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Abstract

A composition of two polycubes is appending them to each other so that the union is a valid
polycube. We provide almost tight (up to subpolynomial factors) bounds on the minimum and
maximum possible numbers of compositions of two polycubes, either when each is of size n, or
when their total size is 2n, in two and higher dimensions. We also provide an efficient algorithm
(with some trade-off between time and space) for computing the number of compositions that
two given polyominoes (or polycubes) have.
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1 Introduction

A d-dimensional polycube (polyomino if d = 2) is a connected set of cells on the cubical lattice Zd,
where the connectivity is through (d−1)-dimensional faces. Polycubes and other lattice animals
(e.g., polyiamonds and polyhexes) play for more than half a century an important role in enumer-
ative combinatorics [5] as well as in statistical physics [4].

The size (volume, or area in the plane) of a polycube is the number of d-dimensional cells it
contains. A composition of two d-dimensional polycubes is the placement of one of them relative to
the other, such that they touch each other (sharing one or more (d−1)-dimensional faces) but do
not overlap, so that the union of their cell sets is a valid (connected) polycube, see Figure 1 for an
example in the plane. This definition generalizes for other lattice animals in a straightforward way.
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P1 P2

Figure 1: Aligning the edges connected by the arrow-curve creates a composition of the two poly-
ominoes P1 and P2, as shown on the right. The alignment along the dotted curve does not create
a valid composition, because it would lead to an overlap between P1 and P2.

The number of compositions plays an important role in proving bounds on the growth constant of
lattice animals. For example, it was used for obtaining an upper bound on the growth constant of
polyiamonds (edge-connected sets of cells on the regular planar triangular lattice) [3].1

In this paper we address the following.

Question 1: Given two polycubes of total size 2n, how many different compositions
do they have?

We can also ask a restricted version:

Question 2: Given two polycubes, each of size n, how many different compositions do
they have?

Notice that all the polycubes, as well as their compositions, are considered up to translations.
That is, polycubes that can be obtained from each other by a parallel translation, are considered
as the same combinatorial object.

Since the situation in Question 2 is a special case of that in Question 1, some bounds for one
of the questions carry over to the other question. Namely, any lower (resp., upper) bound on the
minimum (resp., maximum) number of compositions in Question 1 also carries over to Question 2,
and any upper (resp., lower) bound on the minimum (resp., maximum) number of compositions in
Question 2 also carries over to Question 1. In fact, all our bounds apply to both versions of the
question. In addition, any specific example provides both an upper bound on the minimum and a
lower bound on the maximum of the respective number of compositions. We summarize our results
in Table 1.

We also provide an efficient algorithm for computing the number of composition of two given
polyominoes (or polycubes) (Theorem 13 in Section 5).

1A linear upper bound on the maximum possible number of compositions of polyominoes has been incorrectly
claimed [1, Theorem 2.5], leading to an erroneous improvement of an upper bound on the growth constant of poly-
ominoes [1, Theorem 2.6]. A correct bound on the number of compositions is given below in Theorem 4.
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Table 1: The number of compositions of two polycubes of total size 2n.

Number of Two Dimensions d ≥ 3 Dimensions
Compositions Lower Bound Upper Bound Lower Bound Upper Bound

Minimum Θ(n1/2) 2n1−1/d O(2ddn1−1/d)

Maximum n2/2O(log1/2 n) O(n2) Θ(dn2)

2 Two Dimensions

2.1 Minimum Number of Compositions

Theorem 1. (i) Any two polyominoes of sizes n1 and n2 have Ω((n1 + n2)
1/2) compositions.

(ii) For every two numbers n1 ≥ 1, n2 ≥ 1, there is a pair of polyominoes of sizes n1 and n2
with Θ((n1 + n2)

1/2) compositions.

Proof. Let n = n1 + n2, and consider a pair of polyominoes P1, P2 of sizes n1 and n2. Assume
without loss of generality that n1 ≥ n2, that is, n1 ≥ n/2. Assume, also without loss of generality,
that the width (x-span) of P1 is greater than (or equal to) the height (y-span) of P1. Hence, the

width of P1 is at least n
1/2
1 . Then, P2 may touch P1 from below or above in different ways at least

twice this width: Simply put P2 below (or above) P1 so that the left column of P2 is aligned with

the ith column of P1 (for 1 ≤ i ≤ n1/21 ) and translate P2 upward (or downward) until it touches P1.

Hence, we have a least 2n
1/2
1 ≥ (2n)1/2 compositions.

To see that this lower bound is tight, we take polyominoes that fit in a square with side

lengths k1 = dn1/21 e and k2 = dn1/22 e. We form P1 and P2 by filling the respective squares row-wise
until they have the desired size. Polyominoes P1 and P2 can be composed in at most 4(k1+k2−1) ≤
4(n

1/2
1 + n

1/2
2 + 1) ≤ 4

√
2(n1 + n2)

1/2 + 4 ways.

The following is a direct corollary of Theorem 1.

Corollary 2. Any two polyominoes of total size 2n have Ω(n1/2) compositions. This lower bound
is attainable.

