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Shortest Fences for Separating Groups of Objects in the Plane
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Abstract

We study the following separation problem: Given a collection of disjoint colored
objects in the plane with k different colors, compute a shortest “fence” F , i.e., a union
of curves of minimum total length, that separates every pair of objects of different colors.
Two objects are separated if F contains a simple closed curve that has one object in the
interior and the other in the exterior. We refer to the problem as GEOMETRIC k-CUT,
as it is a geometric analog to the well-studied multicut problem on graphs.

We first give an O(n4 log3 n)-time algorithm that computes an optimal fence for the
case where the input consists of polygons of two colors with n corners in total. We
then show that the problem is NP-hard for the case of three colors. Finally, we give a
(2− 4/3k)-approximation algorithm.
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Figure 1: An instance with k = 2 sets, red and green, with two disks each; the big green
disk is only partially shown. The optimal cover has a hippodrome-shaped red set, with the
small green disk as a hole, and an additional unbounded green set. The fence F has two
components: the boundary of the hippodrome and the boundary of the small green disk.

Figure 2: An instance of GEOMETRIC 3-CUT and an optimal fence in black. The fence
contains a cycle that does not touch any object. The grey fence shows how the cycle can be
shrunk without changing the total length of the fence (Lemma 2).

1 Introduction

Problem Statement. We are given k pairwise interior-disjoint sets B1, B2, . . . , Bk in the
plane, not necessarily connected. We want to find a covering of the plane R2 = B̄1∪B̄2∪· · ·∪B̄k

such that the sets B̄i are closed and interior-disjoint, Bi ⊆ B̄i and the total length of the
boundary F =

⋃k
i=1 ∂B̄i between the different sets B̄i is minimized.

We think of the k sets Bi as having k different colors and each set Bi as a union of simple
geometric objects like circular disks and simple polygons. Examples are shown in Figures 1
and 2. We call B̄i the territory of color i. The “fence” F consists of the boundaries that
separate the territories, or alternatively, F is the set of points belonging to more than one
territory. As we can see, the fence does not have to be connected, and a territory can have
more than one connected component.

An alternative view of the problem concentrates on the fence: A fence is defined as a
union of curves F such that each connected component of R2 \ F intersects at most one set
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Bi. An interior-disjoint covering as defined above gives, by definition, such a fence. Likewise,
a fence F induces such a covering, by assigning each connected component of R2 \ F to an
appropriate territory B̄i. The total length of a fence F is also called the cost of F and is
denoted as |F |.

In this paper, we will focus on the case where the input consists of simple polygons (with
disjoint interiors) where the corners have rational coordinates. We refer to this problem as
GEOMETRIC k-CUT. Each input polygon is called an object. The results can be extended
to more general shapes of objects as long as they are reasonably well behaved, but we refrain
from trying to achieve greater generality. We use n to denote the total number of corners of
the input polygons, counted with multiplicity.

Even in this simple setting, the problem poses both geometric and combinatorial difficul-
ties. A set Bi can consist of disconnected pieces, and the combinatorial challenge is to choose
which of the pieces should be grouped into the same component of B̄i. The geometric task
is to construct a network of curves that surrounds the given groups of objects and thus sepa-
rates the groups from each other. For k = 2 colors, optimal fences consist of geodesic curves
around obstacles, which are well understood. As soon as the number k of colors exceeds 2,
the geometry becomes more complicated, and the problem acquires traits of the geometric
Steiner tree problem, as shown by the example in Figure 2.

Our Results. In Section 3, we show how to solve the case with k = 2 colors in time
O(n4 log3 n). (The running time is actually a tiny bit smaller, see Theorem 1.) The crucial
observation is that the optimal fence must consist of line segments between corners of input
polygons (Lemma 3). The algorithm is then straightforward. We consider the arrangement
A formed by all these line segments. The shortest fence corresponds to a minimum cut in the
dual graph of this arrangement. This is a planar graph, and for solving the multiple-source
multiple-sink maximum flow problem in this graph, we can apply results from the literature.

In Section 4, we show that already the case with k = 3 colors is NP-hard, by a reduction
from PLANAR POSITIVE 1-IN-3-SAT (Theorem 2). The main feature of the gadgets in our
reduction is that they have different optimal solutions (in a local sense) of equal length, thus
allowing logical values to be represented and propagated. The analysis of our clause gadget,
which captures the logical core of the reduction, is unfortunately quite involved and requires
a large case distinction over several pages.

It is not known whether the decision version of GEOMETRIC k-CUT is in NP or not.
Indeed, this seems to depend on the complexity of other problems such as the sum of square
roots problem [15] and the Euclidean Steiner tree problem [9], both of which are not known
to be in NP.

In Section 5, we discuss an approximation algorithm. We first compare the optimal fence
FA consisting of line segments between corners of input polygons to the unrestricted optimal
fence F ∗, and in Theorem 3 we show that |FA| ≤ 4/3 · |F ∗|. The proof requires topological
arguments (Lemma 7) as well as combinatorial arguments (Lemma 8). As in Section 3,
restricting the solution to the arrangement A allows us to view the problem as a graph-
theoretic problem. By applying a (3/2 − 1/k)-approximation algorithm for the k-terminal
multiway cut problem [4], we obtain a polynomial-time (2− 4

3k )-approximation algorithm for
GEOMETRIC k-CUT (Theorem 4).

Related Work. Despite the fact that the problem is natural and fundamental, there is
little previous work. The problem of enclosing a set of objects by a shortest system of fences
has recently been considered with a single set B1 by Abrahamsen, Adamaszek, Bringmann,
Cohen-Addad, Mehr, Rotenberg, Roytman, and Thorup [1]. The task is to “enclose” the
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components of B1 by a shortest system of fences. This can be formulated as a special case
of our problem with k = 2 colors: We add an additional set B2, far away from B1 and large
enough so that it is never optimal to surround B2. Thus, we have to enclose all components
of B1 and separate them from the unbounded region. In this setting, there will be no nested
fences. Abrahamsen et al. gave an algorithm with running time O(n polylog n) for the case
where the input consists of n unit disks.

Some variations with additional constraints on the fence become NP-hard already for point
objects with 2 colors. For example, if we require the fence to be a single closed curve, it has
been observed by Eades and Rappaport [8] already in 1993 that one can model the Euclidean
Traveling Salesman Problem of computing the shortest tour through a given set of sites by
placing two tiny objects of opposite color next to each site. If we require the fence to be
connected, the same construction will lead to the Euclidean Steiner Tree Problem, which was
shown to be NP-hard by Garey, Graham, and Johnson in 1977 [9].

Applications. Besides being a natural problem in its own right, the geometric multicut
problem may well find applications in image processing and computer vision. As we describe
in Section 3, a problem closely related to the case k = 2 has been studied from the perspective
of image segmentation. Simplified slightly, we are given a picture with some pixels known to
be black or white, and we have to choose colors for the remaining pixels so as to minimize the
boundary between black and white regions. The problem for k > 2 is equally well-motivated
in this context, although we have not found any explicit references to it (perhaps because of
the NP-hardness that we will prove in this case).

An extended abstract of this work will be presented at the 46th International Colloquium
on Automata, Languages, and Programming (ICALP 2019) in July 2019 in Patras, Greece [2].

2 Structure of Optimal Fences

Lemma 1. An optimal fence F ∗ is a union of (not necessarily disjoint) closed curves, disjoint
from the interior of the objects. Furthermore, if the objects are polygons, F ∗ is the union of
straight line segments of positive length.

If two non-collinear line segments in F ∗ have a common endpoint p that is not a corner of
an object, then exactly three line segments meet at p, forming angles of 2π/3 with each other.

Proof. We first prove that the curves in F ∗ are disjoint from the interior of each object. To
this end, consider any fence F in which some open curve π ⊂ F is contained in the interior
of an object O ⊂ Bi. Then the connected components of R2 \ F on both sides of π must be
part of the territory Bi. Hence, π can be removed from F while the fence remains feasible.
That operation reduces the length, so F is not optimal.

We next show that F ∗ is the union of a set of closed curves. Suppose not. Let F ′ ⊂ F ∗ be
the union of all closed curves contained in F ∗ and let π be a connected component in F ∗ \F ′.
Then π is the (not necessarily disjoint) union of a set of open curves, which do not contribute
to the separation of any objects. Hence, F ∗ \ π is a fence of smaller length than F ∗, so F ∗ is
not optimal.

In a similar way, one can consider the union L of all line segments of positive length
contained in F ∗, and if F ∗ \L is non-empty, a curve π in F ∗ \L can be replaced by a shortest
path homotopic to it, which consists of a sequence of line segments. (See the proof of Lemma
13 in the full version.)

The last claimed property is shared with the Euclidean Steiner minimal tree on a set
of points in the plane, and it can be proved in the same way, see for example Gilbert and
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Pollak [11]: Suppose that the fence F contains two non-collinear line segments `1 and `2
sharing an endpoint p that is not a corner of an object. If the angle between `1 and `2 at p is
less than 2π/3, then parts of `1 and `2 can be replaced by three shorter segments. Hence, the
angle between segments meeting at p is at least 2π/3, and there can be at most three such
line segments. If there are only two, one can make a shortcut. Therefore, there are exactly
three segments, and they form angles of 2π/3.

