
STABLE FRAMES IN MODEL CATEGORIES

FABIAN LENHARDT

Abstract. We develop a stable analogue to the theory of cosimplicial frames

in model cagegories; this is used to enrich all homotopy categories of stable

model categories over the usual stable homotopy category and to give a dif-
ferent description of the smash product of spectra which is compared with the

known descriptions; in particular, the original smash product of Boardman is

identified with the newer smash products coming from a symmetric monoidal
model of the stable homotopy category.

1. Introduction

Model categories are a convenient framework for ”doing homotopy theory”. De-
spite their not very complicated definition, they are rather powerful - many of the
constructions known in topology can actually be carried out in model categories
or their associated homotopy categories, for example suspensions and cofiber se-
quences, which gives lots of extra structure one can exploit.
The theory of cosimplicial frames, developed in [DK80] and [Hov99], shows that
model categories are, in fact, closely related to the homotopy theory of topological
spaces respectively simplicial sets:

Theorem 1.1. The homotopy category of any model category is naturally enriched
over the usual homotopy category of CW -complexes.

Here, enriched is to be understood in the sense of the modules of [Hov99, 4.1].
A model category is called stable if the suspension functor on its homotopy category
is an equivalence. In [Hov99, 8.11], Hovey raises the question whether there is a
stable analogue of the above theorem:

Question 1.2. Can the homotopy category of any stable model category be naturally
enriched over the usual stable homotopy category?

We will answer this question in the affirmative. In fact, we obtain an even
stronger result: The stable homotopy category is the homotopy category of ”the
stable model category on one generator”. This slogan already appears in [SS02],
and in fact the methods used there are sufficient to define the enrichment functor
on objects. We refine the methods so we can handle morphisms. Unfortunately,
the precise statement of our main theorem is quite technical, so we defer the precise
statement to 5.9.
Under technical constraints on the model category, the above question is also an-
swered in [Dug06]. Our approach has the advantage that it does not need any
technical assumptions on the model categories involved - not even functorial fac-
torizations - and that the construction is more natural than the one used in [Dug06].

2010 Mathematics Subject Classification. 18G55, 55P42.
Key words and phrases. Model Categories, Spectra, Smash Product.

1



2 FABIAN LENHARDT

1.1. Fixing definitions. For convenience, we will use a few slightly nonstandard
definitions. For a model category C, we do not consider the usual homotopy cate-
gory which has the same objects as C, but instead the equivalent full subcategory
spanned by the cofibrant objects only. We just write Ho(C) for this category again.
This definition has the advantage that in the definition of the derived functor of
a left Quillen functor C → D no cofibrant replacement is needed, hence the de-
rived functor is actually equal to the original functor on objects. Furthermore, this
means that the derived functor of the composition of two left Quillen functors is
equal to the composition of the two derived functors, which streamlines our proof.
Using [Hov99, 1.3.7], we could get the proof working with the usual definitions, but
this does not seem to be worth the trouble.

2. Sequential spectra

In this section, we will describe the category of spectra we want to work with.
Working with this concrete model for SHC is crucial; the constructions we want to
do depend not only on the homotopy category, but on the model category itself,
and will fail to work for many models; in particular, we cannot replace simplicial
sets by topological spaces in the following definition.

2.1. The category of sequential spectra.

Definition 2.1. Let S1 be the simplicial circle ∆[1]/∂∆[1]. A sequential spectrum
or just spectrum of simplicial sets is a sequence {Xn}n≥0 of pointed simplicial sets
together with pointed maps σn : Xn ∧ S1 → Xn+1. A map of spectra f : X → Y is
a sequence of pointed maps fn : Xn → Yn such that the obvious diagrams commute.
The resulting category of sequential spectra of simplicial sets will be denoted as Sp.

Denote by Evn : Sp → SSet the functor of evaluation in degree n and by Fn :
SSet→ Sp its left adjoint; the spectrum Fn(X) is the free spectrum on X in degree
n. The spectrum F0S

0 which has the n-sphere Sn in level n with structure maps the
identifications Sn ∧ S1 ∼= Sn+1, is called the sphere spectrum and will be denoted
by S. This is the spectrum which will later on play the role of the unit.

