Examples of Diophantine relations:

- 1. $a \equiv b \pmod{c}$: $\exists x : a = cx + b \text{ or } b = cx + a$. (over $\mathbb{N}!$)
- 2. $a \ge b$: a = b + x (\exists is always implicit)
- 3. a > b: (Exercise)
- 4. $a = b \mod c$: $a \equiv b \pmod c$ and $0 \le a \le c$.
- 5. $\{(a,b,c) \mid a=b^c\}$?
- 6. $\{2^k\}$? Tarski believed not Diophantine

$$G_b(0) = 0, G_b(1) = 1,$$
 $G_n(n+1) = b \cdot G_b(n) - G_b(n-1)$ close to the recursion for b^{n-1} \Leftrightarrow symmetric between forward and backward

$$b = 4$$
: $[\ldots, -15, -4, -1,]0, 1, 4, 15, 56, \ldots$

 $b = 3: 0, 1, 3, 8, 21, \dots$

$$b = 2: 0, 1, 2, 3, 4, 5, \dots$$
 (useless?)

WE SHOW: $a = G_b(c)$ for (fixed) $b \ge 3$ is Diophantine. $(b \ge 4 \text{ simplifies some arguments.})$

Missing link! [Yuri Matiyasevich 1970, Julia Robinson, Martin Davis, Hilary Putnam 1961]

The points
$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} G_b(n+1) \\ G_b(n) \end{pmatrix}$$
 lie on the hyperbola $h_b(x,y) := x^2 - bxy + y^2 - 1 = 0$. $(\to \text{picture})$

Lemma 1. The only integer solutions of $h_b(x,y) = 0$ with $x > y \ge 0$ are those points.

Proof: The hyberbola is invariant under the shift $\binom{G_b(n)}{G_b(n-1)} \leftrightarrow \binom{G_b(n+1)}{G_b(n)}$: $\binom{x}{y} \mapsto \binom{bx-y}{x}$ or $\binom{x}{y} \mapsto \binom{y}{by-x}$, and the shift preserves y < x.

Now we can generate $\{G_b(n)\}=\{x\mid \exists y\colon h_b(x,y)=0\}$ but we don't know n.

Lemma 2.
$$b \equiv b' \pmod{u} \implies G_b(n) \equiv G_{b'}(n) \pmod{u}$$
 (Induction. Easy.)

IDEA: Choose two appropriate moduli M and m to coordinate $G_b(n)$ with n:

$$G_w(0), G_w(1), \dots, G_w(n), \dots \mod M$$
 $w \equiv b \pmod M$ $\longrightarrow G_b(n)$ $G_w(0), G_w(1), \dots, G_w(n), \dots \mod m$ $w \equiv 2 \pmod m$ $\longrightarrow G_2(n) = n$

As long as n is small and $G_w(n) \leq M$, we have $G_w(n) \mod M = G_b(n)$ (and $G_w(n) \mod m = n$), but for larger n, $G_w(n) \mod M$ gets out of control, and there will be extra solutions. (\rightarrow picture)

- Make $G_w(n) \mod M$ mirror-symmetric after reaching a peak at $G_w(p) = G_b(p)$: $(\to \text{ picture})$ $G_b(p-1) \equiv G_b(p+1) \pmod{M} \implies M := G_b(p+1) G_b(p-1) \qquad (p = \text{ peak} = \text{ period})$
- Avoid "negative" values by using the absmod operation instead of mod. (\rightarrow picture) x absmod $M=a \iff x=qM\pm a$ and $0\leq a\leq M/2$.
- The period m of " $G_w(n)$ absmod m=n" should divide the period 2p of " $G_w(n)$ absmod M": $m \mid p$.
- Choose m (and M) larger than twice the (supposed) value a of $G_b(c)$, so that absmod does no harm.
- 1. m > 2a.
- 2. p should be a multiple of m
- 3. $M := G_b(p+1) G_b(p-1)$
- 4. Choose w > 2 with $w \equiv b \pmod{M}$

$$w \equiv 2 \pmod{m}$$

- 5. $h_w(x,y) = 0$ [$\Longrightarrow x = G_w(n)$ for some n]
- 6. $a = x \operatorname{absmod} M$ [$a = G_b(n)$] $c = x \operatorname{absmod} m$ [$c = G_2(n) = n$]

Lemma 3. $G_b(k)^2 \mid G_b(p) \implies G_b(k) \mid p$

(Cf. Fibonacci numbers: $F_k \mid F_p \iff k \mid p$.)

Application: Choose m of the form $m = G_b(k)$ for some k, by requiring $h_b(m, m') = 0$ Then $m^2 \mid G_b(p) \implies m \mid p$.

Implementation of Conditions 2 and 3.

$$\begin{array}{c|c} h_b(r,s) = 0, \ r < s \\ \hline G_b(p) = s \\ G_b(p+1) = bs - r \\ \hline M = (bs-r) - r \\ \hline \begin{bmatrix} M = (bs-r) - r \end{bmatrix} = G_b(p+1) - G_b(p-1). \text{ Also } G_b(p) < M/2. \end{bmatrix}$$

The conditions are enough to ensure that every solution (a, c) satisfies $a = G_b(c)$. (The condition a < m/2 cuts off extra solutions.)

Converse direction:

We need to show that m, M with gcd(m, M) = 1 exist (then w statisfying (4.) exists, by the Chinese Remainder Theorem), and that $m^2 \mid s$ can be fulfilled.

• Choose $m = G_b(k)$ odd and set $s = G_b(p)$ for $p = k \cdot m$: Then it can be shown that gcd(m, M) = 1 and $m^2 \mid s$.

Getting to the relation $a = b^c$:

$$(b-1)^{n} \le G_{b}(n+1) \le b^{n}$$

$$b^{c} = \lim_{x \to \infty} \frac{G_{bx+4}(c+1)}{G_{x}(c+1)} \approx \frac{(bx \pm \text{const})^{c}}{(x \pm \text{const})^{c}} \to b^{c}, \text{ for all } b, c \ge 0$$

$$b^{c} = \left\lfloor \frac{G_{bx+4}(c+1)}{G_{x}(c+1)} \right\rfloor \text{ for } x > 16(c+1)G_{b+4}(c+1).$$

(The "+4" term ensures that this works even for b = 0.)