As it can be seen in Figure 2, optimal fences may contain cycles that do not touch any
object. By the following lemma, such cycles can be eliminated without increasing the length.
This will be useful for the design of our approximation algorithm (Section 5).

Lemma 2. Let N be the set of corners of the objects in an instance of GEOMETRIC k-CUT.
There exists an optimal fence F ∗ with the property that F ∗ \N contains no cycles.

Proof. Let us look at a connected component T of F ∗ \ N . By Lemma 1, its leaves are in
N . All other vertices have degree 3, and the incident edges meet at angles of 2π/3. If T
contains a cycle C, we can push the edges of C in a parallel fashion (forming an offset curve),
as shown in Figure 2. This operation does not change the total length of T . This can be
seen by looking at each degree-3 vertex v individually: We enclose v in a small equilateral
triangle whose sides cut the edges at right angles, see Figure 3. It is an easy geometric fact
that the sum of the distances from a point inside an equilateral triangle to the three sides is
constant. This implies that the length of the fence inside the triangle is unchanged by the
offset operation. The portions of C outside the triangles are just translated and do not change
their lengths either.

v

Figure 3: Offsetting the cycle does not change the total length of the fence inside the triangle.

As we offset the cycle C, an edge of C must eventually hit a corner of an object. Another
conceivable possibility is that an edge of C between two degree-3 vertices is reduced to a
point, but this can be excluded because it would lead to an optimal fence violating Lemma 1.

In this way, the cycles of T can be eliminated one by one.

We mention that the restriction of objects to polygonal shapes is not crucial for Lemmas 1
and 2. If objects have curved boundaries, the fence consists of straight segments that are
disjoint from the interior of the objects, plus portions of object boundaries.

3 The Bicolored Case

In this section we consider the case of k = 2 colors. Let N be the set of all corners of the
objects. A line segment is said to be free if it is disjoint from the interior of every object. A
vertex v of an optimal fence cannot have degree 3 or more unless v ∈ N , as otherwise two
of the regions meeting at v would be part of the same territory and could be merged, thus
reducing the length of the fence. We therefore get the following consequence of Lemma 1.

Lemma 3. An optimal fence consists of free line segments with endpoints in N .
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Figure 4: Left: The arrangement A induced by an instance of GEOMETRIC 2-CUT with
two green and two red objects. The dual graph G is blue. Right: The optimal solution.

Let S be the set of all free segments with endpoints in N . S includes all edges of the
objects. Let A be the arrangement induced by S, see Figure 4. Consider an optimal fence
F ∗ and the associated territories B̄1 and B̄2. Lemma 3 implies that F ∗ is contained in A.
Thus, each cell of A belongs entirely either to B̄1 or B̄2. The objects are cells of A whose
classification (i.e., membership of B̄1 versus B̄2) is fixed. In order to find F ∗, we need to
select the territory that each of the other cells belongs to. Since |S| = O(n2), A has size
O(|S|2) = O(n4) and can be computed in O(|A|) = O(n4) time [5]. For simplicity, we stick
with the worst-case bounds. In practice, set S can be pruned by observing that the edges
of an optimal fence must be bitangents that touch the objects in a certain way, because the
curves of the fence are locally shortest.

Finding an optimal fence amounts to minimizing the boundary between B̄1 and B̄2. This
can be formulated as a minimum-cut problem in the dual graph G(V,E) of the arrangement
A. There is a node in V for each cell and a weighted edge in E for each pair of adjacent cells:
the weight of the edge is the length of the cells’ common boundary. Let S1, S2 ⊂ V be the
sets of cells that contain the objects of B1, B2, respectively. We need to find the minimum
cut that separates S1 from S2. This can be obtained by finding the maximum flow in G from
the sources S1 to the sinks S2, where the capacities are the weights. As G is a planar graph,
we can use the algorithm by Borradaile, Klein, Mozes, Nussbaum, and Wulff-Nilsen [3] with

running time O(|V | log3 |V |). The running time has since then been improved to O( |V | log
3 |V |

log2 log |V | )

by Gawrychowski and Karczmarz [10]. As |V | = O(|S|2) = O(n4), we obtain the following
theorem.

Theorem 1. GEOMETRIC 2-CUT can be solved in time O( n4 log3 n
log2 logn

), where n is the total

number of corners of the objects.

A similar algorithm has been described before in a slightly different context: image seg-
mentation [12], see also [3]. Here, we have a rectangular grid of pixels, each having a given
gray-scale value. Some pixels are known to be either black or white. The remaining pixels
have to be assigned either the black or the white color. Each pixel has edges to its (at most
four) neighbors. The weights of these edges can be chosen in such a way that the minimum
cut problem corresponds to minimizing a cost function consisting of two parts: One part,
the data component, has a term for each pixel, and it measures the discrepancy between the
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gray-value of the pixel and the assigned value. The other part, the smoothing component,
penalizes neighboring pixels with similar gray-values that are assigned different colors.

The running time of roughly n4 in Theorem 1 is rather high. In many instances, the
arrangement A might be much smaller than the worst case, and then the algorithm will of
course benefit. The O(n4) complexity is due to the inclusion of all intersections between
the O(n2) potential line segments. We are rewarded because this turns the problem into a
problem on a planar graph, and therefore the effort for obtaining a maximum flow adds only
a polylogarithmic factor. On the other hand, finding the minimum cut in the arrangement A
is some sort of overkill, since it optimizes also over weird types of fences that zigzag through
the arrangement, while we know that optimal fences can only bend at object corners.

It would be nice to work only with the O(n2) line segments without their crossings. We
have considered an incremental approach that turns red objects into green objects one by one
and determines the green territories that should be merged, by computing the boundary cycle
of the resulting larger territory. However, a preliminary estimate indicated that this approach
would not be competitive with the algorithm of Theorem 1, unless it is combined with new
ideas.

4 Hardness of the Tricolored Case

We show how to construct an instance I of GEOMETRIC 3-CUT from an instance Φ of
PLANAR POSITIVE 1-IN-3-SAT. For ease of presentation, we first describe the reduction
geometrically, allowing irrational coordinates. We prove that if Φ is satisfiable, then I has a
fence of a certain cost M∗, whereas if Φ is not satisfiable, then the cost is at least M∗+ 1/50.
This gap of 1/50 allows us to slightly move the corners into a new instance I ′ with rational
coordinates, while still being able to distinguish whether Φ is satisfiable or not, based on the
cost of an optimal fence.

In order to make the geometric part of the proof as simple as possible, we introduce a
new specialized problem, COLORED TRIGRID POSITIVE 1-IN-3-SAT, by endowing the
instances with additional geometric and combinatorial structure (in the form of a double edge
coloring).

4.1 Auxiliary NP-complete problems

Definition 1. 1. In the POSITIVE 1-IN-3-SAT problem, we are given a collection Φ of
clauses, each consisting of exactly three distinct variables. (There are no negated vari-
ables.) The problem is to decide whether there exists an assignment of truth values to
the variables of Φ such that exactly one variable in each clause is true.

2. The TRIGRID POSITIVE 1-IN-3-SAT problem is the same, except that the input has
some additional geometric structure: We are given an instance Φ of POSITIVE 1-IN-3-
SAT together with a planar embedding of an associated graph G(Φ) with the following
properties, see Figure 5:

• G(Φ) is a subgraph of the regular triangular grid of side length 1.

• For each variable x, there is a simple cycle vx.

• For each clause C = {x, y, z}, there is a path PC and three vertical paths `Cx , `
C
y , `

C
z

with one endpoint at a vertex of PC and one at a vertex of each of vx, vy, vz.

• Except for the described incidences, no edges share a vertex.

• All vertices have degree 2 or 3.
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Figure 5: Left: An instance of PLANAR POSITIVE 1-IN-3-SAT for the formula Φ = C1∧C2∧
C3 with three clauses C1 = {x1, x3, x5}, C2 = {x1, x2, x3}, and C3 = {x2, x4, x5}, which are
represented as rotated E-shapes. Right: A corresponding instance of TRIGRID POSITIVE
1-IN-3-SAT. The paths representing the three clauses are highlighted. Clause vertices are
drawn as dots and branch vertices as boxes.

• Any two adjacent edges form an angle of π or 2π/3.

• The number of vertices is bounded by a quadratic function of the size of Φ.

Mulzer and Rote [16] showed that another problem, PLANAR POSITIVE 1-IN-3-SAT, is
NP-complete, which is similar but uses a slightly different plane embedding with axis-parallel
segments: The variables are represented by disjoint line segments on a horizontal line `; and
each three-legged clause looks like a rotated E-shape and lies above or below `. Figure 5
shows how such an instance can be easily converted to follow the conventions of Definition 1.
It follows that TRIGRID POSITIVE 1-IN-3-SAT is also NP-complete.

The idea of our reduction to GEOMETRIC 3-CUT is to thicken the edges of G(Φ) into
channels of width 1/2, as illustrated in Figure 6. A channel contains small inner objects and
is bounded by larger outer objects of another color. There will be two equally good ways to
separate the inner and outer objects, namely long fences along the boundaries of the channel
and individual fences around the inner objects. Any other way of separating the inner from
the outer objects will turn out to require more fence. These two optimal ways of separating
the colors are used to represent the truth values.

