
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

FPT Algorithms for Diverse Collections of Hitting Sets∗

Julien Baste1, Lars Jaffke2, Tomáš Masař́ık3,4,
Geevarghese Philip5, and Günter Rote6

1Institute of Optimization and Operations Research, Ulm University, Germany
julien.baste@uni-ulm.de

2University of Bergen, Norway
lars.jaffke@uib.no

3Charles University, Prague, Czech Republic
4University of Warsaw, Poland

masarik@kam.mff.cuni.cz
5Chennai Mathematical Institute, Chennai, India and UMI ReLaX

gphilip@cmi.ac.in
6Freie Universität Berlin
rote@inf.fu-berlin.de

Abstract

In this work, we study the d-Hitting Set and Feedback Vertex Set problems through
the paradigm of finding diverse collections of r solutions of size at most k each, which has
recently been introduced to the field of parameterized complexity [Baste et al., 2019]. This
paradigm is aimed at addressing the loss of important side information which typically occurs
during the abstraction process which models real-world problems as computational problems.
We use two measures for the diversity of such a collection: the sum of all pairwise Hamming
distances, and the minimum pairwise Hamming distance. We show that both problems are
FPT in k + r for both diversity measures. A key ingredient in our algorithms is a (problem
independent) network flow formulation that, given a set of ‘base’ solutions, computes a
maximally diverse collection of solutions. We believe that this could be of independent
interest.

1 Introduction
The typical approach in modeling a real-world problem as a computational problem has, broadly
speaking, two steps: (i) abstracting the problem into a mathematical formulation which captures
the crux of the real-world problem, and (ii) asking for a best solution to the mathematical
problem.

∗Tomáš Masař́ık received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme Grant Agreement 714704, and from Charles University student
grant SVV-2017-260452. Lars Jaffke is supported by the Bergen Research Foundation (BFS). Geevarghese Philip’s
work was supported by BFS (Bergens Forsknings Stiftelse) ”Putting Algorithms Into Practice” Grant Number
810564 and NFR (Norwegian Research Foundation) grant number 274526d ”Parameterized Complexity for Practical
Computing”.

1

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Consider the following scenario. Dr. O organizes a panel discussion, and has a shortlist of
candidates to invite. From that shortlist, Dr. O wants to invite as many candidates as possible,
such that each of them will bring an individual contribution to the panel. Given two candidates
A and B, it may not be beneficial to invite both A and B, for various reasons: their areas of
expertise or opinions may be too similar for both to make a distinguishable contribution, or it
may be preferable not to invite more than one person from each institution. It may even be the
case that A and B do not see eye-to-eye on some issues which could come up at the discussion,
and Dr. O wishes to avoid a confrontation.

A natural mathematical model to resolve Dr. O’s dilemma is as an instance of the Vertex
Cover problem: each candidate on the shortlist corresponds to a vertex, and for each pair of
candidates A and B, we add the edge between A and B if it is not beneficial to invite both of
them. Removing a smallest vertex cover in the resulting graph results in a largest possible set of
candidates such that each of them may be expected to individually contribute to the appeal of
the event.

Formally, a vertex cover of an undirected graph G is any subset S ⊆ V (G) of the vertex set of
G such that every edge in G has at least one end-point in G. The Vertex Cover problem asks
for a vertex cover of the smallest size:

Vertex Cover
Input: Graph G.
Solution: A vertex cover S of G of the smallest size.

While the above model does provide Dr. O with a set of candidates to invite that is valid in
the sense that each invited candidate can be expected to make a unique contribution to the panel,
a vast amount of side information about the candidates is lost in the modeling process. This side
information could have helped Dr. O to get more out of the panel discussion. For instance, Dr. O
may have preferred to invite more well-known or established people over ‘newcomers’, if they
wanted the panel to be highly visible and prestigious; or they may have preferred to have more
‘newcomers’ in the panel, if they wanted the panel to have more outreach. Other preferences that
Dr. O may have had include: to have people from many different cultural backgrounds, to have
equal representation of genders, or preferential representation for affirmative action; to have a
variety in the levels of seniority among the attendants, possibly skewed in one way or the other.
Other factors, such as the total carbon footprint caused by the participants’ travels, may also be
of interest to Dr. O. This list could go on and on.

Now, it is possible to plug in some of these factors into the mathematical model, for instance
by including weights or labels. Thus a vertex weight could indicate ‘how well-established’ a
candidate is. However, the complexity of the model grows fast with each additional criterion. The
classic field of multicriteria optimization [46, 39, 29, 36] addresses the issue of bundling multiple
factors into the objective function, but it is seldom possible to arrive at a balance in the various
criteria in a way which captures more than a small fraction of all the relevant side information.
Moreover, several side criteria may be conflicting or incomparable (or both); consider in Dr. O’s
case ‘maximizing the number of different cultural backgrounds’ vs. ‘minimizing total carbon
footprint.’

While Dr. O’s story is admittedly a made-up one, the Vertex Cover problem is in fact used
to model conflict resolution in far more realistic settings. In each case there is a conflict graph G
whose vertices correspond to entities between which one wishes to avoid a conflict of some kind.
There is an edge between two vertices in G if and only if they could be in conflict, and finding and
deleting a smallest vertex cover of G yields a largest conflict-free subset of entities. We describe
three examples to illustrate the versatility of this model. In each case it is intuitively clear, just

2

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

like in Dr. O’s problem, that formulating the problem as Vertex Cover results in a lot of
significant side information being thrown away, and that while finding a smallest vertex cover
in the conflict graph will give a valid solution, it may not really help in finding a best solution,
or even a reasonably good solution. We list some side information that is lost in the modeling
process; the reader should find it easy to come up with any amount of other side information
that would be of interest, in each case.

Air traffic control. Conflict graphs are used in the design of decision support tools for aiding
Air Traffic Controllers (ATCs) in preventing untoward incidents involving aircraft [44, 45, 25].
Each node in the graph G in this instance is an aircraft, and there is an edge between two
nodes if the corresponding aircraft are at risk of interfering with each other. A vertex cover
of G corresponds to a set of aircraft which can be issued resolution commands which ask
them to change course, such that afterwards there is no risk of interference.
In a situation involving a large number of aircraft it is unlikely that every choice of ten
aircraft to redirect is equally desirable. For instance, in general it is likely that (i) it is
better to ask smaller aircraft to change course in preference to larger craft, and (ii) it is
better to ask aircraft which are cruising to change course, in preference to those which are
taking off or landing.

Wireless spectrum allocation. Conflict graphs are a standard tool in figuring out how to
distribute wireless frequency spectrum among a large set of wireless devices so that no
two devices whose usage could potentially interfere with each other are allotted the same
frequencies [22, 24]. Each node in G is a user, and there is an edge between two nodes if
(i) the users request the same frequency, and (ii) their usage of the same frequency has the
potential to cause interference. A vertex cover of G corresponds to a set of users whose
requests can be denied, such that afterwards there is no risk of interference.
When there is large collection of devices vying for spectrum it is unlikely that every choice
of ten devices to deny the spectrum is equally desirable. For instance, it is likely that
denying the spectrum to a remote-controlled toy car on the ground is preferable to denying
the spectrum to a drone in flight.

Managing inconsistencies in database integration. A database constructed by integrating
data from different data sources may end up being inconsistent (that is, violating specified
integrity constraints) even if the constituent databases are individually consistent. Handling
these inconsistencies is a major challenge in database integration, and conflict graphs are
central to various approaches for restoring consistency [37, 26, 12, 3, 13]. Each node in G is
a database item, and there is an edge between two nodes if the two items together form an
inconsistency. A vertex cover of G corresponds to a set of database items in whose absence
the database achieves consistency.
In a database of large size it is unlikely that all data are created equal; some database items
are likely to be of better relevance or usefulness than others, and so it is unlikely that every
choice of ten items to delete is equally desirable.

