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A PARALLEL SCHEDULING ALGORITHM FOR MINIMIZING THE NUMBER OF
UNSCHEDULED JOBS
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Institut fur Mathematik, Technische Universitat Graz
Kopernikusgasse 24, A-8010 Graz, Austria.

We consider the problem of scheduling n jobs with different processing
times on one machine subject to a common release date and different
due-dates, in order to maximize the number of jobs that are finished
in time.

The most efficient sequential algorithm which is known for this prob-
lem is due to Moore and Hodgson and runs in 0(n log n) time. We
present a_parallelization of this algorithm which runs in 0(logzn)
time on n% processors. Our model of computation is the single instruc-
tion stream, multiple data stream (SIMD) shared memory model without
write conflicts but with read conflicts.

Our approach is based on the binary tree method of Dekel and Sahni. It
requires a thorough analysis of the behavior of the seguential
algorithm. We show that a parallel alagorithm for the same scheduling
problem given by Dekel and Sahni relies on an erroneous assumption.

1. INTRODUCTION

Parallel algorithms for scheduling problems have been considered in a series of
oapers by Dekel and Sahni [1981, 1983a, 1983b, 1984].

In this paper, we consider the problem of scheduling n jobs with different pro-
cessing times on one machine subject to a common release date and different
due-dates, in order to maximize the number of jobs that are scheduled in time,
This problem has been dealt with in Dekel and Sahni [1983a], but as will be
shown below (at the end of section 2), their algorithm relies on an erroneous
assumption.

An efficient sequential algorithm for this problem has been known for a long
<ime (Moore [19681). Our parallelization of this algorithm requires a careful
analysis of its behavior. It is based on the binary tree method of Dekelt and
Sahni [1983al]. The model of computation is the single instruction stream, mul-
<iple data stream (SIMD) shared memory model without write conflicts but with
-ead conflicts allowed.

In section 2, we define the problem, and we review the Hodgson-Moore algorithm
‘or its solution. We discuss the properties of the solution and we give exten-
sions and modifications which will allow the problem to be treated in parallel.
Sections 3 describes the algorithm, section 4 contains the details of its paral-
.el implementation, and section 5 concludes the paper.

“~is work was supported by the Austrian science foundation (Fonds zur Forderung
ser wissenschaftlichen Forschung) Project S$32/01.
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2. THE SCHEDULING PROBLEM
2.1. Definition of the problem

We consider the following scheduling problem:

There is one machine which is continuously available and which can process one
job at a time. There is a number of jobs i=1,...,n, with a common release date r
for all jobs, and a processing requirement pj and a due-date dj for each job.

We want to find the maximum number of jobs that can be scheduled such that the
jobs are processed without starting earlier than the release date and without
finishing after their due-dates (a feasible schedule).

2.2. The Moore-Hodgson algorithm

The following facts are known:

As subset S of the jobs can be scheduled such that no job is tardy (i. e.,
finishes after its due-date) if and only if the schedule produced by the EDD-
rule (earliest due-date) is feasible. (The EDD-schedule is obtained by process-
ing the jobs in order of increasing due-dates, starting from the release date.)
Such a set S is called a feasible set of jobs. In other terms, a set of jobs
with due-dates d1§d2§...§di and processing times pq,pp,...,p; is feasible if and
only if

for all j=1,2,...,4:  r + (pytppt...*pj) £ dj .

The fastest sequential algorithm for the problem is due to Hodgson (Moore
[1968]1) and takes 0(n log n) time. It is a greedy-type procedure and runs as
follows:

(i) The jobs are considered in increasing order of due-dates. They are
scheduled in this order, beginning at the release date.

(ii) Each job considered is appended to the list of jobs scheduled so far.
If its finishing time exceeds its due-date, we find the longest job in
the Llist of jobs scheduled so far (including the job just appended)
and cancel it from the list (forever; it will never be considered
again).

In any case all of the jobs now in the List finish in time. We proceed
by considering the next job.

(i11) The final Llist obtained is the set of jobs that are scheduled in an
optimal schedule.