2.2 Maximum Number of Compositions

In this section, we find bounds on the maximum number of compositions of two polyominoes of
size n. First, we show a (quite trivial) upper bound of O(n2). Next, we show that it is “almost
tight” by constructing an example that yields a lower bound of Ω(n2−ε), for any ε > 0.

2.2.1 Upper bound

Observation 3. Any two polyominoes of sizes n1 and n2 have O(n1n2) compositions.

Proof. Let n1, n2 denote the sizes of polyominoes P1 and P2, respectively. Then, every cell of P1

can touch every cell of P2 in at most four ways, yielding 4n1n2 as a trivial upper bound on the
number of compositions. For n = n1 + n2, this directly gives the bound of O(n2).
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2.2.2 Lower bound

It was claimed [1] that the number of compositions of two polyominoes of total size n is bounded
from above by 2n, which would be a substantial improvement of the bound O(n2) from Obser-
vation 3. Unfortunately, its proof contained an erroneous argument, and here we construct an
example showing that in fact “almost” n2 compositions are possible.

Theorem 4. For every n ≥ 1, there are two polyominoes, each of size at most n, that have at least

n2

28·
√

log2 n
(1)

compositions.

Remarks. From now on, “log” will always denote the binary logarithm. The denomina-
tor 28·

√
logn grows asymptotically more slowly than xε for any ε > 0. Hence, the maximum number

of compositions is Ω(n2−ε) for any ε > 0. On the other hand, if n ≤ 264, then 8 ≥
√

log n, and the
denominator of the bound (1) can be estimated as

28·
√
logn ≥ 2

√
logn·

√
logn = n.

Hence, the claimed bound (1) is not bigger than n, which is weaker (smaller) than the number 4n
of compositions of two 1 × n “sticks.” Thus, the bound in the general form (1) starts to beat the
trivial bound only for very large values of n. The reason for this is that our analysis concentrates
on getting bounds that are both explicit and asymptotically strong, at the expense of small n.

After we describe and analyze our construction, we discuss weaker bounds that can be derived
from it and that exhibit superlinear growth already for moderate sizes.

Proof. We will recursively construct a series of polyominoes D0, D1, D2, . . . , which we call dense
toothbrushes, and a series of polyominoes S0, S1, S2, . . ., which we call sparse toothbrushes; see
Figure 2. We refer to Dk and Sk as toothbrushes of order k. In addition to k, these polyominoes are
also parameterized by a degree parameter, r ≥ 2, that indicates how many copies of toothbrushes
of order k−1 are used to construct a toothbrush of order k. We use r = 3 in Figure 2. The basic
building elements of toothbrushes are sticks—rectangles of height 1 or width 1—with one extreme
cell identified as root and another as apex, so that each stick is considered to be oriented from its
root to its apex. Toothbrushes Dk and Sk consist of i-sticks—sticks at levels i = 0, 1, 2, . . . , k—
where (< k)-sticks come recursively from toothbrushes of order < k, and they are attached to a
“new” k-stick. The sticks cycle directions while opposing each other and have increasing lengths
as shown in Table 2. (Level −1 does not exist, but it is convenient to define `−1 = 1.)

The toothbrushes are constructed as follows. The 0-order toothbrushes D0 and S0 are simply
0-sticks, i.e., horizontal 1×2 dominoes, the root being the left cell for D0, and the right cell for S0.
For k ≥ 1, the toothbrush Dk (resp., Sk) consists of a handle—a k-stick of length `k, oriented as
specified in Table 2—to which r copies of Dk−1 (resp., of Sk−1) are attached, so that their roots
coincide with the cells of the handle at distance α · oDk (resp., α · oSk ), α = 0, 1, . . . , r − 1 cells away
of its apex. The factors oDk , o

S
k are listed in Table 2 as the offsets between successive copies of Dk−1

(resp., of Sk−1) along the handle of Dk (resp., of Sk). As an exception to this rule, the smallest
dense toothbrush D1 is constructed by attaching the copies of D0 at distances 1, 3, 5, . . . , 2r − 1
from the apex, instead of the distances 0, 2, 4, . . . , 2r−2 that would conform to the general pattern.
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Table 2: Orientations and sizes of i-sticks for the recursive construction; the offsets between suc-
cessive copies of Di−1 or Si−1 along the i-sticks.

Level i
Orientation of i-sticks

Stick length `i
Offset oDi Offset oSi

in Di in Si in Di in Si
(−1) 1

0 → ← 2
1 ↑ ↓ 2r2 2 2r
2 ← → 4r2 4 4r
3 ↓ ↑ 4r4 4r2 4r3

4 → ← 8r4 8r2 8r3

5 ↑ ↓ 8r6 8r4 8r5

...
...

...
...

...
...

0 mod 4
2 mod 4

→
←

←
→ 2(i+2)/2ri 2(i+2)/2ri−2 2(i+2)/2ri−1

1 mod 4
3 mod 4

↑
↓

↓
↑ 2(i+1)/2ri+1 2(i+1)/2ri−1 2(i+1)/2ri

Figure 2 illustrates the construction. Dense toothbrushes are green, and sparse toothbrushes
red. For dense and sparse toothbrushes of order 0 and 1, the roots are marked by blue dots. Arrows
indicate the positions where the toothbrushes are attached to the handle of the next order.