Getting back to our first example, it seems difficult to help Dr. O with their decision by
employing the ‘traditional’ way of modeling computational problems, where one looks for one
best solution. If on the other hand, Dr. O was presented with a small set of good solutions that
in some sense are far apart, then they might hand-pick the list of candidates that they consider
the best choice for the panel and make a more informed decision. Moreover, several forms of
side-information may only become apparent once Dr. O is presented some concrete alternatives,
and are more likely to be retrieved from alternatives that look very different. That is, a bunch of

3

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

good quality, dissimilar solutions may end up capturing a lot of the “lost” side information. And
this applies to each of the other three examples as well. In each case, finding one best solution
could be of little utility in solving the original problem, whereas finding a small set of solutions,
each of good quality, which are not too similar to one another may offer much more help.

To summarize, real-world problems typically have complicated side constraints, and the
optimality criterion may not be clear. Therefore, the abstraction to a mathematical formulation
is almost always a simplification, omitting important side information. There are at least two
obstacles to simply adapting the model by incorporating these secondary criteria into the objective
function or taking into account the side constraints: (i) they make the model complicated and
unmanagable, and (ii) more importantly, these criteria and constraints are often not precisely
formulated, potentially even unknown a priori. There may even be no sharp distinction between
optimality criteria and constraints (the so-called “soft constraints”).

One way of dealing with this issue is to present a small number r of good solutions and let the
user choose between them, based on all the experience and additional information that the user
has and that is ignored in the mathematical model. Such an approach is useful even when the
objective can be formulated precisely, but is difficult to optimize: After generating r solutions,
each of which is good enough according to some quality criterion, they can be compared and
screened in a second phase, evaluating their exact objective function or checking additional side
constraints. In this context, it makes little sense to generate solutions that are very similar to
each other and differ only in a few features. It is desirable to present a diverse variety of solutions.

It should be clear that the issue is scarcely specific to Vertex Cover. Essentially any
computational problem motivated by practical applications likely has the same issue: the modeling
process throws out so much relevant side information that any algorithm which finds just one
optimal solution to an input instance may not be of much use in solving the original problem in
practice. One scenario where the traditional approach to modeling computational problems fails
completely is when computational problems may combined with a human sense of aesthetics or
intuition to solve a task, or even to stimulate inspiration. Some early relevant work is on the
problem of designing a tool which helps an architect in creating a floor plan which satisfies a
specified set of constraints. In general, the number of feasible floor plans—those which satisfy
constraints imposed by the plot on which the building has to be erected, various regulations
which the building should adhere to, and so on—would be too many for the architect to look at
each of them one by one. Further, many of these plans would be very similar to one another, so
that it would be pointless for the architect to look at more than one of these for inspiration. As
an alternative to optimization for such problems, Galle proposed a “Branch & Sample” algorithm
for generating a “limited, representative sample of solutions, uniformly scattered over the entire
solution space” [21].

The Diverse X Paradigm. Mike Fellows has proposed the Diverse X Paradigm as a solution
for these issues and others [19]. In this paradigm “X” is a placeholder for an optimization problem,
and we study the complexity—specifically, the fixed-parameter tractability—of the problem of
finding a few different good quality solutions for X. Contrast this with the traditional approach
of looking for just one good quality solution. Let X denote an optimization problem where one
looks for a minimum-size subset of some set; Vertex Cover is an example of such a problem.
The generic form of X is then:

X
Input: An instance I of X.
Solution: A solution S of I of the smallest size.

4

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

Here the form that a “solution S of I” takes is dictated by the problem X; compare this with
the earlier definition of Vertex Cover.

The diverse variant of problem X, as proposed by Fellows, has the form

Diverse X
Input: An instance I of X, and positive integers k, r, t.
Parameter: (k, r)
Solution: A set S of r solutions of I, each of size at most k, such that a diversity measure

of S is at least t.

Note that one can construct diverse variants of other kinds of problems as well, following this
model: it doesn’t have to be a minimization problem, nor does the solution have to be a subset of
some kind. Indeed, the example about floor plans described above has neither of these properties.
What is relevant is that one should have (i) some notion of “good quality” solutions (for X, this
equates to a small size) and (ii) some notion of a set of solutions being “diverse”.

Diversity measures. The concept of diversity appears also in other fields, and there are many
different ways to measure the diversity of a collection. For example, in ecology, the diversity of a
set of species (“biodiversity”) is a topic that has become increasingly important in recent times,
see for example Solow and Polasky [41].

Another possible viewpoint, in the context of multicriteria optimization, is to require that the
sample of solutions should try to represent the whole solution space. This concept can be quantified
for example by the geometric volume of the represented space [28, 10], or by the discrepancy [34].
See [43, Section 3] for an overview of diversity measures in multicriteria optimization.

In this paper, we follow the simple possibility of looking for a collection of good solutions
that have large distances from each other, in a sense that will be made precise below (1)–(2).
Direction (2), i.e., taking the pairwise sum of all Hamming distances, has been taken by many
practical papers in the area of genetic algorithms, see e.g. [20, 33]. This now classical approach
can be traced as far back as 1992 [32]. In [47], it has been boldly stated that this measure (and
its variations) is one of the most broadly used measures in describing population diversity within
genetic algoritms. One of its advantages is that it can be computed very easily and efficiently
unlike many other measures, e.g., some geometry or discrepancy based measures.

1.1 Our problems and results.
In this work we focus on diverse versions of two minimization problems, d-Hitting Set and
Feedback Vertex Set, whose solutions are subsets of a finite set. d-Hitting Set is in fact a
class of such problems which includes Vertex Cover, as we describe below. We will consider
two natural diversity measures for these problems: the minimum Hamming distance between any
two solutions, and the sum of pairwise Hamming distances of all the solutions.

The Hamming distance between two sets S and S′, or the size of their symmetric difference, is

dH(S, S′) := |(S \ S′) ∪ (S′ \ S)|.

We use
divmin(S1, . . . , Sr) := min

1≤i<j≤r
dH(Si, Sj) (1)

to denote the minimum Hamming distance between any pair of sets in a collection of finite sets,
and

divtotal(S1, . . . , Sr) :=
∑

1≤i<j≤r

dH(Si, Sj) (2)

5

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

to denote the sum of all pairwise Hamming distances. (In Section 5, we will discuss some issues
with the latter formulation.)

A feedback vertex set of a graph G is any subset S ⊆ V (G) of the vertex set of G such that
the graph G− S obtained by deleting the vertices in S is a forest; that is, contains no cycle.

Feedback Vertex Set
Input: A graph G.
Solution: A feedback vertex set of G of the smallest size.

More generally, a hitting set of a collection F of subsets of a universe U is any subset S ⊆ U
such that every set in the family F has a non-empty intersection with S. For a fixed positive
integer d the d-Hitting Set problem asks for a hitting set of the smallest size of a family F of
d-sized subsets of a finite universe U :

d-Hitting Set
Input: A finite universe U and a family F of subsets of U , each of size at most d.
Solution: A hitting set S of F of the smallest size.

Observe that both Vertex Cover and Feedback Vertex Set are special cases of finding
a smallest hitting set for a family of subsets. Vertex Cover is also an instance of d-Hitting
Set, with d = 2: the universe U is the set of vertices of the input graph and the family F
consists of all sets {v, w} where vw is an edge in G. There is no obvious way to model Feedback
Vertex Set as a d-Hitting Set instance, however, because the cycles in the input graph are
not necessarily of the same size.