Formally, the algorithm runs as follows:

Initially, we assume that dq$d>S...5dp.
f:=r; S:=0;
for i from 1 to n do
£ := f+p:'; S := SU{i},‘
if f>d; then
j argmax (pj|jg$};
f f-pj; S := S\{j};

2.3. Example:

n=6, r=0, the given d; and p; values are shown in the following table. The
optimal schedule constructed by the algorithm consists of the jobs 2, 3, 5, and
6. The start times a; of these jobs in the schedule is given in the last Lline.
Job 1 is canceled when job 3 is considered, and job 4 is canceled when it is
considered itself.
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2.4. Analysis of the algorithm

THEOREM 1: The set S constructed by the algorithm is optimal in two ways:
) It is a maximum-cardinality feasible set of jobs.
2) Among the feasible sets with egual cardinality, it has minimum total
processing time of the jobs (or equivalently, minimum finishing time).

PROOF: Assume that T is an optimal set of jobs but T contains jobs that are not
in S. We shall argue that T can be transformed into a set T' which
(a) is still feasible,
(b) contains as many jobs as before,
(c) has total processing time no Longer than before,
(d) is therefore optimal as well, and
(e) has one more job in common with S.
Let j by the first job in T\S (with smallest due-date). We denote by Sp the set
of jobs from which the job j was canceled in the algorithm. No feasible set of
jobs can contain all jobs in Sg. Therefore, there must be some job k of Sp not
contained in T. By the construction of j, pk§p~. We construct the set T' by re-
placing j by k in T. If the EDD-schedule for t%e set T was feasible, then the
EDD-schedule for T' is also feasible (see figure 1) since
i) the jobs in Sp, which are scheduled first, are finished in time be-
cause they are a subset of Sg\{j}, which is a feasible set;
(i) the remaining jobs, which are scheduled afterwards, are finished by
Pj=Pk earlier than in T, and therefore in time.
The remaining desired properties of T', (b), (c), (d), and (e), are trivial.

By repeating the above transformation as many times as necessary, we can
transform T into an optimal set which is a subset of the feasible set S and

which is therefore equal to S. [ ]
jobs in Sg jobs not in S,
-~ N £ A ¥
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jobs in Sy jobs not in Sp
FIGURE 1

Construction of the EDD-schedule T' from the schedule T.

2.5. Refinement of the algorithm

One undesirable property of the algorithm, which is partly responsible for the
inherently sequential character of the algorithm, is that when job j is consid-
ered, the algorithm does not decide conclusively whether this job will be in the
final schedule.

we shall show that, with some preprocessing, a final decision whether each job
belongs to the optimal schedule or not, can be made in a sequential manner.
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Assume that the jobs are initially ordered by their due-dates, with ties broken
arbitrarily, and that, when selecting the job with Llargest processing time in a
set of jobs, ties are broken in favor of the job with the smallest number.

If a job i is put into the list at some time, then it will not finally remain in
the list unless all subsequent jobs with shorter (or equal) processing time are
also in the final Llist, because when the algorithm subsequently looks for a job
to be removed, it will rather select i than any of the suhzequent shorter jobs.
Now let's assume that we know which of the jobs before i belong to the optimal
solution, and these jobs constitute the current list. When we consider job i in
the algorithm, we could test whether the schedule formed by appending i and all
subsequent shorter jobs to the current list is feasible. If it is not, we can
reject i right away, as we have seen above. If it is, then we can accept i to
the final solution, since subsequent jobs with Llarger processing time can do no
harm because they would rather be canceled themselves before job i is canceled,
and the remaining jobs can be scheduled feasibly.

Thus we can set up the following variation of the algorithm:
We assume that di$d>S...Sd.

A) Preprocessing:
for each i=1,...,n do

ifisn } .

s; 1s the latest possibly start time for job i if all jobs j with pisp;
are to be scheduled in time. (Actually, the minimum need only be taken
over all j with pjgpi.)

s; = min { dj - Z{pkligkéj,okgpi}

B) Main Lloop:
fg:=r; S:=0;
for i from 1 to n do
if fi-18s; then f; := fi_q4p;; S := SU{i);
(Job i will be scheduled.)
else f; := f;_4;
(Job i will not be scheduled.)

