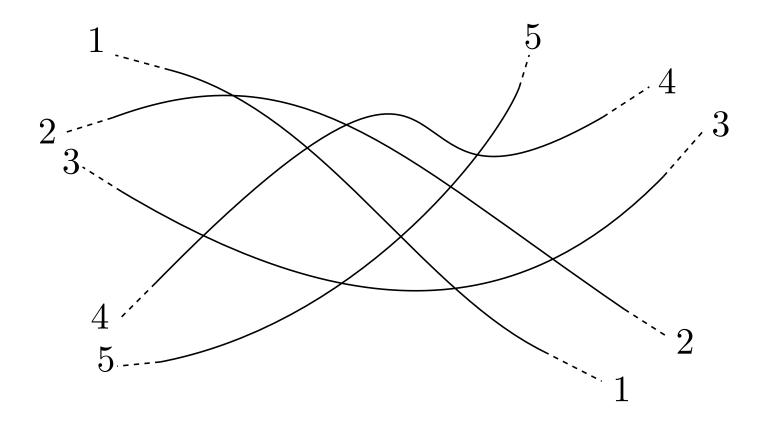
$$359 = +$$

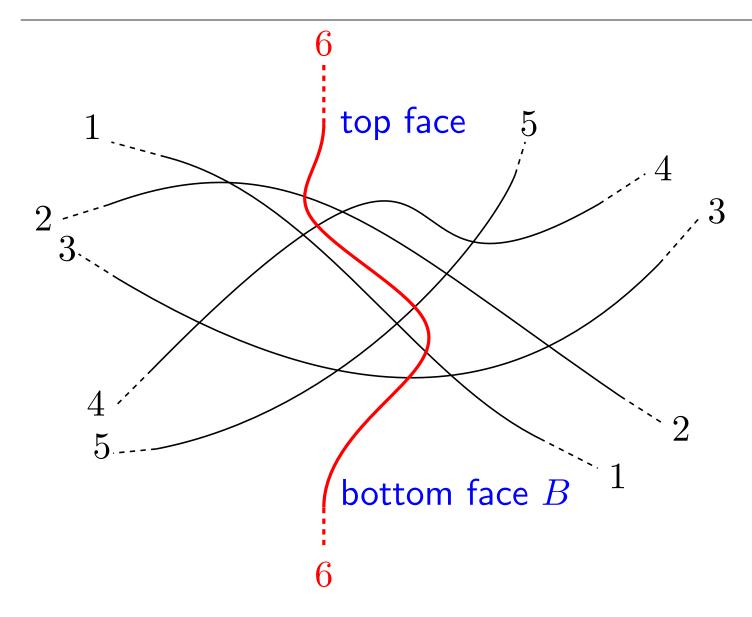
$$539 = -$$

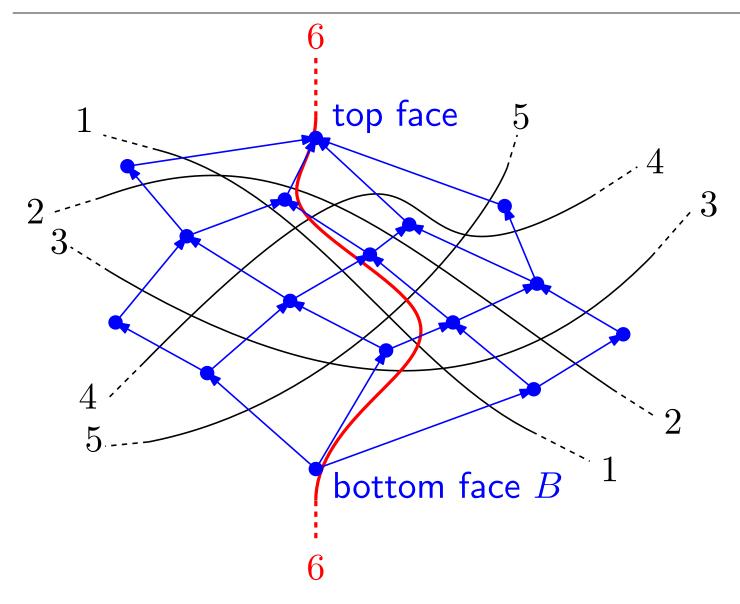
x-sorted

Enumeration tree

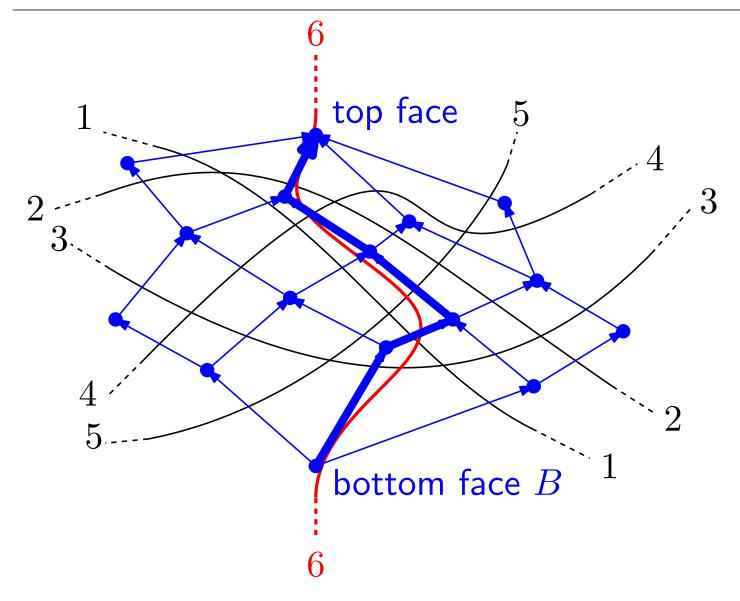






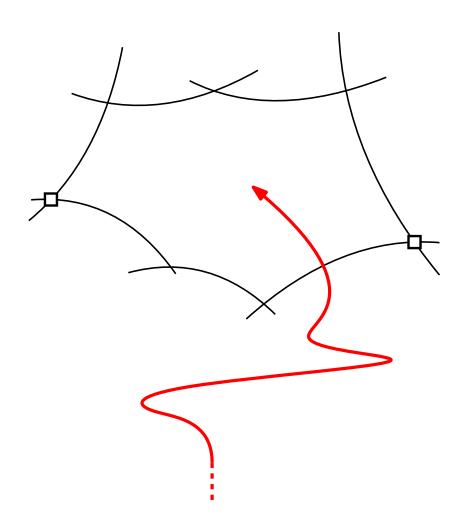


pseudoline n+1= path in the dual DAG

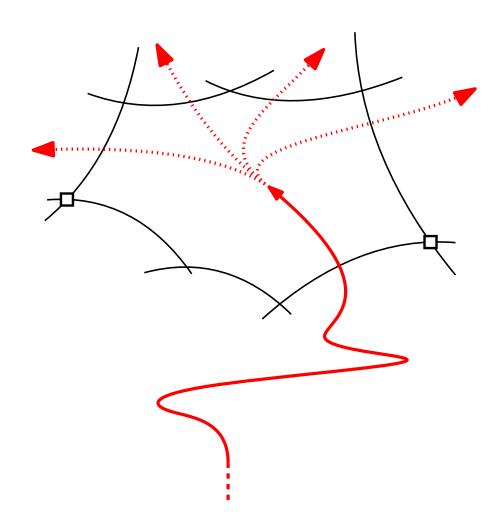


pseudoline n+1= path in the dual DAG

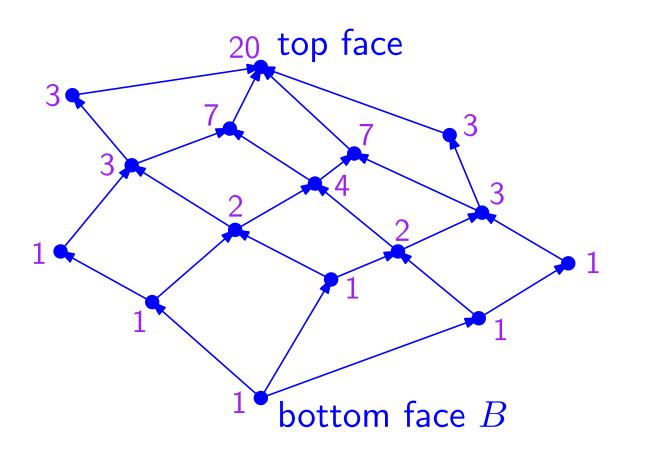
Generation (enumeration) is straightforward. (No dead ends!)



Generation (enumeration) is straightforward. (No dead ends!)



Counting is straightforward. (#paths from B in a DAG)

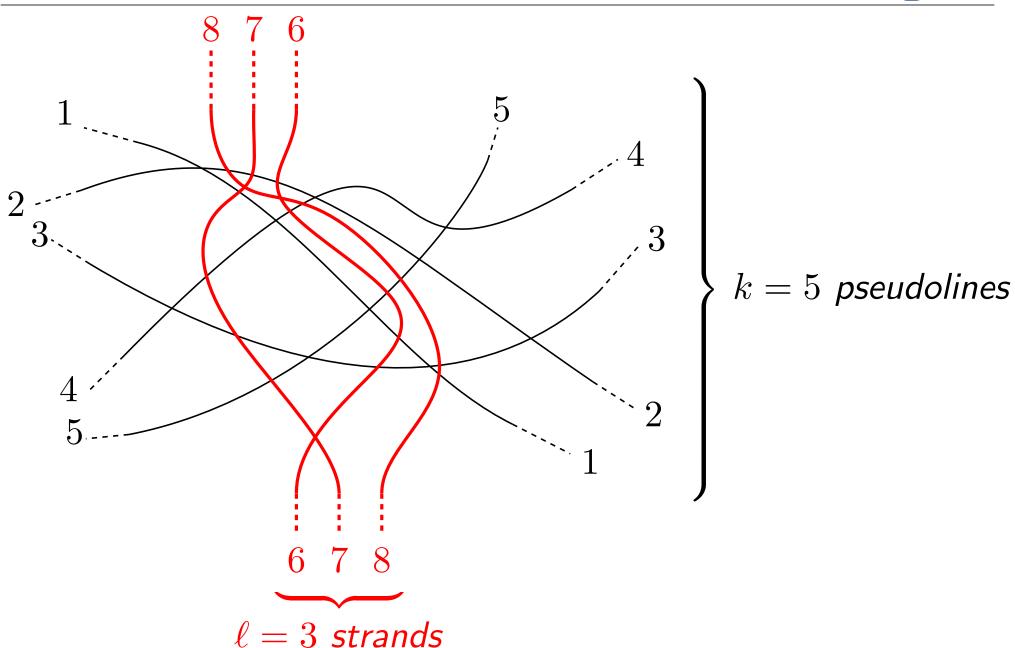


#paths $\leq 2.49^n$ [Felsner, Valtr 2012]