In this work, we consider the following problems in the Diverse X paradigm. Using divtotal
as the diversity measure, we consider Diverse d-Hitting Set and Diverse Feedback Vertex
Set, where X is d-Hitting Set and Feedback Vertex Set, respectively. Using divmin as
the diversity measure, we consider Min-Diverse d-Hitting Set and Min-Diverse Feedback
Vertex Set, where X is d-Hitting Set and Feedback Vertex Set, respectively.

In each case we show that the problem is fixed-parameter tractable (FPT), with the following
running times:

Theorem 1. Diverse d-Hitting Set can be solved in time r2dkr · |U |O(1).

Theorem 2. Diverse Feedback Vertex Set can be solved in time 27kr · nO(1).

Theorem 3. Min-Diverse d-Hitting Set can be solved in time

- 2kr2 · (kr)O(1) if |U | < kr and

- dkr · |U |O(1) otherwise.

Theorem 4. Min-Diverse Feedback Vertex Set can be solved in time 2kr·max(r,7+log2(kr)) ·
(nr)O(1).

Defining the diverse versions Diverse Vertex Cover and Min-Diverse Vertex Cover
of Vertex Cover in a similar manner as above, we get

Corollary 5. Diverse Vertex Cover can be solved in time 2kr ·nO(1). Min-Diverse Vertex
Cover can be solved in time

- 2kr2 · (kr)O(1) if n < kr and

- 2kr · nO(1) otherwise.

6

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

Related Work. The parameterized complexity of finding a diverse collection of good-quality
solutions to algorithmic problems seems to be largely unexplored. To the best of our knowledge,
the only existing work in this area consists of: (i) a privately circulated manuscript by Fellows [19]
which introduces the Diverse X Paradigm and makes a forceful case for its relevance, and (ii) a
manuscript by Baste et al. [5] which applies the Diverse X Paradigm to vertex-problems with
the treewidth of the input graph as an extra parameter. In this context a vertex-problem is any
problem in which the input contains a graph G and the solution is some subset of the vertex set
of G which satisfies some problem-specific properties. Both Vertex Cover and Feedback
Vertex Set are vertex-problems in this sense, as are many other graph problems. The treewidth
of a graph is, informally put, a measure of how tree-like the graph is. See, e.g., [14, Chapter 7]
for an introduction of the use of the treewidth of a graph as a parameter in designing FPT
algorithms. The work by Baste et al. [5] shows how to convert essentially any treewidth-based
dynamic programming algorithm for solving a vertex-problem, into an algorithm for computing a
diverse set of r solutions for the problem, with the diversity measure being the sum divtotal of
Hamming distances of the solutions. This latter algorithm is FPT in the combined parameter
(r, w) where w is the treewidth of the input graph. As a special case, they obtain a running time
of O((2k+2(k + 1))rkr2n) for Diverse Vertex Cover. Further, they show that the r-Diverse
versions (i.e., where the diversity measure is divtotal) of a handful of problems have polynomial
kernels. In particular, they show that Diverse Vertex Cover has a kernel with O(k(k + r))
vertices, and that Diverse d-Hitting Set has a kernel with a universe size of O(kd + kr).

Organization of the rest of the paper. In Section 2 we list some definitions which we use
in the rest of the paper. In Section 3 we describe a generic framework which can be used for
computing solution families of maximum diversity for a variety of problems whose solutions form
subsets of some finite set. We prove Theorem 1 in Section 3.3 and Theorem 2 in Section 4. In
Section 5 we discuss some potential pitfalls in using divtotal as a measure of diversity. In Section 6
we prove Theorem 3 and Theorem 4. We conclude in Section 7.

2 Preliminaries
Given two integers p and q, we denote by [p, q] the set of all integers r such that p ≤ r ≤ q holds.
Given a graph G, we denote by V (G) (resp. E(G)) the set of vertices (resp. edges) of G. For
a subset S ⊂ V (G) we use G[S] to denote the subgraph of G induced by S, and G \ S for the
graph G[V (G) \ S]. A set S ⊆ V (G) is a vertex cover (resp. a feedback vertex set) if G \ S has
no edge (resp. no cycle). Given a graph G and a vertex v such that v has exactly two neighbors,
say w and w′, contracting v consists in removing the edges {v, w} and {v, w′}, removing v and
adding the edge {w,w′}. Given a graph G and a vertex v ∈ V (G), we denote by δG(v) the degree
of v in G. For two vertices u, v in a connected graph G we use distT (u, v) to denote the distance
between u and v in G, which is the length of a shortest path in G between u and v.

A deepest leaf in a tree T is a vertex v ∈ V (T) such that there exists a root r ∈ V (T)
satisfying distT (r, v) = maxu∈V (T) distT (r, u). A deepest leaf in a forest F is a deepest leaf in
some connected component of F . A deepest leaf v has the property that there is another leaf in
the tree at distance at most 2 from v unless v is an isolated vertex or v’s neighbor has degree 2.

The objective function divtotal in (2) has an alternative representation in terms of frequencies
of occurrence [5]: If yv is the number of sets of {S1, . . . , Sr} in which v appears, then

divtotal(S1, . . . , Sr) =
∑
v∈U

yv(r − yv). (3)

7

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

3 A Framework for Maximally Diverse Solutions
In this section we describe a framework for computing solution families of maximum diversity for
a variety of hitting set problems. This framework requires that the solutions form a family of
subsets of a ground set U which is upward closed: Any superset T ⊇ S of a solution S is also a
solution.

The approach is as follows: In a first phase, we enumerate the class S of all minimal solutions
of size at most k. (A larger class S is also fine as long as it is guaranteed to contain all minimal
solutions of size at most k.) Then we form all r-tuples (S1, . . . , Sr) ∈ Sk. For each such family
(S1, . . . , Sr) , we try to augment it to a family (T1, . . . , Tr) under the constraints Ti ⊇ Si and
|Ti| ≤ k, for each i ∈ [1, r], in such a way that divtotal(T1, . . . , Tr) is maximized.

For this augmentation problem, we propose a network flow model that computes an optimal
augmentation in polynomial time, see Section 3.1. This has to be repeated for each family, O(|S|r)
times. The first step, the generation of S, is problem-specific. Section 3.3 shows how to solve it
for d-Hitting Set. In Section 4, we will adapt our approach to deal with Feedback Vertex
Set.

3.1 Optimal Augmentation
Given a universe U and a set S of subsets of U , the problem diverser,k(S) consists in finding an
r-tuple (S1, . . . , Sr) that maximizes divtotal(S1, . . . , Sr), over all r-tuples (S1, . . . , Sr) such that
for each i ∈ [1, r], |Si| ≤ k and there exists S ∈ S such that S ⊆ Si ⊆ U .

Theorem 6. Let U be a finite universe, r and k be two integers and S be a set of s subsets of U .
diverser,k(S) can be solved in time r2sr · |U |O(1).

Proof. The algorithm that proves Theorem 6 starts by enumerating all r-tuples (S1, S2, . . . , Sr) ∈
Sr of elements from S. For each of these sr r-tuples we try to augment each Si, using elements
of U , in such a way that the diversity d of the resulting tuple (T1, . . . , Tr) is maximized and such
that for each i ∈ [1, r], Si ⊆ Ti ⊆ U and |Ti| ≤ k. It is clear that this algorithm will find the
solution to diverser,k(S).

We show how to model this problem as a maximum-cost network flow problem with piecewise
linear concave costs. This problem can be solved in polynomial time. (See for example [42] for
basic notions about network flows.)