The subscripts of the variable f have been added to distinguish between the
values in different steps of the algorithm.

2.6. Continuation of example 2.3
The following table shows the p; and d; values as given in section 2.3, the com-

puted s; values and the values of f; during the course of the algorithm. The
jobs of the optimal schedule constructed are indicated by a star.

il0 12 3 4 5 6
d; 8 9 10 11 16 17
p; 6 4 3 5 7 2
s4 -7 37 6 8 15
f51 0 0% *7 7 *14 *16

2.7. Example:

n=4, r==2, the given d; and p; values and the computed s; values are shown in
the following table, and an optimal schedule is shown in figure 2.
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FIGURE 2

Optimal schedule for example 2.7.

2.8. Towards a parallelization

The preprocessing part is parallelizable in a straightforward way, but the main
Loop looks inherently sequential. Nothing can be said about f; before f;_q is
known, except for the abstract functional relationship which the algorithm esta-
blishes between f;-q and f;, or, more generally, between f; and f; for i<j. We
denote this function by Fij. The function Fij gives the value of %j for all pos-
sible values of f;, and thus it can be dealt with without having a specific
value of f;. This is the key to decomposing the problem of computing f, starting
from fg into independent parts which can be executed in parallel. The price that
one has to pay is that one has to compute a representation of Fij for the whole
domain of values of f;, and not just for a single value.

It is clear that the composition of Fjj and Fs;i is Fyy and Fpn(fg)=Fgr(r)=f, is
the finishing time of the optimal schedule. Figure 3 shows the functions Foi,
i=1,2,3,4 for the example of section 2.7. The corresponding set S of jobs in the
optimal solution is also given for all values of fp=r. Fg; can be obtained in-
ductively from FO,i-1 by applying Fi-1,i' Fi-1,i is the function:

if fi—1§Si then Fi—1,i(fi—1) = fi—1+pi else Fi°1,i(fi‘1) = fi—T;
i. e., the graph of Fg; s obtained from the graph of FO,i-1 by shifting every-
thing which is below the horizontal line at fj_q=s; upwartds by pj.

THEOREM 2: Let 02i<jSn and j-i=m. Then the function Fﬁj has the following pro-
perties:
) It is piecewise linear with constant slope equal to 1.
2) The linear pieces are defined on half-open intervals which are open on
the left side and closed on the right side.
3 There are at most (mz ) discontinuities ("breakpoints').

(4) At the discontinuities, there are in total at most m different ordi-

3a) 3h) f2

Fo1:

then f1=f0+p1
else f1=f0

FIGURE 3
The functions Fgq and Fpo.
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nate values which occur as left Limits (i, e. at the right endpoints
of the linear pieces), and at most m different ordinate values which
occur as right Limits.

(5) The function consists of at most m+1 strictly increasing portions, and
the cardinality of the solution set S, restricted to {i+1,i+2,...,j},
is constant on each portion (cf. figure 3d).

6) Each of these portions consists of at most m different linear pieces.

PROOF: Properties (1) and (2) are immediate. Now we show (5):

It is clear that the cardinality of Sn{i+1,i+2,...,j} decreases monotonically
from m to 0 as we move f; from left to right. Thus the domain of F;i; can be
decomposed into m+1 intervals where the cardinality is constant. Let's look at
such an interval, where the cardinality is t. Since Fy;(f3) is equal to f; plus
the shortest possible total processing time of a schedule for a subset of the
jobs {i+1,i+2,...,j} with cardinality t starting at the release date f;, and
since any feasible schedule with release date f; is also feasible for atl
release dates f;'<fj, it follows that Fyj is strictly increasing in the
interval,

Properties (3) and (4) will be shown by induction on m: We conclude from
Fi,i+m=1 10 Fi_ jim- For m=1 the assertion is obvious (cf. figure 3a).

