The algebraic conspiracy
 Günter Rote
 (joint work with Mikkel Abrahamsen)

1. Problem Statement and Motivation

We consider the problem of sandwiching a polytope Δ with a given number k of vertices between two nested polytopes $P \subset Q \subset \mathbf{R}^{d}$: Find Δ such that $P \subseteq \Delta \subseteq Q$. The polytope P is not necessarily full-dimensional.

Besides the problem of computing Δ, we study the following question: Assuming that the given polytopes P and Q are rational polytopes (they have rational vertex coordinates), does it suffice to look for Δ among the rational polytopes?

This problem has several applications: (1) When Q is a dilation of P (or an offset of $P), \Delta$ can serve as a thrifty approximation of P. (2) The polytope nesting problem can model the nonnegative rank of a matrix, and thereby the extension complexity of polytopes, as well as other problems in statistics and communication complexity. It was in this context that question (b) was first asked [3].

2. Nested Polygons in the Plane

In the plane $(d=2)$, it has been shown in 1989 by Aggarwal, Booth, ORourke, Suri \& Yap [2] that Δ can be computed in $O(n \log k)$ time, assuming unit-cost arithmetic operations. This algorithm computes in fact the smallest possible k for which Δ exists, while for $d \geq 3$, minimizing k is NP-hard $[4,5]$.

The approach of [2] is as follows: Choose a starting point x_{0} on the boundary of Q and wind a polygonal path $x_{1}=f_{1}\left(x_{0}\right), x_{2}=f_{2}\left(x_{1}\right), \ldots, x_{k}=f_{k}\left(x_{k-1}\right)$, around P by putting a sequence of tangents to P and intersecting them with the boundary of Q, see Figure 1a. If $x_{k} \geq x_{0}$, then a k-gon Δ can be found. We

Figure 1. (a) the chain $x_{0} x_{1} x_{2} \ldots$ (b) a hypothetical function $F\left(x_{0}\right)$
parameterize the points x_{0} by arc length along the boundary of Q from some fixed starting point. Now vary x_{0} and follow the other points. As long as each point x_{i} moves on a fixed edge of Q and each segment $x_{i-1} x_{i}$ touches a fixed vertex of P, the function f_{i} is a rational linear function of the form $f_{i}(x)=\frac{a x+b}{c x+d}$. The
composition of such functions is also of the same form. The function changes at the breakpoints, when an edge $x_{i-1} x_{i}$ of Δ lies flush with an edge P or a vertex x_{i} coincides with a vertex of Q. It follows that the function

$$
\begin{equation*}
F\left(x_{0}\right):=f_{k}\left(f_{k-1}\left(\cdots f_{2}\left(f_{1}\left(x_{0}\right)\right) \cdots\right)\right)-x_{0} \tag{1}
\end{equation*}
$$

is piecewise rational, see Figure 1b. A solution of $F\left(x_{0}\right) \geq 0$ can be found by looking at the pieces and solving a quadratic equation for each piece.

Now, for some interval where the function f_{i} is smooth, the graph of the function is a hyperbola. It is easy to see that, for the range of the variable x_{i-1} that is of interest, the graph of $f_{i}\left(x_{i-1}\right)$ lies on that branch of the hyperbola which is increasing and convex. The property of being increasing and convex is preserved under composition. Therefore, the function F in (1) is piecewise convex, unlike the function in Figure 1b. We obtain the following simplification of the algorithm.

Proposition 1. To find the solutions of $F\left(x_{0}\right) \geq 0$, it is sufficient to look at the breakpoints of F.
(For $k=3$, this has been established before by Kubjas, Robeva, and Sturmfels [7], based on results from [8].) This implies in particular that the solution Δ can be found among the rational polygons. The existence of a rational solution has also been established in [9, Theorem 8] by observing that an isolated solution x_{0} of $F\left(x_{0}\right) \geq 0$, like the point A in Figure 1b, would have to be rational for algebraic reasons, being a double zero of a quadratic equation. Our proof of Proposition 1 shows that such a situation cannot arise.

3. The Quest for an Irrational Solution in Higher Dimensions

A 3-dimensional example, in which the only polytope Δ with $k=5$ vertices has irrational coordinates, has been constructed in [9], and it has been lifted to 4 -dimensions (with a 3-dimensional polytope P) [10]. The case of a tetrahedron $(k=4)$ in 3 dimensions is open. It would also be interesting to have a 4-dimensional example where P is full-dimensional. (This corresponds to the restricted nonnegative rank [6].)

