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PL MORSE THEORY IN LOW DIMENSIONS

ROMAIN GRUNERT, WOLFGANG KÜHNEL, AND GÜNTER ROTE

Abstract. We discuss a PL analogue of Morse theory for PL mani-
folds. There are several notions of regular and critical points. A point
is homologically regular if the homology does not change when passing
through its level, it is strongly regular if the function can serve as one co-
ordinate in a chart. Several criteria for strong regularity are presented.
In particular we show that in low dimensions d ≤ 4 a homologically
regular point on a PL d-manifold is always strongly regular. Examples
show that this fails to hold in higher dimensions d ≥ 5. One of our
constructions involves an 8-vertex embedding of the dunce hat into a
polytopal 4-sphere with 8 vertices such that a regular neighborhood is
Mazur’s contractible 4-manifold.

1. Introduction

What is nowadays called Morse Theory after its pioneer Marston Morse
(1892–1977) has two roots: One from the calculus of variations [31], the
other one from the differential topology of manifolds [32]. In both cases,
the idea is to consider stationary points for the first variation of smooth
functions or functionals. Then the second variation around such a station-
ary point describes the behavior in a neighborhood. In finite-dimensional
calculus this can be completely described by the Hessian of the function
provided that the Hessian is non-degenerate. In the global theory of (finite-
dimensional) differential manifolds, smooth Morse functions can be used for
a decomposition of the manifolds into certain parts. Here the basic obser-
vation is that generically a smooth real function has isolated critical points
(that is, points with a vanishing gradient), and at each critical point the
Hessian matrix is non-degenerate. The index of the Hessian is then taken as
the index of the critical point. This leads to the Morse lemma and the Morse
relations, as well as a handle decomposition of the manifold [31, 30, 35, 36].
Particular cases are height functions of submanifolds of Euclidean spaces.
Almost all height functions are non-degenerate, and for compact manifolds
the average of the number of critical points equals the total absolute cur-
vature of the submanifold. Consequently, the infimum of the total absolute
curvature coincides with the Morse number of a manifold, which is defined
as the minimum possible number of critical points of a Morse function [21].

Already in the early days of Morse theory, this approach was extended to
non-smooth functions on suitable spaces [33, 34, 21, 22]. One branch of that
development led to several possibilities of a Morse theory for PL manifolds
or for polyhedra in general.
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First of all, it has to be defined what a critical point is supposed to
be since there is no natural substitute for the gradient and the Hessian of
a function. Instead the typical behavior of such a function at a critical or
non-critical point has to be adapted to the PL situation. Secondly, it cannot
be expected that non-degenerate points are generic in the same sense as in
the smooth case, at least not extrinsically for submanifolds of Euclidean
space: For example, a monkey saddle of a height function on a smooth
surface in 3-space can be split by a small perturbation of the direction of the
height vector into two non-degenerate saddle points. By contrast, a monkey
saddle on a PL surface in space is locally stable under such perturbations
[1]. Abstractly, one can split the monkey saddle into an edge with two
endpoints that are ordinary saddle points, see [11, Fig. 3]. Finally, in higher
dimensions we have certain topological phenomena that have no analogue
in classical Morse theory like contractible but not collapsible polyhedra,
homology points that are not homotopy points, non-PL triangulations and
non-triangulable topological manifolds.

From an application viewpoint, piecewise linear functions on domains of
high dimensions arise in many fields, for example from simulation experi-
ments or from measured data. One powerful way to explore such a function
that is defined, say, on a three-dimensional domain, is by the interactive
visualization of level sets. In this setting, it is interesting to know the topo-
logical changes between level sets, and critical points are precisely those
points where such changes occur.

After an introductory section about polyhedra and PL manifolds (Sec-
tion 2), we review the definitions of regular and critical points in a homo-
logical sense in Section 3. In Section 4, we contrast this with what we call
strongly regular points (Definition 4.1). In accordance with classical Morse
Theory, we distinguish the points that are not strongly regular into non-
degenerate critical points and degenerate critical points, and we define PL
Morse functions as functions that have no degenerate critical points. Sec-
tion 5 briefly discusses the construction of a PL isotopy between level sets
across strongly regular points. Section 6 extends the treatment to surfaces
with boundary.

Another branch of the development was established by Forman’s Dis-
crete Morse theory [12]. Here in a purely combinatorial way functions are
considered that associate certain values to faces of various dimensions in a
complex. These Morse functions are not a priori continuous functions in the
ordinary sense. However, as we show in Section 7, they can be turned into
PL Morse functions in the sense defined above.

While in low dimensions up to 4, the weaker notion of H-regularity is
sufficient to guarantee strong regularity (Section 8), this is no longer true
in higher dimensions. Sections 9 and 10 give various examples of phenom-
ena that arise in high dimensions. Finally, in Section 11, we discuss the
algorithmic questions that arise around the concept of strong regularity. In
particular, we show some undecidability results in high dimensions.

The results of Sections 4, 5, 7 and 11 are based on the Ph.D. thesis of
R. Grunert [14]. Some preliminary approaches to these questions were earlier
sketched in [37].
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2. Polyhedra and PL manifolds

Definition 2.1. A topological manifold M is called a PL manifold if it
is equipped with a covering (Mi)i∈I of charts Mi such that all coordinate
transformations between two overlapping charts are piecewise linear homeo-
morphisms of open parts of Euclidean space.

From the practical point of view, a compact PL n-manifold M can be
interpreted as a finite polytopal complex K built up by convex d-polytopes
such that |K| is homeomorphic with M and such that the star of each (rela-
tively open) cell is piecewise linearly homeomorphic with an open ball in d-
space. Since every polytope can be triangulated, any compact PL d-manifold
can be triangulated such that the link of every k-simplex is a combinatorial
(d−k−1)-sphere. Such a simplicial complex is often called a combinatorial
d-manifold [24].

0 3 641

2 5 1 4

3 6 2 5

3 6 2

5 1 4

Figure 1. The unique 7-vertex triangulation of the torus

In greater generality, one can consider finite polytopal complexes. In the
sequel we will consider a Morse theory for polytopal complexes in general as
well as for combinatorial manifolds. If the polytopal complex is embedded
into Euclidean space such that every cell is realized by a convex polytope of
the same dimension, then we have the height functions defined as restrictions
of linear functions.

A particular case is the abstract 7-vertex triangulation of the torus (see
Figure 1) and its realization in 3-space [25]. Observe that a generic PL
function with f(1) < f(2) < f(4) < f(0) < · · · has a monkey saddle at the
vertex 0 since in the link of 0 the sublevel consists of the three isolated ver-
tices 1, 2, 4. Therefore, passing through the level of 0 from below will attach
two 1-handles simultaneously to a disc around the triangle 124. Compare
Fig. 11 in [19, p.99].

For a general outline and the terminology of PL topology we refer to
[38], where – in particular – Chapter 3 introduces the notion of a regular
neighborhood of a subpolyhedron of a polyhedron.
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Occasionally, results in PL topology depend on the Hauptvermutung or
the Schoenflies Conjecture.

The Hauptvermutung: This conjecture stated that two PL manifolds
that are homeomorphic to one another are also PL homeomorphic to one
another.

This conjecture is true for dimensions d ≤ 3 but systematically false in
higher dimensions. However, it holds for d-spheres with d 6= 4 and for other
special manifolds, compare [39].

The PL Schoenflies Conjecture: This states the following: A com-
binatorial (d−1)-sphere embedded into a combinatorial d-sphere decomposes
the latter into two combinatorial d-balls.