For m>1, Fi j+p is obtained from F; j4m-1 by applying the function Fiem=1 i+ms
i. e. by adaing dj+m to atl function values §5i+m and leaving the rest as’it is
(cf. figure 3b, ¢, and d). New breakpoints can only appear where the function
Fi,i+m-1 Crosses the horizontal line at sjs, continuously. Since Fj j4p-q has at
moSt m monotonically increasing portions, this can happen at most m times, and
at most m new breakpoints can appear. This implies (3).

The ordinate values at the new breakpoints are sS4y as right timits and
SiemtPi+m as left limits. The ordinate values of Fi,i+m at the old breakpoints
can be obtained from the ordinate values of Fj jsp-1 by adding pjsp to those
which are Ssi3p. Thus the number of different brdinate values at the old break-
points does not increase, and there is one (possibly) new ordinate value as left
Limit and one as right limit.

Property (6) follows from (5) and (4). -

Remark 1: This theorem requires that the values s; and pj have been prepro-
cessed, otherwise the argument leading to (5) would not be valid. If s; and p;
can have arbitrary values, the function F;; defined by part B of the algorithm
can have an exponential number of pieces.

Remark 2: From figure 3 it can be seen that some elements are dropped from the
solution set S and exchanged against others as r moves from right to Left, and
thus S does not monotonically grow. This is the false assumption on which the
algorithm of Dekel and Sahni [1983al was based.

3. DESCRIPTION OF THE ALGORITHM

The algorithm is based on the binary tree method of Dekel and Sahni [1983al. The
idea is to compute fgn, by decomposing it into two '"equal-sized" parts FOj and
Fin, which can be computed in parallel and then computing the composition of
t%ese functions. Foj and F:, are again computed by parallel decomposition and so
on recursively. As a conceptual aid, we draw a complete binary tree with n
Leaves (cf. figure 4). The Leaves are associated with the functions Fi_q j,
i=1,2,...,n, in that order, and the common predecessor of the nodes which are
associated with F;; and ij, respectively, is associated with Fj,. The root is
associated with Fpn.

After preprocessing the data, we proceed from the leaves to the root, composing
the functions of the sons to the functions of the father as we go. Then we
evaluate the function Fgp at the point r and proceed from the root to the
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FIGURE 4
The complete binary tree for n=6 jobs.

Leaves, computing the values fj, i=0,...,n. This is done as follows:

Assume that we are in the node associated with Fj,, and we have already com-
puted f;j, and this node has two sons which are associated with F;; and ij.
Then we can compute fj:=F;;(f;). Now we know f; and f; and we can’go down
one level in the tree.

Finally, for each i, we know fj.q and we can determine whether job i occurs in
the optimal solution. As a last step we have to collect this information and
compute the start times for all jobs that are scheduled.

4, THE PARALLEL IMPLEMENTATION

We shall repeatedly need the following basic result of Dekel and Sahni [1983al,
which is the standard example for the application of the binary tree method.

LEMMA: Given a sequence (a1,82,...,3p) of m numbers, the partial sums sequence
(S1,---,50) with S;=aqtazt...ta; can be computed in O(lLog m) time with m
processors,

We represent each function Fj; by an array of at most (j-i+1)(j-i)/2+1 triples

(lL,u,c) sorted by the L component. A triple (L,u,c) has the following meaning:
"If 1<f;%u, then Fij(fi)=fi+c."

(L may be -®, and u may be .)

4.1. Overview of the parallel algorithm

The preprocessing step consists of sorting the jobs by due-dates and computing
the s; values. Sorting can for example be accomplished by the simple enumeration
sorting scheme of Muller and Preparata [19751 with n¢ processors in 0(log n)
time. The computation of one sj value can be done with n processors in 0(log n)
time by computing partial sums and one parallel subtraction and minimum-finding.
Thus the computation of all s; values takes 0(log n) time on n< processors.

The composition of two functions Fij and ij in proceeding from the leaves to
the root is the hardest step and is discussed later.

The storage needed for storing the function Fij is 0((j-i)2), and thus a total
storage of 0(n2) is enough to store all functions.

In each node of the tree, the determination of f'=Fij(fi) can be done in con-
stant time with (j-i)2 processors given the function Fjj as a list of sorted
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triples. Thus the total processor requirement while going from the root to the
leaves is at most n at each level of tree, and the total time is 0(log n).