1
2

Figure 6: Illustration of a section of a channel with red outer objects and 6 green inner objects,
centered around an edge of the graph G(Φ) (the dashed line), and two ways of separating the
different colors. The solution on the left will be called the inner solution because the empty
part inside the channel is assigned to the same territory as the inner objects. The solution on
the right is called the outer solution.

We will now be more specific. Consider an instance (Φ, G(Φ)) of TRIGRID POSITIVE
1-IN-3-SAT. There are some vertices of degree three on the cycles vx corresponding to each
variable x in Φ, and these are denoted as branch vertices. There is also one vertex of degree
three on the path PC corresponding to each clause C in Φ, which we denote as a clause vertex.
These are the only vertices of degree 3.
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We consider G(Φ) as a subset of the plane and remove all clause vertices. This splits G(Φ)
into one connected component Ex for each variable x of Φ. We build one channel around each
set Ex, including the bends and branch vertices, and we will ensure that there are two equally
good ways to separate the inner and outer objects throughout the whole channel. These two
choices, along the boundaries or around each inner object individually, play the roles of x
being false and true, respectively.

At the clause vertices where three regions Ex, Ey, Ez meet, we make a clause gadget that
connects the three channels of x, y, z. The objects in the clause gadget can be separated using
the least amount of fence if and only if one of the channels is in the state corresponding to
true and the other two are in the false state. Therefore, this corresponds to the clause being
satisfied.

In order to make this idea work, we first assign two colors to every edge of G(Φ): an inner
and an outer color from the set {red, green, blue}. These will be used as the colors of the
inner and outer objects of the channel. The coloring must have the following properties:

1. The inner and outer colors of every edge are distinct.

2. Any two adjacent collinear edges have the same inner or the same outer color (or both).

3. Any two adjacent edges that meet at an angle of 2π/3 at a non-clause vertex have the
same inner and the same outer color.

4. The inner colors of the three edges meeting at a clause vertex are red, green, blue in
clockwise order, while the outer colors of the same edges are blue, red, green, respectively.

We now introduce the problem COLORED TRIGRID POSITIVE 1-IN-3-SAT, which we will
reduce to GEOMETRIC 3-CUT, see Figure 7.

Figure 7: An instance of COLORED TRIGRID POSITIVE 1-IN-3-SAT based on the instance
from Figure 5.

Definition 2. In COLORED TRIGRID POSITIVE 1-IN-3-SAT, we are given an instance
(Φ, G(Φ)) of TRIGRID POSITIVE 1-IN-3-SAT together with a coloring of the edges of G(Φ)
satisfying the above four requirements. We want to decide whether Φ has a satisfying assign-
ment.

Lemma 4. The problem COLORED TRIGRID POSITIVE 1-IN-3-SAT is NP-complete.
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Proof. Membership in NP is obvious. For NP-hardness, we reduce from TRIGRID POSITIVE
1-IN-3-SAT. Let (Φ, G(Φ)) be an instance of the latter. We assume that all vertical paths
`Cx have length at least 4. This can be achieved by stretching them vertically, as shown in
Figure 7, or simply by scaling the whole graph by a factor of 4.

We color each triple of edges meeting at a clause vertex according to requirement 4. Then,
in each clause path PC , we simply continue the coloring from the edges incident to the clause
vertices in both directions, and also to the first edge of the vertical paths `Cx incident to the
endpoints.

For all branch vertices and all cycles vx we choose red as the outer color and blue as the
inner color, and this coloring is also used for the first edge on each incident vertical path `Cx .

It remains to color the “interior” edges of the vertical paths `Cx . Since each vertical path
has at least 4 edges and only the colors of the first and last edges have been fixed, it is
possible to change inner or outer color three times. It is easy to check that this is sufficient to
interpolate between any combination of colors at the boundary edges: There are six possible
combinations of inner and outer colors: (R,B), (B,R), (R,G), (G,R), (B,G), and, (G,B),
denoting the three colors by R,B,G. These combinations can be arranged in a cycle of length
six, such that it is possible to get from one combination to an adjacent one by changing the
inner or the outer color:

inner:
outer:

R R B B G G R
B G G R R B B

Each color change is denoted by a vertical bar. It follows that one can get from any combi-
nation to any other in at most 3 steps. The maximum number of changes is needed when the
inner and outer colors have to be swapped.

Therefore, it is possible to adjust the colors so that the entire path gets colored. We have
hence constructed an instance of COLORED TRIGRID POSITIVE 1-IN-3-SAT.

4.2 Building a GEOMETRIC 3-SAT instance from tiles

Consider an instance (Φ, G(Φ)) of COLORED TRIGRID POSITIVE 1-IN-3-SAT that we
want reduce to GEOMETRIC 3-CUT. We use hexagonal tiles of six different types, namely
straight, inner color change, outer color change, bend, branch, and clause tiles. Each tile is a
regular hexagon with side length 1/

√
3 and hence has width 1.

Every tile is placed with its center at a vertex p of G(Φ), and rotated such that it has two
horizontal edges. Thus, each edge of G(Φ), which has length 1, connects the centers of two
adjacent tiles. Let Gp be the part of the graph G(Φ) within distance 1/2 from p. Figure 8
shows the tiles and how they are placed according to the shape and colors of Gp.

In order to define the objects of a tile, we take the offset polygons of the edges of Gp at
distance 1/4 on both sides. Note that in the bend tile, this offset polygon differs from the
Euclidean offset because it has a vertex q at distance 1/

√
12 from p. The offset polygons

partition the tile into an inner and an outer region. The outer objects cover the outer region
completely. Every point in the outer region is colored with the outer color of the closest edge
in Gp. The inner region is mostly empty, except for the inner objects described in each case
below.

We place the origin at the center p = (0, 0). We describe each tile in one selected orien-
tation, as shown in Figure 8; the tiles can be rotated by multiples of π/3. In each case, we
assume that Gp contains the vertical segment from p upwards to (0, 1/2).

The straight tile. This is used when two collinear edges meet at p with the same inner
and outer color. There are four axis-parallel squares of the inner color of Gp with side length
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bend branch clause

Figure 8: The six kinds of tiles used in the reduction to GEOMETRIC 3-CUT. The dashed
colored lines show the edges of Gp and their inner and outer colors. The tiles are colored
accordingly. The points in the clause tile are defined so that ‖ab‖ = ‖a′b′‖ = 0.24 and
‖bc‖ = ‖b′c‖ = 1/4 = 0.25. The point c has coordinates (x, x/

√
3), where x = 13

√
3/200 +

3/16−
√

3900
√

3− 459/400 ≈ 0.1017 is a solution to 10000x2+(−1300
√

3−3750)x+507 = 0.
Rotations by ±2π/3 around p give the remaining points in the tile. The point c and its images
c1, c2 form an equilateral triangle with side length 2x ≈ 0.2034.

1/8 centered at (±(1/4 − 1/16),±1/4). This size is chosen so their total perimeter is 2 and
equals the length of the boundary between the inner and outer regions.

The inner color change tile. This is used when two consecutive collinear edges have
different inner colors. In addition to the four squares of the previous case, there are four
smaller axis-parallel squares with side length 1/28 centered at (±(1/4− 1/56),±1/56). Each
square is colored in the inner color of the closest point in Gp. The size of the small squares is
chosen so that they can be individually enclosed using fences of total length 2×7×1/28 = 1/2,
which is the width of the inner region.

The outer color change tile. This is used when two consecutive collinear edges have
different outer colors. There are four axis-parallel squares of the inner color of Gp with side
length 3/32. Their centers are (±(1/4− 3/64),±1/4). The size of these squares is chosen so
that their total perimeter is 2− 1/2 = 3/2.

The bend tile. If two non-collinear edges meet at p, we use a bend tile. We place an

axis-parallel square with side length x = 6+
√
3

72 and center (−(1/4 − x/2), 1/4) and another

with side length y = 6−
√
3

48 and center (1/4 − y/2, 3/8). We place symmetric squares across
the symmetry line b. One of the outer objects has a concave corner q with exterior angle
2π/3. We place a parallelogram at this corner, of side length x, with two edges running along
the edges of the outer object. The boundary between the inner and the outer region has a

total length of (1 −
√
3
6 ) + (1 +

√
3
6 ) = 2. The inner objects are chosen such that the total
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perimeter of the two small squares, 8y = 1 −
√
3
6 , as well as the total perimeter of the three

larger objects, 12x = 1 +
√
3
6 , equals the length of the respective boundary on which these

objects abut.
The branch tile. This is used when p is a branch vertex. We place axis-parallel squares

of side length y = 6−
√
3

48 centered at (±(1/4−y/2), 3/8) and their rotations around p by angles
2π/3 and 4π/3. The boundary between the inner and the outer region has a total length of
6−
√
3

2 , and the total perimeter of the inner objects is also 24y = 6−
√
3

2 .
The clause tile. It is used for a clause vertex, and it is described in the caption of

Figure 8.