Without loss of generality, let U = {1, 2, . . . , n}. We use a variable 0 ≤ xij ≤ 1 to decide
whether element j of U should belong to set Ti. In an optimal flow, these values are integral.
Some of these variables are already fixed because Ti must contain Si:

xij = 1 for j ∈ Si (4)

The size of Ti must not exceed k:
n∑

j=1
xij ≤ k, for i = 1, . . . , r (5)

Finally, we can express the number yj of sets Ti in which an element j occurs:

yj =
r∑

i=1
xij , for j = 1, . . . , n (6)

8

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

...

s t

≤ k

0 ≤ xij ≤ 1

y1

y2

y3

yn

V1

V2

V3

Vn

T1

T2

T3

Tr

...

Figure 1: The network. The middle layer between the vertices Ti and Vj is a complete bipartite
graph, but only a few selected arcs are shown. A potential augmenting path is highlighted.

These variables yj are the variables in terms of which the objective function (3) is expressed:

maximize
n∑

j=1
yj(r − yj) (7)

These constraints can be modeled by a network as shown in Figure 1. There are nodes Ti

representing the sets Ti and a node Vj for each element j ∈ U . In addition, there is a source s
and a sink t. The arcs emanating from s have capacity k. Together with the flow conservation
equations at the nodes Ti, this models the constraints (5). Flow conservation at the nodes Vj

gives rise to the flow variables yj in the arcs leading to t according to (6). The arcs with fixed
flow (4) could be eliminated from the network, but for ease of notation, we leave them in the
model. The only arcs that carry a cost are the arcs leading to t, and the costs are given by the
concave function (7).

There is now a one-to-one correspondence between integral flows from s to t in the network
and solutions (T1, . . . , Tr), and the cost of the flow is equal to the diversity (2) or (3). We are
thus looking for a flow of maximum cost. The value of the flow (to total flow out of s) can be
arbitrary. (It is equal to the sum of the sizes of the sets Ti.)

The concave arc costs (7) on the arcs leading to t can be modeled in a standard way by
multiple arcs. Denote the concave cost function by fy := y(r − y), for y = 0, 1, . . . , r. Then each
arc (Vi, t) in the last layer is replaced by r parallel arcs of capacity 1 with costs f1 − f0, f2 − f1,
. . . , fr − fr−1. This sequence of values fy − fy−1 = r − 2y + 1 is decreasing, starting out with
positive values and ending with negative values. If the total flow along such a bundle is y, the
maximum-cost way to distribute this flow is to fill the first y arcs to capacity, for a total cost of
(f1 − f0) + (f2 − f1) + · · ·+ (fy − fy−1) = fy − f0 = fy, as desired.

An easy way to compute a maximum-cost flow is the longest augmenting path method.
(Commonly it is presented as the shortest augmenting path method for the minimum-cost flow.)
This holds for the classical flow model where the cost on each arc is a linear function of the flow.
An augmenting path is a path in the residual network with respect to the current flow, and the
cost coefficient of an arc in such a path must be taken with opposite sign if it is traversed in the
direction opposite to the original graph.

Proposition 1 (The shortest augmenting path algorithm, cf. [42, Theorem 8.12]). Suppose a
maximum-cost flow among all flows of value v from s to t is given. Let P be a maximum-cost

9

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

augmenting path from s to t. If we augment the flow along this path, this results in a new flow, of
some value v′. Then the new flow is a maximum-cost flow among all flows of value v′ from s to t.

Let us apply this algorithm to our network. We initialize the constrained flow variables xij

according to (4) to 1 and all other variables xij to 0. This corresponds to the original solution
(S1, S2, . . . , Sr), and it is clearly the optimal flow of value

∑r
i=1 |Si| because it is the only feasible

flow of this value.
We can now start to find augmenting paths. Our graph is bipartite, and augmenting paths

have a very simple structure: They start in s, alternate back and forth between the T -nodes and
the V -nodes, and finally make a step to t. Moreover, in our network, all costs are zero except in
the last layer, and an augmenting path contains precisely one arc from this layer. Therefore, the
cost of an augmenting path is simply the cost of the final arc.

The flow variables in the final layer are never decreased. The resulting algorithm has therefore
a simple greedy-like structure. Starting from the initial flow, we first try to saturate as many of
the arcs of cost f1 − f0 as possible. Next, we try to saturate as many of the arcs of cost f2 − f1
as possible, and so on. Once the incremental cost fy+1 − fy becomes negative, we stop.

Trying to find an augmenting path whose last arc is one of the arcs of cost fy+1− fy, for fixed
y, is a reachability problem in the residual graph, and it can be solved by graph search in O(nr)
time because the network has O(nr) vertices. Every augmentation increases the flow value by 1
unit. Thus, there are at most kr augmentations, for a total runtime of O(kr2n).

3.2 Faster Augmentation
We can obtain faster algorithms by using more advanced network algorithms from the literature.
We will derive one such algorithm here. The best choice depends on the relation between n, k, and
r. We will apply the following result about b-matchings, which are generalizations of matchings:
Each node v has a given supply b(v), specifying that v should be incident to at most v edges.

Proposition 2 ([1]). A maximum-weight b-matching in a bipartite graph with N1 +N2 nodes on
the two sides of the bipartition and M edges that have integer weights between 0 and W can be
found in time O(N1M log(2 + N1

2

M log(N1W))).

We will describe below how the network flow problem from above can be converted into
a b-matching problem with N1 = r + 1 plus N2 = n nodes and M = 2rn edges of weight at
most W = 2r. Plugging these values into Proposition 2 gives a running time of O(r2n log(2 +
r
n log(r2))) = O(r2nmax{1, log r log r

n }) for finding an optimal augmentation. This improves over
the run time O(r2nk) from the previous section unless r is extremely large (at least 2k).

From the network of Figure 1, we keep the two layers of nodes Ti and Vj . Each vertex Ti gets
a supply of b(Ti) := k, and each vertex Vj gets a supply of b(Vj) := r. To mimic the piecewise
linear costs on the arcs (Vj , t) in the original network, we introduce r parallel slack edges from
a new source vertex s′ to each vertex Vi. The costs are as follows. Let g1 > g2 > · · · > gr with
gy = fy − fy−1 denote the costs in the last layer of the original network, and let ĝ := r. Since
g1 = r − 1, this is larger than all costs. Then every edge (Ti, Vj) from the original network gets a
weight of ĝ, and the r new slack edges entering each Vj get positive weights ĝ−g1, ĝ−g2, . . . , ĝ−gr.
We set the supply of the extra source node to b(s′) := rn, which imposes no constraint on the
number of incident edges.

Now suppose that we have a solution for the original network in which the total flow into vertex
Vj is y. In the corresponding b-matching, we can then use b(Vj)− y = r − y of the slack edges
incident to Vj . The r− y maximum-weight slack edges have weights ĝ − gr, ĝ − gr−1, . . . ĝ − gy+1.

10

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

The total weight of the edges incident to Vj is therefore

rĝ − gr − gr−1 − · · · − gy+1 = rĝ + (g1 + g2 + · · ·+ gy),

using the equation g1 + g2 + · · ·+ gr = fr − f0 = 0. Thus, up to an addition of the constant nrĝ,
the maximum weight of a b-matching agrees with the maximum cost of a flow in the original
network.

3.3 Diverse Hitting Set
In this section we show how to use the optimal augmentation technique developed in Section 3
to solve Diverse d-Hitting Set. For this we use the following folklore lemma about minimal
hitting sets.

Lemma 7. Let (U,F) be an instance of d-Hitting Set, and let k be an integer. There are at
most dk inclusion-minimal hitting sets of F of size at most k, and they can all be enumerated in
time dk|U |2.

Combining Lemma 7 and Theorem 6, we obtain the following result.

Theorem 1. Diverse d-Hitting Set can be solved in time r2dkr · |U |O(1).

Proof. Using Lemma 7, we can construct the set S of all inclusion-minimal hitting sets of F , each
of size at most k. Note that the size of S is bounded by dk. As every superset of an element of S
is also a hitting set, the theorem follows directly from Theorem 6.