#paths can be as large as 2.076^n . [O. Bílka 2010]

pseudoline n+1= path in the dual DAG

Threading several pseudolines at once

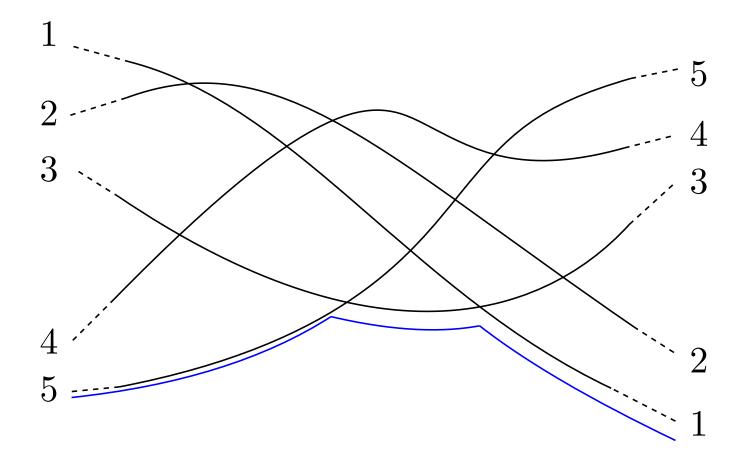


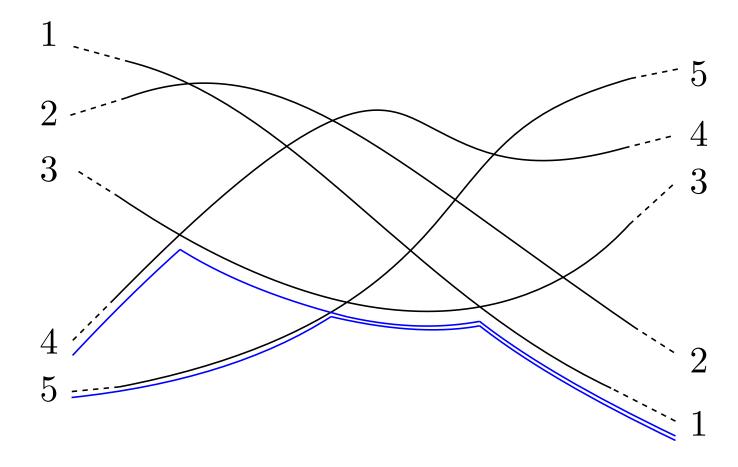
2-Level approach

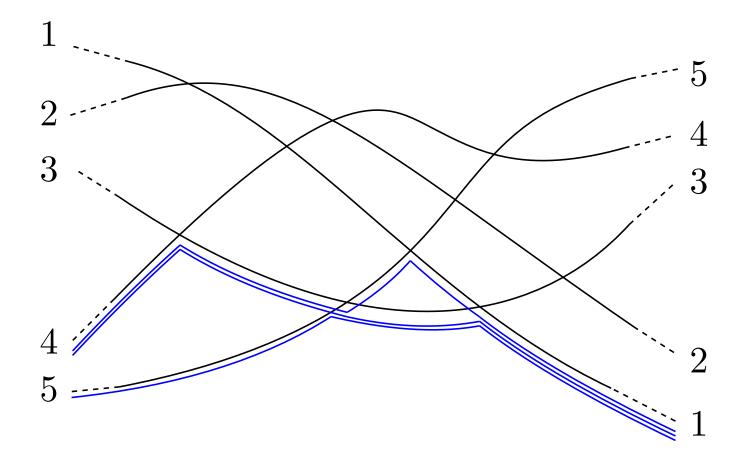
- ullet Enumerate all arrangements of k pseudolines
- For each arrangement of k pseudolines:
 - Count the possibilites to thread ℓ extra strands

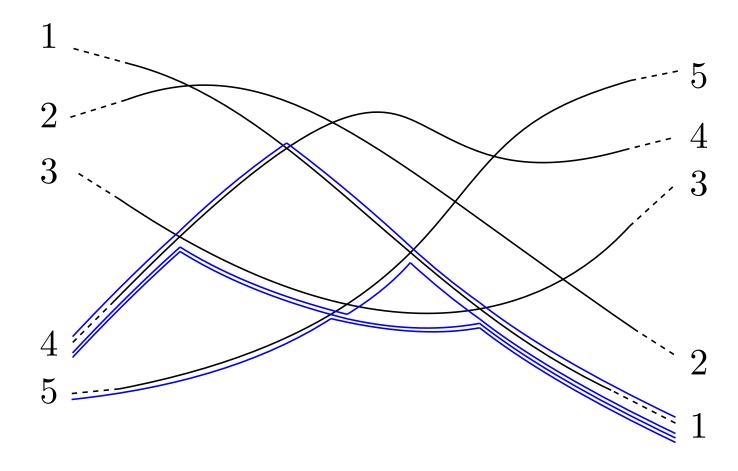
Preprocessing:

to deal with (partial) arrangements with ℓ strands fast







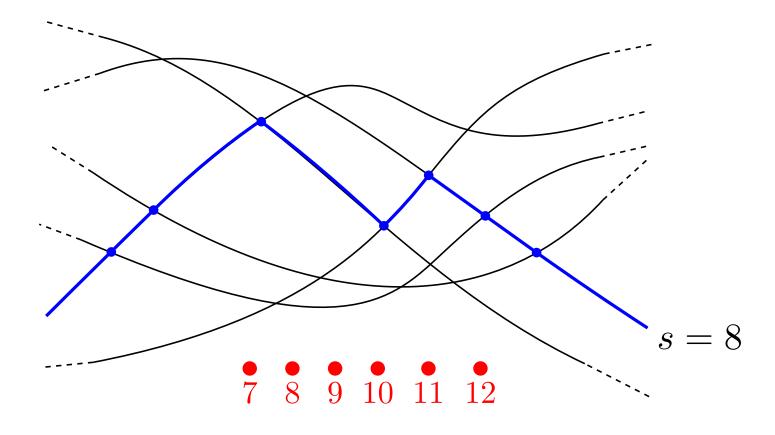


flip over faces one by one



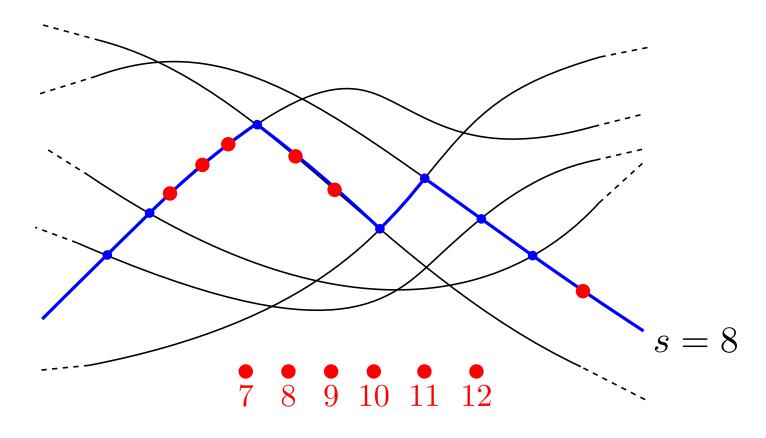
Take a fixed sweep by a sequence of ropes.

For each rope: (s pieces)



For each rope:

(s pieces)

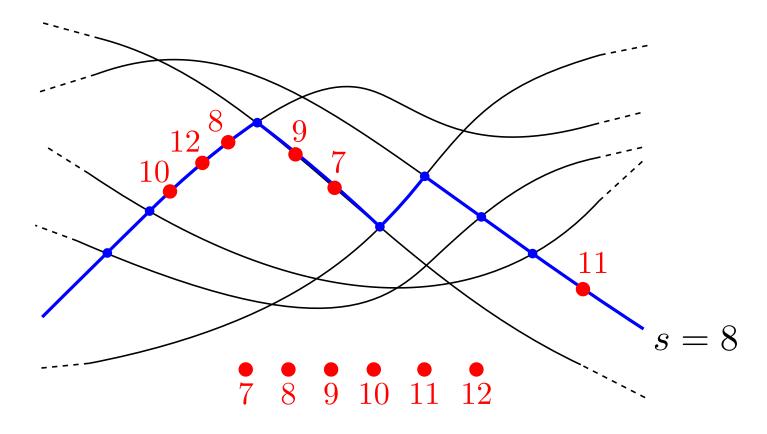


- ullet For every distribution of the ℓ strands to the s pieces
- ullet and for every permutation of the ℓ strands:

Store the number of possibilities to thread the ℓ strands from the bottom face to the rope.

$$\rightarrow s(s+1)(s+2)\dots(s+\ell-1)$$
 entries

For each rope: (s pieces)



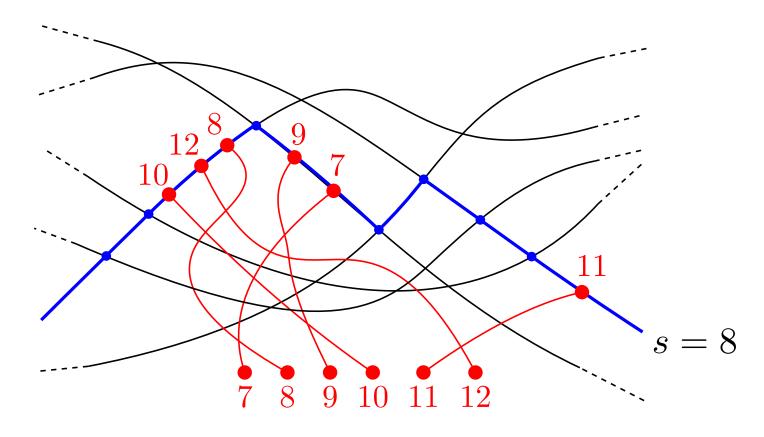
- ullet For every distribution of the ℓ strands to the s pieces
- ullet and for every permutation of the ℓ strands:

Store the number of possibilities to thread the ℓ strands from the bottom face to the rope.

$$\rightarrow s(s+1)(s+2)\dots(s+\ell-1)$$
 entries

For each rope:

(s pieces)

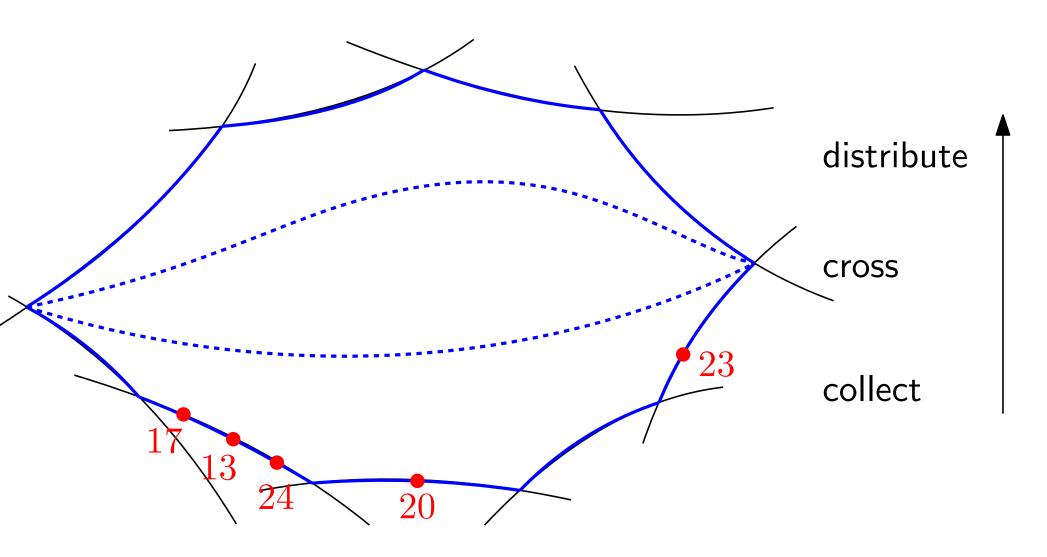


- ullet For every distribution of the ℓ strands to the s pieces
- and for every permutation of the ℓ strands:

Store the number of possibilities to thread the ℓ strands from the bottom face to the rope.

