Examples of Diophantine relations:

- 1. $a \equiv b \pmod{c}$: $\exists x \colon a = cx + b \text{ or } b = cx + a$. (over $\mathbb{N}!$)
- 2. $a \ge b$: a = b + x (\exists is always implicit)
- 3. a > b: (Exercise)
- 4. $a = b \mod c$: $a \equiv b \pmod{c}$ and $0 \le a < c$.
- 5. $\{(a, b, c) \mid a = b^c\}$? Exponentiation is Diophantine!
- 6. $\{2^k\}$? Tarski believed not Diophantine

$$\begin{aligned} G_b(0) &= 0, \ G_b(1) = 1, \\ \hline G_b(n+1) &= b \cdot G_b(n) - G_b(n-1) \\ G_b(n-1) + G_n(n+1) &= b \cdot G_b(n) \end{aligned} \text{ close to the recursion for } b^{n-1} \\ \rightleftharpoons \text{ symmetric between forward and backward} \\ b &= 4: \ [\dots, -15, -4, -1,] \ 0, \ 1, \ 4, \ 15, \ 56, \dots \\ b &= 3: \ 0, \ 1, \ 3, \ 8, \ 21, \dots \\ b &= 2: \ 0, \ 1, \ 2, \ 3, \ 4, \ 5, \dots \ (\text{useless?}) \end{aligned}$$

WE SHOW: $a = G_b(c)$ for (fixed) $b \ge 3$ is Diophantine. ($b \ge 4$ simplifies some arguments.) Missing link! [Yuri Matiyasevich 1970, Julia Robinson, Martin Davis, Hilary Putnam 1961]

The points
$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} G_b(n+1) \\ G_b(n) \end{pmatrix}$$
 lie on the hyperbola $h_b(x,y) := x^2 - bxy + y^2 - 1 = 0$. (\rightarrow picture)

Lemma 1. The only integer solutions of $h_b(x, y) = 0$ with $x > y \ge 0$ are those points.

Proof: The hyberbola is invariant under the shift $\binom{G_b(n)}{G_b(n-1)} \leftrightarrow \binom{G_b(n+1)}{G_b(n)}$: $\binom{x}{y} \mapsto \binom{bx-y}{x}$ or $\binom{x}{y} \mapsto \binom{y}{by-x}$, and the shift preserves y < x.

Now we can generate $\{G_b(n)\} = \{x \mid \exists y \colon h_b(x, y) = 0\}$ but we don't know n.

Lemma 2. $b \equiv b' \pmod{u} \implies G_b(n) \equiv G_{b'}(n) \pmod{u}$ (Induction. Easy.)

IDEA: Choose two appropriate moduli M and m to coordinate $G_b(n)$ with n:

 $\begin{array}{ll}G_w(0), G_w(1), \dots, G_w(n), \dots \bmod M & w \equiv b \pmod{M} & \overrightarrow{} \\ G_w(0), G_w(1), \dots, G_w(n), \dots \bmod m & w \equiv 2 \pmod{m} & \overrightarrow{} \\ \end{array}$

As long as n is small and $G_w(n) \leq M$, we have $G_w(n) \mod M = G_b(n)$ (and $G_w(n) \mod m = n$), but for larger n, $G_w(n) \mod M$ gets out of control, and there will be extra solutions. (\rightarrow picture)

- Make $G_w(n) \mod M$ mirror-symmetric after reaching a peak at $G_w(p) = G_b(p)$: (\rightarrow picture) $G_b(p-1) \equiv G_b(p+1) \pmod{M} \implies M := G_b(p+1) - G_b(p-1) \qquad (p = \text{peak} = \text{period})$
- Avoid "negative" values by using the absmod operation instead of mod. (\rightarrow picture) x absmod $M = a \iff x = qM \pm a$ and $0 \le a \le M/2$.
- The period m of " $G_w(n)$ absmod m = n" should divide the period 2p of " $G_w(n)$ absmod M": $m \mid p$.
- Choose m (and M) larger than twice the (supposed) value a of $G_b(c)$, so that absmod does no harm.

1. m > 2a2. p should be a multiple of m3. $M := G_b(p+1) - G_b(p-1)$ 4. Choose w > 2 with $w \equiv b \pmod{M}$ $w \equiv 2 \pmod{M}$ 5. $h_w(x, y) = 0$ [$\Longrightarrow x = G_w(n)$ for some n] 6. a = x absmod M [$a = G_b(n)$] c = x absmod m [$c = G_2(n) = n$] **Lemma 3.** $G_b(k)^2 \mid G_b(p) \implies G_b(k) \mid p$

Also: $G_b(k) \mid G_b(p) \iff k \mid p$

(Cf. Fibonacci numbers: $F_k \mid F_p \iff k \mid p$.)

Application: Choose *m* of the form $m = G_b(k)$ for some *k*, by requiring $h_b(m, m') = 0$ Then $m^2 | G_b(p) \implies m | p$.

Implementation of Conditions 2 and 3.

$$\begin{array}{c|c} h_b(r,s) = 0, \ r < s \\ \hline \\ G_b(p) = s \\ G_b(p+1) = bs - r \\ \hline \\ M = (bs - r) - r \\ \hline \\ m^2 \mid s \\ \hline \\ m \mid p. \end{array} \begin{bmatrix} \Longrightarrow m \mid p. \end{bmatrix} \\ \begin{array}{c} G_b(p-1) = r, \text{ for some } p \\ G_b(p) = s \\ G_b(p+1) = bs - r \\ \hline \\ G_b(p-1). \text{ Also } G_b(p) < M/2. \end{bmatrix}$$

The conditions are enough to ensure that every solution (a, c) satisfies $a = G_b(c)$. (The condition a < m/2 cuts off extra solutions.)

Converse direction:

We need to show that m, M with gcd(m, M) = 1 exist (then w statisfying (4.) exists, by the Chinese Remainder Theorem), and that $m^2 | s$ can be fulfilled.

• Choose $m = G_b(k)$ odd and set $s = G_b(p)$ for $p = k \cdot m$:

Then it can be shown that gcd(m, M) = 1 and $m^2 \mid s$.

Getting to the relation $a = b^c$:

$$(b-1)^n \le G_b(n+1) \le b^n$$

$$b^{c} = \lim_{x \to \infty} \frac{G_{bx+4}(c+1)}{G_{x}(c+1)} \approx \frac{(bx \pm \text{const})^{c}}{(x \pm \text{const})^{c}} \to b^{c}, \text{ for all } b, c \ge 0$$

The "+4" term ensures that this works even for b = 0.

$$b^{c} = \left\lfloor \frac{G_{bx+4}(c+1)}{G_{x}(c+1)} \right\rfloor$$
 for $x > 16(c+1)G_{b+4}(c+1)$.