4 Diverse Feedback Vertex Set
A feedback vertex set (FVS) (also called a cycle cutset) of a graph G is any subset S ⊆ V (G) of
vertices of G such that every cycle in G contains at least one vertex from S. The graph G− S
obtained by deleting S from G is thus an acyclic graph. Finding an FVS of small size is an
NP-hard problem with a number of applications in Artificial Intelligence, many of which stem
from the fact that many hard problems become easy to solve in acyclic graphs.

The Propositional Model Counting (or #SAT) problem asks for the number of satisfying assign-
ments for a given CNF formula, and has a number of applications, for instance in planning [35, 17]
and in probabilistic inference problems such as Bayesian reasoning [4, 11, 23, 15, 30, 40, 2]. A
popular approach to solving #SAT consists of first finding a small FVS S of the CNF formula. As-
signing values to all the variables in S results in an acyclic instance of CNF. The algorithm assigns
all possible sets of values to the variables in S, computes the number of satisfying assignments of
the resulting acyclic instances, and returns the sum of these counts [16]. Other applications of
finding a small FVS include faster sampling for Bayesian networks, solving constraint satisfaction
problems, credulous and skeptical acceptance problems in abstract argumentation, and learning
and inference in graphical models [8, 6, 9, 7, 18, 31].

In this section, we focus on the Diverse Feedback Vertex Set problem and prove the
following theorem.

Theorem 2. Diverse Feedback Vertex Set can be solved in time 27kr · nO(1).

In order to solve r-Diverse k-Feedback Vertex Set, one natural way would be to generate
every feedback vertex set of size at most k and then check which set of k solutions provide the
required sum of Hamming distances. Unfortunately, the number of feedback vertex set is not

11

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

FPT parameterized by k. Indeed, one can consider a graph containing k cycle of size n
k , leading

to
(

n
k

)k different feedback vertex sets of size k.
We avoid this problem by generating all such small feedback vertex sets up to some equivalence

of degree two vertices. We obtain an exact and efficient description of all feedback vertex sets
of size at most k, which is formally captured by Lemma 8. A class of solutions of a graph G,
is a pair (S, `) such that S ⊆ V (G) and ` : S → 2V (G) is a function such that for each u ∈ S,
u ∈ `(u), and for each u, v ∈ S, u 6= v, `(u) ∩ `(v) = ∅. Given a class of solutions (S, `), we
define sol(S, `) = {S′ : |S′| = |S| and ∀v ∈ S, |S′ ∩ `(v)| = 1}. A class of FVS solutions is a
class of solutions (S, `) such that each S′ ∈ sol(S, `) is a feedback vertex set of G. Moreover, if
S′ ∈ sol(S, `) and S′ ⊆ S′′ ⊆ V (G), we say that S′′ is described by (S, `). Note that S′′ is also a
feedback vertex set. In a class of FVS solutions (S, `), the meaning of the function ` is that, for
each cycle C in G, there exists v ∈ S such that each element of `(v) hits C. This allows us to
group related solutions into only one set sol(S, `).

Lemma 8. Let G be a n-vertex graph. There exists a set S of classes of FVS solutions of G of
size at most 27k such that each feedback vertex set of size at most k is described by an element of
S. Moreover, S can be constructed in time 27k · nO(1).

Proof. Let G be a n-vertex graph. We start by generating a feedback vertex set F ⊆ V of size
at most k. The current best deterministic algorithm for this by Kociumaka and Pilipczuk [27]
finds such a set in time 3.62k · nO(1). In the following, we use the ideas used for the iterative
compression approach [38].

For each subset F ′ ⊆ F , we initiate a branching process by setting A := F ′, B := F −F ′, and
G′ := G. Observe that initially, as B ⊆ F and |F | ≤ k, the graph G[B] has at most k components.
In the branching process, we will add more vertices to A and B, and we will remove vertices and
edges from G′, but we will maintain the property that A ⊆ V (G′) and B ⊆ V (G′). The set C
will always denote the vertex set V (G′) \ (A ∪B). Note that G′[C] is initially a forest; we ensure
that it always remains a forest.

We also initialize a function ` : V (G)→ 2V (G) by setting `(v) = {v} for each v ∈ V (G). This
function will keep information about vertices that are deleted from G. While searching for a
feedback vertex set, we consider only feedback vertex sets that contain all vertices of A but no
vertex of B. Vertices in C are still undecided. The function ` will maintain the invariant that for
each v ∈ V (G′), `(v) ∩ V (G′) = {v}, and for each v ∈ C, all vertices of `(v) intersect exactly the
same cycles in G \A. Moreover, for each v ∈ A, the value `(v) is fixed and will not be modified
anymore in the branching process. During the branching process, we will progressively increase
the size of A, B, and the sets `(v), v ∈ V (G).

By reducing (G′, A,B, `) we mean that we apply the following rules exhaustively.

- If there is a v ∈ C such that δG′[B∪C](v) ≤ 1, we delete v from G′.

- If there is an edge {u, v} ∈ E(G′[C]) such that δG′[B∪C](u) = δG′[B∪C](v) = 2, we contract
u in G′ and set `(v) := `(v) ∪ `(u).

These are classical preprocessing rules for the Feedback Vertex Set problem, see for in-
stance [14, Section 9.1]. Indeed, vertices of degree one cannot appear in a cycle, and consecutive
vertices of degree 2 hit exactly the same cycles. After this preprocessing, there are no adjacent
degree-two vertices and no degree-one vertices in C. (Degrees are measured in G′[B ∪ C].)

We start to describe the branching procedure. We work on the tuple (G′, A,B, `). After
each step, the value |A| − cc(B) will increase, where cc(B) denotes the number of connected
components of G′[B].

12

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

At each step of the branching we do the following. If |A| > k or if G′[B] contains a cycle, we
immediately stop this branch as there is no solution to be found in it. If A is a feedback vertex
set of size at most k, then (A, `|A) is a class of FVS solutions, we add it to S and stop working
on this branch. Otherwise, we reduce (G′, A,B, `). We pick a deepest leaf v in G′[C] and apply
one of the two following cases, depending of the vertex v.

- Case 1: The vertex v has at least two neighbors in B (in the graph G′).
If there is a path in B between two neighbors of v, then we have to put v in A, as otherwise
this path together with v will induce a cycle. If there is no such path, we branch on both
possibilities, inserting v either into A or into B.

- Case 2: The vertex v has at most one neighbor in B.
Since v is a leaf in G′[C], it hat at most one neighbor also in C. On the other hand, we
know that v has degree at least 2 in G′[B ∪ C]. Thus, v has exactly one neighbor in B and
one neighbor in C, for a degree of 2 in G′[B ∪ C]. Let p be the neighbor in C. Again, as
we have reduced (G′, A,B, `), the degree of p in G′[B ∪ C] is at least 3. So either it has a
neighbor in B, or, as v is a deepest leaf, it has another child, say w, that is also a leaf in
G′[C], and w has therefore a neighbor in B. We branch on the at most 23 = 8 possibilities
to allocate v, p, and w if considered, between A and B, taking care not to produce a cycle
in B.

In both cases, either we put at least one vertex in A, and so |A| increases by one, or all
considered vertices are added to B. In the latter case, the considered vertices are connected, at least
two of them have a neighbor in B, and no cycles were created; therefore, the number of components
in B drops by one. Thus |A| − cc(B) increases by at least one. As −k ≤ |A| − cc(B) ≤ k, there
can be at most 2k branching steps.

Since we branch at most 2k times and at each branch we have at most 23 possibilities, the
branching tree has at most 26k leaves. So, for each of the at most 2k subsets F ′ of F , we add at
most 26k elements to S.