The PL Schoenflies Conjecture is true for d ≤ 3 and unknown in higher
dimensions. If however the closure of each component of Sd \ Sd−1 is a
manifold with boundary, then the conclusion of the Schoenflies Conjecture
is true for all d 6= 4 [38, Ch.3].

3. Regular and critical points of PL functions

The simplest way to carry over the ideas of Morse theory to PL is to
consider functions that are linear on each polyhedral cell (or simplex in the
simplicial case) and generic, meaning that no two vertices have the same
image under the function. Such a theory was sketched in [6, 19] for obtaining
lower bounds for the number of vertices of combinatorial manifolds of certain
type.

We now define genericity for finite abstract polytopal complexes (for a
definition see [42, Ch.5]). Examples are simplicial complexes and cubical
complexes. Moreover, any subcomplex of the boundary complex of a convex
d-polytope is a polytopal complex embedded in Ed.

Definition 3.1. Let P be a finite (abstract) polytopal complex. A function
f : P → R is called generic PL if it is linear on each polytopal cell separately
and if f(v) 6= f(w) for any two distinct vertices v, w of P . As a consequence,
f is not constant on any edge or higher-dimensional cell.

Similarly, if P ⊂ En is a compact polyhedron with the structure of a
polytopal complex, then any linear function on En induces a height function
on P . This height function f is called generic if the same condition is
satisfied. It is clear that for almost all directions in space (with respect to
the Lebesgue measure) the associated height function is generic.

We denote by fa and fa the sublevel set and the superlevel set:

fa := {x | f(x) ≤ a}, fa := {x | f(x) ≥ a}

Lemma 3.2. If f : P → R is generic PL and if f−1[a, b] contains no vertex
of P , then fa is a strong deformation retract of the sublevel fb.

Proof. If P is a convex polytope then the assertion is obviously true. There-
fore it holds for any single cell of P and – in combination – for the entire
complex P . �

It is easy to construct an isotopy that smoothly interpolates between the
level sets f−1(a) and f−1(b), resulting in mappings between different level
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sets f−1(t), f−1(t′), for a ≤ t, t′ ≤ b, that are piecewise linear. With more
technical effort one can construct such an isotopy that is piecewise linear
even when considered as a function of all variables, including the interpola-
tion parameter t ∈ [a, b] [14, Section 4.2.3, Lemma 4.13 and Theorem 4.20].
We will make some more remarks about this topic in Section 5.

Lemma 3.2 tells us that all points p other than vertices satisfy the regular-
ity condition in Morse theory: The topology of the sublevel does not change
when passing through p. It remains to talk about the vertices since passing
through a vertex can definitely change the topology of the sublevel, as sim-
ple examples show. The topology can be measured preferably by topological
invariants. Therefore the following definition is suitable:

Definition 3.3. Let f : P → R be generic PL and let v be a vertex with the
level f(v) = a. Then v is called homologically critical for f or H-critical for
short if H∗(fa, fa \ {v};F) 6= 0 where H∗ denotes an appropriate homology
theory with coefficients in a field F. The total rank of H∗(fa, fa \ {v}) is
called the total multiplicity of v with respect to f . If

Hk(fa, fa \ {v}) 6= 0

then we say that v is H-critical of index k, and the rank of Hk(fa, fa \ {v})
is referred to as the corresponding multiplicity of v restricted to the index k.

Remark: The idea behind this notion is that the homological type of the
sublevel set changes when passing through an H-critical point. Since no two
vertices have the same level under f , the homology of fa \ {v} is the same
as that for the open sublevel (fa)

◦ = {x | f(x) < a}.

By excision and the long exact sequence for the reduced homology H̃ in a
simplicial complex P we can detect criticality in the link lk(v) and the star
st(v) of a vertex v:

H̃k(fa, fa\{v}) ∼= H̃k(fa∩st(v), fa∩lk(v)) ∼= H̃k−1(fa∩lk(v)) ∼= H̃k−1(lk
−(v))

for k ≥ 1 where lk−(v) denotes

lk−(v) := {x ∈ lk(v) | f(x) ≤ f(v)} = lk(v) ∩ fa.
The homology of lk−(v) is the same as that of the full span of those vertices
in the link of v whose level lies below f(v). Similarly we will use the notation

lk+(v) := {x ∈ lk(v) | f(x) ≥ f(v)} = lk(v) ∩ fa.

This definition is also applicable to classical smooth Morse functions on
a smooth manifold. Then a critical point of index k is also critical with
respect to Definition 3.3 with the same index, and the total multiplicity is
always 1. Even for polyhedral surfaces the case of higher total multiplicity
occurs, as the example of a polyhedral monkey saddle shows. It is easy to
construct polyhedra such that there are critical vertices of several indices
simultaneously: Take the 1-point union of a 1-sphere with a 2-sphere.

Remark: For polyhedra the homological definition used in [8] is equiva-
lent to our definition above. It compares the homology of the (a − ε)-level
with that of the (a+ε)-level if a is the critical level. However, for topological
spaces in general both definitions do not agree, as pointed out in [13]. The
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problem with the incorrect Critical Value Lemma in [8] is that a nested se-
quence of closed intervals can converge to a common boundary point. Then
no open ε-neighborhood around the critical level can fit into any of the closed
intervals. Instead of the definition above one could compare the open sub-
level (fa)

◦ = fa \ f−1(a) to the closed sublevel fa. For polytopal complexes
(with closed polytopal faces) this will lead to the same definition.

There remains the possible case of H∗(fa, fa \ {v}) = 0 for some vertex v.
Since homology does not detect that it is critical we would like to call it
non-critical or regular. However, we have to be careful since regularity in
the sense of Lemma 3.2 is different. The question is: Can fa+ε and fa−ε be
topologically distinct in this case?

Definition 3.4. A vertex v with f(v) = a is called homologically regular
for f or H-regular for short if H∗(fa, fa\{v};F) = 0 for an arbitrary field F.

In classical Morse theory any H-regular point is actually regular in a
stronger sense (compare Section 4). We will see below that this is still true
in dimensions d ≤ 4 but it does not hold in general for PL manifolds and
generic PL functions.

Theorem 3.5. (Morse relations, duality [36, 21, 19])
Let f : M → R be a generic PL function on a compact PL d-manifold M ,

and let v1, . . . , vn be the vertices. By ai we denote the level ai = f(vi). Then
the Morse inequality

(1)
∑
i

rkHk(fai , fai \ {vi};F) ≥ rkHk(M ;F)

holds for any k and any field F. Moreover,

(2)
∑
k

(−1)k
∑
i

rkHk(fai , fai \ {vi};F) =
∑
k

(−1)krkHk(M,F) = χ(M).

The expression rkHk(fai , fai \ {vi};F) is nothing but the multiplicity of vi
restricted to the index k, and

∑
i rkHk(fai , fai \{vi};F) is the number µk(f)

of critical points of index k, weighted by their multiplicities. Therefore the
Morse inequality can also be written in the form

µk(f) ≥ rkHk(M ;F).

Concerning the duality:

By Alexander duality in the link of a vertex v one has H̃d−k−1(lk
+(v)) ∼=

H̃k−1(lk
−(v)) for 1 ≤ k ≤ d− 1 and consequently

(3) H̃d−k(f
a, fa \ v) ∼= H̃k(fa, fa \ v).

Clearly a local minimum of f (k = 0) is a local maximum (k = d) for −f
and conversely. This means that the number of critical points of f of index k
coincides with the number of critical points of −f of index d − k (weighted
with multiplicities).

Definition 3.6. (perfect functions, tight triangulations)
If a function f satisfies the Morse inequality (1) in Theorem 3.5 with

equality, for each k, then it is usually called a perfect function or a tight
function. A tight triangulation of a manifold is a triangulation such that
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any generic PL function f with arbitrarily chosen levels of the vertices is a
tight function [20].