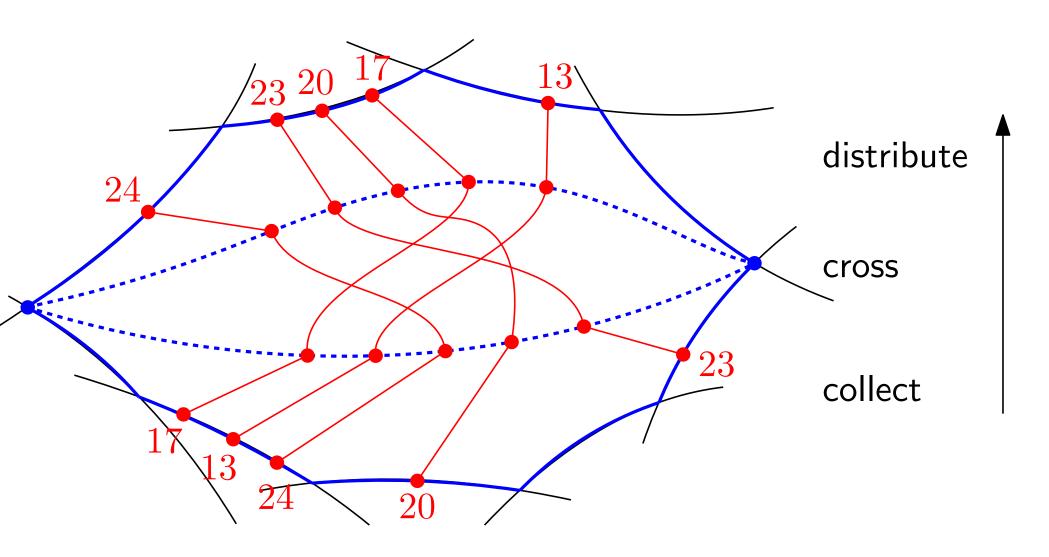
$$\rightarrow s(s+1)(s+2)\dots(s+\ell-1)$$
 entries

Advancing the rope across a face



What is the contribution to the next rope?

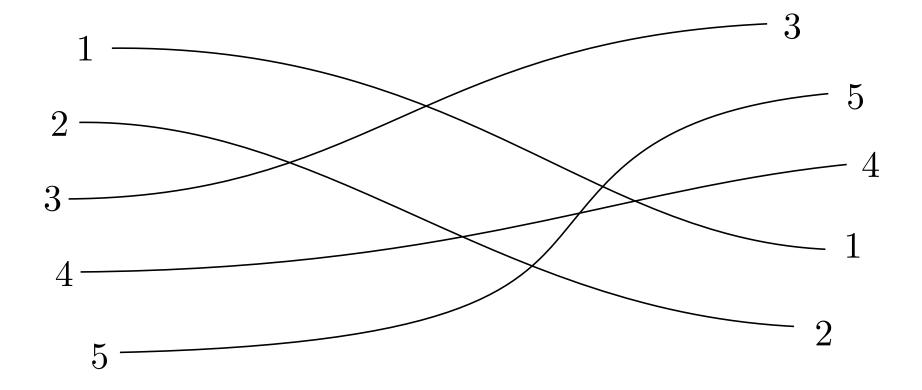
Advancing the rope across a face



What is the contribution to the next rope?

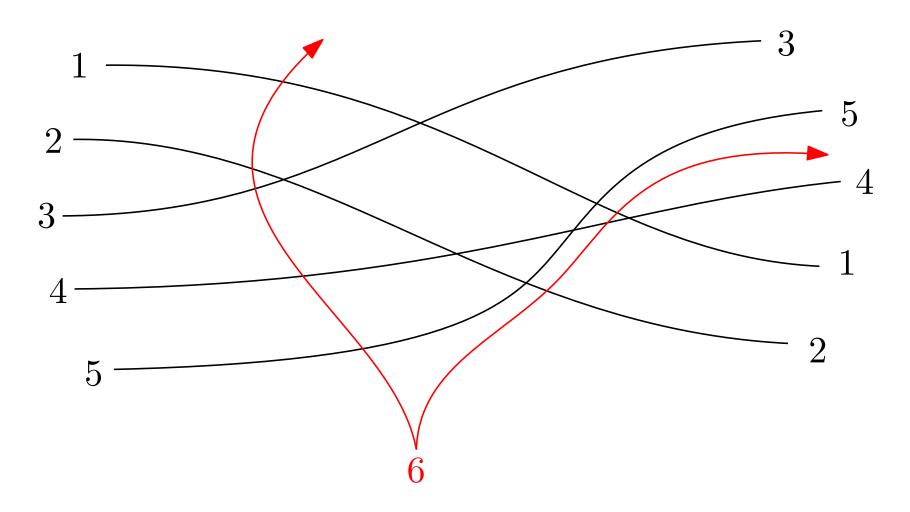
PARTIAL pseudoline arrangements

The ℓ pseudolines may cross or not.



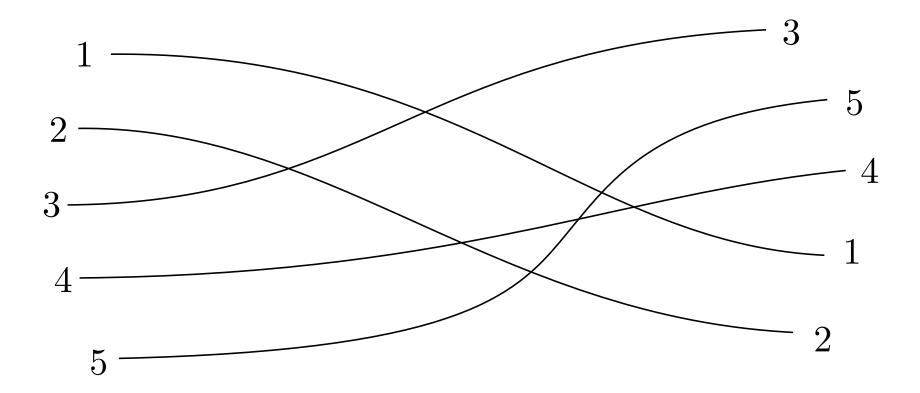
PARTIAL pseudoline arrangements

The ℓ pseudolines may cross or not.



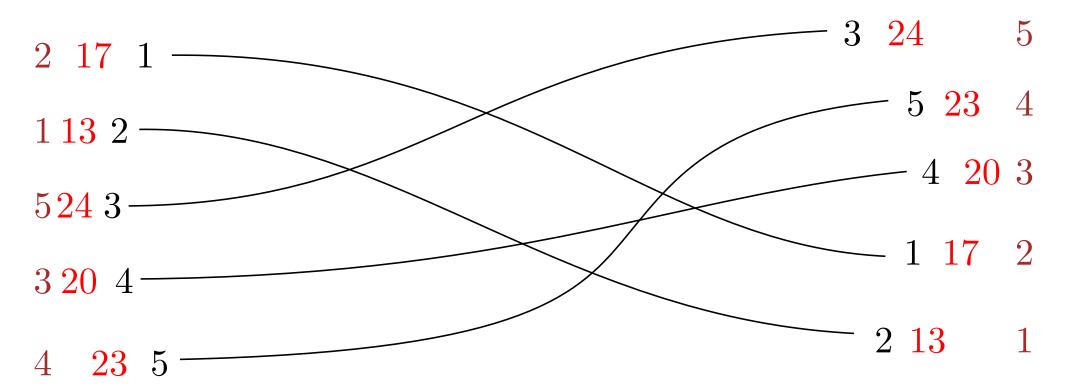
Enumeration is as easy as for full PsA's.

The ℓ pseudolines may cross or not.

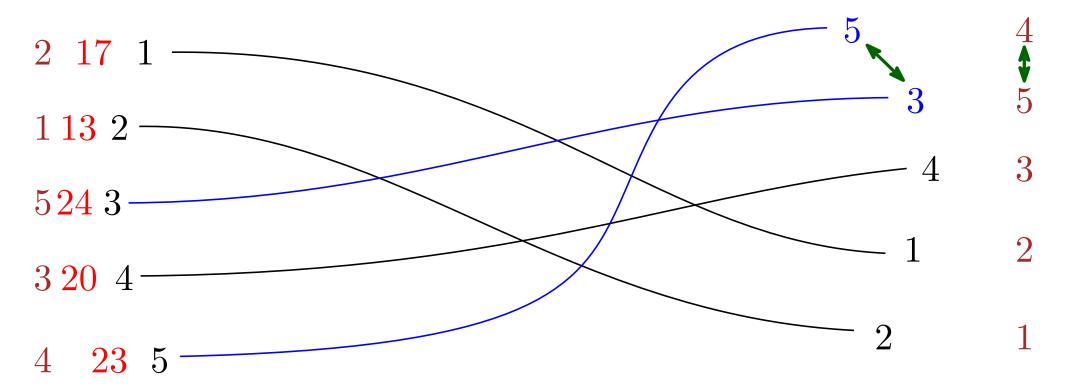


Preprocessing: $\rightarrow \ell!$ array

The ℓ pseudolines may cross or not.

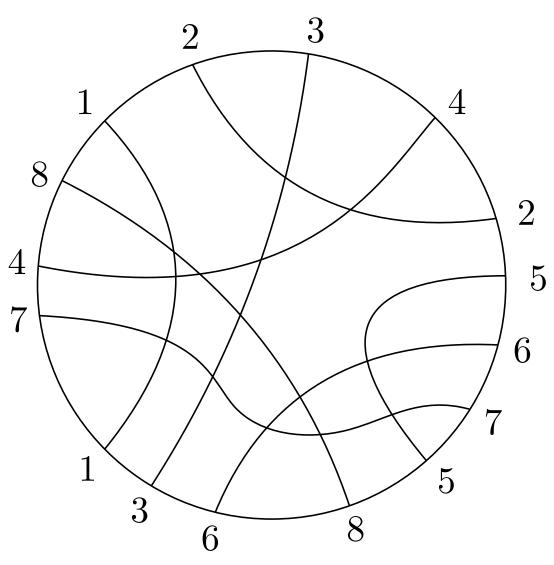


Preprocessing:
$$\rightarrow \ell!$$
 array $\rightarrow \ell! \times \ell!$ table (sparse!)



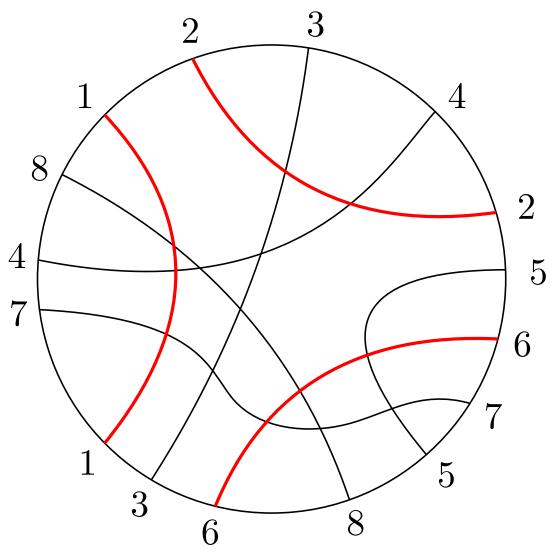
This is OK as a partial pseudoline arrangement, but not for the input sequence 17, 13, 27, 20, 23 = 2, 1, 5, 3, 4.