It is clear that we have obtained all solutions of FVS and they are described by the classes of
FVS solutions in S, which is of size 27k.

Proof of Theorem 2. We generate all 27kr r-tuples of the classes of solutions given by Lemma 8,
with repetition allowed.

We now consider each r-tuple ((S1, `1), (S2, `2), . . . , (Sr, `r)) ∈ Sr and try to pick an ap-
propriate solution Ti from each class of solutions (Si, `i), i ∈ [1, k], in such a way that the
diversity of the resulting tuple of feedback vertex sets (T1, . . . , Tr) is maximized. The network
of Section 3.1 must be adapted to model the constraints resulting from solution classes. Let
(S, `) be a solution class, with |S| = b. For our construction, we just need to know the family
{ `(v) | v ∈ S } = {L1, L2, . . . , Lb} of disjoint nonempty vertex sets. The solutions that are
described by this class are all sets that can be obtained by picking at least one vertex from each
set Lq. Figure 2 shows the necessary adaptations for one solution T = Ti. In addition to a single
node T that is either directly of indirectly connected to all nodes V1, . . . , Vn, like in Figure 1, we
have additional nodes representing the sets Lq. For each vertex j that appears in one of the sets
Lq, there is an additional node Uj in an intermediate layer of the network. The flow from s to Lq

is forced to be equal to 1, and this ensures that at least one element of the set Lq is chosen in the
solution. Here it is important that the sets Lq are disjoint.

A similar structure must be built for each set T1, . . . , Tr, and all these structures share the
vertices s and V1, . . . , Vn. The rightmost layer of the network is the same as in Figure 1.

13

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

s

≤ k − b

L1

L2

L3

T

= 1

= 1

= 1

...

V5

V6

V7

Vn

V1

V2

V3

V4

U1

U2

U3

U4

U5

U6

≤ 1

≤ 1

Figure 2: Part of the modified network for a solution T which is specified by b = 3 sets
L1 = {1, 2}, L2 = {3}, and L3 = {4, 5, 6}.

The initial flow is not so straightforward as in Section 3.1 but is still easy to find. We simply
saturate the arc from s to each of the nodes Lq in turn by a shortest augmenting path. Such a
path can be found by a simple reachability search in the residual network, in O(rn) time. The
total running time O(kr2n) from Section 3.1 remains unchanged.

5 Modeling Aspects: Discussion of the Objective Function
In Sections 3 and 4, we have used the sum of the Hamming distances, divtotal, as the measure of
diversity. While this metric is of natural interest, it appears that in some specific cases, it may
not be a useful choice. We present a simple example where the most diverse solution according
to divtotal is not what one might expect.

Let r be an even number. We consider the path with 2r − 2 vertices, and we are looking for r
vertex covers of size at most r − 1, of maximum diversity. Figure 3 shows an example with r = 6.
The smallest size of a vertex cover is indeed r − 1, and there are r different solutions. One would
hope that the “maximally diverse” selection of r solutions would pick all these different solutions.
But no, the selection that maximizes divtotal consists of r/2 copies of just two solutions, the “odd”
vertices and the “even” vertices (the first and last solution in Figure 3).

This can be seen as follows. If the selected set contains in total ni copies of the first i solutions
in the order of Figure 3, then the objective can be written as

2n1(r − n1) + 2n2(r − n2) + · · ·+ 2nr−1(r − nr−1).

Here, each term 2ni(r − ni) accounts for two consecutive vertices 2i − 1, 2i of the path in the
formulation (3). The unique way of maximizing each term individually is to set ni = r/2 for
all i. This corresponds to the selection of r/2 copies of the first solution and r/2 copies of the
last solution, as claimed.

14

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

}
n2

n3

n4

n5

} n1

1 2 3 4 5 6 7 8 9 10

Figure 3: The r = 6 different vertex covers of size r − 1 = 5 in a path with 2(r − 1) = 10 vertices

In a different setting, namely the distribution of r points inside a square, an analogous
phenomenon has been observed [43, Figure 1]: Maximizing the sum of pairwise Euclidean
distances places all points at the corners of the square. In fact it is easy to see that, in this
geometric setting, any locally optimal solution must place all points on the boundary of the feasible
region. By contrast, for our combinatorial problem, we don’t know whether this pathological
behavior is typical or rare in instances that are not specially constructed. Further research is
needed. A notion of diversity which is more robust in this respect is the smallest difference
between two solutions, which we consider in Section 6.

6 Maximizing the Smallest Hamming distance
The undesired behavior highlighted in Section 5 is the fact that the collection that maximizes the
sum of the Hamming distances uses several copies of the same set. In this section we explore
how to handle this unexpected behavior by changing the distance to the minimal Hamming
distance between two sets of the collection. This modification naturally removes the possibility
of selecting the same solution twice. We show how to solve Min-Diverse d-Hitting Set and
r-Min-Diverse k-Feedback Vertex Set for this metric.

Theorem 3. Min-Diverse d-Hitting Set can be solved in time

- 2kr2 · (kr)O(1) if |U | < kr and

- dkr · |U |O(1) otherwise.

Proof. Let (U,F , k, r, t) be an instance of Min-Diverse d-Hitting Set where |U | = n. If
n < kr, we solve the problem by complete enumeration: There are trivially at most 2n hitting
sets of size at most k. We form all r-tuples (T1, . . . , Tr) of them and select the one that maximizes
divmin(T1, . . . , Tr). The running time is at most O((2n)rr2n) = O(2kr2

kr3).
We now assume that n ≥ kr. We use the same strategy as in Section 3: We generate all r-tuples

(S1, . . . , Sr) of minimal solutions and try to augment each one to a r-tuple (T1, . . . , Tr) such that
for each i ∈ [1, r], |Ti| ≤ k and Si ⊆ Ti ⊆ V (G) hold. The difference is that we try to maximize
divmin(T1, . . . , Tr) instead of divtotal(T1, . . . , Tr) in the augmentation. Given that we have a large
supply of n ≥ kr elements in U , this is easy. To each set Si we add k − |Si| new elements, taking
care that we pick different elements for each Si with are not in any of the other sets Sj . The

15

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

Hamming distance between two resulting sets is then dH(Ti, Tj) = dH(Si, Sj)+(k−|Si|)+(k−|Si|),
and it is clear that this is the largest possibly distance that two sets T ′i ⊇ Si and T ′j ⊇ Sj with
|T ′i |, |T ′j | ≤ k can achieve. Thus, since our choice of augmentation individually maximizes each
pairwise Hamming distance, it also maximizes the smallest Hamming distance. This procedure
can be carried out in O(kr + n) = O(n) time. In addition, we need O(kr2) = O(n2) time to
compute the smallest distance.

Using Lemma 7, we construct the set S of all minimal solutions of the d-Hitting Set instance
(U,F), each of size at most k. We then go through every r-tuple (S1, . . . , Sr) ∈ Sr and augment
it optimally, as just described. The running time is dkr ·O(n2).

Theorem 4. Min-Diverse Feedback Vertex Set can be solved in time 2kr·max(r,7+log2(kr)) ·
(nr)O(1).

Proof. Let G be a n-vertex graph. If n < kr, we again solve the problem by complete enumeration:
There are trivially at most 2n feedback vertex sets of size at most k. We form all r-tuples
(T1, . . . , Tr) of them and select the one that maximizes divmin(T1, . . . , Tr). The running time is
at most O((2n)rr2n) = O(2kr2

r2n).
We assume now that n ≥ kr. As in Section 4, we construct a set S of at most 27k classes

of FVS solutions of G, using Lemma 8. Then we go through all (27k)r r-tuples of classes S =
((S1, `1), . . . , (Sr, `r)) ∈ Sr. For each such r-tuple, we look for the r-tuple (T1, . . . , Tr) of feedback
vertex sets such that each Ti is described by (Si, `i), and the objective value divmin(T1, . . . , Tr)
is maximized. So far, the procedure is completely analogous to the algorithm of Theorem 2 in
Section 4 for maximizing divtotal(T1, . . . , Tr).