4.3 Solving the tiles locally

Let an instance I of GEOMETRIC 3-SAT be given together with a fence F . We will consider
the restriction of I to a polygon P , which is a tile or a part of a tile. In this way, we only have
to look at problems of constant size. The part of the fence F ∩ P inside P can be expressed
as a union of (not necessarily disjoint) closed curves and open curves with endpoints on the
boundary ∂P . An open curve must be contained in a larger closed curve of F that continues
outside P .

Note that F ∩ P has the property that if a path π ⊂ P connects two objects in P of
different color, then π intersects F ∩ P . We call a union of closed and open curves in P with
this property a solution to I ∩ P . Clearly, this is a necessary condition for a set of curves to
be extensible to a fence F for the full instance. In the following, we analyze the solutions to
the tiles defined in Section 4.2, and we characterize the solutions of minimum cost. We say
that two closed curves (disjoint from the interiors of the objects) are homotopic if one can
be continuously deformed into the other without entering the interiors of the objects. Two
open curves with endpoints on the boundary of the tile are homotopic if they can be extended
outside the tile to two homotopic closed curves.

The following lemma characterizes the optimal solutions to each type of tile. The statement
is that if a solution is not too much more expensive than the solutions shown in Figure 9,
then it will contain curves homotopic to each curve in one of the solutions in the figure.

Lemma 5. Figure 9 shows optimal solutions to each kind of tile. The cost in each case is:

• Straight tile: 2.

• Inner color change tile: 5/2.

• Outer color change tile: 2 +
(

2√
3
− 1

2

)
≈ 2.65.

• Bend tile: 2.

• Branch tile: 6−
√
3

2 ≈ 2.13.

• Clause tile: M ≈ 3.51. (The value M is specified in Lemma 6. The exact algebraic
expression is complicated and of no importance.)

Moreover, if the cost of a solution F to a tile T exceeds the optimum by less than 1/50,
then F is homotopic to one of the optimal solutions F∗ of T in the following sense: For each
curve π∗ in F∗, there is a curve π in F homotopic to π∗. If π∗ is a closed curve, the distance
from any point on π to the closest point on π∗ is less than

√
(1/8 + 1/100)2 − (1/8)2 < 0.06.

If π∗ is an open curve and π∗ has an endpoint f∗, there is a corresponding endpoint f of π
with ‖f∗f‖ < 1/10.
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Figure 9: The optimal solutions to each type of tile. The edges in Gp are shown in dashed
grey. The left solution of each of the first five types of tiles is the outer solution, and the
right solution is the inner solution, as explained in Figure 6. For the clause tile, we call
the solutions the z-outer, x-outer, and y-outer solution from left to right, according to the
dominant territory.
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Figure 10: Left: A square of side length 1/8. The red curve encloses all curves of length at
most 1/2 + 1/50 that enclose the square. One such curve with maximum deviation from the
boundary of the square is drawn in black. The red curve consists of eight elliptic arcs. Middle
and right: A solution to the straight tile in the outer resp. inner state with a cost that exceeds
the optimum by 1/50.

Proof. We assume again that the origin is at the center p = (0, 0) of the tile T , and we assume
that the orientation and colors are as in Figure 8.

Consider first the case that T is any of the tiles except the clause tile. Gp consists of the
two or three half-edges of G(Φ) meeting at p, and it separates T into two or three pieces. The
pieces are two pentagons for the straight, inner color change, and outer color change tiles; a
pentagon and a non-convex heptagon for the bend tile; and three pentagons for the branch
tile. We consider each such piece T ′ separately and check the minimum cost of a solution
to T ′. It is easy to verify that for each such piece T ′, there are two solutions, and they are
exactly as shown in Figure 9. One solution corresponds to the outer state and the other to
the inner state, and in order to be combined to a solution for all of T , each of the two or
three pieces T ′ needs to be in the same state. It therefore follows that the solutions shown in
Figure 9 are all the optimal solutions.

One can in a similar way verify that any solution F that is not homotopic to an optimal
solution has a cost that exceeds the optimal cost by more than 1/50. Consider therefore a
solution F whose cost exceeds the cost of a homotopic optimal solution F∗ by less than 1/50.
In order to decide how much F can deviate from F∗, consider the straight tile as an example,
see Figure 10. In the outer state, each curve enclosing an inner object has length at least
1/2. Since the total cost is less than 2 + 1/50, each curve has length less than 1/2 + 1/50.
An elementary analysis gives that a closed curve of length at most 1/2 + 1/50 which encloses
a square of side length 1/8 is within distance

√
(1/16 + 1/100)2 − (1/16)2 < 0.04 from the

boundary of the square. For the inner state, consider the curve π ⊂ F in the right side of the
tile that has the inner objects to the left. The length of π has to be less than 1+1/50 in order
for the total cost to be less than 2 + 1/50. Note that π has to pass through the upper right
corner (1/4, 5/16) of the upper right square. Therefore, π has to meet the top edge of T at
a point within distance

√
(3/16 + 1/50)2 − (3/16)2 < 0.09 from the corresponding endpoint

(1/4, 1/2) of π∗. The other non-clause tiles are analyzed in a similar way.
The analysis of the clause tile is unfortunately not so simple, since one does not get a

solution to the complete tile by combining optimal solutions of smaller pieces. The proof has
been deferred to Lemma 6 and relies on an extensive case analysis.

The largest possible deviation between a closed curve in F and F∗ appears for the clause
tile, since it contains an inner object with the longest edge of all tiles, namely a triangle with
an edge of length 1/4. This leads to a deviation of less than

√
(1/8 + 1/100)2 − (1/8)2 < 0.06.

Likewise, the largest possible deviation between open curves is 1/10, as realized in the clause
tile and described in Lemma 6.
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It remains to analyze the optimal solutions of the clause tile. We name objects in the
clause tile as shown in Figure 11. Indices are taken modulo 3. The optimal solutions are
covered by Case 2.3 in the proof.

Labels Case 1.1

Case 1.2 (and 1.3) Case 1.4

Figure 11: Labels used in Lemma 6, and illustrations for Case 1.

Lemma 6. The cost of a solution F to a clause tile is at least M := 3‖d0c0‖ + 6‖e0b0‖ +
4‖a0b0‖+ 2‖b0c0‖+ ‖c0c1‖ ≈ 3.51.

Moreover, if the cost is less than M +1/50, then there is i ∈ {0, 1, 2} such that F contains
the following, not necessarily disjoint parts (see Figure 13, Case 2.3 for an illustration of the
case i = 0):

• a curve from fi ∈ aia′i to bi, where ‖fiai‖ < 1/10,

• a curve from f ′i ∈ aia′i to b′i, where ‖f ′ia′i‖ < 1/10,

• a curve from fi+1 ∈ ai+1a
′
i+1 to bi+1, where ‖fi+1ai+1‖ < 1/10,

• a curve from f ′i+1 ∈ ai+1a
′
i+1 to b′i+1, where ‖f ′i+1a

′
i+1‖ < 1/10,

• a curve from ci+1 to ci+2,

• a curve from ci to b′i+2,

• a curve from ci+2 to bi+2.

Proof. Clearly, F must contain segments dici, eibi, and eib
′
i+2 on the shared boundary of two
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objects of different color, for i = 0, 1, 2. In total, this amounts to 3‖d0c0‖ + 6‖e0b0‖. In the
following, we argue about the fence needed in addition to that, i.e., the part of F contained
in the closed 15-gon T ′ = a0a

′
0b
′
0c1b1a1a

′
1b
′
1c2b2a2a

′
2b
′
2c0b0. We characterize how the solution

looks when the additional cost in T ′ is at most the critical threshold

4‖a0b0‖+ 2‖b0c0‖+ ‖c0c1‖+ 0.02 = 4× 0.24 + 2× 0.25 + 2x+ 0.02 < 1.684,

with the quantity x that was defined in Figure 8. When we say that the solution must contain
a curve or a tree with certain properties (such as connecting two specific points), we mean
such a curve or tree inside T ′.

We define a domain as a connected component of a territory inside a tile. Two different
domains might conceivably be connected outside the tile, but we are interested only in the
local situation. For this definition, we also don’t consider the common point ei+1 of objects
O′i and Ii+1 as providing a connection between them. We only consider connections in T ′.
Since a territory is a closed set by definition, the interior of a domain might be disconnected.

We define the cases by specifying which objects are in the same domain. After making
enough assumptions in one branch of the case analysis, we will conclude that the solution
must connect certain groups of points. In most cases, this allows us to derive a lower bound
on the cheapest solution, which is above 1.684. In the case that contains the optimal solution,
all objects of different colors will be separated, and then we state what the solutions satisfying
the specific assumptions are.

The shortest connection network for a specified set of terminal points is a geodesic variation
of the geometric Steiner tree problem, where the network is constrained to lie in the region T ′.
It is usually easy to see what the shortest connection network is, using geometric criteria such
as that an angles less than 2π/3 between incident edges is forbidden unless they are blocked
by an object. We will often refer to the Fermat point F of three given points A,B,C: the
point minimizing the sum of distances to the tree points. If all angles in the triangle ABC
are less than 2π/3, F lies in the interior of this triangle. The three segments to FA,FB,FC
make equal angles 2π/3 at F and they form the minimal Steiner tree of A,B,C. We have
used the Geogebra software [13] to construct the solutions and estimate their costs, and also
for producing the illustrations. We will report the costs rounded to three digits; this precision
is sufficient for the comparisons.