Distinguish: more general partial pseudoline arrangements that are not necessarily x-monotone:



given by a *bipermutation* or (*matching*)

Distinguish: more general partial pseudoline arrangements that are not necessarily x-monotone:



given by a *bipermutation* or (*matching*)

Algorithm summary

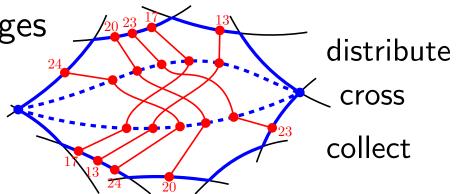
For each PsA of k pseudolines:

- Compute a sweep by ropes
- For each rope:
 - For each distribution and permutation of the ℓ strands:
 - * Compute the contributions to the next rope, and accumulate them.

Network model

levels $\hat{\approx}$ ropes + intermediate stages

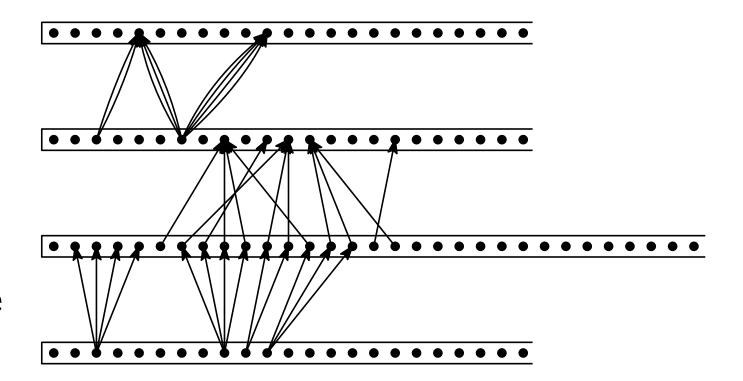
 $PSA \equiv source-to-sink path$



cross

collect

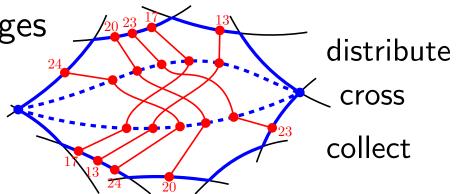
distribute



Network model

levels $\hat{\approx}$ ropes + intermediate stages

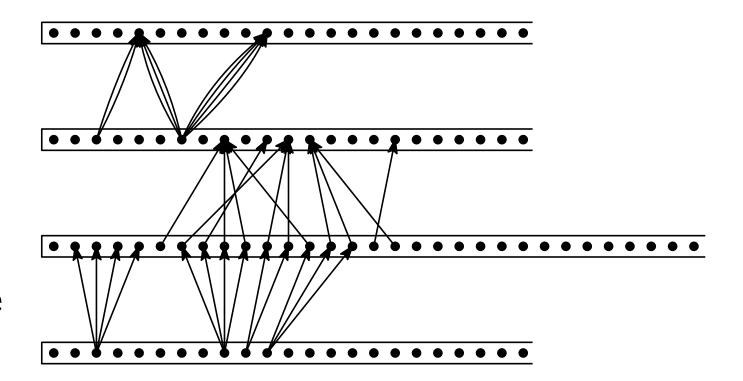
 $PSA \equiv source-to-sink path$



cross

collect

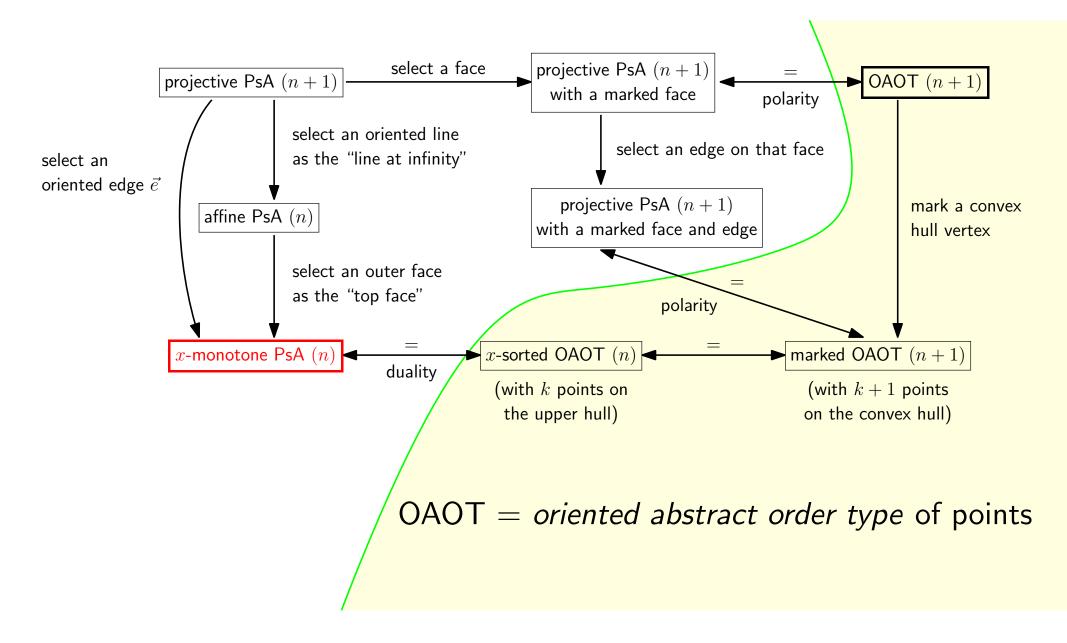
distribute



Some implementation details

- \bullet PYTHON, with scipy for large arrays of 32/64-bit integers
- \bullet modular arithmetic with 3 moduli: 2^{64} , two 30-bit numbers
- $n = 16 = k + \ell = 7 + 9$. Large memory! Max. "rope" s = 7. 256 GBytes is enough; 128 GBytes sometimes failed.
- easy to parallelize: 24,698 independent tasks
- total CPU time: about 5.5 months, using various workstations of different speeds
- CPU time for n=15=6+9 (exploiting symmetry): 6 h. By contrast: PYTHON without scipy took 50 CPU days. (using a greedy rope)
- ullet There is also a version in C (using CWEB) for the task of enumerating PsA's o OAOT of 13 points [OEIS A006247]

What else to enumerate



- Every arrangement requires $\geq n+1$ pieces (for $n\geq 3$).
- ullet can always do with $\leq 2n-2$ pieces. (greedy sweep)
- Some arrangements require $\lfloor \frac{7n}{4} \rfloor 1$ pieces.

(This is the true maximum for $n \leq 9$.)

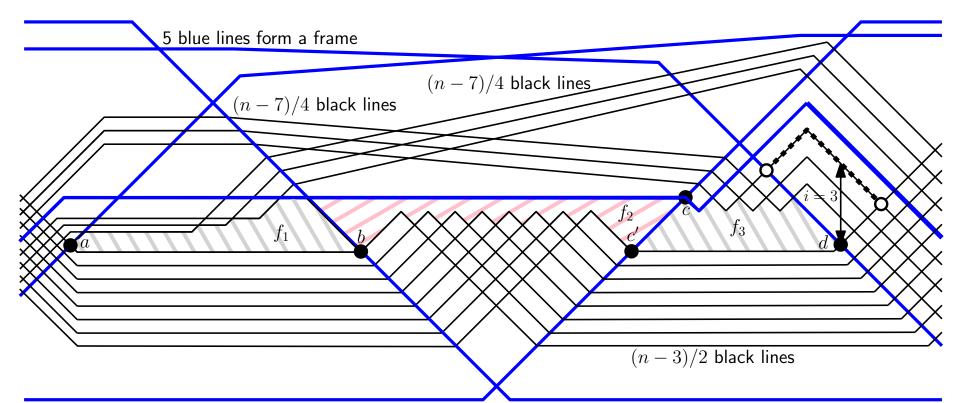
NP-hard? (homotopy height, cutwidth)

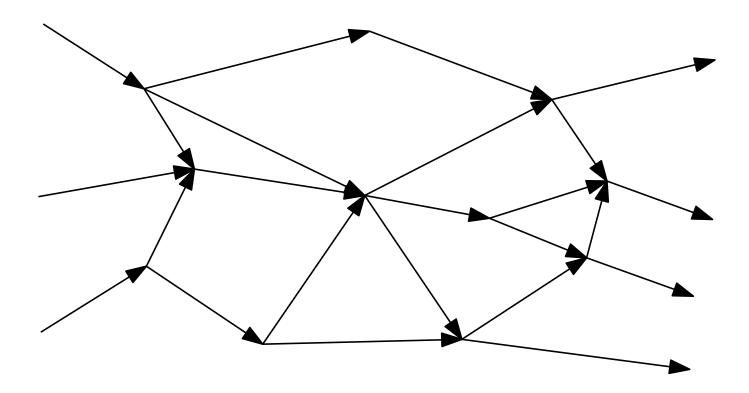
[Biedl, Chambers, Kostitsyna, Rote, 2020/2022/2024?, unpublished]

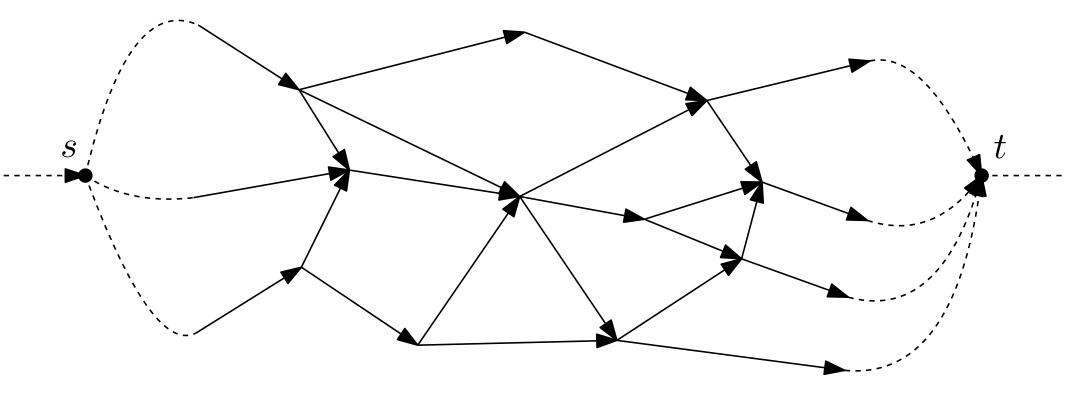
- Every arrangement requires $\geq n+1$ pieces (for $n\geq 3$).
- ullet can always do with $\leq 2n-2$ pieces. (greedy sweep)
- Some arrangements require $\lfloor \frac{7n}{4} \rfloor 1$ pieces.

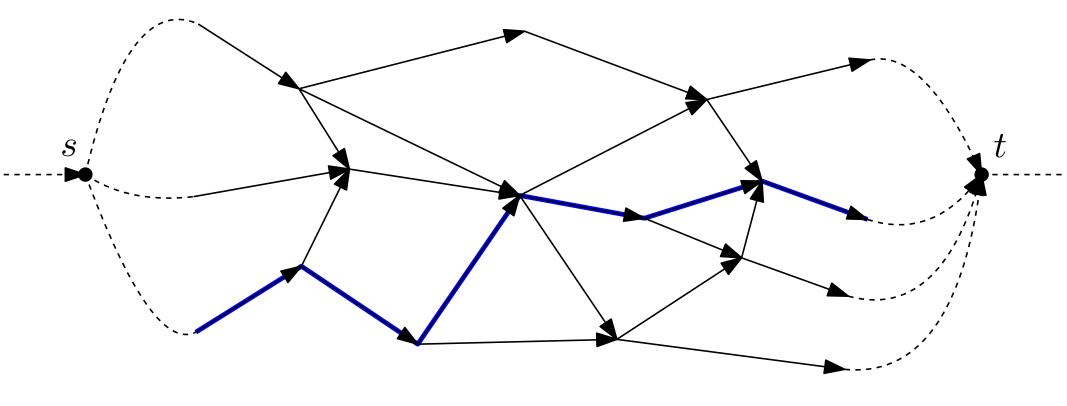
(This is the true maximum for $n \leq 9$.)