Examples: A generic PL function f on a compact surface without bound-
ary is perfect if and only fa is connected for any a. On a simply connected
compact 4-manifold without boundary it is perfect if and only if fa is con-
nected and simply connected for any a. A triangulation of a surface is tight
if and only if it is 2-neighborly, one of a simply connected 4-manifold is
tight if and only if it is 3-neighborly. For any combinatorial sphere K with
n vertices the power complex 2K is a tightly embedded cubical manifold in
En+1, see [20, 3.24].

4. PL Morse functions

By emphasizing the critical behavior of classical Morse functions (attach-
ing a cell at each critical point) one can adapt the classical Morse theory to
the PL case as follows:

Definition 4.1. Let M be a PL d-manifold and f : M → R a generic PL
function.

• A point p is called strongly regular if there is a chart around p such
that the function f can be used as one of the coordinates, i.e., if in
those coordinates

(4) f(x1, . . . , xd) = f(p) + xd.

If in a concrete polyhedral decomposition of M distinct vertices have
distinct values of f , then f is also generic PL, and moreover all
points are strongly regular except possibly the vertices.
• A vertex v is called non-degenerate critical if there is a PL chart

around v such that in those coordinates x1, . . . , xd the function f
can be expressed as

(5) f(x1, . . . , xd) = f(v)− |x1| − · · · − |xk|+ |xk+1|+ · · ·+ |xd|.
The number k is then uniquely determined and coincides with the
index of v. The multiplicity is always 1 in this case: Hk(fa, fa \
{v};F) ∼= F and Hj(fa, fa \ {v}) = 0 for any j 6= k. The change by
passing through the critical level can be either Hk(fa+ε) ∼= Hk(fa−ε)⊕
F or Hk−1(fa−ε) ∼= Hk−1(fa+ε)⊕F. A function such that the second
case never occurs is called a perfect function.
• The function f is called a PL Morse function if all vertices are either

non-degenerate critical or strongly regular. In the terminology of [33]
these are called topologically ordinary and topologically critical, re-
spectively. The function itself is called topologically non-degenerate
in this case.

The definitions of strongly regular and non-degenerate critical points have
in common that they require a local homeomorphism that transforms f into
a certain PL map g. It turns out that determining the topological type of
the embedding of lk−(v) into lk(v) suffices to verify such a requirement. The
connection between a characterization in terms of local charts and equivalent
characterizations in terms of lk−(v) is established by the following general
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fact: There is a PL homeomorphism between neighborhoods Nv and Nw

mapping v to w and transforming a PL map f on Nv with f(v) = 0 to
a PL map g with g(w) = 0 if and only if there is a PL homeomorphism
between lk(v) and lk(w) such that the signs of f and g at corresponding
points agree.

For strongly regular points, this observation leads to the following result:

Lemma 4.2. (strongly regular points)
Let f be a generic PL function on a combinatorial d-manifold. Then a

vertex v with f(v) = a is strongly regular for f if and only if lk−(v) is a PL
(d− 1)-ball.

In particular, we obtain for strongly regular vertices v an embedding of a
(d−2)-sphere into a (d−1)-sphere that separates the latter into two (d−1)-
balls, namely, the boundary sphere f−1(a) ∩ lk(v) of lk−(v) separates lk(v)
into the balls lk−(v) and lk+(v). Such an embedding is called an unknotted
(d−1, d−2)-sphere pair. Thus, we can rephrase the previous characterization
in terms of unknotted sphere pairs:

Corollary 4.3. For dimension d > 1, a vertex v is strongly regular if and
only if the pair (lk(v), f−1(a) ∩ lk(v)) is an unknotted (d− 1, d− 2)-sphere
pair.

The question whether all embeddings of (d−2)-spheres into (d−1)-spheres
are unknotted is the Schoenflies problem. Since f is generic, the embedding
of f−1(a) ∩ lk(v) in lk(v) is locally flat. Therefore another characterization
for strongly regular vertices is possible for the cases where the Schoenflies
problem in the PL locally flat category is known to have an affirmative
answer.

Corollary 4.4. Let v be a vertex of a combinatorial d-manifold M with
d > 1 and d 6= 5. Then v is strongly regular if and only if f−1(a) ∩ lk(v) is
a (d− 2)-sphere.

Similar considerations for non-degenerate critical points yield the follow-
ing characterizations:

Lemma 4.5. (non-degenerate critical points)
Let f be a generic PL function on a combinatorial d-manifold. Then a

vertex v is non-degenerate critical for f with index k if and only if lk−(v)
is a regular neighborhood of an unknotted (k − 1)-sphere embedded into the
(d− 1)-sphere lk(v).

Corollary 4.6. Let f be a generic PL function on a combinatorial d-
manifold. Assume that the vertex v is H-critical of index k. Then v is
non-degenerate critical for f with index k if and only if the embedding of
f−1(a) ∩ lk(v) into lk(v) is PL-homeomorphic to the embedding of Sk−1 ×
Sd−k−1 into the sphere Sd−1 given by the boundary of a regular neighborhood
of an unknotted Sk−1 in Sd−1.

Note that without the assumption of H-criticality, the criterion still im-
plies that v is non-degenerate critical with index k or index d− k.
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Lemma 4.7. (Morse Lemma)
Let f : M → R be a PL Morse function and assume that there are no

critical points with f -values in the interval [a, b]. Then fa and fb are PL
homeomorphic to each other, and f−1([a, b]) is PL homeomorphic with the
“collar” f−1(a)× [a, b].

Corollary 4.8. (Morse relations, duality)
Let f : M → R be a PL Morse function on a compact PL manifold M ,

and let µk(f) be the number of critical vertices of index k, then the Morse
inequality

(6) µk(f) ≥ rkHk(M ;F)

holds for any k and any field F. Moreover we have the Euler-Poincaré
equation ∑

k

(−1)kµk(f) = χ(M)

and the duality
µd−k(f) = µk(−f).

For a perfect function,
µk(f) = rkHk(M ;F)

for all k. This notion depends on the choice of F.

This follows from Theorem 3.5.

Corollary 4.9. (Reeb theorem, [17])
Let M be a compact PL d-manifold and f : M → R be a PL Morse func-

tion with exactly two critical vertices. Then M is PL homeomorphic to the
sphere Sd.

Proof. Since the minimum p and maximum q are always critical the assump-
tion can be reformulated by saying that any point between minimum and
maximum is strongly regular. Let us consider the restriction

f| : M \ {p, q} → R

without critical points. For any level f−1(c) with f(p) < c < f(q) the
Morse lemma tells us that there is an ε > 0 such that f−1(c − ε, c + ε) is
PL homeomorphic with the cylinder f−1(c) × (−ε, ε). Furthermore there
is a δ > 0 such that f−1[f(p), f(p) + δ] and f−1[f(q) − δ, f(q)] are PL
homeomorphic with d-balls. Consequently f−1(f(p) + δ) and f−1(f(p)− δ)
are PL homeomorphic with the (d−1)-sphere. This implies that f−1[f(p)+
δ, f(q)− δ] is PL homeomorphic with the cylinder

f−1(c)× [p+ δ, q − δ] ∼= Sd−1 × [p+ δ, q − δ].
Putting the three parts together we see that M is PL homeomorphic with
the d-sphere Sd. �

Remark: (a) In the smooth theory the same kind of proof leads only to a
homeomorphism to the standard Sd but not to a diffeomorphism. There are
exotic 7-spheres admitting a Morse function with two critical points, thus
providing a counterexample. By contrast it is well known that the d-sphere
(d 6= 4) admits a unique PL structure [23, Thm. 7]. Therefore this problem
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could occur only for d = 4. But gluing together two standard 4-balls along
their boundaries leads to the standard 4-sphere. Therefore the proof above
gives a PL homeomorphy even for d = 4.