Note first that for i = 0, 1, 2, in order to separate Oi from Ii, the solution must contain a
curve (in T ′) starting at bi that has a length of at least 0.24, and similarly one from b′i in order
to separate O′i from I ′i. The prefixes of length 0.24 of these six curves are disjoint. We can
therefore charge 0.24 to each bi and b′i, unless this point is already connected otherwise. The
shortest possible cost of 0.24 arises when bi is connected to ai and b′i to a′i. All possibilities
of a different structure (for example, connecting bi, b

′
i with each other or to ci and ci+1,

respectively) cost at least 0.25.
In the discussion of the cases it will often happen that an object Ii or I ′i is in a different

domain than all other objects of the same color. In this case, we say that Ii or I ′i is isolated.

Proposition 1.

• If the object Ii is isolated, the solution must contain a curve from bi to ci inside the tile.

• If the object I ′i is isolated, the solution must contain a curve from b′i to ci+1 inside the
tile.

Proof. If Ii is isolated, it is separated from all other objects in the tile, of whatever color.
Thus there must be curve between bi and ci within the tile, or two curves that go from bi
and ci to the boundary and continue outside. The second case is excluded by the following
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calculation: The shortest connection from ci to the boundary has length ≈ 0.441. To this, we
have to add 6× 0.24 = 1.44 for connecting b0, b

′
0, b1, b

′
1, b2, b

′
2, and this is far more than 1.684

in total.
The statement about I ′i is analogous.

We now start the case distinction.

Case 1: For some i, neither Oi and O′i nor Ii and I ′i are in a domain together.
Without loss of generality, suppose that the condition holds for i = 0. We consider the
solution F restricted to the hexagon H = a0a

′
0b
′
0c1c0b0. The condition implies that the left

side a′0b
′
0c1 must be separated from the right side a0b0c0, and therefore there must be a

connected component F of F ∩ H that connects a0a
′
0 and c0c1. The individual cases are

shown in Figure 11.

Case 1.1: F also separates O0 from I0 and O′0 from I ′0 inside H. Then F contains
b0 and b′0. The shortest connected system of curves that connects b0, b

′
0, a0a

′
0 and c0c1 is a

Steiner minimal tree with vertical edges meeting a0a
′
0 and c0c1. There are many such trees

with same cost, which is ≈ 0.874. Adding the 4× 0.24 = 0.96 charged to b1, b
′
1, b2, b

′
2, we get

much more than 1.684.

Case 1.2: F separates O0 from I0 inside H, but not O′0 from I ′0. Then F must contain
b0, and it has minimal length if F = a0b0∪ b0c0, which costs exactly 0.49. In addition to that,
we have 5× 0.24 = 1.2 charged to b′0, b1, b

′
1, b2, b

′
2, and the total is 1.69 > 1.684.

Case 1.3: F separates O′0 from I ′0 inside H, but not O0 from I0. This is symmetric
to Case 1.2.

Case 1.4: F separates neither O0 from I0, nor O′0 from I ′0 inside H. In this case, F
has cost at least ≈ 0.441, which is the distance between a0a

′
0 and c0c1, and F contains neither

b0 nor b′0. In addition, 6× 0.24 = 1.44 is charged to bi, b
′
i, . . ., which in total is far more than

1.684.

Case 2: For every i, Oi and O′i or Ii and I ′i are in a domain together. We divide
into subcases according to the number c of values of i for which Ii and I ′i are in the same
domain.

Case 2.1: c = 0. In this case, Oi and O′i are in the same domain for each i, and Ii and I ′i
are in different domains. The subcases are shown in Figure 12.

Case 2.1.1: For no i, Oi∪O′i is in a domain with Ii+1 or I ′i+1. In this case, each object
Ii and I ′i is isolated. Therefore, by Proposition 1, the solution contains curves from bi to ci
and from b′i to ci+1 for each i. Furthermore, there must be a curve from bi to b′i bounding the
domain containing Oi ∪ O′i. It follows that the solution connects any two of the nine points⋃2

i=0{bi, b′i, ci}. The cheapest solution that satisfies this is
⋃2

i=0(bici ∪ b′ici+1 ∪ cip), which has
cost ≈ 1.852 > 1.684. This is in fact the most expensive of all cases. All other solutions
provide only a subset of these connections.
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Figure 12: Case 2.1. Each pair Oi, O
′
i is in the same domain, and Ii, I

′
i are in different domains.

Case 2.1.2: For some i, Oi ∪ O′i is in a domain with I ′i+1. Assume without loss of
generality that O0 ∪O′0 is in a domain with I ′1. The boundary of this domain contains

a) a curve connecting b′0 and b′1 and

b) a curve connecting b0 and c2.

The mentioned domain separates I ′0 from the remaining green objects, and I2 and I ′2 from the
remaining blue objects. For this reason, these objects are isolated, and the solution contains

c) a curve connecting b′0 and c1,

d) a curve connecting b2 and c2, and

e) a curve connecting b′2 and c0.

By the combined assumptions of Case 2.1 and 2.1.2, I1 is isolated, and therefore the solution
contains

f) a curve connecting b1 and c1.

Summarizing, it follows that the solution contains

• a component connecting b′0, c1, b1, b
′
1, by (a), (c), and (f),

• a component connecting b0, c2, b2, by (b) and (d), and
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• a component connecting b′2 and c0, by (e).

These components are not necessarily three distinct components. The optimal solution under
these constraints consists of segments from b1, b

′
1, c1 to their Fermat point and the segments

b0c0, b
′
0c1, b

′
2c0, c0c2, b2c2, and it has cost ≈ 1.848 > 1.684.

Case 2.1.3: For no i, Oi ∪O′i is in a domain with I ′i+1, but for some i, Oi ∪O′i is in
a domain with Ii+1. Since each I ′i is isolated, the solution must connect each pair b′i, ci+1.
Assume without loss of generality that O0∪O′0 is in a domain with I1. There must be a curve
connecting b0 and b1 on the boundary of this domain.

Case 2.1.3.1: O1 ∪ O′1 is in a domain with I2. There is a curve bounding this domain
connecting b1 and b2. There is thus a component connecting the three points b0, b1, b2. The
shortest solution that also contains curves between all pairs b′i, ci+1 is

⋃2
i=0(bip∪b′ici+1), which

has total cost ≈ 1.832 > 1.684.

Case 2.1.3.2: O1∪O′1 is not in a domain with I2 (and with I ′2). There is a curve from
b1 to b′1, bounding the domain of O1 ∪O′1, and this curve can be continued from b′1 to c2, and
from c2 to b2 (because of the isolated object I2). Thus, as in the previous Case 2.1.3.1, but
for a different reason, we must have a curve connecting b1 and b2, and therefore the solution
cannot be better than that solution.

The shortest solution that has all necessary connections consists of segments from b0, b1, c2
to their Fermat point and the segments b′0c1, b

′
1c2, b2c2, b

′
2c0, and it has cost ≈ 1.835 > 1.684.

This “optimal solution” violates the assumptions defining this case, as the domain containing
O1 ∪O′1 intersects I2 at the point c2, so they are in the same domain. This solution actually
falls under Case 2.1.3.1. Thus, properly speaking, there is no optimal solution for Case 2.1.3.2.
By modifying the solution near c2, one can obtain solutions for this case that are arbitrarily
close to the infimum, but the infimum is not attained.

Case 2.2: c = 1. Assume without loss of generality that I0 and I ′0 are in the same domain,
but I1 and I ′1 are in different domains, and so are I2 and I ′2. By the assumption of Case 2, we
also know that O1 and O′1 are in the same domain, as are O2 and O′2. The domain of I0 ∪ I ′0
separates O0 and O′0 from I1 and I ′1, so I1 and I ′1 are isolated, and the solution must contain
a curve connecting b1 and c1 and one connecting b′1 and c2.

In order to separate I0 ∪ I ′0 from O0 and O′0, the solution either contains a curve from b0
to b′0 or curves from b0 and b′0 to the boundary segment a0a

′
0. We consider the latter option,

which is 0.02 cheaper. It will follow from the analysis that even this is too expensive to get
below M + 0.02. The alternative choices of connecting b0 and b′0 also don’t interfere with the
optimal connections between the remaining points.

The individual cases are shown in Figure 13.

Case 2.2.1: O1 ∪ O′1 is not in a domain with I2 or I ′2. The solution contains a curve
from b1 to b′1 bounding the domain containing O1 ∪ O′1. In addition, since I2 and I ′2 are
isolated, there must be curves between b2 and c2 and between b′2 and c0. It follows that the
solution contains a tree connecting b1, c1, c2, b

′
1, b2.