As a result of these rules, sub-brushes always fan off to the right of the handle when viewed from
the root towards the apex. As k increases, the orientation of the brushes cycles counterclockwise
in the order left-down-right-up.

Thus, the difference between dense and sparse toothbrushes is that the copies of (k − 1)-order
toothbrushes are denser in Dk and sparser in Sk, and that D0 is oriented to the right and S0 to
the left, and then similarly for higher levels: the sticks of the same level have opposite orientations
in Dk and Sk.

For later reference, we record the relations between lengths and offsets from Table 2:

oDi = 2`i−2, oSi = r · oDi , `i = r · oSi = 2r2`i−2. (2)

As a consequence, one can observe that when we increase the level i by two steps, all dimensions
increase by a factor of 2r2.

The 0-sticks consist of two squares, but since one of these squares overlaps a vertical 1-stick,
they appear as single-square protrusions, or notches. These notches will play a crucial role in
counting the compositions. Each of the toothbrushes Dk and Sk has rk notches. We represent
each notch N of Dk by a sequence A = (α1, α2, . . . , αk), where αi indicates that the copy of Di−1
that contains N is attached to the level-i handle at distance αio

D
i from its apex (or for i = 1, at

distance 1 + αio
D
i = 1 + 2α1). The “digits” αi of this representation (for 1 ≤ i ≤ k) are in the

range 0 ≤ αi ≤ r − 1. We also use a similar encoding B = (β1, β2, . . . , βk) for notches of Sk.
In Figure 2, two notches are marked by crosses: the notch (2, 0, 2, . . . ) of (green) Dk and the
notch (1, 2, 2, . . .) of (red) Sk.

Lemma 5. The size of Dk and Sk is bounded from above by 2(k+2)/2rk+1
(
1 + 2

r

)
for even k, and
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ℓ2 = 4r2

ℓ2 = 4r2oD2 = 4

D0

S0
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S1

ℓ1 = 2r2

oS1 = 2r

ℓ1 = 2r2

oD1 = 2

oS2 = 4r

D2

S2

Figure 2: The construction for r = 3. The roots of D0, S0, D1, S1, D2, S2 are marked with blue
dots.
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by 2(k+3)/2rk+1
(
1 + 1

r

)
for odd k. A common upper bound for both cases is

3
(√

2 · r
)k+1

. (3)

Proof. To get an upper bound, we simply add the sizes of all sticks, ignoring the overlaps. Let us
begin with k being even. The handle of Dk or Sk is horizontal and has size 2(k+2)/2rk. There are
r copies of Dk−1 or Sk−1, and their r vertical handles have total size r × 2k/2rk. Together, the
sticks at the top two levels have size

2k/2+1rk + 2k/2rk+1 = 2k/2rk+1
(
1 + 2

r

)
. (4)

When going down two levels, the stick length decreases by a factor of 2r2, but the number of sticks
increases by a factor of r2. Thus, the total size of the sticks decreases by a factor of 2. Counting
separately the sticks at even and at odd levels, we therefore get an upper bound on the total size
of all sticks if we multiply (4) by 1 + 1

2 + 1
4 + · · · = 2. This proves the first statement.

For odd k, we obtain in a similar way(
2(k+1)/2rk+1 + r × 2(k+1)/2rk−1

)
×
(
1 + 1

2 + 1
4 + · · ·

)
= 2(k+3)/2rk+1

(
1 + 1

r

)
.

The factor 3 in (3) is large enough to cover the extra term
√

2×
(
1 + 2

r

)
≤
√

2× 2 for the even case
and 2×

(
1 + 1

r

)
≤ 2× 3

2 for the odd case.

Lemma 6. There are at least r2k compositions of Dk and Sk.

Proof. For each notch ND of Dk and for each notch NS of Sk, we can translate Dk and Sk so that
the upper edge of ND coincides with the lower edge of NS . In the inset of Figure 2, the two involved
notches are marked by crosses.

We claim that (1) Such r2k compositions are distinct; and (2) Each of them is valid in the
sense that Dk and Sk positioned in this way are disjoint. (We ignore many other compositions, but
asymptotically, this gives the dominant term of the total number of compositions.)

(1) We first argue that all these compositions are distinct. Let ND be a notch of Dk represented
by a sequence A = (α1, α2, . . . , αk), as explained above. Let us position Dk so that the notch
encoded by (0, 0, . . . , 0) has coordinates

(
0
0

)
. Then, the coordinates of the notch ND are(

0

0

)
+ α1

(
0

−oD1

)
+ α2

(
oD2
0

)
+ α3

(
0

oD3

)
+ α4

(
−oD4

0

)
+ · · · =(

4 · α2 − 8r2 · α4 + 16r4 · α6 − 32r6 · α8 + . . .
−2 · α1 + 4r2 · α3 − 8r4 · α5 + 16r6 · α7 − . . .

)
. (5)

If we similarly encode the notch NS of Sk by B = (β1, β2, . . . , βk) and position Sk so that the notch
encoded by (0, 0, . . . , 0) has coordinates

(
0
0

)
, then the coordinates of the notch NS are(

0

0

)
+ β1

(
0

oS1

)
+ β2

(
−oS2

0

)
+ β3

(
0

−oS3

)
+ β4

(
oS4
0

)
+ · · · =(

−4r · β2 + 8r3 · β4 − 16r5 · β6 + 32r7 · β8 − . . .
2r · β1 − 4r3 · β3 + 8r5 · β5 − 16r7 · β7 + . . .