(b) For the case of compact PL manifolds admitting a PL Morse function
with exactly three critical points see [10]. The only possibilities occur in
dimensions d = 2, 4, 8, 16 with an intermediate critical point of index k =
1, 2, 4, 8, respectively.

Consequence: (1) If there is an exotic PL 4-sphere then any PL Morse
function on it must have at least four critical points.

(2) If M is a homology sphere that is not a sphere, then any PL Morse
function f on M has at least six critical points. Consequently, it cannot
admit a perfect function.

Proof of (2). M has a non-trivial fundamental group with a trivial commu-
tator factor group. Therefore f must have a critical point of index 1. This
leads to a free fundamental group in the critical sublevel fa. If a critical
point of index 2 introduces a relation in that group, the quotient will be
abelian. A non-abelian group requires a second generator, and this requires
a second critical point of index 1. Since the fundamental group is not free,
there must be a critical point of index 2 introducing a relation between the
generators. By the Euler relation the number of critical points must be even,
so there are two critical points of index 1, minimum and maximum and two
others. �

Example: (3 critical points)
For the unique (and 3-neighborly and tight) 9-vertex triangulation of the

complex projective plane [20, Sect. 4B] any generic PL function assigning
distinct levels to the 9 vertices is a PL Morse function with three critical
points: minimum, maximum and a saddle point of index 2 in between. Since
123 is a 2-face of the triangulation, for the special case f(1) < f(2) < f(3) <
f(4) < · · · < f(9) the sublevel fa will be a 4-ball for f(1) < a < f(4) and
the complement of a 4-ball for f(4) < a < f(9). Since 1234 is not a 3-face of
the triangulation, the critical sublevel ff(4) consists of the boundary of the
tetrahedron spanned by 1234 extended by sections through all 4-simplices
except 56789.

Example: (4 critical points)
There is a highly symmetric (and 3-neighborly and tight) 13-vertex tri-

angulation of the simply connected 5-manifold M5 = SU(3)/SO(3) [24,
Ex.5 13 3 2]. Any generic PL function assigning distinct values to the 13
vertices will have total multiplicity 4, for special choices it will be a PL
Morse function with minimum, maximum one saddle point of index 2 and
one of index 3. Since 135 is a 2-face of the triangulation, for a beginning
sequence with f(1) < f(3) < f(5) < f(7) any sublevel fa will be a 5-ball for
f(1) < a < f(7), the first critical level is b = f(7) since 1357 is not a 3-face.
Again fb will be the boundary of the tetrahedron 1357 extended by sections
through 5-simplices. According to H2(M

5;Z) ∼= Z2 this empty tetrahedron
1357 generates the second homology but twice the generator is homologous
to zero. Clearly 7 will be a saddle point for f of index 2. However we extend
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this sequence, by the Morse inequality H3(M
5;Z2) ∼= Z2 implies that there

must be a critical point of index 3 also.

5. Isotopy

We have mentioned after Lemma 3.2 that successive level sets can be
connected by an isotopy if there is no vertex between them. Such an isotopy
can be used for visualization, by putting some texture on the level sets in
order to make it clear how a level set moves as the level changes.

From an application viewpoint, there are also quantitative aspects that
play a role here. One might look for isotopies that deform the level sets as
little as possible and that are PL while using few additional vertices. Some
results in this direction are given in [14, Section 6.2].

But already establishing the mere existence of a PL isotopy, in particular
for the case when the level set passes over a strongly regular vertex, is not
a trivial matter. As suggested in [37], such a PL isotopy can be represented
by a PL homeomorphism

φ : f−1(b)× [a, b]→ f−1[a, b]

such that f(φ(x, t)) = t holds for all arguments. We sketch an existence
proof following [14, Section 4.2.3].

If f−1[a, b] contains no vertices, f−1(b)× [a, b] and f−1[a, b] are combina-
torially equivalent polytopal complexes. Triangulating these complexes by
starring at each vertex in corresponding orders yields combinatorially equiv-
alent simplicial complexes and hence a PL homeomorphism by simplexwise
linear interpolation.

It suffices to consider intervals [a, b] such that f−1[a, b] contains a single
regular vertex v with f -value a or b. Since the case f(v) = a can be treated
analogously, we assume f(v) = b.

First, apply the isotopy construction for intervals without vertices out-
lined above for M \ (st(v))◦, that is, M with the open star of v removed.
This isotopy restricts to a PL homeomorphism from (lk(v) ∩ f−1(b))× {a}
to lk(v)∩f−1(a). Since v is regular, (st(v)∩f−1(b))×{a} is a ball bounded
by the sphere (lk(v) ∩ f−1(b)) × {a} and st(v) ∩ f−1(a) is a ball bounded
by the sphere lk(v)∩ f−1(a). The PL homeomorphism between the bound-
ary spheres can be extended to a PL homeomorphism between the balls
(st(v)∩f−1(b))×{a} and st(v)∩f−1(a). This PL homeomorphism matches
on (lk(v)∩f−1(b))×{a} with the isotopy on the deletion of v. Therefore we
obtain a PL homeomorphism between (((M \ (st(v))◦) ∩ f−1(b)) × [a, b]) ∪
(st(v)∩ f−1(b))×{a} and ((M \ (st(v))◦)∩ f−1[a, b])∪ (st(v)∩ f−1(a)) Now
(st(v) ∩ f−1(b)) × [a, b] can be considered as a cone on ((lk(v) ∩ f−1(b)) ×
[a, b]) ∪ (st(v) ∩ f−1(b)) × {a} with apex (v, b), and st(v) ∩ f−1[a, b] as a
cone on (lk(v)∩ f−1[a, b])∪ (st(v)∩ f−1(a)) with apex v. Thus a cone con-
struction defined by mapping (v, b) to v and interpolating between apices
and bases extends the given PL homeomorphism to a PL homeomorphism
between f−1(b)× [a, b] and f−1[a, b] as desired.
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6. Manifolds with boundary

The classical Morse theory was extended to smooth manifolds with bound-
ary (M,∂M) in [5]. Here a Morse function is defined as a smooth function
having only non-degenerate critical points in M \ ∂M and no critical points
on ∂M , i.e., gradf 6= 0 on ∂M . Furthermore the restriction f |∂M is assumed
to be a Morse function on ∂M .

Definition 6.1. A critical point p of f |∂M is called (+)-critical for f if
gradf |p is an interior vector on M (pointing into M). It is called (−)-
critical for f if gradf |p is an exterior vector on M (pointing away from
M).

Proposition 6.2. (Braess [5])
Let M be a compact smooth manifold with boundary, and let µ+(f) and

µ−(f) denote the number of (+)- and (−)-critical points. Only the (+)-
critical points are H-critical and change the sublevel by attaching a cell, the
(−)-critical points are H-regular. Moreover fa−ε is a deformation retract of
fa+ε if f−1[a − ε, a + ε] contains only a (−)-critical point on ∂M and no
critical point in M \ ∂M . Then the Morse inequality reads as

µ(f |M\∂M ) + µ+(f) ≥ rkH∗(M).

Moreover by duality on the boundary one has

µ+(f) + µ−(f) = µ(f |∂M ) ≥ rkH∗(∂M).

However, there is no duality on M since a point is (+)-critical for f if and
only if it is (−)-critical for −f .