The cheapest such solution is a0b0 ∪ a′0b′0 ∪ b1c1 ∪ c1c2 ∪ b′1c2 ∪ b2c2 ∪ b′2c0, which has cost
M + 0.02. The difference to the optimal solution of Case 2.3 is that the two segments b1a1
and b′1a

′
1 of length 0.24 are replaced by b1c1 and b′1c2, each of length 0.25. This “second-best”

solution is the reason we have chosen the threshold 0.02 in the lemma.
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Figure 13: Cases 2.2.1–2.4.: I0 and I ′0 are in the same domain.

Note that the domain containing O1 ∪ O′1 intersects I2 at the point c2. We have the
same situation as above in Case 2.1.3.2: The “optimal solution” can be obtained as a limit of
solutions that fall under Case 2.2.1, but the limit itself violates the assumptions defining this
case. This solution actually belongs to Case 2.2.3, and we will revisit it there.

Case 2.2.2: O1∪O′1 is in a domain with I ′2. The solution contains a curve connecting b1
and c0 and one connecting b′1 and b′2 bounding that domain. It also contains a curve connecting
b2 and c2, since I2 is isolated. The optimal solution consists of segments from b2, b

′
2, c2 to their

Fermat point and segments a0b0, a
′
0b
′
0, b1c1, b

′
1c2, c0c1, and it has cost ≈ 1.831 > 1.684.

Case 2.2.3: O1 ∪ O′1 is in a domain with I2. The solution contains a curve connecting
b1 and b2, and one connecting b′2 and c0, since I ′2 is isolated. In the cheapest solution, the
domain containing O1 ∪O′1 ∪ I2 collapses to zero width at c2, and the solution was described
in Case 2.2.1.

Case 2.3: c = 2. Assume without loss of generality that I0 and I ′0 are in the same domain,
as are I1 and I ′1. Furthermore, I2 and I ′2 are separated, but O2 and O′2 are together. As in
Case 2.2, we assume that b0, b

′
0, b1, b

′
1 are all connected to the boundary. Otherwise, the cost
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of the solution will increase by at least 0.02, and as the analysis will show, that is too much
to stay below M + 0.02.

The domain containing I1 ∪ I ′1 separates O1 and O′1 from I2 and I ′2. It follows that
I2 and I ′2 are isolated, and the solution connects b2 with c2 and b′2 with c0. Likewise, the
domain containing I0 ∪ I ′0 separates O0 and O′0 from I1 and I ′1. Hence, the boundary of the
domain containing I1 ∪ I ′1 contains a curve connecting c1 and c2. The cheapest solution is
a0b0 ∪ a′0b′0 ∪ a1b1 ∪ a′1b′1 ∪ b2c2 ∪ b′2c′0 ∪ c1c2, as shown in Figure 13, and the cost is M . This
is the best solution among all cases.

The segment a0b0 can be substituted by a curve from f0 ∈ a0a′0 to b0, while keeping the
cost below M + 0.02, if and only if ‖f0a0‖ <

√
(0.24 + 0.02)2 − 0.242 = 0.1. Likewise for

the other segments with an endpoint on the boundary of T . These are exactly the solutions
described in the lemma.

Case 2.4: c = 3. The cheapest way to connect the points bi and b′i is to connect all of them
to the boundary. Furthermore, the solution contains a curve connecting ci and ci+1 for each
i, bounding the domain containing Ii∪I ′i. The cheapest such solution is

⋃2
i=0(aibi∪a′ib′i∪cip)

as shown in Figure 13, which has cost 1.792 > 1.684.

Theorem 2. The problem GEOMETRIC 3-CUT is NP-hard.

Proof. Let an instance (Φ, G(Φ)) of COLORED TRIGRID POSITIVE 1-IN-3-SAT be given
and construct the tiles on top of G(Φ) as described. Let T be the set of tiles and A the area
that the tiles cover (i.e., A is a union of the hexagons). We will cover any holes in A with
completely red tiles, and place red tiles all the way along the exterior boundary of A. Let
R be the set of these added red tiles and let I be the resulting instance of GEOMETRIC
3-CUT. It is now trivial how to place the fences in I everywhere except in the interior of A.

Consider a fence F to the obtained instance with cost M . Let M∗ be the sum of the cost
of an optimal solution to each tile in T plus the cost of the fence that must be placed along
the boundaries of the added red tiles in R. We claim that if Φ is satisfiable, then a solution
realizing the minimum M∗ exists. Furthermore, if M < M∗ + 1/50, then Φ is satisfiable.

Suppose that Φ is satisfiable and fix a satisfying assignment. Consider a clause tile where
Ex, Ey, and Ez meet. Now, we choose the v-outer state, where v ∈ {x, y, z} is the variable
that is satisfied. For each non-clause tile that covers a part of Ew for a variable w of Φ, we
choose the outer state if w is true and the inner otherwise. It is now easy to see that the
curves form a fence of the desired cost.

On the other hand, suppose that M < M∗ + 1/50. It follows that in each tile in T , the
cost exceeds the optimum by at most 1/50. Hence, the solution in each tile is homotopic to
one of the optimal states as described in Lemma 5. We now claim that the states of all tiles
representing one variable must agree on either the inner or outer state. Consider two adjacent
tiles where one is in the inner state. There are open curves with endpoints on the shared edge
of the two tiles with a distance of more than 1/2− 2 · 1/10 = 3/10. The other tile cannot be
in the outer state, because then there would have to be an extra open curve of length at least
3/10 to connect those endpoints. It follows that the other tile must also be in the inner state.
Thus, both tiles are either in the inner or in the outer state, as desired.

We now describe how to obtain a satisfying assignment of Φ. Consider a clause tile where
Ex, Ey, and Ez meet and suppose the tile is in the x-outer state. It follows from the above
that each tile covering Ex is in the outer state or, in the case of the clause tile, in the x-outer
state. Similarly, each non-clause tile covering only Ey (resp. Ez) is in the inner state and each
clause tile covering a part of Ey (resp. Ez) is not in the y-outer (resp. z-outer) state. We now
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Figure 14: An object O and an inner approximation O′ ⊂ O.

set x to true and y and z to false and do similarly with the other clause tiles, and it follows
that we get a solution to Φ.

So far, we have described the construction geometrically. Since regular hexagons are
involved, this requires irrational coordinates. We will now approximate each object O from
inside by an object O′ with rational coordinates. For this purpose, we replace every corner
v by a substitute v′ ∈ O with ‖vv′‖ < 1

200n . See Figure 14 for an example. If v is a concave
corner, like v3 in the example, we require that the closest point to v′ on the boundary should
be the point v. This restricts v′ to an angular region between two normals to the edges
incident to v.

Since the objects in our instance have no sharp angles (the smallest angle b0c0e0 ≈ 24◦

occurs in the clause tile) and there is only one concave angle of size 2π/3, namely in the bend
tile, there is plenty of room for choosing the points v′, and it is easy to find points with small
rational coordinates. In fact, we can choose all coordinates be multiples of 1

2000n , so that they
require only logarithmically many bits.

This results in an instance I ′ where all objects are subsets of corresponding objects in I.
Let C and C ′ be the cost of the optimal solutions to I and I ′, respectively, and note that
C ′ ≤ C, as any solution to I is also a solution to I ′. We claim that C < C ′+ 1/100. To prove
this, consider a solution F ′ to I ′. If F ′ contains parts in the interior of an object O of I, we
move these parts to the boundary of O as follows.

Let O′ ⊆ O be the object in I ′ corresponding to O, see Figure 14. Let v0, . . . , vk−1 be
the vertices of O in clockwise order and v′0, . . . , v

′
k−1 the corresponding vertices of O′. In the

following, indices will be taken modulo k. For each point v′i, define the closest point pi on
vi−1vi and the closest point qi on vivi+1. With these points, we form quadrilateral edge regions
Ei := vivi+1pi+1qi+1.

We now describe the modification we make on F ′ in order to avoid O. If F ′ intersects
some edge region Ei, we project each point in F ′ ∩ Ei to the closest point on vivi+1. This
does not increase the length of the curve. However, this may disconnect the fence when it
winds around a corner between v′i and vi. For this purpose, we add a cap pivi ∪ visi around
each convex vertex vi. Parts of the fence F ′ close to the corners which are inside O but not
in one of the edge regions Ei are simply discarded. The caps ensure that no connectivity is
lost. We perform these operations for every object.

The modifications of F ′ made to avoid the objects of I do not increase the length, except
for the added caps, which have total length less than n× 1

100n = 1
100 . Hence, C < C ′+ 1/100.

Let M ′ := d100M∗e
100 , so that M ′ is rational and M∗ ≤ M ′ < M∗ + 1/100. We conclude by
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observing that if C ′ ≤ M ′, then C < C ′ + 1/100 < M ′ + 1/100 < M∗ + 1/50, and thus Φ is
satisfiable. On the other hand, if Φ is satisfiable, then C ′ ≤ C = M∗ ≤M ′. We can thus tell
whether Φ is satisfiable or not by evaluating whether C ′ ≤M ′.