2.2. The homotopy theory of spectra. We have a level model structure on Sp
which is induced by the model structure on SSet∗: A map f : X → Y of spectra is
a level weak equivalence respectively level fibration if all fn are weak equivalences
respectively fibrations of simplicial sets, and f is a cofibration if f0 is a cofibration
and the induced map Xn+1 ∪Xn∧S1 Yn ∧ S1 → Yn+1 is a cofibration for all n.
For stable homotopy theory, the homotopy category of this model category is too
large; speaking loosely, it should not matter what happens in low dimensions, but
it certainly does for level weak equivalences. To repair this, define the homotopy
groups of a spectrum A as

πk(A) = colim
n

(πk+n|An|)

for any integer k where the colimit is taken over the maps

πk+n|An|
−∧S1

→ πk+n+1[An ∧ S1| σn→ πk+n+1|An+1|



STABLE FRAMES IN MODEL CATEGORIES 3

A map f : A→ B of spectra induces maps on the homotopy groups πk(f) : πk(A)→
πk(B) since f induces compatible maps πk+n|An| → πk+n|Bn|. Call a map of spec-
tra a π∗-isomorphism if it induces isomorphisms on all homotopy groups.

Theorem 2.2. There is a model structure on Sp with weak equivalences the π∗-
isomorphisms and with the same cofibrations as in the level model structure.

Proof. See [BF78] or [GJ99, X]. �

From now on, we write SHC for Ho(Sp) with its stable model structure.
The fibrant objects in this model structure are exactly the levelwise Kan Ω-spectra,
i.e., those spectra of levelwise Kan fibrant simplicial sets where all adjoint struc-
ture maps An → ΩAn+1 are weak equivalences of simplicial sets, and the acyclic
fibrations are the level acyclic fibrations since we did not change the cofibrations
when we stabilized.

3. Cosimplicial frames

The proof of our main theorem relies on the technique of frames in a model
category first developed in [DK80]; we will give a short overview, mostly based
on [Hov99, Section 5].
There is one easy definition of a cosimplicial frame: A cosimplicial object in a
(pointed) model category C is a frame if and only if the associated adjunction
SSet∗ 
 C is a Quillen pair. This is the correct definition; however, there is an
equivalent description of frames which is easier to handle since it makes no reference
to the associated adjunction; only intrinsic properties of the cosimplicial object will
be used.

3.1. Cosimplicial objects. The basic fact underlying the theory of cosimplicial
frames is the following:

Proposition 3.1. For any cocomplete, pointed category C, the category of adjunc-
tions SSet∗ 
 C is equivalent to the category C∆ of cosimplicial objects in C.

Proof. This is standard; see for example [Hov99, 3.1.6] for details. �

For less awkward notation, we make the following definition:

Definition 3.2. For a cosimplicial object X in C, we write (X ∧ −,Map(X,−))
for the associated adjunction SSet∗ 
 C.

The category of cosimplicial objects in a cocomplete, pointed category C is also
a simplicial category in a natural way:

Definition 3.3. For a cosimplicial object X in C and a pointed simplicial set K,
define a cosimplicial object X ∧S K by

(X ∧S K)n = X ∧ (K ∧∆[n]+)

with cosimplicial structure maps induced by the cosimplicial structure map of the
cosimplicial object K ∧∆[−]+ under the functor X ∧ −.
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Using the equivalent language of adjunctions SSet∗ 
 C, this construction takes
the following form: A cosimplicial object X represents an adjunction SSet∗ 
 C,
and we can precompose this adjunction with the adjunction (K∧−, (−)K) : SSet∗ 

SSet∗ to obtain another adjunction SSet∗ 
 C, and this adjunction is represented
by the cosimplicial object X ∧S K.

Proposition 3.4. This smash product is part of a simplicial structure on C∆.

Proof. The simplicial mapping spaces are defined as

Map(X,Y )n = HomC∆(X ∧S ∆[n]+, Y )

with simplicial structure maps induced from the cosimplicial structure maps of
the cosimplicial object of cosimplicial objects X ∧S ∆[−]+. See [Qui67, II.1] for a
description of the right adjoints (−)K : C∆ → C∆. �

If C is a model category, the category C∆ also carries a model structure. Note
the different meanings of X ∧SK and X ∧K: The first is a cosimplicial object, the
latter an object of C. Also recall that X ∧∆[n]+

∼= Xn.