For a proof see [5, Satz 4.1 and Satz 7.1]. In Satz 4.1 the assumption
should be that the interval contains no critical point in the interior and no
(+)-critical point on the boundary.

In the case of a generic PL function we can directly apply Definition 3.3
with the following result for a vertex v ∈ ∂M with f(v) = a [18]:

rkH∗(fa, fa \ {v}) + rkH∗(f
a, fa \ {v}) ≥ rkH∗((f |∂M )a, (f |∂M )a \ {v})

Example: Simple 2-dimensional examples show that the last inequality
is not always an equality: It can happen that a boundary point is H-critical
for f but H-regular for f |∂M . By integrating the number of critical points
over all directions of height functions we see that the contribution of the
boundary is half the integral over the boundary separately in the smooth
case and greater or equal to half this integral in the PL case [18].

By combining the definitions for PL Morse functions in Section 4 with
the ideas of Definition 6.1 above we can formulate a theory of PL Morse
functions on manifolds with boundary as follows.

Definition 6.3. Let M be a compact PL d-manifold with boundary and
f : M → R a generic PL function. Then f is called a PL Morse function if
all interior vertices are either non-degenerate critical or strongly regular in
the sense of Definition 4.1 and all vertices on ∂M are either (+)-critical or
(−)-critical or strongly regular.
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A point p ∈ ∂M is called strongly regular if there is a chart around p
such that M is described by x1 ≤ 0 and the function f can be used as the
coordinates xd in ∂M , i.e., if in those coordinates

(7) f(x1, . . . , xd) = f(p) + xd

for x1 ≤ 0. If in a concrete polyhedral decomposition of M distinct vertices
have distinct f -values, then f is also generic PL, and moreover all points
are strongly regular except possibly the vertices.

A vertex v ∈ ∂M is called non-degenerate (+)-critical (or (−)-critical,
respectively) if there is a PL chart with coordinates x1, . . . , xd around v for
which the set M is described by the constraint

xd ≥ −|x1| − · · · − |xk|+ |xk+1|+ · · ·+ |xd−1|
(or xd ≤ −|x1| − · · · − |xk|+ |xk+1|+ · · ·+ |xd−1| respectively)

and the function f can be expressed as

(8) f(x1, . . . , xd) = f(v) + xd.

See Figure 2 for an illustration. In this case the boundary is represented by
the equation

xd = −|x1| − · · · − |xk|+ |xk+1|+ · · ·+ |xd−1|,

and the restriction f |∂M is written as

(9) f(x1, . . . , xd−1) = f(v)− |x1| − · · · − |xk|+ |xk+1|+ · · ·+ |xd−1|,

so v is non-degenerate critical for f |∂M .

Corollary 6.4. In the situation of Definition 6.3 only (+)-critical points
on the boundary are H-critical, necessarily with multiplicity 1 and index k.
Any (−)-critical point on the boundary is H-regular.

Proof. The number k in Definition 6.3 is uniquely determined and coincides
with the index of v if v ∈ ∂M is (+)-critical, and the multiplicity is always
1 in this case: Hk(fa, fa, \{v};F) ∼= F and Hj(fa, fa, \{v}) = 0 for any
j 6= k. The change by passing through the critical level can be either
Hk(fa+ε) ∼= Hk(fa−ε)⊕F or Hk−1(fa−ε) ∼= Hk−1(fa+ε)⊕F. A function such
that the second case never occurs is called a perfect function. For a (−)-
critical vertex v ∈ ∂M the homotopy types of fa and fa \ {v} coincide. �

Corollary 6.5. Proposition 6.2 remains valid for PL Morse functions on
PL manifolds with boundary.

7. Discrete Morse functions induce PL Morse functions

The above characterizations of strongly regular, non-degenerate, (+)- and
(−)-critical points also allow an easy proof for a construction of PL Morse
functions from discrete Morse functions. For the connection between clas-
sical Morse theory and discrete Morse theory see [2]. In particular for any
smooth d-manifold with d ≤ 7 the set of smooth Morse vectors coincides
with the set of discrete Morse vectors.
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x3 = f(x1, x2, x3)

Figure 2. A non-degenerate critical point (blue) of index 1
on the boundary of a 3-manifold M . The boundary ∂M is the
corrugated red saddle surface. If M consists of the volume
under the “roof”, as indicated by the green “walls”, then this
is a (−)-critical point. If M lies above the red surface, then
it is a (+)-critical point. The blue cross is the level set at the
critical value.

Definition 7.1. (Forman [12])
A discrete Morse function maps cells of a complex to real numbers such

that for each k-cell, there is at most one exceptional (k−1)-face whose value
is not strictly smaller and at most one exceptional (k+1)-coface whose value
is not strictly larger. A k-cell is called critical if it has no exceptional (k−1)-
face and no exceptional (k + 1)-coface.

Fact: No cell has both an exceptional face and an exceptional coface,
hence pairing each non-critical cell with its exceptional face or coface yields
a partial matching of immediate face/coface pairs.

We call a discrete Morse function generic if it has the following additional
properties: The function is injective. Any non-immediate face of a cell has
smaller value.

Fact: Any discrete Morse function is equivalent to a generic one in the
sense that it has the same critical cells and induces the same matching.

Lemma 7.2. Any discrete Morse function on a combinatorial manifold M
induces a generic PL Morse function linear on cells of a derived subdivision
of M such that non-critical cells correspond to strongly regular vertices and
critical cells of dimension k correspond to non-degenerate vertices of index k.
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Proof. Let K be the underlying complex of M and g : K → R a discrete
Morse function, without loss of generality generic. Define f on the domain
of a derived subdivision of K by linearly interpolating the values at the
vertices given by the assignment f(vS) = g(S) for each cell S ∈ K and its
corresponding vertex vS in the derived. Observe that for a k-simplex S in
K, the link of vS in a derived subdivision is the join of two spheres, namely
the derived of bd(S), formed by vertices corresponding to proper faces of S,
and a sphere formed by the vertices corresponding to proper cofaces of S.
In particular, the embedding of the (k− 1)-sphere formed by the derived of
bd(S) is unknotted in lk(vS). For a critical cell S, this implies already the
claim that vS is non-degenerate critical of index k, because the subcomplex
of lk(v) spanned by the vertices with f -value smaller than g(S) agrees with
the derived of bd(S) in this case and hence lk−(vS) is a regular neighborhood
of an unknotted (k − 1)-sphere.

For a non-critical cell S however, the subcomplex of lk(v) spanned by the
vertices with f -value smaller than g(S) is either the derived of bd(S) with
the open star of a vertex vT removed, where T is the exceptional face of S,
or the join of the derived of bd(S) with a single vertex vST , where ST is
the exceptional coface of S. In any case, the subcomplex is a ball and its
regular neighborhood lk−(vS) is a ball as well, showing that vS is strongly
regular. �

The construction from Lemma 7.2 also works for generic discrete Morse
functions g on a combinatorial manifold M with boundary. Then the bound-
ary cells produce the following types of vertices for the induced PL Morse
function: A critical boundary cell of dimension k corresponds to a (+)-
critical point of index k. A non-critical cell that is paired with a cell in
the boundary, i.e., the cell is also non-critical with respect to the restric-
tion of g to the boundary of M , corresponds to a strongly regular point.
A non-critical cell of dimension k that is paired with a cell not belong-
ing to the boundary, i.e., the cell is critical with respect to the restric-
tion of g to the boundary of M , corresponds to a (−)-critical point of in-
dex k.