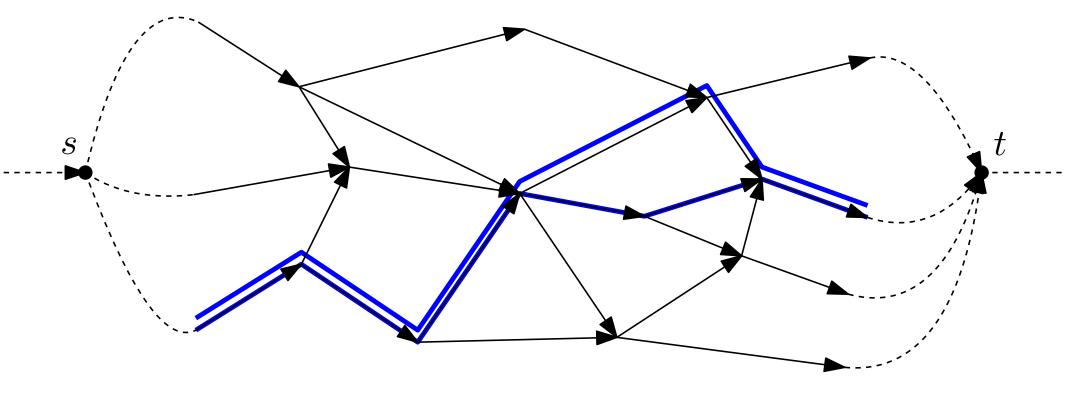
NP-hard? (homotopy height, cutwidth)
 [Biedl, Chambers, Kostitsyna, Rote, 2020/2022/2024?, unpublished]

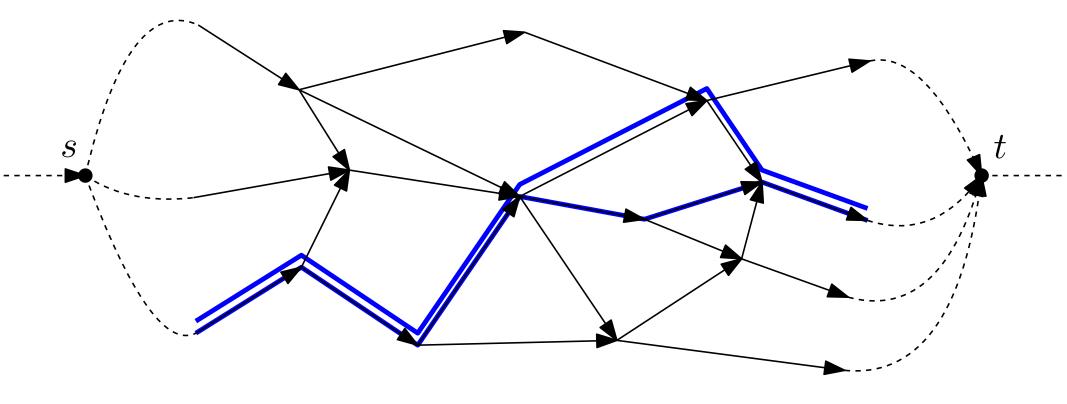






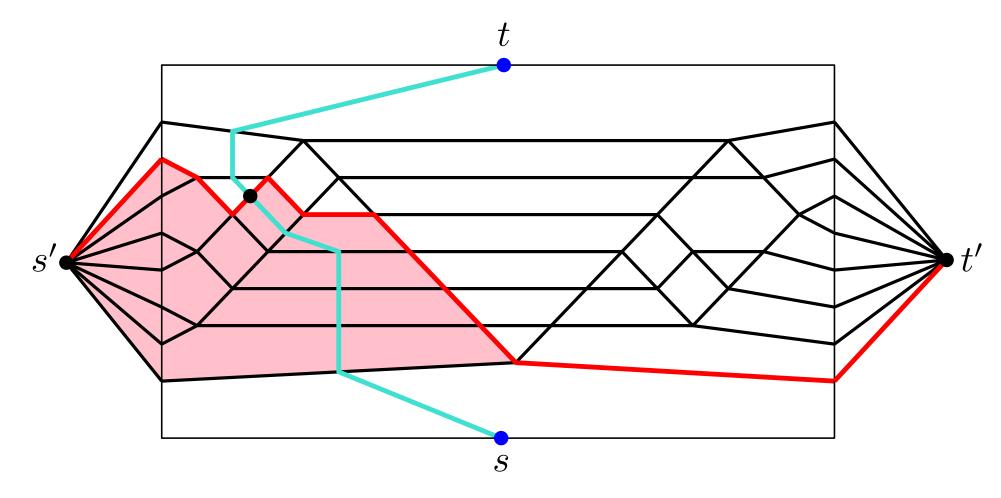






- "leftmost-first" greedy sweep
- → coordinated simultaneous primal-dual sweep

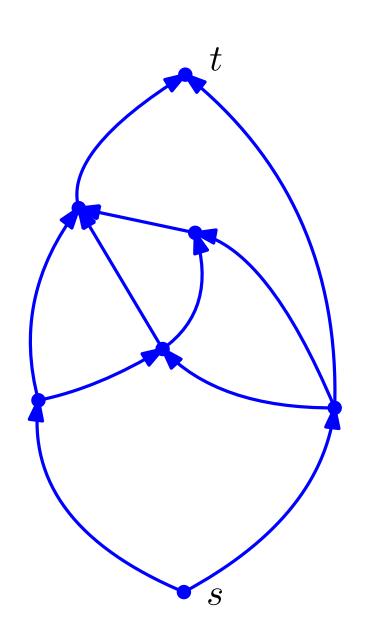
Animation



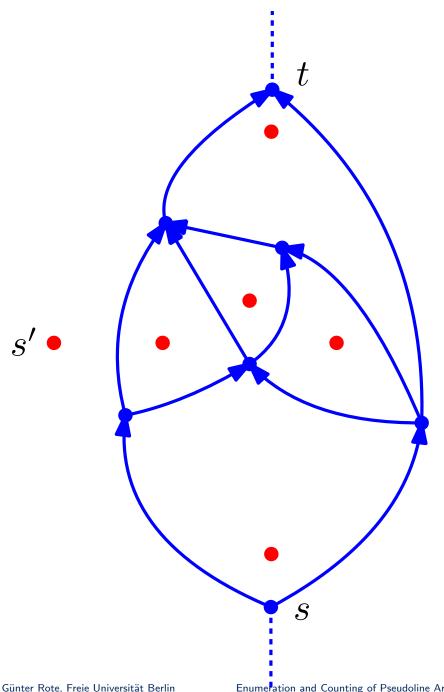
rope in the arrangement

dual rope (The dual graph is not shown.)

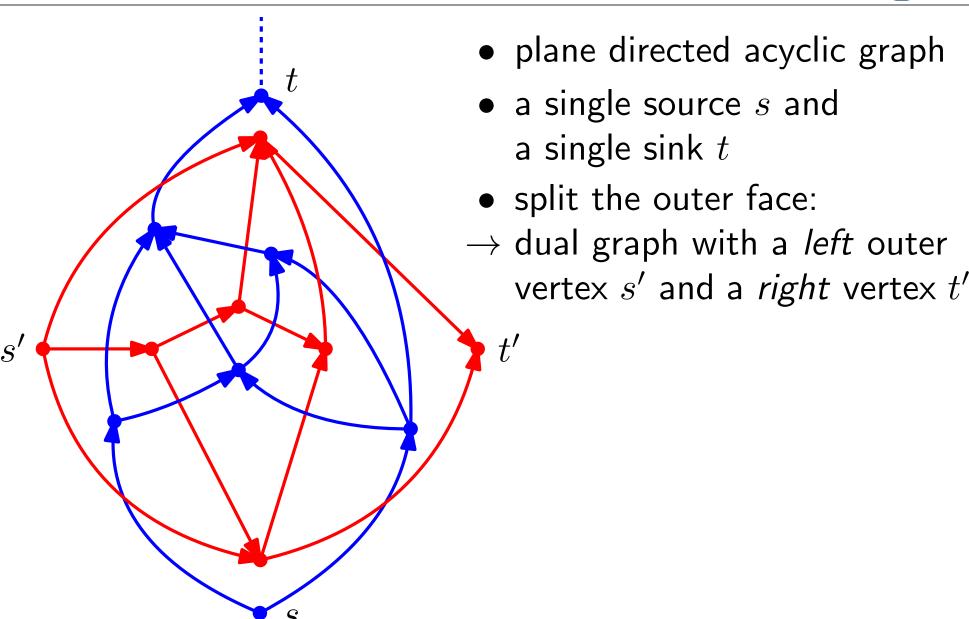
page.mi.fu-berlin.de/rote/Papers/slides/Wuerzburg-2020-Simultaneous-sweep-Animation.pdf

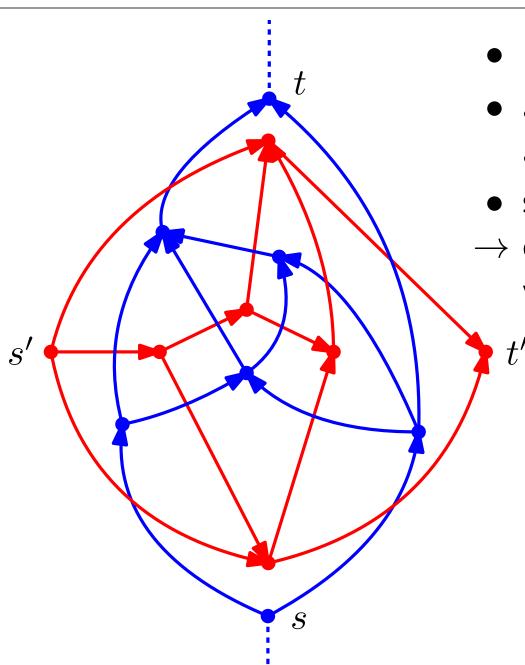


- plane directed acyclic graph
- ullet a single source s and a single sink t



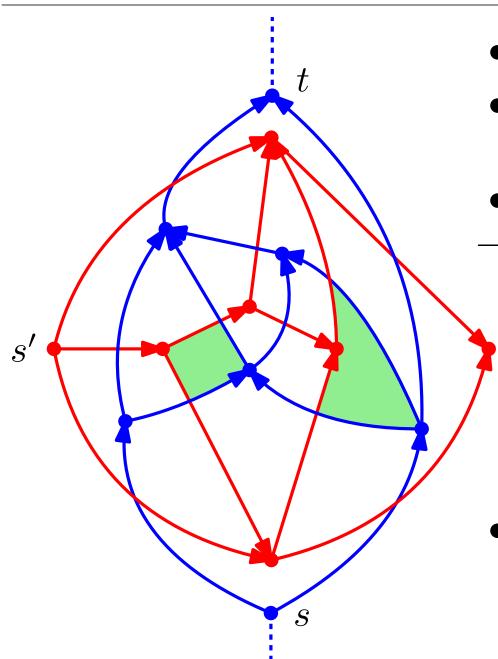
- plane directed acyclic graph
- ullet a single source s and a single sink t
- split the outer face:
- → dual graph with a *left* outer vertex s' and a right vertex t'