Definition 3.5. Let f : X → Y be a morphism of cosimplicial objects in a model
category C. The map f is

• a weak equivalence if for all n, the map fn : Xn → Yn is a weak equivalence
• a (acyclic) Reedy cofibration if the induced maps

X ∧∆[n]+

∐
X∧∂∆[n]+

Y ∧ ∂∆[n]+ → Yn

are (acyclic) cofibrations in C for all n
• a (acyclic) Reedy fibration if it has the corresponding right lifting property

with respect to (acyclic) Reedy cofibrations.

Remark 3.6. It is easy to check with this definition that an object Y is Reedy
fibrant if and only if the induced map Y → c(Y0) is a Reedy fibration and Y0 is
fibrant, where c(Y0) denotes the constant cosimplicial object on Y0.We will often
make use of this.

Of course, this defines a model structure such that the two possibly different
notions of acyclic cofibrations (resp. the two possibly different notions of acyclic
fibrations) agree:

Theorem 3.7. With these classes of weak equivalences, cofibrations and fibrations,
the category C∆ is a model category.

Proof. This is [Hov99, 5.2.5], or see [Ree]. �

Note that a cosimplicial object X is cofibrant if and only if X ∧− preserves cofi-
brations - by definition, it preserves the generating cofibrations ∂∆[n]+ → ∆[n]+,
and hence all cofibrations.
Now C∆ is a model category and a simplicial category; however, the SM7-axiom
for a simplicial model category fails. We only have the following:

Proposition 3.8. Let f : X → Y be a Reedy cofibration of cosimplicial objects in
a model category C and let i : K → L be a cofibration of simplicial sets. Then the
pushout-product map

f�i : X ∧S L
∐

X∧SK

Y ∧S K → Y ∧S L
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is a cofibration which is trivial if f is.

Proof. See [RSS01, 7.4] or [Hov99, 5.4.1] (or rather its pointed analogue [Hov99,
5.7.1]); or use the methods in the proof of Proposition 5.4. �

This is close to the SM7-axiom, but the pushout-product need not be a weak
equivalence when i is a trivial cofibration.
Now we can characterize frames:

Proposition 3.9. Let X be a cosimplicial object in a model category C. Then
X ∧ − : SSet → C is left Quillen if and only if X is Reedy cofibrant and for all
standard maps ∆[n]+ → ∆[m]+ of standard simplices, X ∧∆[n]+ → X ∧∆[m]+ is
a weak equivalence in C.

Proof. See [Hov99, 3.6.8]. �

Note that X ∧ ∆[n]+ → X ∧ ∆[m]+ is a weak equivalence if and only if all
cosimplicial structure maps of X are weak equivalences if and only if the induced
map X → c(X0) is a level weak equivalence. This leads to the following definition:

Definition 3.10. A cosimplicial object in C is homotopically constant if all cosim-
plicial structure maps are weak equivalences. It is a cosimplicial frame or just frame
if it is Reedy cofibrant and homotopically constant.

By the above proposition, frames correspond to Quillen pairs SSet∗ 
 C. We
also have the following:

Proposition 3.11. For any simplicial set K and any frame X, the cosimplicial
object X ∧S K is again a frame.

Proof. A cosimplicial object X is a frame if and only if the corresponding adjunction
is Quillen. Since the adjunction (K ∧ −, (−)K) : SSet∗ 
 SSet∗ is Quillen, the
composite of this adjunction with (X ∧ −,Map(X,−)) is Quillen if X is a frame;
hence X ∧S K is a frame. �

Since we will mainly use smashing with S1, we introduce simpler notation:

Definition 3.12. For a cosimplicial object X, we write ΣX for the cosimplicial
object X ∧S S1 and Ω(−) for the right adjoint of Σ.

For frames, the simplicial mapping spaces in C∆ also carry homotopical infor-
mation (in general, they do not because SM7 fails):

Proposition 3.13. For cosimplicial objects A and B in C with A a cosimplicial
frame and B Reedy fibrant, we have a natural isomorphism

πn Map(A,B) ∼= [A ∧S Sn, B]

where [−,−] denotes the morphism sets in Ho(C∆).