)
. (6)
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B(Si)

B(Di)

(2r2 − 2r + 1)ℓi−2

(2r − 1)ℓi−2

ℓi−2

ℓi−2

ℓi = 2r2ℓi−2

Di

Si

ℓi−2

(2r − 1)ℓi−2

Figure 3: Schematic illustration of bounding boxes and rims for toothbrushes Di and Si.

The translation of Sk that brings NS to the cell directly above ND is found by taking the difference
between Equations (5) and (6), and adding

(
0
1

)
:(

4α2 + 4rβ2 − 8r2α4 − 8r3β4 + . . .
1− 2α1 − 2rβ1 + 4r2α3 + 4r3β3 − . . .

)
.

Since both the successive multipliers 4, 4r, 8r2, 8r3, . . . for the x-coordinate and the successive mul-
tipliers 2, 2r, 4r2, 4r3, . . . for the y-coordinate differ at least by a factor of r, and the coefficients αi

and βi are between 0 and r−1, we conclude that distinct 2r-tuples (a1, a2, . . . , ar, b1, b2, . . . , br) lead
to distinct translations.

(2) It remains to prove that the 22k compositions described above are valid. That is, to show
that if we translate Dk and Sk so that some notch ND of Dk is just below some notch NS of Sk,
then the union of Dk and Sk is disjoint. This will be accomplished by the following Claims 7 and 8.

For each polyomino P , let its bounding box B(P ) be the smallest (filled) grid rectangle that
contains it. It is easy to see that the bounding boxes of Di and of Si have size `i× `i−1 or `i−1× `i
(using the convention `−1 = 1). We define the rim of a toothbrush as the union of the sides—one
horizontal and one vertical—of its bounding box that contain the root of its handle. In fact, one
of the sides of the rim of an i-order toothbrush is its handle, and the other side is contained in
the handle of the (i+ 1)-order toothbrush to which it belongs. In Figure 3, bounding boxes of two
toothbrushes are shown by bold frames, and the bending point of the respective rims are marked
by a blue dot. Bounding boxes of some toothbrushes of smaller order are shown by light green
or pink background. One should keep in mind that this figure is schematic and sticks of different
levels are not to scale.

Claim 7. Consider a composition of Dk and Sk as described above. Let 1 ≤ i ≤ k, and suppose that
the composition is established via the notches ND of Dk and NS of Sk.2 Suppose further that ND

2Recall that this means that ND is just below NS .
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2r − 1

D1 S1

2r

Figure 4: Proof of Claim 7, case i = 1.

B(Di)

B(Si)

Figure 5: Illustration of Claim 7: Bounding boxes overlap, but the rims never overlap. Since the
situation is symmetric, it is sufficient to prove the claim for one of the rims.

lies in some copy of Di and the notch NS lies in some copy of Si. Then the bounding boxes B(Di)
and B(Si) overlap, but neither bounding box overlaps the rim of the other toothbrush. (Refer to
Figure 5 for a schematic depiction of the statement.)

Proof. We prove the claim by induction. For i = 1, it is easily checked by inspection; refer to
Figure 4. The notches do not overlap since all the notches of D1 fit into gaps between notches in S1.
It remains to show that B(D1) cannot reach the uppermost row of B(S1). Indeed, if ND is the lowest
notch of D1, the vertical distance from its upper edge to the top of B(D1) is r ·oD1 −1 = 2r−1. If NS

is the highest notch of S1, the vertical distance from its lower edge to the top of B(S1) is oS1 = 2r.
Thus, if the upper edge of ND coincides with the lower edge of NS , the top of B(D1) is still strictly
below the top of B(S1).

Now let i ≥ 2. Assume without loss of generality that the rim of Di occupies the lower and
the right side of B(Di), and the rim of Si occupies the upper and the left side of B(Si), as shown
by bold frames in Figure 3. Let Di−1 and Si−1 be specific copies of the lower-order toothbrushes
that contain the notches ND and NS . Their bounding boxes are shown in the figure with a shaded
background. Since B(Di−1) and B(Si−1) overlap by induction, we immediately get the overlap
of B(Di) and B(Si).
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To prove that the rim of Si does not overlap B(Di), we need to show that B(Di) can reach
neither the highest row nor the leftmost column of B(Si). The former claim is easy: The rim
of Si−1 contains the highest row of B(Si−1), and by induction, B(Di−1) does not overlap with this
row. The box B(Di) uses the same rows as B(Di−1), and similarly for B(Si) and B(Si−1). Therefore,
B(Di) cannot reach the highest row of B(Si).