5 Approximation Algorithm

The approach for k = 2 from Section 3 does not extend to k ≥ 3 because Lemma 3 does not
apply: The arrangement A (formed by the free segments between the corners N of the input
objects) is no longer guaranteed to contain an optimal fence, see Figure 2. However, we can
follow the approach of Section 3 and still hope to get an approximate solution in A: We show
that the optimal fence FA contained in A has a cost which is at most 4/3 times higher than
the true optimal fence F ∗ (Section 5.1). We construct a corresponding lower-bound example
with |FA| > 1.15 · |F ∗|. (This factor is the conjectured Steiner ratio, see Section 5.2.)

This reduces the problem to a graph-theoretic problem: the colored multiterminal cut
problem in the weighted dual graph G = (V,E) of A. We have terminals of k ≥ 3 different
colors and want to make a cut that separates every pair of terminals of different colors. This
problem is NP-hard, but we can use approximation algorithms, see Section 5.3.

5.1 Upper bound |FA|/|F ∗| ≤ 4/3

Theorem 3. |FA| ≤ 4/3 · |F ∗|.

Proof. By Lemma 1 and Lemma 2, we know that after cutting an optimal fence F ∗ at all
points of N , the remaining components are Steiner minimal trees with leaves in N and internal
Steiner vertices of degree 3, where three segments make angles of 2π/3.

Consider such a Steiner tree T (Figure 15a). Since T is embedded in the plane, the leaves
can be enumerated in cyclic order as v1, . . . , vm. We will replace T by a connected system T̄
of fences that connects the same set of leaves v1, . . . , vm, but contains only segments from the
arrangement A. Furthermore, we prove that the total length of T̄ is bounded as |T̄ | ≤ 4

3 |T |.
Thus, carrying out this replacement for every Steiner tree leads to the fence FA of the desired
cost. If T consists of a single segment, we define T̄ to be the same segment, in which case
trivially |T̄ | ≤ 4

3 |T |. Assume therefore that T has at least one Steiner vertex.
Let Tij be the path in T from vi to vj . For each pair {i, j}, we define the path T̄ij as the

shortest path with the properties that

a) T̄ij has endpoints vi and vj , and

b) T̄ij is homotopic to Tij : this means that Tij can be continuously deformed into T̄ij while
keeping the endpoints fixed at vi and vj , without entering the interiors of the objects.

It is clear that

c) T̄ij is contained in the arrangement A, and

d) T̄ij is at most as long as Tij .

We will construct T̄ as the union of paths T̄ij that are specified by a certain set S of leaf
pairs {i, j}, and we will show that its total length is bounded |T̄ | ≤ 4

3 |T |. The fact that FA
is a valid fence is ensured by our choice of the set S, which we will now discuss.

If we overlay all paths Tij for {i, j} ∈ S, we get a multigraph T̃ , which has the same
vertices as T and uses the edges of T , some of them multiple times. We require these three
properties:
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Figure 15: (a) a Steiner tree T with 5 terminals v1, . . . , v5, which is part of a larger fence
system F ∗. Steiner vertices are white, leaves are black. (b) The transformed graph T̄ , formed
as the union of three shortest homotopic paths T̄15, T̄24, and T̄35.

1. Every edge of T is used once or twice in T̃ .

2. Every Steiner vertex of T has even degree (4 or 6) in T̃ . (By contrast, the degree in T
is always 3.)

3. Any two paths Tij and Ti′j′ that have a point of T in common must cross in the following
sense: If we assume, by relabeling if necessary, that i < j and i′ < j′, then i ≤ i′ ≤ j ≤ j′
or i′ ≤ i ≤ j′ ≤ j.

Two paths that share a common endpoint cross always. Thus, the last property poses a
constraint only when the two paths have four distinct endpoints altogether. This property is
important to ensure that T̄ is indeed connected, and that replacing T by T̄ results in a valid
fence. Although this is intuitively obvious, we could not come up with a short and elegant
argument. We use the following lemma and its corollary, whose proofs are given later on. For
a path P and points x, y ∈ P , we denote by P [x, y] the subpath of P from x to y. To make
this notation unambiguous even if P is not simple, we will assume that the points x, y are
associated to particular parameter values along the parameterization of P .

Lemma 7. Suppose that the paths Tij and Ti′j′ cross in the sense of Property 3. Then there
exists a point x̄ ∈ T̄ij ∩ T̄i′j′ such that the path

T̄ij [vj , x̄] ∪ T̄i′j′ [x̄, vi′ ]

is homotopic to the path Tji′.

Corollary. For any two leaves vi and vj, where the pair {i, j} is not necessarily in S, the set
T̄ contains a path from vi to vj that is homotopic to the path Tij.

As a consequence, after replacing T by T̄ in F ∗, we get a system of fences F ′ that encloses
and separates the same objects as F ∗, and thus we have indeed produced a valid fence.

Proof of the corollary. Let the vertices of Tij be x0, x1, . . . , xp+1 in order, such that x0 := vi
and xp+1 := vj . For each m = 0, 1, . . . , p, we select, by Property 1, a path Tkmlm with
{km, lm} ∈ S that goes through the directed edge xmxm+1 on the way from vkm to vkl . This
leads to a sequence of paths Tk0l0 , Tk1l1 , . . . , Tkplp , where k0 = i, lp = j, and any two successive
paths Tkm−1lm−1 and Tkmlm have the point xm in common, and hence cross, by Property 3.
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Lemma 7 implies that also the corresponding paths T̄km−1lm−1 and T̄kmlm have a common
point x̄m such that

Ūm := T̄km−1lm−1 [vlm−1 , x̄m] ∪ T̄kmlm [x̄m, vkm ]

is homotopic to Um := Tlm−1km . Now, define the paths

W := Tk0l0 ∪ U1 ∪ Tk1l1 ∪ U2 ∪ . . . ∪ Up ∪ Tkplp and W̄ := T̄k0l0 ∪ Ū1 ∪ T̄k1l1 ∪ Ū2 ∪ . . . ∪ Ūp ∪ T̄kplp .

The path W is homotopic to Tij , at it has the same endpoints and is obtained by joining
paths in the simple tree T . Also, W and W̄ are homotopic, as the corresponding subpaths
are homotopic. The path W̄ is thus homotopic to Tij , and W̄ is contained in T̄ , so we are
done.

Proof of Lemma 7. We first describe how Tij can be continuously deformed into T̄ij while
remaining a polygonal path, moving one vertex at a time. We denote by T̂ij the current path
during this deformation procedure.

Consider the case that T̂ij has a vertex b which is not in the set of corners N . Let a
and c be the neighboring vertices. We then move b towards c, thus shortening the edge bc
while the edge ab sweeps over a region in the plane. If ab hits the corner of an object, T̂ij
gets a new vertex a′ at this point. The segment aa′ will then remain static, and we continue
the movement of b with a′ taking the role of a. When b eventually reaches c, the number of
vertices of T̂ij that are not in N has decreased by 1. We repeat this process of contracting
edges as long as there is a vertex not in N . Note that it is possible that the path crosses itself
during the deformation, or it may have a vertex where it turns 180◦ back on itself. Such a
vertex is known as a spur, and it can be easily eliminated by moving it to the closest adjacent
vertex.

(For establishing Theorem 3, we could already stop the deformation procedure as soon as
all vertices of T̂ij are in N and T̂ij is free of spurs, because T̂ij is contained in A and is at most
as long as Tij , thus satisfying properties (c) and (d).) If T̂ij is not yet the shortest homotopic
path, it must contain three consecutive vertices abc such that the angle at b contains no object.
In this case we can start the same deformation move from b towards c as above. Temporarily,
the vertex b is an additional vertex not in N , but after the move, T̂ij is again a path connecting
vertices of N . Since the number of such paths that are not longer than the initial path Tij is
finite, the procedure must eventually terminate with the shortest homotopic path T̄ij .

We successively apply this procedure to the pairs ij and i′j′. We still have to prove the
existence of a point x̄ ∈ T̄ij ∩ T̄i′j′ with the property stated in the lemma. We assume that
the four corners vi, vj , vi′ , vj′ are distinct because otherwise the statement follows easily if we
choose a shared endpoint as x̄.

The proof uses that fact that the number of crossings between the paths T̂ij and T̂i′j′ can
only change by an even number during a deformation. The definition of a crossing requires
some care, as the paths may share segments. Assume that T̂ij is the path that is currently
being deformed, while T̂i′j′ is either the initial path Ti′j′ or the final deformed path T̄i′j′ .

Orient the paths T̂ij and T̂i′j′ arbitrarily. Consider a maximal subpath Q that is shared

between T̂ij and T̂i′j′ , possibly in opposite directions. If T̂ij enters and leaves Q on the same

side of T̂i′j′ , we say that T̂ij touches T̂i′j′ at Q. Otherwise, T̂ij and T̂i′j′ form a crossing at

Q. Here it is important that T̂i′j′ has no spurs, since at a spur, the side on which T̂ij enters

or leaves T̂i′j′ is ill-defined. If Q contains an endpoint q of one of the paths, we extend this

path into the interior of the object in order to determine the side of T̂i′j′ on which T̂ij enters
or leaves Q at q.
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Figure 16: A subtree U rooted at u and two possible solutions. The first solution is considered
for computing U1 and the second one for U2.