Figure 2 shows an attempt to construct a 3 -dimensional instance which only has an irrational tetrahedron as a solution. Q has a horizontal bottom face $Q_{\text {bottom }}$ and a horizontal top face $Q_{\text {top }}$. (The edges of Q are not fully shown.) P has six vertices and sits on $Q_{\text {bottom }}$ with three vertices $P_{1} P_{2} P_{3}$. The tetrahedron Δ has an irrational vertex Δ_{4} in the interior of $Q_{\text {top }}$. Figure 2 b shows $Q_{\text {bottom }}$ together with the projection $P_{4}^{\prime} P_{5}^{\prime} P_{6}^{\prime}$ of the remaining vertices as seen from Δ_{4}, and it shows how the bottom face $\Delta_{1} \Delta_{2} \Delta_{3}$ of Δ is squeezed between $P_{1} P_{2} P_{3} \cup P_{4}^{\prime} P_{5}^{\prime} P_{6}^{\prime}$ and $Q_{\text {bottom }}$.

We have tried to construct such an example in reverse by building Q around Δ : After choosing a rational polytope $P=P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$ with $P_{1} P_{2} P_{3}$ on the horizontal plane of $Q_{\text {bottom }}$, we choose Δ_{4} as an irrational point with coordinates in some quadratic extension field $\mathbb{Q}[\sqrt{r}]$. This leads to irrational projected points $P_{4}^{\prime} P_{5}^{\prime} P_{6}^{\prime}$, and from this, the irrational points $\Delta_{1} \Delta_{2} \Delta_{3}$ can be constructed. Through each of these points, there is a unique rational line q_{1}, q_{2}, q_{3}, and these lines can be combined to form the boundary of $Q_{\text {bottom }}$. However, no matter how we try

Figure 2. (a) $P \subset \Delta \subset Q$; (b) the situation on the bottom face $Q_{\text {bottom }}$
to choose the data, as if by some conspiracy, one of the lines q_{1}, q_{2}, q_{3} always cuts into the triangle $\Delta_{1} \Delta_{2} \Delta_{3}$, making the completion of the construction impossible. Some experiments with dynamic geometry software suggest that this might be a systematic phenomenon: When we adjust the data so that one of the lines q_{1}, q_{2}, q_{3} moves out of the triangle $\Delta_{1} \Delta_{2} \Delta_{3}$, another lines moves in precisely at the same time. If such an irrational example is indeed impossible, and examples of a different combinatorial type can also be excluded, it is conceivable that the solution for $k=4$ is always rational if it exists. But this would so be for some deeper reason.

A similar "conspiracy" phenomenon has been observed in the construction of art gallery problems which require irrational guards [1]. The problem could be circumvented by modifying the construction and using more guards.

References

[1] M. Abrahamsen, A. Adamaszek, T. Miltzow, Irrational guards are sometimes needed, to appear in Proc. 33rd Int. Symp. on Computational Geometry (SoCG 2017), Brisbane, June 2017, Leibniz International Proceedings in Informatics (LIPIcs), arXiv:1701.05475 [cs.CG].
[2] A. Aggarwal, H. Booth, J. O'Rourke, S. Suri, C. K. Yap, Finding minimal convex nested polygons, Inform. Comput. 83 (1989), 98-110.
[3] J. E. Cohen, U. G. Rothblum, Nonnegative ranks, decompositions and factorization of nonnegative matrices, Linear Algebra Appl. 190 (1993), 149-168.
[4] G. Das, D. Joseph, The complexity of minimum convex nested polyhedra, in: Proc. 2nd Canadian Conference on Computational Geometry, 1990, pp. 296-301.
[5] G. Das and M. T. Goodrich, On the complexity of approximating and illuminating threedimensional convex polyhedra, in Algorithms and Data Structures: 4th International Workshop (WADS), Lect. Notes Comput. Sci., vol. 955, Springer, Berlin, 1995, pp. 74-85.
[6] N. Gillis, F. Glineur, On the geometric interpretation of the nonnegative rank, Linear Algebra Appl. 437 (2012), 2685-2712.
[7] K. Kubjas, E. Robeva, and B. Sturmfels, Fixed points of the EM algorithm and nonnegative rank boundaries, The Annals of Statistics, 43 (2015), 422-461.
[8] D. Mond, J. Smith, and D. van Straten, Stochastic factorizations, sandwiched simplices and the topology of the space of explanations, Proc. R. Soc. Lond. A, 459 (2003), 2821-2845.
[9] D. Chistikov, S. Kiefer, I. Marušić, M. Shirmohammadi, J. Worrell, On restricted nonnegative matrix factorization, in Proceedings of the 43 rd International Colloquium on Automata, Languages and Programming (ICALP), 2016, LIPIcs, pp. 103:1-103:14.
[10] D. Chistikov, S. Kiefer, I. Marušić, M. Shirmohammadi, J. Worrell, Nonnegative matrix factorization requires irrationality, arXiv:1605.06848v2, March 2017.