To show that B(Di) cannot reach the leftmost column of B(Si), we use the relations (2) in the
calculation. The horizontal extension of each (i−1)-order sub-brush Di−1 or Si−1 is `i−2. The (i−1)-
order sub-brushes of Di span in total a horizontal range of width (r−1)oDi +`i−2 = (2(r−1)+1)`i−2,
starting to the right from the left side of B(Di). The (i−1)-order sub-brushes of Si span in total a
horizontal range of width (r − 1)oSi + `i−2 = (2r(r − 1) + 1)`i−2, starting to the left from the right
side of B(Si). The sum of these two distances is just equal to the horizontal extension of Di and Si:
`i = 2r2`i−2. It follows that B(Di) cannot reach the leftmost column of B(Si) if the bounding boxes
of some (i− 1)-order sub-brushes overlap, which holds by induction for the specified copies of Di−1
and Si−1.

Claim 8. Consider two (sub-)brushes Di and Si of order i ≥ 2. If two of their sub-brushes Di−1
and Si−1 have overlapping bounding boxes, then no other pair of sub-toothbrushes D′i−1 and S′i−1
of order i−1 can have overlapping bounding boxes.

Proof. We employ the same assumption as for the orientation of Di and Si as in the previous
proof. The horizontal dimension of the bounding boxes of level i−1 is then `i−2. The offset
between different copies of Di−1 is oDi = 2`i−2, by (2). Hence, the distance between their bounding
boxes is `i−2, and, therefore, no toothbrush Si−1 can intersect with two different copies of Di−1.

We also have to argue that no two copies of Si−1 can be intersected by some Di−1. The offset
between successive copies of Si−1 is oSi = 2r`i−2, and, hence, the gap between their bounding
boxes is (2r − 1)`i−2. On the other hand, all copies of Di−1 together fit in a box of horizontal
extension (2r−1)`i−2. Hence, no toothbrushDi−1 can intersect with two different copies of Si−1.

With Claims 7 and 8, we can now conclude that Dk and Sk are disjoint: It follows from Claim 7
that the handle of Dk is disjoint from Sk (even from its bounding box), and vice versa. All cells that
are not in the handle are in the sub-brushes Dk−1 and Sk−1. There is exactly one pair Dk−1, Sk−1
that contains ND and NS , respectively, and by Claim 7, the respective bounding boxes overlap. By
Claim 8, this means that all other pairs S′k−1, L

′
k−1 are disjoint. It suffices, therefore, to prove the

claim for sub-brushes Dk−1 and Sk−1 that contain ND and NS .

However, the proof above applies for sub-brushes of any order. In this way, we proceed by
induction to toothbrushes of lower order until we reach the order-0 pair D0, S0 containing the
notches ND and NS , for which disjointness is obvious. This concludes the proof of Lemma 6.

In order to finish the proof of Theorem 4, we apply the construction with the parameters
k := b

√
log nc − 1 and r := 2k. We assume3 that n ≥ 16, hence k ≥ 1 and r ≥ 2.

We use Lemma 5 to show that the size of the polyominoes is at most n. The logarithm of the

3Recall the discussion after the statement of the theorem. It is shown there that for n ≤ 264, our construction
does not beat the trivial bound.
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Figure 6: A rendering of a variation of our sparse toothbrush S5 as an L-system.

bound (3) is

log
(
(
√

2 · r)k+13
)

= log
(
(
√

2 · 2k)k+1
)

+ log 3

= (k + 1/2)(k + 1) + log 3

≤ (
√

log n− 1/2)
√

log n+ log 3

= log n−
√

log n/2 + log 3

≤ log n,

where the last relation holds for n ≥ 1059.

Now we apply Lemma 6 in order to estimate the number of compositions from below. Again,
we compute the logarithm of the desired quantity:

log(r2k) = log
(
(2k)2k

)
= 2k2 ≥ 2(

√
log n− 2)2 = 2 log n− 8

√
log n+ 8 ≥ 2 log n− 8

√
log n.

From this, we directly get the bound (1).

There are a few obvious local improvements of our construction. For example, the necessary
spacing between the level-1 vertical sticks in D2 is only 3 instead of the 4 that we use. Removing all
notches allows to reduce the spacing even further, without reducing the number of compositions that
we count. Alternatively, we could replace the notches by sticks of length r and adjust all horizontal
dimensions accordingly. This would increase the number of compositions by the factor r−1, while
increasing the sizes only by a constant factor. By contrast, our proof strives to make the description
of the construction as easy as possible and to keep simple expressions for the dimensions in terms
of powers of 2 and r.

By choosing a small constant order k, we already obtain superlinear bounds from Lemmata 5
and 6. For example, k = 3 leads to toothbrushes of size n = O(r4) with at least r6 compositions,
i.e., Ω(n3/2) compositions. Setting k = 4 leads to toothbrushes of size n = O(r5) with at least r8

compositions, i.e., Ω(n8/5) compositions, etc. For any fixed k, we get Ω(n2−2/(k+1)) compositions.