A crossing Q of T̂ij and T̂i′j′ is a homotopic crossing if it has the desired property for

the lemma, namely that T̂ij [vj , x̂] ∪ T̂i′j′ [x̂, vi′ ] for x̂ ∈ Q is homotopic to Tji′ . Clearly, this
does not depend on the choice of x̂ ∈ Q, because Q is represented by a connected interval of
parameters, both on T̂ij and T̂i′j′ .

When T̂ij is deformed by moving one vertex at a time, as described above, it is easy to
see that crossings can only appear or disappear in pairs: It is not possible for a crossing Q to
appear or disappear by T̂ij sliding over an endpoint q′ of T̂i′j′ , since that would require T̂ij to
enter the interior of the object with q′ on the boundary.

Furthermore, a pair of crossings Q1, Q2 that appear or disappear will either both be
homotopic crossings or non-homotopic crossings: At the moment when the pair appears or
disappears, the loop formed by the subpaths of T̂ij and T̂i′j′ between Q1 and Q2 is empty and

thus contains no objects. Therefore, if x̂1 ∈ Q1 and x̂2 ∈ Q2, the paths T̂ij [vj , x̂1]∪ T̂i′j′ [x̂1, vi′ ]
and T̂ij [vj , x̂2] ∪ T̂i′j′ [x̂2, vi′ ] are homotopic.

During the deformation of T̂ij , each crossing Q can move back and forth on T̂i′j′ , expand
and shrink. However, it is clear that its character (homotopic versus non-homotopic) does
not change during the deformation.

The initial number of crossings is 1, and the single crossing Q is a homotopic crossing,
since Tji′ can be realized as a path T̂ij [vj , x̂] ∪ T̂i′j′ [x̂, vi′ ] for x̂ ∈ Q. Hence the number of
homotopic crossings of T̄ij and T̄i′j′ is odd, and in particular positive, which establishes the
claim.

To bound the length of T̄ , we bound each path T̄ij , {i, j} ∈ S, by the corresponding path
Tij in T . This upper estimate is simply the total length of T plus the length of the duplicated
edges of T .

Our first task is to construct the multigraph T̃ . By Property 1, this boils down to selecting
which edges of T to duplicate. In order to fulfill Property 2, we require that the degree of
every inner vertex of T̃ becomes even. We now analyze this task from a purely combinatorial
viewpoint. We show later that this is sufficient to ensure that the edges of T̃ can be partitioned
into paths Tij subject to Property 3.

Lemma 8. The edges that should be duplicated can be chosen such that their total length is
at most |T |/3.

Proof. For a particular tree, the optimum can be computed easily by dynamic programming,
as follows. We root T at some arbitrary leaf. Consider a subtree U rooted at some vertex u
of T such that u has one child v in U , see Figure 16. We define U1 and U2 as the cost of the
optimal set of duplicated edges in U , under the constraint that the multiplicity of the edge
uv in T̃ is 1 and 2, respectively.
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By induction, we will establish that

2U1 + U2 ≤ |U |. (1)

This gives min{U1, U2} ≤ |U |/3 and proves the lemma, since this also holds for U = T . In
the base case, U has only one edge. Then U1 = 0 and U2 = ‖uv‖ = |U |, and (1) holds.

If U is larger, v has degree 3, and two subtrees L and R are attached there. If uv is not
duplicated, then exactly one of the other edges incident to v has to be duplicated in order for
v to get even degree in T̃ . On the other hand, if uv is duplicated, then either both or none
of the other edges should be duplicated. Hence, we can compute U1 and U2 by the following
recursion:

U1 = min{L1 +R2, L2 +R1} (2)

U2 = min{L1 +R1, L2 +R2}+ ‖uv‖ (3)

We therefore get

U1 ≤ L2 +R1 (4)

U1 ≤ L1 +R2 (5)

from (2) and

U2 ≤ L1 +R1 + ‖uv‖ (6)

from (3).
Adding inequalities (4–6) and using the inductive hypothesis (1) for L and R gives

2U1 + U2 ≤ 2L1 + L2 + 2R1 +R2 + ‖uv‖ ≤ |L|+ |R|+ ‖uv‖ = |U |.

The bound |T |/3 in Lemma 8 cannot be improved, as shown by the graph K1,3 with 3 edges
of unit length. This graph can appear as a Steiner tree in an optimal fence, see Figure 17.
(But this does not mean that the factor 4/3 in Theorem 3 cannot be improved.)

We now have a multigraph T̃ where every internal vertex has even degree. It follows that
the edges of T̃ can be partitioned into leaf-to-leaf paths, much like when creating an Eulerian
tour in a graph where all vertices have even degree.

We still need to satisfy Property 3. Whenever two paths P1 and P2 violate this property,
we repair this by swapping parts of the paths, without changing the number of remaining
violating pairs, as follows: The paths P1 and P2 have a common vertex, and thus also a
common edge uv, because the maximum degree in T is 3. Orient P1 and P2 so that they use
this edge in the direction uv, and cut them at v into P1 = Q1 · R1 and P2 = Q2 · R2. We
now make a cross-over at v, forming the new paths Q1 · R2 and Q2 · R1. These new paths
satisfy Property 3. To check that we did not create any new violations, we observe that, by
Property 1, no other path can use the edge uv, because the capacity of 2 is already used up
by P1 and P2. Thus, all other paths can either interact with Q1 and Q2, or with R1 and R2.
Swapping the parts of P1 and P2 in the other half of the tree T does not affect Property 3.

We have thus established Theorem 3.

5.2 Lower bound on |FA|/|F ∗|

We believe that the bound 4/3 of Theorem 3 on the approximation factor can be improved:
We have bounded |T̄ij | crudely by |Tij |, using only the triangle inequality, and we did not use
at all the fact that edges meet at angles of 2π/3.
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Figure 17: The core (left) and repeated (right) construction for the proof of Lemma 9.

We establish a lower bound of roughly 1.15 by constructing an example. Gilbert and
Pollack [11] conjectured that for any set of points in the plane, the ratio between the length
of a minimum spanning tree and the length of a minimum Steiner tree is at most 2√

3
≈ 1.15,

which is realized by the corners of an equilateral triangle. The current best upper bound is 1.21
by Chung and Graham [6]. We show a lower bound on the ratio |FA|/|F ∗| that corresponds
to the conjectured Steiner ratio.

Lemma 9. For every ε > 0, there is an instance of GEOMETRIC 3-CUT for which

|FA|
|F ∗|

≥ 2√
3
− ε > 1.15− ε.

Proof. The core idea is shown in Figure 17: Three very thin rectangles in different colors form
an equilateral triangle with side length

√
3. The optimal fence uses the center of the triangle

as a Steiner vertex, whereas the fence FA is restricted to follow the triangle edges. Considered
in isolation, this example gives only a ratio |FA|/|F ∗| ≈ (4

√
3)/(3 + 2

√
3) ≈ 1.07, because the

outer boundary edges, which are common to both fences, “dilute” the ratio.
So we set k = 1/ε, and repeat the construction k×k times. We get |F ∗| = 2k2 ·3+2k ·

√
3,

versus |FA| = 2k2 · 2
√

3 + 2k ·
√

3.

5.3 Finding a good fence in A

As in Section 3, the restriction to A reduces the optimal fence problem to a graph-theoretic
problem of finding a best multicut in a planar graph. We apply results from the literature.

The problem of finding a small cut in a planar graph G = (V,E) that separates k different
classes T1, . . . , Tk ⊂ V of terminals was mentioned as a suggestion for future work by Dahlhaus,
Johnson, Papadimitriou, Seymour, and Yannakakis [7], but we have not found any subsequent
work on that except for the case k = 2 [3]. We can, however, reduce the problem to the
multiway cut problem in general graphs (also known as the multiterminal cut problem): For
each class Ti, we add an “apex vertex” ti which is connected to all vertices in Ti by edges of
infinite weight. We then ask for the cut of minimum total weight that separates each pair
ti, tj . Dahlhaus et al. gave a (2−2/k)-approximation algorithm for the problem. In our setup,
the running time will be O(kn8 log n). The approximation ratio was since then improved
to 3/2 − 1/k by Călinescu, Karloff, and Rabani [4]. Finally, a randomized algorithm with
approximation factor 1.3438 was given by Karger, Klein, Stein, Thorup, and Young [14], who
also gave the best known bounds for various specific values of k. Together with Theorem 3,
we obtain the following result.
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Theorem 4. There is a randomized 4/3 ·1.3438-approximation algorithm and a deterministic
(2− 4

3k )-approximation algorithm for GEOMETRIC k-CUT, each of which runs in polynomial
time.

6 Concluding Remarks

We have initiated the study of the geometric multicut problem. As our NP-hardness reduction
does not imply APX-hardness, an interesting open question is whether there exists a (1 + ε)-
approximation algorithm for any ε > 0.

There are other versions of the problem that could also be interesting to study. For
example, apart from considering shortest paths in the plane, much attention has also been
paid to minimum-link paths, i.e., paths connecting two points and consisting of a minimum
number of line segments. The analogous problem in our setup is likewise interesting: Compute
a simplest possible fence, i.e., one that is the union of as few line segments as possible. The
fence can be required to be disjoint from the object interiors, or it can be allowed to pass
through the objects, leading to two different problems.
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