8. The special case of low dimensions

Under the assumption that distinct vertices have distinct f -levels, only
vertices can be critical. The critical vertices play the role of the critical
points in classical Morse theory, either in the version of non-degenerate
points or – more generally – for generic PL functions where higher multi-
plicities are admitted. However, the H-regular vertices that are not strongly
regular do not fit this analogy: They do not contribute to the Morse in-
equalities and they have no analogue in the classical theory since they do
not allow the cylindrical decomposition in a neighborhood with an isotopy
between the upper and the lower sublevel. In some sense they are the most
exotic objects to be considered here. Therefore the question is whether
they can occur or not. In low dimensions d ≤ 4 this is indeed not the
case.
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Proposition 8.1. A 1-dimensional finite polyhedral complex is a graph.
Any generic PL function has only minima (index 0) or critical vertices of
index 1, possibly with higher multiplicity. Any vertex which is H-regular for
f and for −f simultaneously is also strongly regular for both of them.

For a 1-dimensional manifold we have only minima (index 0), maxima
(index 1) and strongly regular vertices otherwise.

Proof. Let v be a vertex and a = f(v). The link of v is a finite set of points,
some below the a-level, some above. If lk−(v) is empty we have a local
minimum, the total multiplicity is 1. If lk−(v) consists of r ≥ 2 points then
v is critical of index 1 with the multiplicity r − 1. In the special case r = 1
the point is H-regular. For −f we have to interchange lk−(v) and lk+(v).
If in addition lk+(v) consists of only one point then v is a vertex of valence
2 between one upper and one lower vertex. Obviously v is strongly regular
in this case. For a 1-manifold lk(v) consists always of precisely two points,
so the condition follows from r = 1 for one of the functions f or −f . �

Proposition 8.2. Let M be a PL 2-manifold (a surface) with a generic PL
function f : M → R. The critical points (vertices) are only of the following
types:

1. Local minima (index 0, multiplicity 1),
2. local maxima (index 2, multiplicity 1),
3. saddle points (index 1, multiplicity arbitrary).
Any H-regular vertex is also strongly regular, and any saddle point is non-

degenerate critical in the sense of Definition 4.1 if its (total) multiplicity is
1 in the sense of Definition 3.3.

A splitting process of saddle points with higher multiplicity into ordinary
saddle points is described in [11, p. 93].

Corollary 8.3. Any generic PL function on a PL 2-manifold is a PL Morse
function if the multiplicity of every saddle point is 1.

Proof of Proposition 8.2. The link of a vertex v is a closed circuit of edges.
If lk−(v) is empty we have a minimum, if lk−(v) = lk(v) we have a maxi-
mum (lk+(v) is empty), in all other cases lk−(v) and lk+(v) have the same
number of components, say r components. Then v is critical of index 1 and
multiplicity r − 1. An ordinary (non-degenerate) saddle point has r = 2, a
monkey saddle r = 3.

The case of a H-regular vertex corresponds to the case r = 1. Since st(v)
is a topological disc, this implies that both st−(v) and st+(v) are discs,
fitting together along the a-level which is an interval. Then we can apply
Lemma 4.2.

The case of an ordinary saddle point corresponds to the case r = 2. These
two components in lk−(v) and lk+(v) determine one coordinate line each
such that the function f is linearly decreasing or increasing, respectively.
The f(v)-level in between is the cross of the two diagonals in that coordinate
system. �



PL MORSE THEORY IN LOW DIMENSIONS 17

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

Theorem 8.4. Let M be a PL 3-manifold with a generic PL function
f : M → R. The critical points (vertices) are only of the following types:

1. Local minima (index 0, multiplicity 1),
2. local maxima (index 3, multiplicity 1),
3. mixed saddle points (index 1 or 2 or both, multiplicity arbitrary).
Any H-regular vertex is also strongly regular, and any saddle point is non-

degenerate critical in the sense of Definition 4.1 if its (total) multiplicity is 1.

Proof. Let v be a H-regular vertex (not a local minimum) with

H0(lk
−(v);F) ∼= F, H1(lk

−(v)) = 0 and H2(lk
−(v)) = 0.

Therefore lk−(v) = fa ∩ lk(v) is a subset of lk(v) ∼= S2 which is a homology
point. This implies that it is a homotopy point also, hence contractible.
Consequently, lk−(v) ⊂ S2 is a disc since it is also a compact 2-manifold with
boundary. Its complement is a disc also. Then we can apply Lemma 4.2.

Now let v be a saddle point with total multiplicity 1. This means that
lk−(v) and lk+(v) are subsets of a 2-sphere with homology of a 0-sphere and
a 1-sphere, respectively (in any order). So there are two discs in lk−(v) and
a cylinder in lk+(v) or vice versa. Let us pick one point in each disc and
a circle in the cylinder as “souls”. Then the cones from v determine one
coordinate direction with decreasing f and two directions with increasing f
(or vice versa). This defines the chart according to Definition 4.1. �

Theorem 8.5. Let M be a PL 4-manifold with a generic PL function
f : M → R. Then any H-regular vertex is also strongly regular.

Proof. Let v be a H-regular vertex (not a local minimum) with

H0(lk
−(v);F) ∼= F, H1(lk

−(v)) = 0, H2(lk
−(v)) = 0 and H3(lk

−(v)) = 0

for any field F. Therefore lk−(v) is a subset of lk(v) ∼= S3 which is a
homology point for arbitrary F, hence it is also a homology point for Z,
in other words: it is Z-acyclic. The following argument is taken from [26]:
lk−(v) is a compact 3-manifold which is Z-acyclic, so the Euler characteristic
is χ(lk−(v)) = 1. The Euler characteristic of the boundary is twice the
Euler characteristic of the entire manifold, so χ = 2 for the boundary which
therefore contains a 2-sphere as one connected component, tamely (or locally
flat) embedded into a polyhedral S3. Then by the 3-dimensional Schoenflies
theorem in PL [23] it bounds a 3-ball in S3 on either side. This in turn
shows that in our case there is no other component of the boundary since it
would contradict the assumption that lk−(v) is acyclic. Then we can apply
Lemma 4.2. �

It is remarkable that embeddings of the dunce hat into the 3-sphere can-
not provide counterexamples since their regular neighborhoods must be 3-
balls [3].

Remark: In higher dimensions d ≥ 5 one obstruction is that a homology
point contained in a vertex link is not necessarily a homotopy point, see
Section 6 below. In particular there are acyclic 2-complexes in the 4-sphere
that are not contractible [26], moreover there are particular embeddings of
the contractible dunce hat into the 4-sphere with regular neighborhoods
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that are again contractible but not 4-balls [41]. These phenomena make it
impossible to carry over the proofs above to dimensions higher than d = 4.

9. Counterexamples in higher dimensions

Example 1: (Critical point of total multiplicity 1 containing a knot)
We start with an ordinary knot built up by edges in a combinatorial 3-

sphere. A concrete example is the 6-vertex trefoil knot in the 1-skeleton
of the Brückner-Grünbaum sphere with 8 vertices, see [19, Fig.4]. After
barycentric subdivision the knot coincides with the full subcomplex spanned
by its vertices. This combinatorial 3-sphere can be the link of a vertex v in
a 4-manifold. Define a generic PL function f with f(v) = 0, f(x) < 0 for
all vertices x on the knot, and f(y) > 0 for all the other vertices y in the
3-sphere. This vertex v will be critical for f of index 2 and multiplicity 1,
so homologically it behaves like a non-degenerate critical point of index 2 of
a PL Morse function. However, the critical level will be a cone from v to a
knotted torus in lk(v). Therefore v is not a non-degenerate critical point in
the sense of Definition 4.1.