Remark: As k → ∞, the toothbrushes Dk and Sk, properly scaled and rotated, converge
to tree-like structures whose substructures are “similar” to the whole structure: thus, it bears
some similarity to fractals. The limits are different for Dk and Sk, and, in addition, we have
to distinguish between even and odd values of k. When going down two orders, all lengths are
uniformly scaled by 1/(2r2), and, hence, we find self-similar substructures. However, since the
number of substructures is only r2, the total length is finite, and the fractal dimension is 1. Hence,
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we don’t have a fractal in the strict sense. We mention that our toothbrushes, like many fractals,
can be modeled by L-systems,4 for example, as follows:

Constants: X

Axiom: --X

Rule1: X=[-FFXFXFX]

Rule2: F=FFF

An L-system renderer (http://www.kevs3d.co.uk/dev/lsystems/) produces, using the specifi-
cation above, the fractal shown in Figure 6. In this L-system, a string of symbols is converted
to an image by interpreting the symbols as turtle graphics commands: The letter F makes a step
forward, and the symbol ‘-’ makes a right turn by 90◦. The symbol ‘[’ saves the current position
and orientation on a stack, and ‘]’ returns to the previously saved state. The letter X is ignored for
the drawing. In one iteration, all occurrences of X and F in the current string are simultaneously
substituted according to the two rules. Figure 6 is produced from the starting string (axiom) “--X”
after 6 iterations.

We note that the fractal dimension [7] is not the relevant parameter for our problem since it
measures the length of a fractal curve (the boundary of the polyomino, in our setting) in terms
of the diameter. However, for our application, we also want the size (the area enclosed by the
boundary) to be small.

3 Higher Dimensions

3.1 Minimum Number of Compositions

3.1.1 Lower bound

Theorem 9. Any two d-dimensional polycubes of total size 2n have at least 2n1−1/d compositions.

Proof. The proof is similar to that of Theorem 1. Consider two polycubes P1, P2 of total size 2n.
Assume, without loss of generality, that P1 is the larger of the two polycubes, that is, the size
(d-dimensional volume) of P1 is at least n. Let Vi (for 1 ≤ i ≤ d) be the (d−1)-dimensional volume
of the projection of P1 orthogonal to the xi axis. An isoperimetric-like inequality of Loomis and
Whitney [6] ensures that

∏d
i=1 Vi ≥ nd−1. Let Vk ≥ n1−1/d be largest among the numbers V1, . . . , Vd.

Then, there are at least 2Vk ≥ 2n1−1/d different ways for how P2 may touch P1. The polycube P1

has Vk “columns” in the xk direction. Pick one specific such “column” of P2 and align it with each
“column” of P1, putting it either “below” or “above” P1 along direction xk, and find the unique
translation along xk by which they touch for the first time while being translated one towards the
other.

3.1.2 Upper bound

Theorem 10. There exist pairs of d-dimensional polycubes, of total size 2n, that have O(2ddn1−1/d)
compositions.

4https://en.wikipedia.org/wiki/L-system
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Figure 7: A composition of two hypercubes.

n

(a) A stick (b) A side-facet composition (c) An extreme-facet composition

Figure 8: Compositions of two “sticks.”

Proof. Figure 7 shows a composition of two copies of a d-dimensional hypercube P of size k × k ×
. . . × k (d = 3 in the figure). The cube is made of n cells, hence, its sidelength is k = n1/d. Two
copies of P can slide towards each other in 2d directions (two directions in each dimension) until
they touch. Obviously, there are no other compositions since no hypercube can penetrate into the
bounding box of the other one. Once we decide which facets of the hypercube touch each other,
this can be done in (2k−1)d−1 ways. Indeed, in each of the d−1 dimensions orthogonal to the
sliding direction, there are 2k−1 possible offsets of one hypercube relative to the other. (This can
be visualized easily in two and three dimensions.) Overall, the total number of compositions in this
example is

(2d)(2k − 1)d−1 = 2d(2n1/d − 1)d−1 = Θ(2ddn1−1/d).

3.2 Maximum Number of Compositions in d ≥ 3 Dimensions

Theorem 11. Let d ≥ 3. Any two d-dimensional polycubes of total size 2n have O(dn2) compo-
sitions. For d ≥ 3, the upper bound is attainable: There are two d-dimensional polycubes of total
size 2n with Ω(dn2) compositions.

Proof. Similarly to two dimensions, any two polycubes P1, P2 of total size 2n have O(dn2) compo-
sitions. Indeed, let n1, n2 denote the sizes of P1 and P2, respectively, where n1 + n2 = 2n. Then,
every cell of P1 can touch every cell of P2 in at most 2d ways, yielding 2dn1n2 ≤ 2dn2 as a trivial
upper bound on the number of compositions.

The lower bound is attained asymptotically, for example, by two nonparallel “sticks” of size n,
as shown in Figure 8(a). Each stick has two extreme (d−1)-dimensional facets (orthogonal to the
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direction along which the stick is aligned), plus 2(d−1)n many (d−1)-dimensional side facets. The
number of compositions that involve only side facets is 2(d − 2)n2 = Ω(dn2), see Figure 8(b):
Indeed, for each of the d−2 coordinate directions that are not parallel to one of the sticks, there
are 2n2 different choices for letting two side facets of the sticks touch. We can ignore the small
number of 4n compositions that involve an extreme facet, see Figure 8(c).

Note the difference, for the maximum number of compositions, between the cases d = 2 and d >
2. If d > 2, the dimensions along which the sticks are aligned, restrict the compositions of the
sticks, but the existence of more dimensions allows every pair of cells, one of each polycube, to have
compositions through this pair only. This is not the case in two dimensions, a fact that makes the
proof of Theorem 4 much more complicated.