Proof. The point is that A∧S∆[−] is a cosimplicial frame on A (it is a bicosimplicial
object in C) if A is a frame. Using Proposition 3.8, this is easy to see. The claim
now follows from [Hov99, 6.1.2] which states that the mapping spaces obtained from
frames have the correct homotopy type. �
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3.2. Frames. Now we have defined frames and seen some basic properties, we want
to put together some results concerning existence and uniqueness of frames. The
main aim of this section is to prove Theorem 3.18. For this end, we need to develop
some more theory. Theorem 3.18 subsumes most of the properties of frames in a
very compact form; it is not formulated in [Hov99], but all the ingredients for the
proof can be found there.

Proposition 3.14. Let C be a pointed model category and X a cofibrant object of
C. Then there is a left Quillen functor L : SSet∗ → C with an isomorphism from
L(∆[0]) to X; or equivalently, there is a frame A on X, i.e., such that A0

∼= X. If
X is fibrant, we may choose A to be Reedy fibrant.

Proof. This is basically a consequence of the factorizations in C∆; see [Hov99, 5.2.8].
�

Proposition 3.15. Let X,Y be cofibrant-fibrant objects of C, f : X → Y a mor-
phism in C. Then there are frames A on X, B on Y together with a morphism
F : X → Y covering f .

Proof. This is essentially [Hov99, 5.5.1]. �

Proposition 3.16. Let A,B be frames and f, g : A → B be two maps such that
f0, g0 : A0 → B0 represent the same morphism in Ho(C). Then f = g in Ho(C∆).

Proof. This is similar to [Hov99, 5.5.2], though not quite the same. Let ev0 :
C∆ 
 C : c denote the adjunction given by evaluation in degree 0 and constant
cosimplicial object. This is a Quillen pair by the discussion after [Hov99, 5.2.7]. The
assumptions of the proposition are such that for the derived functor evL0 , we have
evL0 (f) = evL0 (g). Since B is homotopically constant, the map B → c(ev0(B)) is a
weak equivalence; hence the counit of the derived adjunction is an isomorphism for
frames. Since cR(evL0 (f)) = cR(evL0 (g)), it follows f = g in Ho(C∆) as desired. �

We will also need the following:

Proposition 3.17. Let A,B be frames, f, g : A → B maps which are equal in
Ho(C∆). Then the derived natural transformations fL, gL : A ∧L − → B ∧L − are
equal

Proof. See [Hov99, 5.5.2]. �

This means that we can regard Ho(Fr(C)) as the category of left Quillen functors
SSet∗ → C, localized at the natural weak equivalences, and thus as a category of
derived left Quillen functors Ho(SSet∗)→ Ho(C): We send an object X of Fr(C) to
the functor X∧L− : Ho(SSet∗)→ Ho(C) and a morphism f : X → Y to the derived
natural transformation; the proposition above implies that this is well-defined.

Now we can prove the main theorem announced at the beginning of this chapter:

Theorem 3.18. Let Ho(Fr(C)) be the full subcategory of Ho(C∆) determined by
the cosimplicial frames. Then evaluation in degree 0 ev0 : C∆ → C induces an
equivalence of categories Ho(Fr(C))→ Ho(C). Furthermore, the suspension functor
Σ : C∆ → C∆ restricts to a functor Σ : Ho(Fr(C)) → Ho(Fr(C)) which is an
equivalence if C is stable.
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Proof. First note that ev0 : C∆ → C is left Quillen, so we indeed get a functor
ev0 : Ho(C∆)→ Ho(C).
Let X be an object of Ho(C), i.e., a cofibrant object of C. By 3.14, we find a frame
A on X; this means evL0 (A) ∼= X, which proves essential surjectivity.
Let g : X → Y be a morphism in Ho(C). We may up to isomorphism assume that
X,Y are cofibrant-fibrant; then g is represented by an actual morphism f : X → Y
in C; by 3.15, we find frames A, B on X and Y with a map F : A→ B covering f ;
now, evL0 (F ) = g. Hence evL0 is full.
Now let f, g : A → B be two maps in Ho(C∆) such that evL0 (F ) = evL0 (G); we
may again up to isomorphism assume A,B to be cofibrant-fibrant and that f, g
are represented by actual morphisms F,G : A→ B in C∆. Then 3.16 implies that
f = g. Hence evL0 is faithful; this proves the first claim.
For the second statement, Lemma 3.19 below shows that Σ restricts to a functor
Σ : Ho(Fr(C)) → Ho(Fr(C)) as claimed. Clearly, on the homotopy category level
we have ev0 ◦Σ ∼= Σ ◦ ev0 where the right-hand Σ is the suspension in Ho(C). Since
C is stable, all involved fucntors except the left-hand Σ are equivalences; hence Σ
is an equivalence as well. �

