Examples of Diophantine relations:
l.a=b (mod ¢): Iz:a=cr+borb=cxr+a. (over NI
a>b: a="0b+x (3is always implicit)
a > b: (Exercise)
a=bmodc: a=b (mod c¢) and 0 < a < c.
{(a,b,¢) |a=0b}7
{2%1? Tarski believed not Diophantine
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Gy(0) =0, Gy(1) =1,| Go(n+1) =0b-Gy(n) —Gy(n—1) | close to the recursion for b"!
Gyn—1)4+Gp(n+1)=0b-Gy(n) | = symmetric between forward and backward
4: [...,—15,—4,-1,]0,1,4,15,56, . ..

3: 0, 1,3 8,21,.

2: 0,1,2,3,4, 5 : (useless?)

WE SHOW: | a = Gy(c) |for (fixed) b > 3 is Diophantine. (b > 4 simplifies some arguments.)
Missing link! | Yuri Matiyasevich 1970, Julia Robinson, Martin Davis, Hilary Putnam 1961 |
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The points (a: ) = ( bC(;n(+) )) lie on the hyperbola | hy(z,y) := 2? — bxy + y>* — 1 =0|. (— picture)
Yn b\

Lemma 1. The only integer solutions of hy(x,y) = 0 with x > y > 0 are those points.

Proof: The hyberbola is invariant under the shift (Gf(bﬁ)l)) < (Gg(ﬁz)l)): (z) > (bxx_y) or (Z) > (by{m),
and the shift preserves y < x.

Now we can generate { Gy(n) } = {x | Jy: hp(x,y) = 0} but we don’t know n.
Lemma 2. b =0 (mod u) = Gy(n) = Gy(n) (mod u) (Induction. Easy.) O
IDEA: Choose two appropriate moduli M and m to coordinate Gy(n) with n:
Guw(0),Gp(1),...,Gp(n),...mod M w=>b (mod M) |— Gp(n)
Gw(0),Gyw(1),...,Gy(n),...modm w=2 (mod m) |— Ga(n)=n

As long as n is small and G,,(n) < M, we have G,,(n) mod M = Gy(n) (and G, (n) mod m = n), but for
larger n, G, (n) mod M gets out of control, and there will be extra solutions. (— picture)

e Make G, (n) mod M mirror-symmetric after reaching a peak at G,,(p) = Gy(p): (— picture)
Gyp—1)=Gp(p+1) (mod M) = M :=Gy(p+1) — Gy(p—1) (p = peak = period)

e Avoid “negative” values by using the absmod operation instead of mod. (— picture)
xabsmod M =a <= z=qgM taand 0 <a < M/2.

e The period m of “G,(n)absmodm = n” should divide the period 2p of “G\,(n)absmod M”: m | p.

e Choose m (and M) larger than twice the (supposed) value a of Gy(c), so that absmod does no harm.

1. m > 2a.
2. p should be a multiple of m
3. M :=Gy(p+1)—Gp—1)
4. Choose w > 2 with w = b (mod M)
2 (mod m)

5. hy(z,y) =0 = z= Gw(n) for some n |
6. a =zabsmod M [ a= Gy(n) |

¢ =zabsmodm [c=Gy(n)=n]




Lemma 3. Gy(k)?| Gy(p) = Gu(k) |p (Cf. Fibonacci numbers: Fy | F, <= k|p.)

Application: Choose m of the form m = G,(k) for some k, by requiring | hy(m,m') =0 |.
Then m? | Gy(p) = m|p.

Implementation of Conditions 2 and 3.

ho(r,s) =0, r<s | Gy(p—1)=r, for some p

Gy(p) =

Go(p+1)=bs—r
M= bs—1)—7r | [=Gyp+1)—Gyp—1). Also Gy(p) < M/2. |
m*|s | [ = m|p. ]

The conditions are enough to ensure that every solution (a, ¢) satisfies a = Gy(c). (The condition a < m/2
cuts off extra solutions.)

Converse direction:
We need to show that m, M with ged(m, M) = 1 exist (then w statisfying (4.) exists, by the Chinese
Remainder Theorem), and that m? | s can be fulfilled.
e Choose m = Gy(k) odd and set s = Gy(p) for p =k -m:
Then it can be shown that ged(m, M) = 1 and m? | s.

Getting to the relation a = 0%
b—1)"<Gpn+1)<d"

. Gpeia(c+1)  (bz £ const)®
b = lim A
zoo Gy(c+1) (x £ const)e

be — Gbx+4(c + 1)
Giy(c+1)

(The “44” term ensures that this works even for b = 0.)

— b, for all b,c >0

J for x > 16(c + 1)Gpia(c + 1).