- plane directed acyclic graph
- ullet a single source s and a single sink t
- split the outer face:
- \rightarrow dual graph with a *left* outer vertex s' and a *right* vertex t'

 The dual graph is also a bipolar orientation. (may be a multigraph)



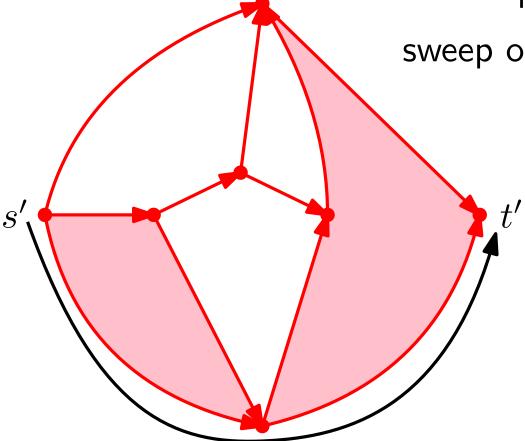
- plane directed acyclic graph
- ullet a single source s and a single sink t
- split the outer face:
- \rightarrow dual graph with a *left* outer vertex s' and a *right* vertex t'
 - The dual graph is also a bipolar orientation. (may be a multigraph)
 - All faces in the overlay of the two graphs are quadrilaterals:

 sweep the dual graph with an s'-t' rope from bottom to top sweep over the leftmost possible face

 sweep the dual graph with an s'-t' rope from bottom to top sweep over the leftmost possible face

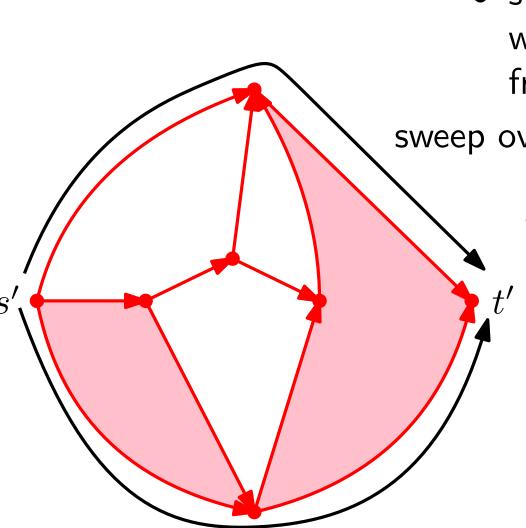
• sweep the dual graph with an s'-t' rope from bottom to top

sweep over the *leftmost* possible face



sweep over the leftmost possible face

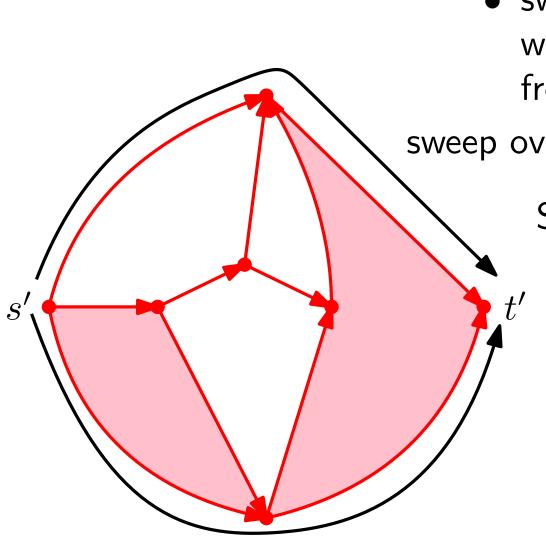
 sweep the dual graph with an s'-t' rope from bottom to top



ullet sweep the dual graph with an s'-t' rope from bottom to top

sweep over the leftmost possible face

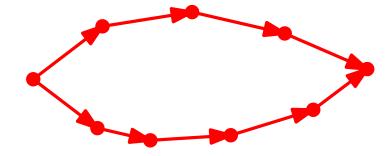
Sweep is always possible!

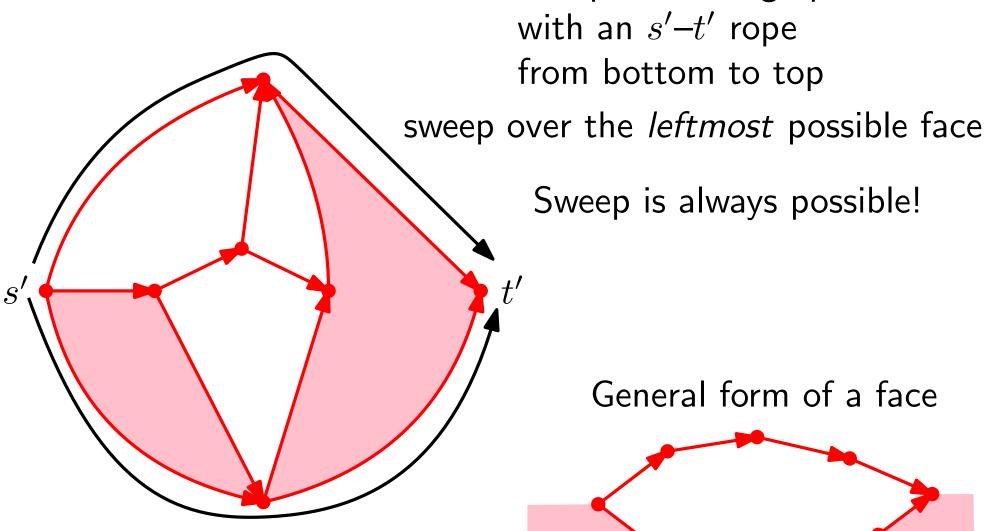


• sweep the dual graph with an s'-t' rope from bottom to top sweep over the *leftmost* possible face

Sweep is always possible!

General form of a face

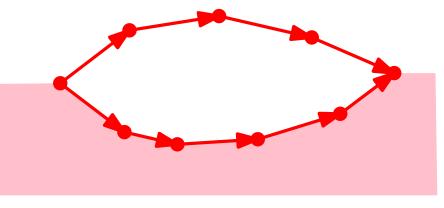


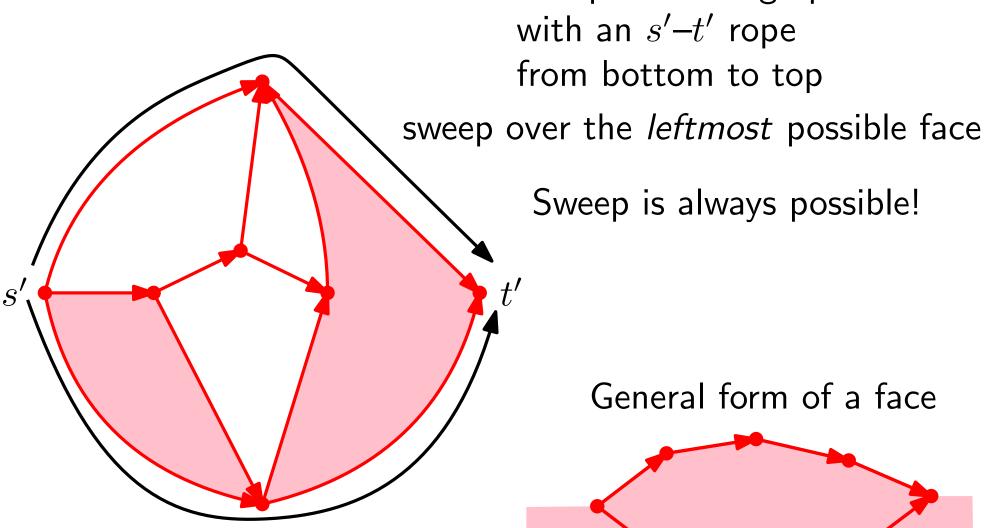


 sweep the dual graph with an s'-t' rope from bottom to top

Sweep is always possible!

General form of a face

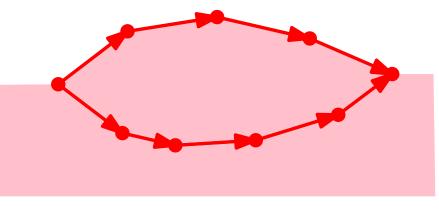


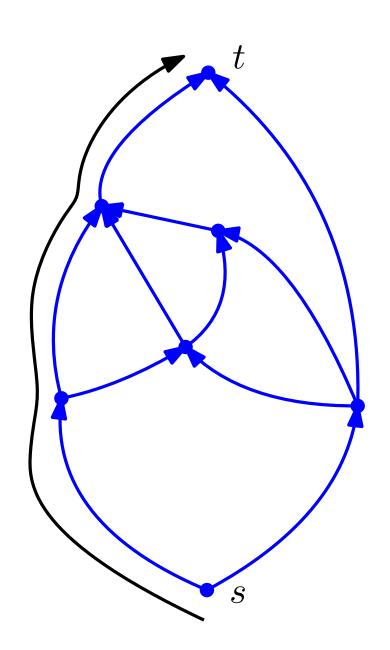


 sweep the dual graph with an s'-t' rope from bottom to top

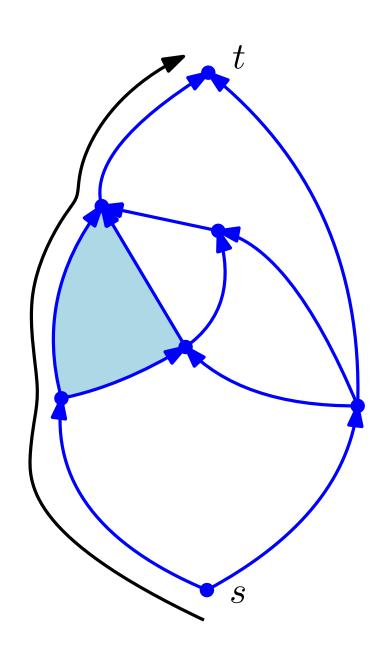
Sweep is always possible!