3.3. Frames and the suspension functor. Let C be a model category. We write

(Σ,Ω) for the adjoint pair (− ∧S S1, (−)S
1

) on C∆.

Lemma 3.19. For any model category C, the functor Σ : C∆ → C∆ is a Quillen
functor in the Reedy model structure and preserves cosimplicial frames.

Proof. By setting K = L = S1 in Proposition 3.8, we see that Σ preserves cofibra-
tions and acyclic cofibrations. Furthermore, ΣX is the cosimplicial object associ-
ated to the functor X ∧ (S1 ∧ −) : SSet∗ → C which is left Quillen as composition
of two left Quillen functors, thus ΣX is a cosimplicial frame. �

Unfortunately, even if the underlying model category is stable, Σ is usually not
a Quillen equivalence. To remedy this failure, we define another class of ”weak
equivalences” (which will in general NOT be part of a model structure):

Definition 3.20. A map f : X → Y of cosimplicial objects in a model category
is a realization weak equivalence if for all cosimplicial frames A, the induced map
[A,X]→ [A, Y ] is an isomorphism in the homotopy category of C∆.

The definition is made to fit into a potential model structure where the frames
are the cofibrant objects; such a model structure exists under the usual conditions
which allow localization, see [RSS01] and [Dug01]. For us, it is mainly an auxiliary
construction which is helpful to prove Proposition 3.24.

Lemma 3.21. All weak equivalences are realization weak equivalences.

Proof. This is clear since weak equivalences X → Y induce isomorphisms [A,X]→
[A, Y ] for all A. �

Lemma 3.22. Let X, Y be frames and f : X → Y a realization weak equivalence.
Then f is a weak equivalence.

Proof. We can assume without loss of generality that X and Y are Reedy fibrant.
By definition, f induces an isomorphism [Y,X] → [Y, Y ]. The preimage of the
identity of Y is easily checked to be a homotopy inverse for f . �
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Realization weak equivalences also have the expected behaviour with respect to
the suspension and loop functor:

Proposition 3.23. Let X be a cosimplicial frame over a stable model category
C and Y a Reedy fibrant cosimplicial object. Then a map f : ΣX → Y is a
realization weak equivalence if and only its adjoint f̃ : X → ΩY is a realization
weak equivalence.

Proof. Let A be a cosimplicial frame. There is a commutative diagram

[A,X]

Σ

��

[A,f̃ ] // [A,ΩY ]

∼=
��

[ΣA,ΣX]
[ΣA,f ] // [ΣA, Y ]

The map on the left is an isomorphism since C is stable, A and X are frames and
the homotopy category of frames is equivalent to the homotopy category of C.
If f is a realization weak equivalence, the bottom map is an isomorphism since ΣA
is a frame, so the top map is an isomorphism as well; hence f̃ is a realization weak
equivalence. Conversely, if f̃ is a realization weak equivalence, the top map is an
isomorphism, hence the lower map also is for any frame A. By Theorem 3.18, any
frame B is up to homotopy of the form ΣA; this implies the claim. �

Proposition 3.24. Let f : X → Y be a map of Reedy fibrant cosimplicial objects
which is both a realization weak equivalence and a Reedy fibration. Then f has the
right lifting property with respect to cosimplicial frames.