Now, in going from a class (Si, `i) to Ti, we have to select a vertex from every set `i(v), for
v ∈ Si, and we may add an arbitrary number of additional vertices, up to size k. We make this
selection as follows: Whenever |`i(v)| < kr, we simply try all possibilities of choosing an element
of `i(v) and putting it into Ti. If |`i(v)| ≥ kr, we defer the choice for later. In this way, we have
created at most (kr)kr “partial” feedback vertex sets (T 0

1 , . . . , T
0
r)

For each such (T 0
1 , . . . , T

0
r), we now add the remaining elements. In each list `i(v) which

has been deferred, we greedily pick an element that is distinct from all other chosen elements.
This is always possible since the list is large enough. Finally, we fill up the sets to size k, again
choosing fresh elements each time. Each such choice is an optimal choice, because it increases the
Hamming distance between the concerned set Ti and every other set Tj by 1, which is the best
that one can hope for. As we proceed to this operation for each S ∈ Sr, where |S| ≤ 27k, and
that for each such S, we create at most (kr)kr r-tuples, we obtain an algorithm running in time
27kr · (kr)kr · nO(1). The theorem follows.

7 Conclusions and Open Problems
In this work, we have considered the paradigm of finding small diverse collections of reasonably
good solutions to combinatorial problems, which has recently been introduced to the field of
fixed-parameter tractability theory [5].

We have shown that finding diverse collections of d-hitting sets and feedback vertex sets
can be done in FPT time. While these problems can be classified as FPT via the kernels and
a treewidth-based meta-theorem proved in [5], the methods proposed here are of independent
interest. We introduced a method of generating a maximally diverse set of solutions from a set
that either contains all minimal solutions of bounded size (d-Hitting Set) or from a collection
of structures that in some way describes all solutions of bounded size (Feedback Vertex Set).
In both cases, the maximally diverse collection of solutions is obtained via a network flow model,

16

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

which does not rely on any specific properties of the studied problems. It would be interesting
to see if this strategy can be applied to give FPT-algorithms for diverse problems that are not
covered by the meta-theorem or the kernels presented in [5].

While the problems in [5] as well as the ones in Sections 3 and 4, seek to maximize the sum of
all pairwise Hamming distances, we also studied the variant that asks to maximize the minimum
Hamming distance, taken over each pair of solutions. This was motivated by an example where
the former measure does not perform as intended (Section 5). We showed that also under this
objective, the diverse variants of d-Hitting Set and Feedback Vertex Set are FPT. It
would be interesting to see whether this objective also allows for a (possibly treewidth-based)
meta-theorem.

In [5], the authors ask whether there is a problem that is in FPT parameterized by solution
size whose r-diverse variant becomes W[1]-hard upon adding r as another component of the
parameter. We restate this question here.

Question 9 ([5]). Is there a problem Π with solution size k, such that Π is FPT parameterized
by k, while Diverse Π, asking for r solutions, is W[1]-hard parameterized by k + r?

To the best of our knowledge, this problem is still wide open. We believe that the divmin
measure is more promising to obtain such a result rather than the divtotal measure. A possible
way to tackle both measures at once might be a parameterized (and strenghtened) analogue
of the following approach that is well-studied in classical complexity. Yato and Seta propose a
framework [48] to prove NP-completeness of finding a second solution to an NP-complete problem.
In other words, there are some problems where given one solution it is still NP-hard to determine
whether the problem has a different solution.

From a different perspective, one might want to identify problems where obtaining one solution
is polynomial-time solvable, but finding a diverse collection of r solutions becomes NP-hard. The
targeted running time should be FPT parameterized by r (and maybe t, the diversity target) only.
We conjecture that this is most probably NP- or W[−] hard in general. However, we believe it is
interesting to search for well-known problems where it is not the case.

Acknowledgements. The second, third and fourth authors would like to thank Mike Fellows
for introducing them to the notion of diverse FPT algorithms and sharing the manuscript “The
Diverse X Paradigm” [19].

References
[1] R. K. Ahuja, J. B. Orlin, C. Stein, and R. E. Tarjan. Improved algorithms for bipartite

network flow. SIAM Journal on Computing, 23:906–933, 1994.

[2] Udi Apsel and Ronen I. Brafman. Lifted MEU by weighted model counting. In Proceedings
of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pages 1861–1867. AAAI
Press, 2012.

[3] Marcelo Arenas, Leopoldo Bertossi, Jan Chomicki, Xin He, Vijay Raghavan, and Jeremy
Spinrad. Scalar aggregation in inconsistent databases. Theoretical Computer Science,
296(3):405–434, 2003.

[4] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms and complexity results
for #SAT and Bayesian inference. In 44th Annual IEEE Symposium on Foundations of
Computer Science, 2003. Proceedings., pages 340–351. IEEE, 2003.

17

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

[5] Julien Baste, Michael R. Fellows, Lars Jaffke, Tomáš Masař́ık, Mateus de Oliveira Oliveira,
Geevarghese Philip, and Frances A. Rosamond. Diversity in combinatorial optimization,
2019. arXiv:1903.07410.

[6] Bozhena Bidyuk and Rina Dechter. An anytime scheme for bounding posterior beliefs.
In Proceedings of the 21st National Conference on Artificial Intelligence, Volume 2, pages
1095–1100. AAAI Press, 2006.

[7] Bozhena Bidyuk and Rina Dechter. Cutset sampling with likelihood weighting. In Proceedings
of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, pages 39–46. AUAI
Press, 2006.

[8] Bozhena Bidyuk and Rina Dechter. Cutset sampling for Bayesian networks. Journal of
Artificial Intelligence Research, 28:1–48, 2007.

[9] Bozhena Petrovna Bidyuk. Exploiting graph cutsets for sampling-based approximations in
Bayesian networks. PhD thesis, University of California, Irvine, 2006.

[10] Karl Bringmann, Sergio Cabello, and Michael T. M. Emmerich. Maximum volume subset se-
lection for anchored boxes. In Boris Aronov and Matthew J. Katz, editors, 33rd International
Symposium on Computational Geometry (SoCG 2017), volume 77 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 22:1–22:15, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2017.22.

[11] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6–7):772–799, 2008.

[12] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using tuple
deletions. Information and Computation, 197(1–2):90–121, 2005.

[13] Jan Chomicki and Jerzy Marcinkowski. On the computational complexity of minimal-change
integrity maintenance in relational databases. In Inconsistency Tolerance, pages 119–150.
Springer, 2005.

[14] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[15] Adnan Darwiche. The quest for efficient probabilistic inference. Invited Talk, IJCAI-05,
2005.

[16] Rina Dechter and David Cohen. Constraint Processing. Morgan Kaufmann, 2003.

[17] Carmel Domshlak and Jörg Hoffmann. Fast probabilistic planning through weighted model
counting. In Proceedings of the Sixteenth International Conference on Automated Planning
and Scheduling, ICAPS 2006, pages 243–252. AAAI Press, 2006.

[18] Wolfgang Dvořák, Sebastian Ordyniak, and Stefan Szeider. Augmenting tractable fragments
of abstract argumentation. Artificial Intelligence, 186:157–173, 2012.

[19] Michael Ralph Fellows. The diverse X paradigm. Manuscript, November 2018.

