Massive Multiplayer Online First Person Shooter as Peer-to-Peer game

Christian Grümme gruemme@mi.fu-berlin.de

Freie Universität Berlin

July 7, 2008

Overview

Objective and Approach Implementation Evaluation Conclusion

Objective and Approach

Objective Approach Synchronizing Implementation The Sectorizier nodes Game adjustment

Evaluation

Setting Results Scalability

Conclusion

Conclusion Future research

Objective Approach Synchronizing

Objective - Server-Client architecture

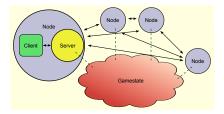
- Centralized:
 - No consistent problems
 - Less cheating capabilities
 - Single point of failure
- Clients share the server's bandwidth
- The server becomes the bottleneck of this architecture, especially with a growing amount of clients.

Objective Approach Synchronizing

Objective - Peer-to-Peer architecture

Decentralized

- Robustness to the failure of single nodes
- Synchronization is needed to preserve consistence of the game world
- Bandwidth with a growing amount of participants


Objective Approach Synchronizing

- Replacing the disadvantages of the Server-Client architecture by the advantages of the Peer-to-Peer architecture
- Solve disadvantages of the Peer-to-Peer architecture
- Constraint: A generic approach in order to change a minimum on the game logic itself -> So this approach can be applied to a large number of applications

Objective Approach Synchronizing

Approach 1 - Forming a server node

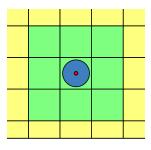
One modified server and an unmodified client are forming a server node

Objective Approach Synchronizing

Approach 2 – The tasks of a modified server

A modified server has to fulfill the following tasks:

- Providing a game world for the client
- Realizing "real time" communication to other server nodes
- Communicating just to those server nodes that are relevant


Objective Approach Synchronizing

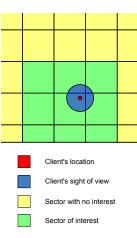
Zoning 1 – Conditions

- ► A sectorization partitions the game world into sectors
- ► Each sector has to be controlled by at least one server node
- A sector of interests for a server node is a sector in that its clients has its location in or that is neighboring such a sector

Objective Approach Synchronizing

Zoning 2 – Example 1

Client's location


Client's sight of view

Sector of interest

Objective Approach Synchronizing

Zoning 3 – Example 2

Objective Approach Synchronizing

Request 1 – Postulations

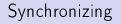
- Each server node has to control its sector of interests
- Each server node has a complete list of the other server nodes with an unique ID (SNID) and an URI
- Each server node has a sector table which maps each sector to a server node that is in control of it (current or last seen, so may be outdated)

Objective Approach Synchronizing

Request 2 - Request Algorithm

Request chain 1

 Ask last seen SNID controlling s
IF SNID is not controlling s THEN
overwrite entry of s in the sector table with the sector table entry of SNID


4. GOTO 1

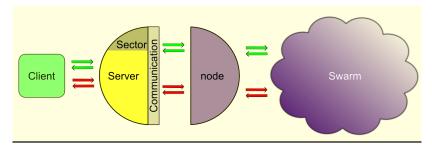
Objective Approach Synchronizing

- There is no hardware based multicast available on the Internet
- Degree of a node can be reduced by taking hops to other nodes
- Just useful when the time difference is acceptable or data can be aggregated

Objective Approach Synchronizing

- Synchronizing time between server nodes is a big problem
- Within an ideal environment the Network Time Protocol can just synchronize with an accuracy of 20 ms
- A solution would be a logical time within the game

The Sectorizier nodes Game adjustment


Implementation 1 – Parts

The Implementation is divided into three parts:

- The Sectorizier
- The middleware nodes
- Other miscellaneous modifications on the original server

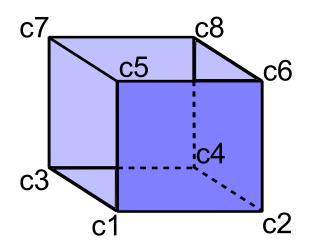
The Sectorizier nodes Game adjustment

Implementation 2 – Organization

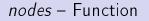
Reliable Connection

Unreliable Connection

The Sectorizier nodes Game adjustment


The Sectorizier 1 - Function

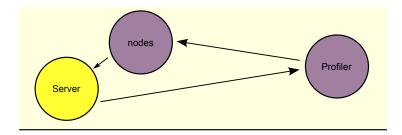
The Sectorizier


- analyzes a given game map
- generates an XML-file that describes the sectorization of this map
- is implemented in ANSI C
- uses the libxml2 the XML C parser and toolkit developed for the Gnome project

The Sectorizier nodes Game adjustment

The Sectorizier 2 – Ascending cube

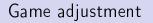
The Sectorizier nodes Game adjustment



nodes . . .

- is a JAVA-based middleware
- can be adapt to other applications
- introduces a new abstract data type, the Request Queue
- has a swarm table and a sector table as main data structures
- got a profiler

The Sectorizier nodes Game adjustment


The profiler

Unreliable Connection

The Sectorizier nodes Game adjustment

Modifications

- ► The Sectorizier is integrated
- Additional command line parameters
- Communication with nodes

Setting Results Scalability

Small map

Run No.	Nodes	Computers	Profilers
1	10	10	2
2	20	10	4
3	40	10	8

Table: Test run on the small map — q3dm1

Setting Results Scalability

Big map

Run No.	Nodes	Computers	Profilers
4	20	10	5
5	20	10	8
6	40	10	20
7	40	10	10
8	80	10	12
9	80	10	10
10	40	4	12
11	20	4	8
12	40	20	10
13	58	29	10

Table: Test run on the big map — sector12_12

Setting Results Scalability

Evaluation Graphic - Big map

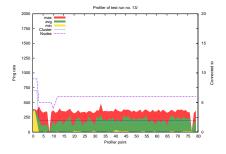


Figure: A profiler of test run 13

Setting Results Scalability

Evaluation Graphic – Small map

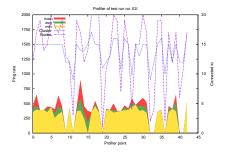


Figure: A profiler of test run 02

Setting Results Scalability

- Game based limitation of the number of players
- Microsoft Windows TCP-Limit (10 TCP-Connection per second)

Setting Results Scalability

Evaluation Graphic – Problems

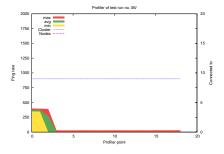


Figure: A profiler of test run 06

Setting Results Scalability

Bandwidth consumption

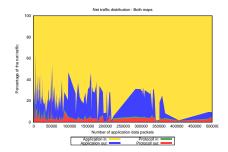


Figure: The visualization of all samples

Conclusion Future research

Conclusion

- Objective was achieved
- But with reservations (TCP-limit)

Conclusion Future research

Future research

- > A sectorisation that consider map characteristics
- Cheating protection
- Multi-client server and client migration
- Other applications
- Implementing the presented Routing
- Converting to a hybrid system

Conclusion Future research

Thank you for listening

http://page.mi.fu-berlin.de/gruemme/snp2p/