General form of a face

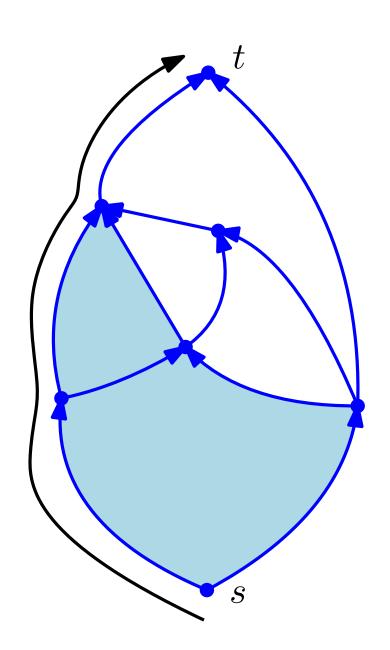




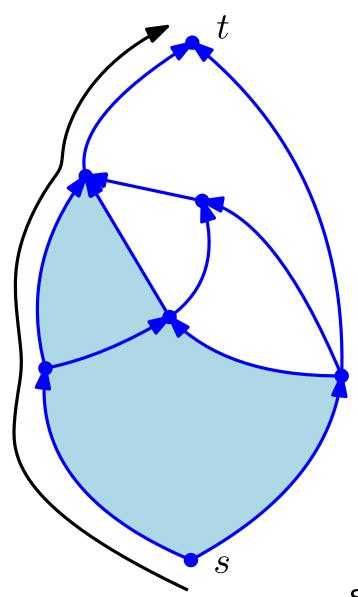
 $\begin{tabular}{l} \bullet & sweep the primal graph \\ with an s-t rope \\ from left to right \\ \end{tabular}$



 $\begin{tabular}{l} \bullet & {\rm sweep \ the \ primal \ graph} \\ {\rm with \ an \ } s-t \ {\rm rope} \\ {\rm from \ left \ to \ right} \\ \end{tabular}$

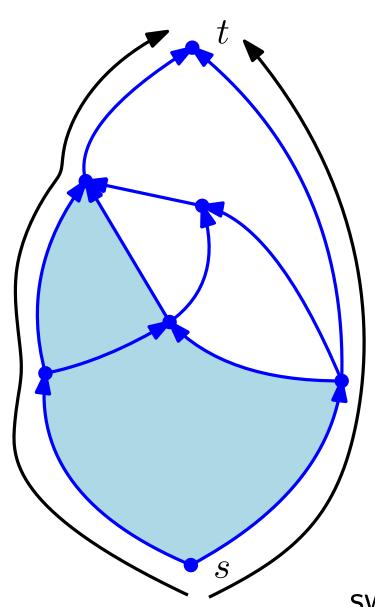


 $\begin{tabular}{l} \bullet & {\rm sweep \ the \ primal \ graph} \\ {\rm with \ an \ } s-t \ {\rm rope} \\ {\rm from \ left \ to \ right} \\ \end{tabular}$



ullet sweep the primal graph with an $s\!-\!t$ rope from left to right

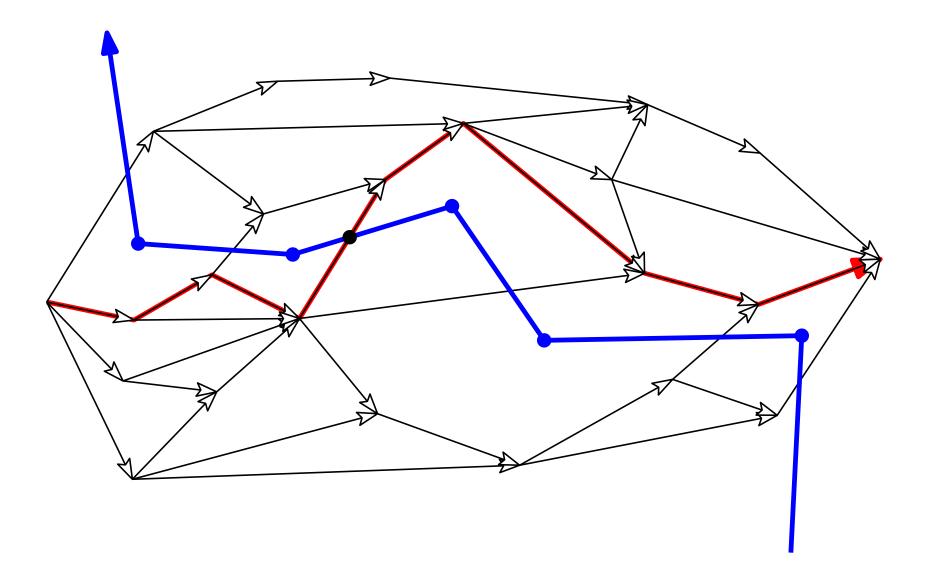
sweep over the *lowest* possible face



ullet sweep the primal graph with an $s\!-\!t$ rope from left to right

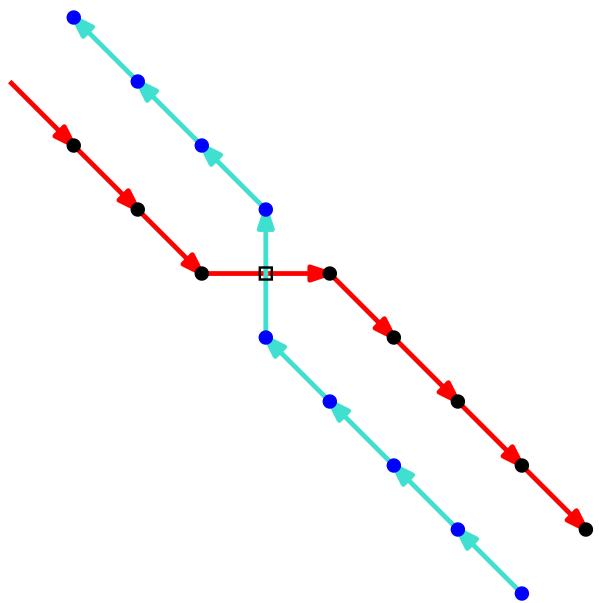
sweep over the *lowest* possible face

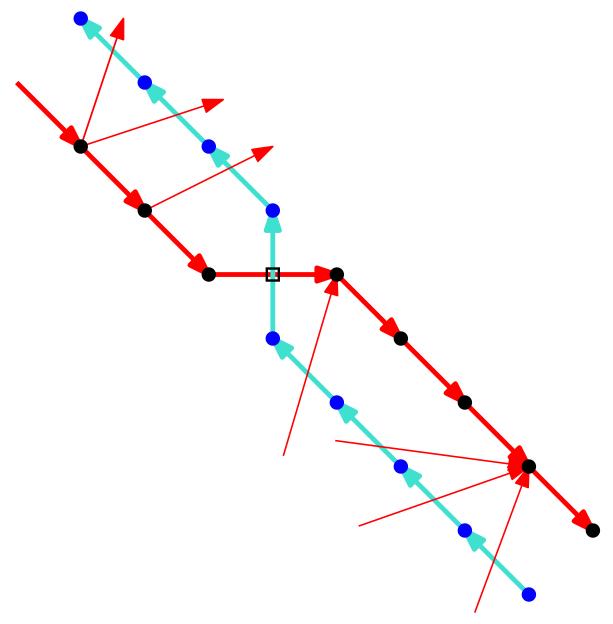
A snapshot

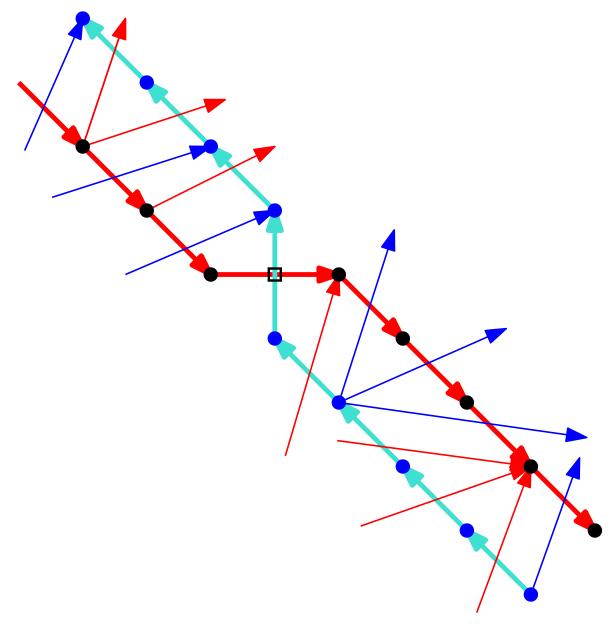


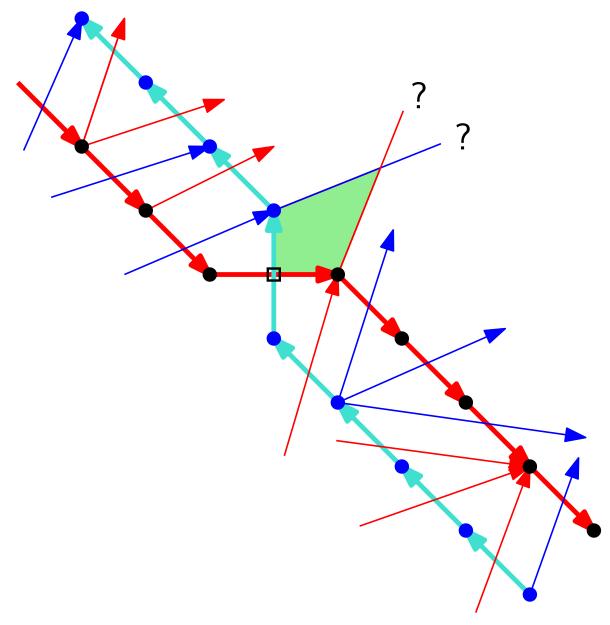
There is a (unique) coordinated primal-dual sweep with the following properties:

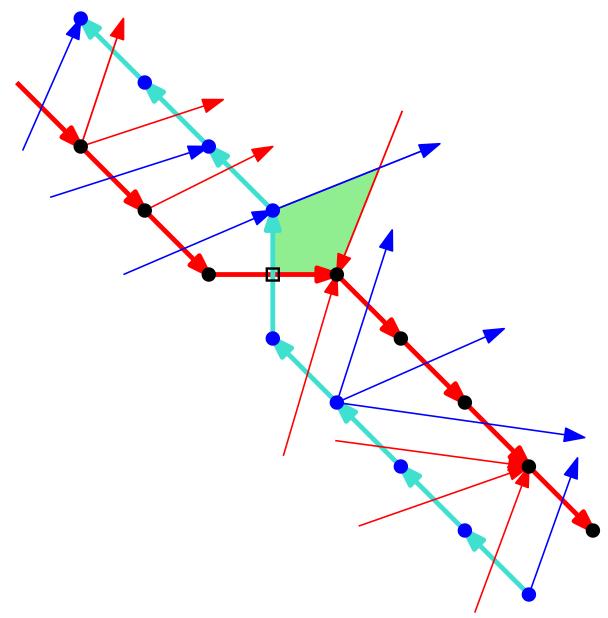
- The primal rope always crosses the dual rope exactly once.
- The primal and the dual rope stay "close" to each other.
- Exactly one rope can advance, depending on the situation at the crossing.
- Every primal-dual edge pair is visited exactly once.
- Each individual sweep is a leftmost/bottommost sweep.