Example 2: (H-regular point that is not strongly regular)
There are homology spheres that are not homotopy spheres. The most

prominent example is the Poincaré sphere Σ3 that can be defined as the
quotient of the 3-sphere S3 by the standard action of the binary icosahedral
group (this action can be visualized in the symmetry group of the 120-
cell). It admits a simplicial triangulation with only 16 vertices [4]. By
removing an open 3-ball we obtain a space that is a homology point but not
a homotopy point since its fundamental group does not vanish. By removing
one open vertex star we find an example with 15 vertices v1, . . . , v15. This
simplicial complex C can be embedded into a high dimensional combinatorial
sphere Snk with vertices v1, . . . , vk, k > 15 such that C is the full complex
spanned by those 15 vertices v1, . . . , v15. Then we can build a combinatorial
(n+ 1)-manifold M such that the star of one vertex v0 is this combinatorial
sphere Snk . The simplest example seems to be the suspension S(Snk ) of this
combinatorial sphere Snk with altogether k + 2 vertices. Next we define a
simplexwise linear function f on M in such a way that

f(v1) < f(v2) < · · · < f(v15) < f(v0) < f(v16) < f(v17) < · · · < f(vk)

and with arbitrary but distinct values for all the other vertices of M . Then
the vertex v0 is H-regular for f since in the link below the level and above
the level the homology is trivial. However, it is not strongly regular since in
the open vertex star the sublevel of v0 is not contractible and is therefore
not an open ball. In other words: Homology is unable to detect that v0 is
a non-regular point. It behaves exactly like any of the points in the interior
of a top-dimensional simplex (which of course is strongly regular).

Example 3: (H-regular point that is not strongly regular)
There is a Z-acyclic but not contractible 2-dimensional simplicial complex

K with 23 vertices polyhedrally embedded into a polyhedral 4-sphere [26].
This can be extended to a triangulation of the 4-sphere with additional
vertices outside K such that K coincides with the full subcomplex spanned
by the 23 original vertices. As in Example 1 above one can define a generic
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PL function f on some PL 5-manifold such that in the link of a vertex
v0 the sublevel is spanned by those 23 vertices. Consequently lk−(v0) is
acyclic, so v0 is H-regular for f . It is not strongly regular since lk−(v0) is
not contractible, so it cannot be a 4-ball and fa ∩ st(v0) cannot be a 5-ball.

By further embedding of K into higher dimensional spheres it follows
that a regular neighborhood of K is always homologically trivial but not
contractible. Consequently, for any d ≥ 5 there is an example of a generic
PL function on a PL d-manifold with a H-regular critical point that is not
strongly regular. This bound is optimal by the results of Section 5.

Example 4: (Degenerate critical point of total multiplicity 1)
It is well known that the double suspension S(S(Σ3)) of the Poincaré

sphere Σ3 in Example 2 is homeomorphic with the sphere S5 (the so-called
Edwards sphere [24]). However, since the link of certain edges is precisely Σ3,
the triangulation is not combinatorial and does not induce a PL structure.
Nevertheless, we can define generic PL functions adapted to this 20-vertex
triangulation of S(S(Σ3)). If this 5-sphere occurs as the link of a vertex v
in a 6-manifold, then we can find a generic PL function such that f(v) = 0,
f(x) < 0 for all vertices of Σ3 and f(x) > 0 for the others. Then v is
a H-critical point that homologically behaves like a non-degenerate critical
point of index 4 and multiplicity 1 but it is degenerate, so f will not be a
PL Morse function.

10. A special obstruction: the dunce hat

Homology is a weaker concept than homotopy. So one might conjecture
that a vertex v is strongly regular whenever both lk−(v) and lk+(v) are
contractible, so that no homotopy group would detect anything critical (one
might call this homotopically regular). The results of Section 5 show that
this is true for generic PL functions on k-manifolds with k ≤ 4. Here we are
going to show that this systematically fails to hold in dimensions k ≥ 5.

The dunce hat is known to be a 2-dimensional space that is contractible
[41]. Any triangulation of it is not collapsible since there is no edge to
start the collapse. There are embeddings into the k-sphere for any k ≥ 3
[3]. If such a triangulated dunce hat occurs as the spanning full subcom-
plex of lk−(v) then neither homology nor homotopy will detect that v is a
critical point. However, v will be strongly regular if and only if a regular
neighborhood of the embedded dunce hat is a k-ball.

By the results of [28, 41], there are embeddings of the dunce hat into S4

such that a tubular neighborhood is not a 4-ball, but Mazur’s contractible 4-
manifold with boundary. The boundary must be a homology 3-sphere. Here
we present a simple model based on an 8-vertex triangulation. We start with
the triangulation shown in Figure 3. It is equivalent to the triangulation used
in [3]. Here is the list of triangles:

124, 234, 346, 136, 126, 256, 235, 135, 127, 147, 278, 457, 578, 238, 138, 158, 456.

It has the special property that any triangle contains either 1 or 8 or two
vertices with consecutive labels j, j+1. This implies that it can be embedded
into the boundary complex of the cyclic 5-polytope C5(8) with 8 vertices 1,
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Figure 3. A triangulated dunce hat, and two cycles α and
γ in the link of vertex 1.

2, 3, . . . , 7, 8 in that order. Using Gale’s evenness condition [42], we find
the missing triangles: 246, 247, 257, 357. The main question is: Is a tubular
neighborhood of the 2-complex in the 4-dimensional boundary complex of
the cyclic 5-polytope a 4-ball or not? It is certainly contractible since the
dunce hat is. One special property of the embedding is easily seen: The
two cycles α and γ in [41] are (2472) and (3583), and these two are linked
in the link of the vertex 1. In fact, this is the cyclic 4-polytope C4(7)
with 7 vertices, and that contains the 7-vertex torus (see Figure 1). The
two cycles represent (1, 1)-knots on this torus, and any two of them are
linked like Hopf fibers. Then [41, Conjecture 3] would imply that a tubular
neighborhood of the embedded dunce hat is not a 4-ball. However, since
we do not know whether this conjecture has been decided, we constructed
a tubular neighborhood M , using the Sage1 mathematics software system,
and checked the fundamental group of its boundary ∂M . The fundamental
group turned out to have a presentation with two generators u, v and the
relations uvu−4v = 1 = (v2u−1v−1u−1)2v. By introducing the extra relation
u5 = 1 we obtain uv = (uv)−1 = v−1u−1 and consequently

u5 = v7 = (uv)2 = 1.

This group is known to be infinite [9, Sect. 5.3]. It coincides with the group
of orientation preserving automorphisms of the regular (7, 5)-tessellation of
the hyperbolic plane, in accordance with [28].

As an independent confirmation, Benjamin Burton (private communica-
tion) analyzed M with the Regina software for low-dimensional topology2.
Regina could simplify ∂M to 9 tetrahedra, which it could recognize in
its built-in census database as a Seifert fibred space, SFS [S2: (2,1) (5,1)
(7,−5)]. In summary, the result was in both cases that the boundary ∂M of
the tubular neighborhood is not a 3-sphere.

Corollary 10.1. A regular neighborhood of the 8-vertex dunce hat above in
the boundary complex of the cyclic polytope C5(8) is a contractible 4-manifold
with boundary but not a 4-ball since its boundary is not a sphere.

1http://www.sagemath.org/
2https://regina-normal.github.io/

http://www.sagemath.org/
https://regina-normal.github.io/
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Corollary 10.2. (explicit triangulation)
The second barycentric subdivision of the cyclic polytope C5(8) contains

an explicit triangulation of a contractible 4-manifold with boundary which is
not a 4-ball.

For the construction one just has to take the closed subcomplex of all
simplices that meet the embedded dunce hat in C5(8) above. According to
[2] this triangulation is not locally constructible.