Proof. By definition of a realization weak equivalence and since we have sufficient
cofibrancy and fibrancy conditions, each map A → Y with A a frame admits a
lift up to homotopy A → X, i.e. an actual map A → X making the diagram
commutative up to homotopy. It is a standard fact about model categories that in
such a triangle, with the right-hand map a fibration, one can change a lift up to
homotopy within its homotopy class to an actual lift; see for example in the proof
of [Hov99, 6.3.7]. �

4. Spectra and adjunctions

In this section, we describe why we want to work with the category Sp: It is easy
to describe left adjoints starting in SSet or SSet∗, and this is inherited by Sp. This
is completely category-theoretical and has nothing to do with homotopy theory or
model structures. We already know how to describe adjunctions out of SSet∗ and
natural transformations between them. For spectra, the point is that one can write
a spectrum as a coequalizer of free spectra in a canonical way:

Proposition 4.1. For a spectrum A, there is a coequalizer diagram∨
n FnAn−1 ∧ S1

T //
H

//
∨
n FnAn

// A

where H is induced by the structure maps of A and T is induced by the maps
FnAn−1 ∧ S1 → Fn−1An−1 adjoint to the identity of An−1 ∧ S1.



STABLE FRAMES IN MODEL CATEGORIES 9

Proof. This is straightforward. We have maps FnAn → A adjoint to the identity
of An, the wedge of these maps is the map

∨
n FnAn → A. To check the universal

property, note that a map
∨
n FnAn → B is adjoint to a sequence of maps An → Bn;

this is a map of spectra if and only if the map
∨
n FnAn → B is compatible with

the two coequalizer maps. �

To formulate our theorem, we need another definition:

Definition 4.2. A Σ-cospectrum in C∆ is a sequence of cosimplicial objects Xn

together with structure maps ΣXn → Xn−1; a morphism of cospectra X → Y is
a sequence of morphisms Xn → Yn compatible with the structure maps, like in a
spectrum. Denote the resulting category as C∆(Σ).

Theorem 4.3. For a cocomplete category C, the category C∆(Σ) of Σ-cospectra is
equivalent to the category Ad(Sp, C) of adjunctions Sp 
 C with natural transfor-
mations as morphisms.

Proof. This is straightforward. Given an adjunction L : Sp 
 C : R, form the
cospectrum with n-th object the cosimplicial object associated to the left adjoint
L ◦ Fn. For essential surjectivity, use the above coequalizer diagram to define the
left adjoint out of a Σ-cospectrum X. The right adjoint R associated to X is given
by R(A)n = Map(Xn, A) with structure maps induced by the structure maps of X.
Compare [SS02, 6.5]. �

Again, to avoid awkward notation, we make the following definition:

Definition 4.4. For a Σ-cospectrum X, we write (X ∧ −,Map(X,−)) for the
associated adjunction. We denote the m-th cosimplicial level of the cosimplicial
object Xn by Xn,m.

Note that none of this depended on actual properties of SSet∗ or −∧S1 besides
the fact that − ∧ S1 is a left adjoint; one may define L-cospectra in an arbitrary
cocomplete category C with an adjunction L : C 
 C : R as sequences of objects
Xn of C with structure maps LXn → Xn+1, and all of the above remains true for
this category of spectra. In all cases of interest of us - in particular for Σ-cospectra
- the underlying category C is actually a model category and L is left Quillen, and
then cospectra form a model category again. Since this will be important to us, we
give an explicit definition:

Definition 4.5. Let C be a model category and let L : C 
 C : R be a Quillen
pair. A cospectrum with respect to this data is a sequence X0, X1, . . . of objects
of C together with structure maps σn : LXn → Xn−1. A morphism f : X → Y
of cospectra is a sequence of maps fn : Xn → Yn such that for all n, the obvious
diagram commutes. We denote this category by C(L) and will call the objects L-
cospectra.
A L-cospectrum up to degree k is a sequence of objects X0, X1,. . . ,Xk in C together
with structure maps LXm → Xm−1 for m = 1 . . . k. A morphism X → Y is a
sequence of maps Xm → Ym compatible with the structure maps as above. We
denote the resulting category as C(L, k).

Both these constructions again yield model categories in a natural way:

Theorem 4.6. There is a level model structure on C(L) and on C(L, k) for any k
where a map f : X → Y is a
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• weak equivalence resp. cofibration if and only if all fn are weak equivalences
resp. cofibrations
• a (trivial) fibration if f0 is and for all n ≥ 0, the induced map Xn →
Yn ×RYn−1

RXn−1 is a (trivial) fibration.