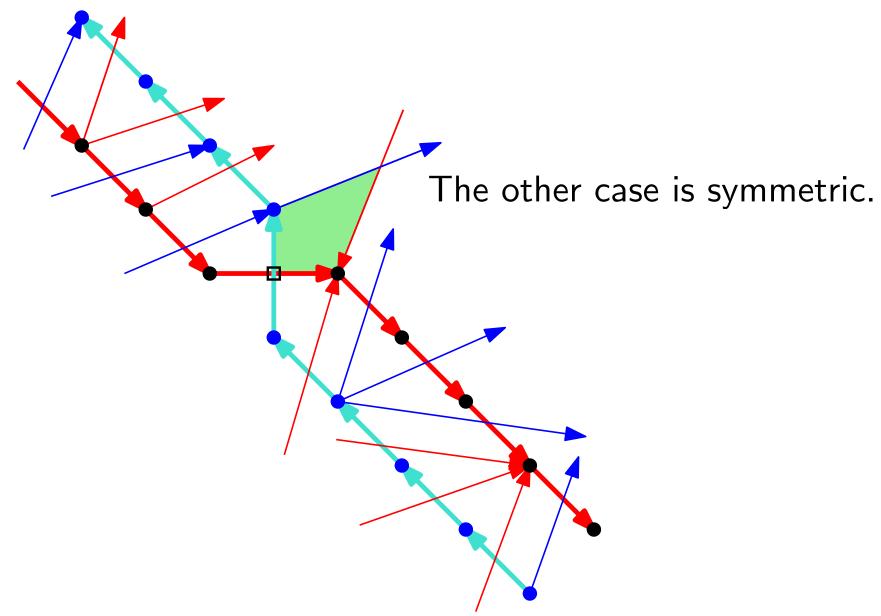


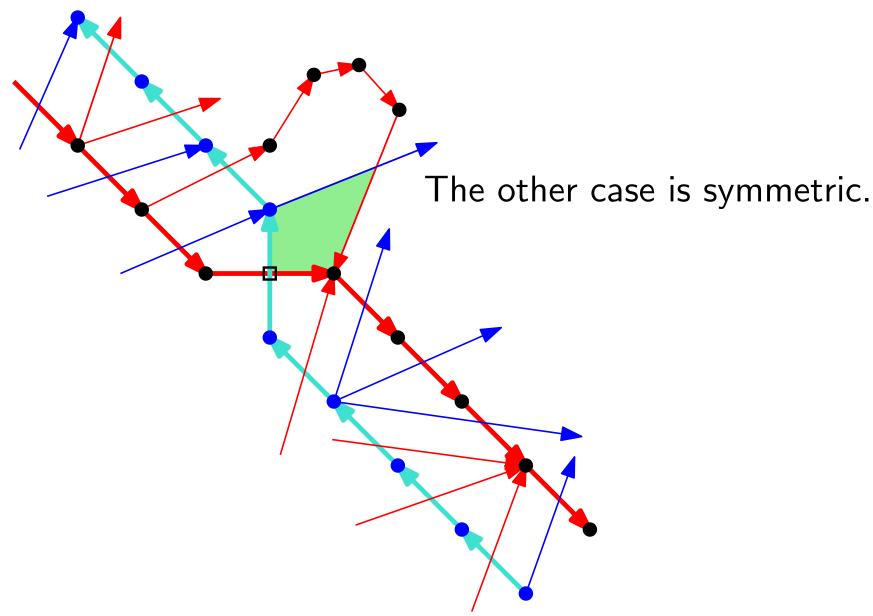


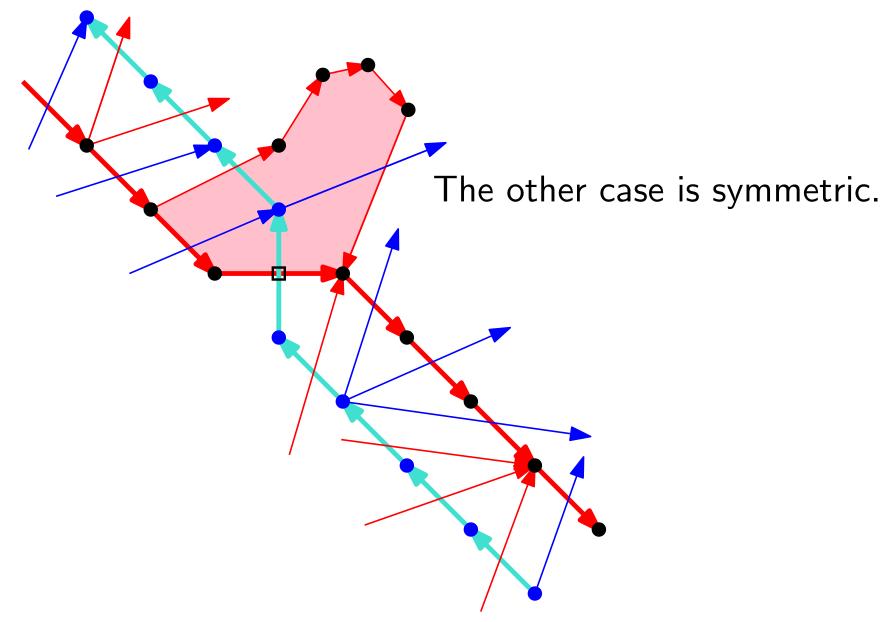


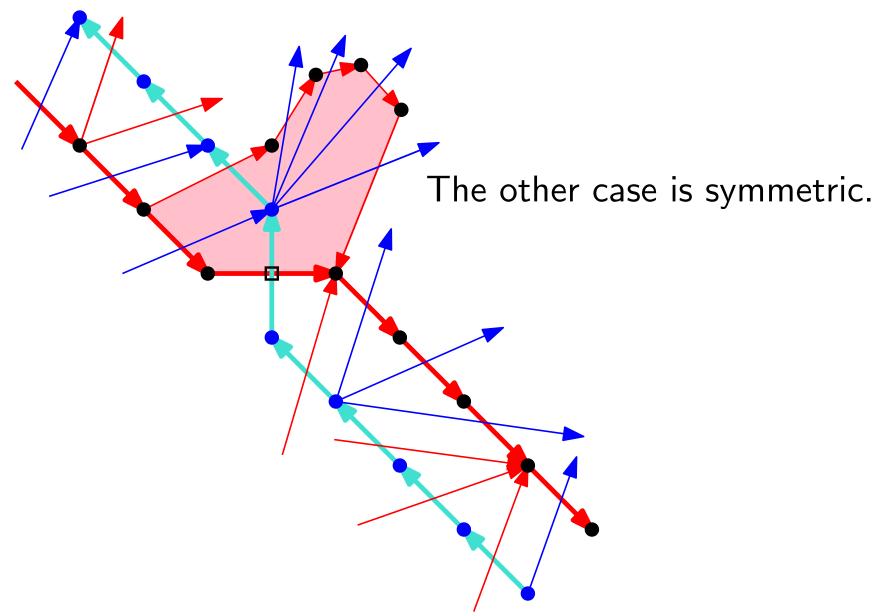






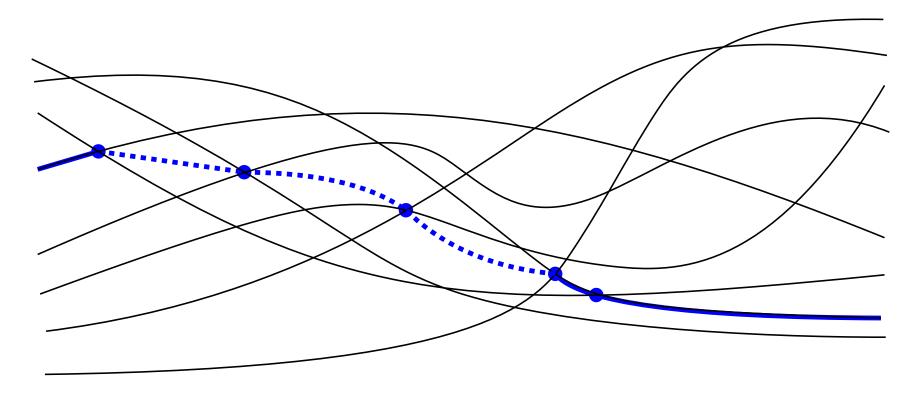




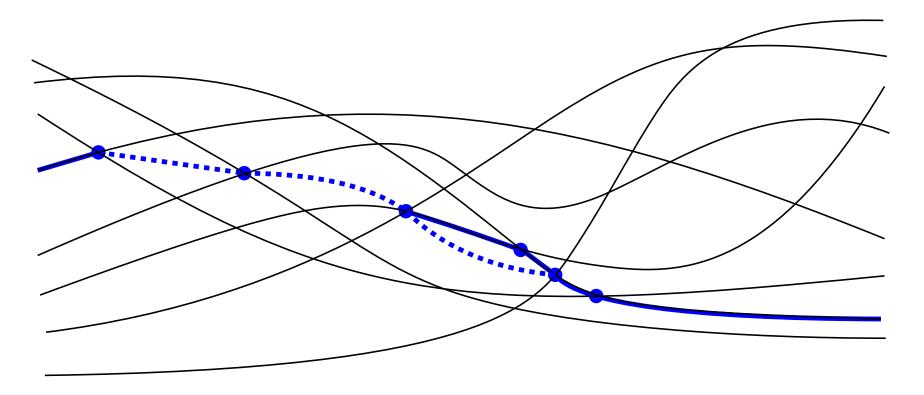


Questions:

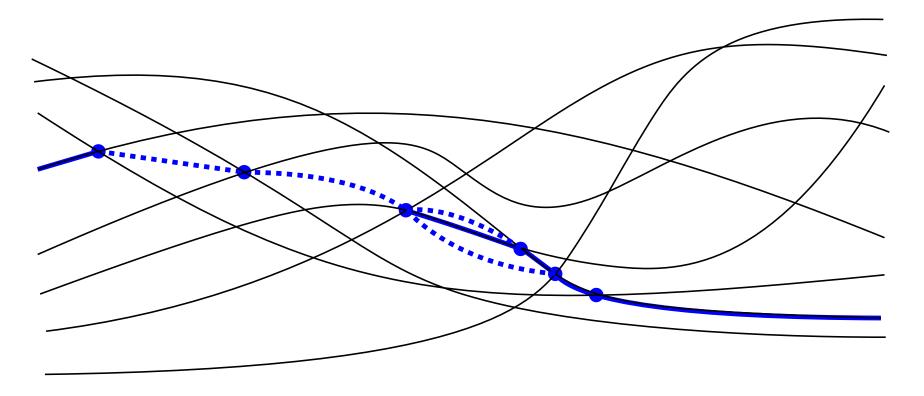
- Consider the (primal/dual) rope length:
 In terms of which parameters can it be bounded?
- Consider a primal sweep in which several independent faces can be swept simultaneously:
 - How many sweep steps are needed, while maintaining a short rope length?
- Relation to homomotopy height, homotopy width?
- Other applications of the coordinated primal/dual sweep



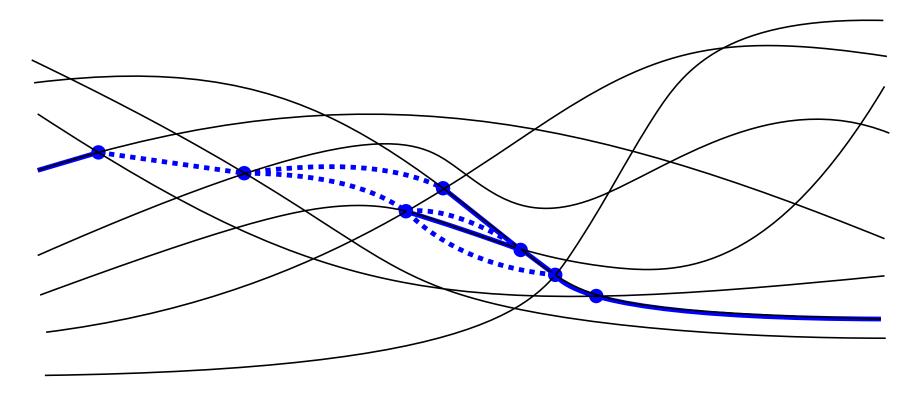
- Several distribute steps are done simultaneously, followed by collects
- cross steps are done individually



- Several distribute steps are done simultaneously, followed by collects
- cross steps are done individually



- Several distribute steps are done simultaneously, followed by collects
- cross steps are done individually



- Several distribute steps are done simultaneously, followed by collects
- cross steps are done individually