Corollary 10.3. There is a generic PL function on a 5-manifold with a
vertex v that is H-regular but not strongly regular and – in addition – with
the special property that both lk−(v) and lk+(v) are contractible. There are
examples of this kind in every dimension d ≥ 6 [16].3

For the construction we start with a combinatorial 5-manifold containing
a vertex v whose link is the boundary of the cyclic polytope C5(8); a con-
crete example is the cyclic polytope C6(9). Then we define a generic PL
function f on the second barycentric subdivision such that the open regular
neighborhood of the embedded dunce hat lies below f(v) and its open com-
plement lies above. Then the level of v itself in lk(v) is a homology sphere
but not a sphere, in contrast with the characterization of Lemma 4.2.

11. Computational aspects: Is regularity decidable?

The first problem is the manifold recognition problem: Given a pure sim-
plicial complex of dimension d, can we algorithmically decide whether it
is the triangulation of a combinatorial manifold? More precisely, can we
algorithmically decide whether all vertex links are (d− 1)-dimensional com-
binatorial spheres? This is trivial for d = 1 and fairly easy for d = 2. For
d = 3 we can decide whether a vertex link is a connected 2-manifold, and
then the Euler characteristic χ = 2 is a sufficient criterion for being a 2-
sphere. For d = 4 we can first decide whether a certain vertex link is a
connected 3-manifold. Then we can apply the sphere recognition algorithm
of A. Mijatović [29] and obtain:

Corollary 11.1. It is algorithmically decidable whether a given simplicial
complex of dimension d is a combinatorial d-manifold whenever d ≤ 4.

For a generic PL function on a PL manifold it is clearly decidable whether
a vertex v is H-regular: One just has to compute the integral homology of
lk−(v). There are software packages to do so. It is a much more delicate
question to decide whether a vertex v is strongly regular. By the results of
Section 5 H-regularity is a sufficient criterion in low dimensions. Therefore
we can state part (1) as follows:

Corollary 11.2. (1) For a PL manifold M of dimension d ≤ 4 and a
generic PL function f on M it is decidable whether a particular vertex v is
strongly regular.

(2) Moreover, for d ≤ 4 it is decidable whether a generic PL function on
M is a PL Morse function or not.

3see https://en.wikipedia.org/wiki/Mazur_manifold

https://en.wikipedia.org/wiki/Mazur_manifold
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Proof of (2). By the results in Section 5 this is clear if d ≤ 3. For d = 4
we have to look at possible saddle points v of index 1, 2 or 3 with total
multiplicity 1. This can be decided by the homology. In the case of index 1
lk−(v) consists of two homology points, and lk+(v) consists of a homology
2-sphere, embedded into lk(v) ∼= S3. By the argument used in Theorem 8.5
each homology point is a 3-ball, and the homology 2-sphere is a regular
neighborhood of an embedded 2-sphere. From this situation one can re-
construct a chart with 1 direction of decreasing f and 3 directions with
increasing f . the case of index 3 is mirror symmetric to this situation (just
interchange − and +). It remains to discuss the case of index 2 where both
lk−(v) and lk+(v) are homology 1-spheres that are linked in lk(v) ∼= S3. But
that means that on the critical level fa ∩ fa ∩ lk(v) we have an embedded
(connected) surface with χ = 0, so it is a torus. However, this torus can
be knotted, see Example 1 in Section 6. So in addition we have to decide
whether this torus is unknotted. This is known to be algorithmically decid-
able. If it is unknotted then it defines the chart according to Definition 4.1.
If it is knotted then f is not a PL Morse function. �

Concerning 5-manifolds we run into several problems: The Schoenflies
problem is unsolved for embeddings of the 3-sphere into the 4-sphere, the
Hauptvermutung is unknown for the 4-sphere, and an algorithm for recog-
nizing the 4-sphere (and hence: 5-manifolds) is not available. (See however
[15] for practical approaches.)

For d-manifolds of higher dimension d ≥ 6, we even obtain undecidability
results. Novikov proved [40, 7, 27] that recognition of spheres in dimension 5
and above is an undecidable problem. In particular the manifold recognition
problem is undecidable for d-manifolds with d ≥ 6.

What are the consequences of Novikov’s result for the recognition of
strongly regular points? Let us consider the suspension S(K ′) of an in-
put K ′ for the sphere recognition problem and define f on S(K ′) by choos-
ing a negative f -value for a single vertex w of K ′, the f -value 0 for one
vertex v added by taking the suspension, and distinct positive f -values for
the remaining vertices. If K ′ is a sphere, then this construction yields a
strongly regular vertex v, because lk−(v) is a regular neighborhood of the
vertex w in lk(v) = K ′, hence a ball. If K ′ is not a sphere however, not only
the vertex v fails to be strongly regular, its link K ′ witnesses that S(K ′)
fails to be a (closed) manifold as well.

This shows that the above construction yields a reduction from the d-
sphere recognition problem to the recognition problem of strongly regular
vertices in arbitrary (d + 1)-dimensional simplicial complexes. Novikov’s
result renders the latter problem undecidable for complexes of dimension at
least 6.

Proposition 11.3. For arbitrary simplicial d-complexes with d ≥ 6, the
problem of recognizing strongly regular vertices is undecidable.

This reduction and its implied undecidability result are somewhat un-
satisfactory however. The reduction produces manifold instances only from
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positive instances of the sphere recognition problem, whereas negative in-
stances are reduced to non-manifold instances. Hence the reduction estab-
lishes undecidability only if verifying the manifold property is considered to
be part of the problem. But, as noted above, recognizing d-manifolds for
d ≥ 6 is already known to be undecidable in itself.

Therefore we would prefer a reduction that produces manifold instances
for the regular vertex recognition problem from all instances of the sphere
recognition problem. For the proof of the following undecidability result,
we present a reduction that achieves this, but at the cost of requiring
higher dimension: Instead of producing (k + 1)-dimensional instances from
k-dimensional ones, it produces 2(k + 1)-dimensional instances.

Proposition 11.4. Recognizing strongly regular vertices of combinatorial
d-manifolds with dimension d ≥ 12 is undecidable.

Proof. We sketch a reduction from Novikov’s sphere recognition problem.
The input instances for this undecidable problem are 5-dimensional simpli-
cial homology spheres, with positive instances being PL spheres and negative
instances having a non-trivial fundamental group [27, Theorem 3.1].

Consider a simplicial complex K ′ as input for Novikov’s sphere recogni-
tion problem. Remove a maximal simplex from K ′. Embed the result as
a subcomplex into the boundary sphere S′ of a 6-neighborly simplicial d-
polytope for d ≥ 12 (more generally: a (dim(K ′) + 1)-neighborly simplicial
d-polytope for d ≥ 2(dim(K ′) + 1)). Subdivide S′ to obtain an embedding
as a full subcomplex. Denote the subdivided complex by S and the full
subcomplex representing K ′ minus a simplex by K.

The suspension on S is a combinatorial d-manifold, in fact, a d-sphere,
with S being the link of each of the two additional vertices. Define a function
f by choosing distinct values at the vertices such that one vertex v of the
additional vertices has f -value 0, the vertices from K have negative f -value,
and the remaining vertices from S have positive f -value. Then lk−(v) is a
regular neighborhood of K embedded into S.

If K ′ is a sphere, then K is a ball, and its regular neighborhood lk−(v) is
a ball as well. Hence v is a strongly regular vertex. On the other hand, if
K ′ has a non-trivial fundamental group, then, by the Seifert–van Kampen
theorem, K has the same non-trivial fundamental group. SinceK and lk−(v)
are homotopy equivalent, the latter is not a ball, thus v is not strongly
regular. �
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