4 Compositions and the Minkowski Sum

As a preparation for the algorithm that determines (or counts) all compositions, we discuss an
elementary connection between compositions of two polyominoes and the Minkowski sum, the
element-wise sum of two sets of vectors A and B:

A⊕B := { a+ b | a ∈ A, b ∈ B }.

In this connection, it is better to regard a polyomino as a discrete set A of points, namely the
centers of the grid squares of which it is composed. The polyomino itself can then be obtained as
the Minkowski sum of A with a unit square U centered at the origin: A⊕ U .

We call an integer vector t ∈ Zd a valid composition vector, or simply a valid composition, if P
and Q+ t form a valid composition, i.e., they do not overlap, but share at least one common edge.

Observation 12. Let P1, P2 be polyominoes and let A1, A2 be their sets of centerpoints.

1. The set of (integer) translations t for which P1 and P2 + t overlap is the Minkowski difference

F := A1 ⊕ (−A2) := { c1 − c2 | c1 ∈ A1, c2 ∈ B }.

We call F the forbidden set.

2. The set of valid composition vectors for P1 and P2 is the set of neighbors of F : those integer
vectors that have distance 1 from a point of F but that do not themselves belong to F .

See Figure 9 for an example.

Proof. The first statement is obvious: A vector t is of the form t = c1−c2 for some c1 ∈ A1 and
c2 ∈ A2 if and only if the cells c1 ∈ A1 and c2 + t ∈ A2 + t coincide: t = c1 − c2 ⇐⇒ c1 = c2 + t.

To see the second statement, let t /∈ F be a vector and t′ ∈ F an adjacent vector. Then, c1 ∈ A1

and c2 + t′ ∈ A2 + t′ coincide. If we move A2 + t′ by one unit to A2 + t, the cell c2 + t ∈ A2 + t
is adjacent to c2 + t′ = c1 ∈ A1, but A2 + t becomes disjoint from A1, and hence t is a valid
composition.

On the other hand, if t is a valid composition, then t /∈ F , but there must be two adjacent cells
c2 + t ∈ A2 + t and c1 ∈ A1. Moving A2 by one unit brings these two cells to coincide; hence, there
is a vector t′ adjacent to t such that c2 + t′ = c1, or in other words, t′ ∈ F .
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Figure 9: The sets A and B of cell centers of the polyominoes P1 and P2 from Figure 1, the
Minkowski difference F = A ⊕ (−B) (circles), and the set of valid composition vectors (squares).
P1 and P2 have 27 compositions. The composition from Figure 1 is highlighted.

5 Counting Compositions

We now describe an efficient algorithm for finding all compositions of two polyominoes or polycubes.
We assume the unit-cost model of computation, in which numbers in the range [−n, n] can be
accessed and be subject to arithmetic operations in O(1) time, and up to O(n2d) memory cells can
be accessed by their address in O(1) time.

Theorem 13. (i) Given two polyominoes, each of size at most n, their number of compositions
can be computed in O(n2) time and O(n2) space.
(ii) Given two d-dimensional polycubes, each of size at most n, their number of compositions can
be computed in O(d2n2) time and O(dn2) space.

Proof. A straightforward approach would try all O(n2) possibilities of moving a cell y ∈ P2 next
to a cell c1 ∈ P1, in 2d possible ways, and check whether the two translated polyominoes overlap.
Testing for overlap can be done very naively in O(n2) time, or with little effort in O(n) time, but
even this leads to an overall runtime of O(n3).

However, we can do better, by using the connection to the Minkowski sum from Observation 12.
Let us first deal with the situation in the plane (d = 2 dimensions). To compute F , we can use a
bitmap data structure T , which holds the status of all possible translations in a (2n+ 3)× (2n+ 3)
array, with indices in the range −n−1 ≤ t ≤ n+1 in each direction. Initially, all entries of T are
cleared. In a double loop over the pairs of cells c1 ∈ P1, c2 ∈ P2, we set the entry in T corresponding
to the translation t = c1 − c2. This sets the bits of F .

Obviously, both the size and preparation time of T are O(n2). Finally, by scanning each cell
of T , we can determine in constant time if it lies outside F but has a neighbor belonging to F ,
and hence, according to Observation 12, represents a valid composition. Overall, the entire process
requires Θ(n2) time and space.

These bounds assume the worst case, in which size-n polyominoes have an extent of Θ(n) in each
dimension. By contrast, typical polyominoes can be expected to be somewhat compact. However,
we are not aware of any empirical evidence for this statement.

Finally, let us list the differences needed for following the same approach in d dimensions. Each
cell now has d coordinates (instead of two), and so every cell or translation operation (e.g., setting,
comparing, checking, etc.) requires Θ(d) instead of constant time. Instead of four neighboring cells,
each polycube cell now has 2d neighbors. The size of the input is Θ(dn). A bitmap would require
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space Θ(nd), and we would like to avoid this exponential growth in d.