Computing the start times for each job can again be accomplished by computing
partial sums with n processors in 0(log n) time.

Thus the algorithm, exclusive of the upward pass thru the tree, can be imple~
mented with n2 processors in 0(log n) steps.

4.2. Implementation of the composition of two functions

First we give a very simple implementation of the composition of two functions
requiring n* processors. Let (Pq,P3,...) and (Qq,Q>,...) be the lists associated
with the functions Fij and ij. Then we provide a processor (a,b) for every pair
of triples P =(lq,uq,cq9) and Qy=(l3,up,cp) and tet this processor perform the
following action.
if l1+cq<up and Ly<uq+cq then
(The image interval of F;;, (l4*cq,uqtcql, and the domain interval of
ij, (lp,u2], intersect.)
set up a new triple (L,u,c) for the composed function Fjy, with:
L= max{lq,l2-cq2;
u = min{u1,U2‘C1};
¢ = cqter.
(We say that the triples (lq,uq,cq) and (l3,up,cp) have generated the
triple (L,u,c).)

Then we have to collect the new triples into one sorted array. We do this by
setting qzp=1 if a new triple has been set up in processor (a,b) and A3p=0
otherwise, and computing the partial sums sequence of the sequence (q11,912,--.,
921,922,-..). The (3,b) entry in this sequence is the position where the triple
generated in processor (a,b) has to go in the sorted array of tripltes for the
composed function. Because of theorem 2, property (3), at most (k=i+1)2/2 new
triptes have been generated.

In total, one composition of functions takes 0(log n) time.

Now we show how the _processor requirement to compose two functions F;; and ij
can be reduced to n2. The idea is to allocate processors only to those pairs
(a,b) of intervals which will generate an interval of F;i. We proceed as
follows:

1. In step two, we want to allocate one processor to each triple of F;, that
will be generated. for each triple (lL,u,c) of F;; we find the indices of the
intervals of Fj, in which Ll+c and u+c lie by Loo&ing them up in the sorted
sequence of triples of F; . One plus the difference between these indices is the
number of intervals of Fik which the interval (l+c,utc] intersects, i. e. the
number of triples of Fj  which are generated with the triple (L,u,c). This is
the number of processors that will be allocated to the triple (lL,u,c).

This step takes 0(log n) time and (j—i)2 processors.

2. Then we calculate the partial sums sequence of the numbers computed in step
one and use this sequence to allocate one processor to each pair of triples of
Fij and ij which will generate a triple of Figa

The computation of partial sums takes (j-i)2/2 processors and 0(log(j-i)) time.
Because of theorem 2, property (3), at most (k=i+1)2/2 processors are needed.

3. As described above for the simple algorithm, we generate the triples (l,u,c)
of Fjk. This takes constant time.

Thus we have shown that the composition of two functions Fij and ij can be com-
puted in O0(log n) time with approximately (k=-1i)2 processors. This means that, as
we go up the tree from the leaves to the root, no more than n2 processors are
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needed at each level of the tree, and the total time from the leaves to the root
is 0(log2 n).

Finally we remark that the same algorithm complexity can be achieved without
introducing read conflicts. This involves setting up binary trees through which
each data item that is needed in several processors is broadcast. To allow this,
the data structure for representing the function F;; must be extended. Since the
resulting algorithm is complicated and technical, it is not included in the
paper.

5. CONCLUSION

We have shown that the scheduling problem of maximizing the number of jobs
scheduled in time if n jobs with different processing times and due-dates are
given can be solved on nf processors in O(Logzn) time and 0(n2) space. In view
of the sequential complexity of 0(n log n) steps this result, which nevertheless
requires a thorough analysis of the problem, can only be taken as a first step
towards a better or optimal solution. Perhaps the appropriate approach to such
problems is not the parallelization of good sequential algorithms, especially in
this case where the sequential algorithm looks almost hopelessly sequential at
first glance, but searching from scratch for completely different solutions
which are more appropriate for a parallel implementation.
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