[20] Thomas Gabor, Lenz Belzner, Thomy Phan, and Kyrill Schmid. Preparing for the unexpected:
Diversity improves planning resilience in evolutionary algorithms. In 2018 IEEE International
Conference on Autonomic Computing, ICAC 2018, Trento, Italy, September 3-7, 2018, pages
131–140, 2018. doi:10.1109/ICAC.2018.00023.

18

http://arxiv.org/abs/1903.07410
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.22
http://dx.doi.org/10.1109/ICAC.2018.00023

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

[21] Per Galle. Branch & sample: A simple strategy for constraint satisfaction. BIT Numerical
Mathematics, 29(3):395–408, 1989.

[22] Sorabh Gandhi, Chiranjeeb Buragohain, Lili Cao, Haitao Zheng, and Subhash Suri. A general
framework for wireless spectrum auctions. In 2007 2nd IEEE International Symposium on
New Frontiers in Dynamic Spectrum Access Networks, pages 22–33. IEEE, 2007.

[23] Carla P Gomes, Ashish Sabharwal, and Bart Selman. Model counting: a new strategy
for obtaining good bounds. In Proceedings of the 21st National Conference on Artificial
Intelligence-Volume 1, pages 54–61. AAAI Press, 2006.

[24] Martin Hoefer, Thomas Kesselheim, and Berthold Vöcking. Approximation algorithms for
secondary spectrum auctions. ACM Transactions on Internet Technology (TOIT), 14(2–3):16,
2014.

[25] M. Idan, G. Iosilevskii, and L. Ben-Yishay. Efficient air traffic conflict resolution by minimizing
the number of affected aircraft. International Journal of Adaptive Control and Signal
Processing, 24(10):867–881, 2010.

[26] Ekaterini Ioannou and Slawek Staworko. Management of inconsistencies in data integration.
In Dagstuhl Follow-Ups, volume 5. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2013.

[27] Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Infor-
mation Processing Letters, 114(10):556–560, 2014. doi:10.1016/j.ipl.2014.05.001.

[28] Tobias Kuhn, Carlos M. Fonseca, Lúıs Paquete, Stefan Ruzika, Miguel M. Duarte, and
José Rui Figueira. Hypervolume subset selection in two dimensions: Formulations and
algorithms. Evolutionary Computation, 24(3):411–425, 2016. doi:10.1162/EVCO_a_00157.

[29] G. Leitmann and A. Marzollo, editors. Handbook of Multicriteria Analysis. Springer, Berlin,
2010.

[30] Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. Stochastic Boolean satisfiabil-
ity. Journal of Automated Reasoning, 27(3):251–296, 2001. doi:10.1023/A:1017584715408.

[31] Ying Liu and Alan Willsky. Learning Gaussian graphical models with observed or latent
FVSs. In Advances in Neural Information Processing Systems, pages 1833–1841, 2013.

[32] Sushil J. Louis and Gregory J. E. Rawlins. Syntactic analysis of convergence in genetic algo-
rithms. In Proceedings of the Second Workshop on Foundations of Genetic Algorithms. Vail,
Colorado, USA, July 26-29 1992., pages 141–151, 1992. doi:10.1016/b978-0-08-094832-4.
50015-5.

[33] Ronald W. Morrison and Kenneth A. De Jong. Measurement of population diversity.
In Artificial Evolution, 5th International Conference, Evolution Artificielle, EA 2001, Le
Creusot, France, October 29-31, 2001, Selected Papers, pages 31–41, 2001. doi:10.1007/
3-540-46033-0_3.

[34] Aneta Neumann, Wanru Gao, Carola Doerr, Frank Neumann, and Markus Wagner.
Discrepancy-based evolutionary diversity optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’18, pages 991–998, New York, NY, USA,
2018. ACM. doi:10.1145/3205455.3205532.

19

http://dx.doi.org/10.1016/j.ipl.2014.05.001
http://dx.doi.org/10.1162/EVCO_a_00157
http://dx.doi.org/10.1023/A:1017584715408
http://dx.doi.org/10.1016/b978-0-08-094832-4.50015-5
http://dx.doi.org/10.1016/b978-0-08-094832-4.50015-5
http://dx.doi.org/10.1007/3-540-46033-0_3
http://dx.doi.org/10.1007/3-540-46033-0_3
http://dx.doi.org/10.1145/3205455.3205532

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

[35] Héctor Palacios, Blai Bonet, Adnan Darwiche, and Héctor Geffner. Pruning conformant
plans by counting models on compiled d-DNNF representations. In Proceedings of the
Fifteenth International Conference on Automated Planning and Scheduling, ICAPS 2005,
pages 141–150. AAAI Press, 2005.

[36] Jason Papathanasiou and Nikolaos Ploskas. Multiple Criteria Decision Aid: Methods,
Examples and Python Implementations. Springer Nature, 2018.

[37] Enela Pema, Phokion G. Kolaitis, and Wang-Chiew Tan. On the tractability and intractability
of consistent conjunctive query answering. In Proceedings of the 2011 Joint EDBT/ICDT
Ph. D. Workshop, pages 38–44. ACM, 2011.

[38] Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004.

[39] Bernard Roy. Multicriteria Methodology for Decision Aiding. Kluwer, Dordrecht, 1996.

[40] Tian Sang, Paul Bearne, and Henry Kautz. Performing Bayesian inference by weighted model
counting. In Proceedings of the 20th National Conference on Artificial Intelligence-Volume 1,
pages 475–481. AAAI Press, 2005.

[41] Andrew R. Solow and Stephen Polasky. Measuring biological diversity. Environmental and
Ecological Statistics, 1(2):95–103, Jun 1994. doi:10.1007/BF02426650.

[42] Robert Endre Tarjan. Data Structures and Network Algorithms. SIAM, Philadelpia, 1983.

[43] Tamara Ulrich, Johannes Bader, and Lothar Thiele. Defining and optimizing indicator-based
diversity measures in multiobjective search. In Robert Schaefer, Carlos Cotta, Joanna
Ko lodziej, and Günter Rudolph, editors, Parallel Problem Solving from Nature, PPSN XI,
pages 707–717, Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-15844-5_71.

[44] Adan Vela, John-Paul Clarke, Eric Feron, Nicolas Durand, and William Singhose. Determining
the value of information for minimizing controller taskload: a graph-based approach. In
ATM Seminar 2011, 9th USA/Europe Seminar on ATM R&D, 2011.

[45] Adan Ernesto Vela. Understanding conflict-resolution taskload: implementing advisory
conflict-detection and resolution algorithms in an airspace. PhD thesis, Georgia Institute of
Technology, 2011.

[46] Philippe Vincke. Multicriteria Decision-aid. Wiley, Chichester, 1992.

[47] Mark Wineberg and Franz Oppacher. The underlying similarity of diversity measures used
in evolutionary computation. In Genetic and Evolutionary Computation - GECCO 2003,
Genetic and Evolutionary Computation Conference, Chicago, IL, USA, July 12-16, 2003.
Proceedings, Part II, pages 1493–1504, 2003. doi:10.1007/3-540-45110-2_21.

[48] Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another so-
lution and its application to puzzles. IEICE transactions on fundamentals of electronics,
communications and computer sciences, 86(5):1052–1060, 2003.

20

http://dx.doi.org/10.1007/BF02426650
http://dx.doi.org/10.1007/978-3-642-15844-5_71
http://dx.doi.org/10.1007/3-540-45110-2_21

	Introduction
	Our problems and results.

	Preliminaries
	A Framework for Maximally Diverse Solutions
	Optimal Augmentation
	Faster Augmentation
	Diverse Hitting Set

	Diverse Feedback Vertex Set
	Modeling Aspects: Discussion of the Objective Function
	Maximizing the Smallest Hamming distance
	Conclusions and Open Problems