Instead, we will identify the cells of F by sorting. We generate the at most n2 elements of the
Minkowski difference P1−P2, one at a time, in O(n2d) time, and store them in a list. Then we sort
this list, using radix sort. Radix sort sorts the list in d passes over the data, each time assigning
the elements to buckets according to one selected digit (coordinate). Each pass takes O(n2) time
(plus O(n) time for the range of values of the ith coordinate). Thus, in O(n2d) time, we get the
elements of F in sorted order, and then it is easy to eliminate duplicates.

In the second step, we generate 2d neighbors of each element of F . These are O(n2d) candidates
for translations that may lead to valid compositions. We have to remove the candidates that belong
to F , because they lead to collisions, and we have to eliminate duplications. Again, we rely on radix-
sort, but in order to save space, we use a special representation: Each neighbor of an element x of F
is represented as a triplet (x, i, s). The first component is a pointer to x. The index i lies in the range
1 ≤ i ≤ d and indicates which coordinate is to be incremented (s = 1) or decremented (s = −1).
This representation requires only constant space per candidate neighbor, and nevertheless, it is
possible to access each coordinate in constant time.

In total, we need O(n2d) space: O(d) space for each of the O(n2) elements of F , which are
represented explicitly; and O(1) space for each of the O(n2d) candidates. We sort F plus the
list of all candidates, using radix sort, in O(n2d2) time. This brings all elements with the same
coordinates together, and allows us to eliminate duplicate or invalid candidates.5

We mention that our algorithm actually generates all valid compositions within the same run-
time, in the sense that some procedure can visit every composition once, for example in order to
collect some statistics. If one insists on producing an explicit list of all compositions, the stor-
age requirement might increase to Ω(d2n2): By Theorem 11, there can be inputs with Ω(dn2)
compositions, each requiring size Θ(d) to write down.

6 Distribution and Average in Two Dimensions

In this section, we present some empirical data concerning the interesting question of the distribution
of NC(n1, n2), the number of compositions of all pairs of polyominoes of sizes n1, n2.

Figure 10(a) shows with filled circles the distributions of the number of compositions of pairs of
polyominoes of the same size. For each size up to n = 9, we took all pairs P1, P2 of polyominoes of
size n and counted the number of their compositions. For each number p of compositions, the graph
shows the multiplicity with which p occurs, i.e., the number of pairs (P1, P2) among the A(n)2 pairs
that have p compositions, on a logarithmic scale. The points for a given size n are connected by a
curve. In order to make the curves for different values of n comparable, we normalized the number p
by subtracting the average number of compositions for size n. Thus, the horizontal axis is actually
the deviation of p from the average. (This average is shown in Figure 10(b).)

5In theory, one could combine the two phases, the generation of the elements of F , and of their neighbors, into
one step without affecting the worst-case running time bound. In practice, however, eliminating duplications in F
will reduce the number of elements that need to be considered in the second phase.

In the conference version of this paper [2], various algorithms with larger space complexity were discussed: Repre-
sentation of F as a trie (digital search tree), in which the nodes are represented as arrays (O(d2n2) time and O(dn3)
space) or as binary search trees (O(d2n2 logn) time and O(d2n2) space), or a representation with hash tables (O(d2n2)
expected time and O(d2n2) space).
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Figure 10: Distributions of the number of compositions of pairs of polyominoes of sizes n1, n2.
Numbers in parentheses are values by which the curves are normalized (shifted horizontally to the
left).

For polyominoes of size 10 ≤ n ≤ 14, we sampled uniformly s = 5 · 107 out of all A(n)2 pairs
because considering all pairs of polyominoes would be too time consuming. The obtained results
were multiplied by A(n)2/s in order to get an estimate for the true multiplicities. These samples
represent only a small fraction of all pairs: roughly 1.7 · 10−4 for n = 10 and 1.1 · 10−8 for n = 14.
Nevertheless, the estimates (shown with crosses in Figure 10(a)) appear visually consistent with the
exact results, except that the sampling missed numbers of compositions with too few realizing pairs
of polyominoes. The data were fitted to various discrete distributions, using the statistics module
of the Python package scipy. The best fit was found with the negative-binomial distribution.

Figure 10(b) plots the average number of compositions of a pair of polyominoes of size n, as
a function of n, and the vertical bars show the ranges of the numbers. The data suggest that the
average value of NC(n, n) for two random polyominoes grows linearly with n. With the available
data for 3 ≤ n ≤ 14 (considering the first two values as outliers), a linear regression gives the
relation NC(n, n) ≈ 2.19n+ 4.97.

Similar patterns of distributions of the number of compositions are observed also for polyominoes
of different sizes. In order not to clutter the figure, we show overlays of distributions of the number of
compositions of pairs of polyominoes of the same total size. Figures 10(c–d) show the distributions
of the number of compositions of pairs of polyominoes whose total size is 12 and 14, respectively.
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7 Conclusion

In this paper, we provide almost tight bounds on the minimum and maximum possible numbers
of compositions of two polycubes in two and higher dimensions. While this goal is easy to achieve
in three and higher dimensions, much more effort is needed in the two-dimensional case. We also
provide an efficient algorithm for computing the number of compositions that two given polycubes
have.

Future research directions include an estimation of the average number of composition two
polyominoes have. An efficient upper bound on this number may overcome the error in Ref. [1]
and yield an upper bound on the growth constant of polyominoes.
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