Proof. This is certainly not new; however, there seems to be no actual proof of
this in printing. Note that we do not assume that C is cofibrantly generated; the
theorem holds for any model category. However, the proof of the model axioms,
just using the model axioms in C, is straightforward (though not precisely short);
note that one needs to check that ”trivial fibration” as stated is indeed the same
as a fibration and a weak equivalence. �

5. Stable frames in model categories

5.1. Stable frames. The following is the stable analogue of 3.9:

Theorem 5.1. Let X be a Σ-cospectrum in the model category C. Then the adjoint
pair X ∧ − : Sp 
 C : Map(X,−) is a Quillen pair if and only if all Xn are
cosimplicial frames and the structure maps ΣXn → Xn−1 are weak equivalences.

Proof. See [SS02, 6.5]. �

Definition 5.2. A Σ-cospectrum X which is levelwise a frame and has weak equiv-
alences ΣXn → Xn−1 is a stable frame on the object X0,0.

Theorem 5.3. Let C be a stable model category and A a cofibrant-fibrant object of
C. Then there is a stable frame X on A, i.e., such that X0,0

∼= A; or equivalently,
there is a left Quillen functor L : Sp→ C with L(S) ∼= A. This frame can be chosen
to be fibrant in the model category C∆(Σ).

Proof. Choose a Reedy fibrant frame X0 on A. By Theorem 3.18, we can find a
Reedy fibrant frame X1 together with a weak equivalence ΣX1 → X0. Iterating
this construction provides a stable frame, which may be replaced fibrantly in C∆(Σ)
without changing A = X0,0 by construction of the factorizations in C∆(Σ). �

For studying derived natural transformations, we will need that two homotopic
maps of stable frames induce the same derived natural transformations. For this
end, we need some compatibility between the model structures on C∆(Σ), C and
Sp. The next proposition is our stable equivalent of [Hov99, 5.4.1] and 3.8, and the
proof is virtually the same as the one given there.

Proposition 5.4. Let C be a model category. Assume f : X → Y is a cofibration in
C∆(Σ) and g : A→ B is a cofibration of spectra. Then the induced pushout-product
map in C f�g : X ∧ B

∐
X∧A Y ∧ A → Y ∧ B is a cofibration which is trivial if f

is.

Proof. We may assume that g is one of the generating cofibrations Fm∂∆[n] →
Fm ∆[n] using [Hov99, 4.2.4].
In this case, the induced map is the map

Xm,n

∐
Xm∧∂∆[n]+

Ym ∧ ∂∆[n]+ → Ym,n

which is a cofibration by definition of the Reedy cofibrations between cosimplicial
objects if f is a cofibration. If f is acyclic, it is also acyclic; see [Hov99, 5.2.5]. �
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Corollary 5.5. Let B be a cofibrant spectrum. Then the functor −∧B : C∆(Σ)→ C
preserves cofibrations and acyclic cofibrations and hence has a left derived functor.

Proof. Set A = ∗ in 5.4. �

Corollary 5.6. Let X, Y be stable frames and F,G : X → Y two homotopic maps.
Then F and G induce the same derived natural transformations between the derived
functors of X ∧ − and Y ∧ −.

Proof. Let A be a cofibrant spectrum. We have two maps F (A), G(A) : X ∧ A →
Y ∧ A. We claim that these two maps represent the same map in Ho(C): Since
−∧A has a derived functor by the preceding corollary, we get a diagram of functors

C∆(Σ)

��

−∧A // C

��
Ho(C∆(Σ))

−∧LA // Ho(C)

which commutes up to a natural isomorphism. We want to see that F and G go
to the same map via the clockwise composition; but since the left vertical map
sending them to their homotopy classes already sends them to the same map, the
claim follows. �

Unsurprisingly, weak equivalences between stable frames induce natural weak
equivalences:

Proposition 5.7. Let f : X → Y be a weak equivalence of stable frames. Then the
derived natural transformation f∧− : X∧− → Y ∧− is a natural weak equivalence,
i.e., a weak equivalence for all cofibrant spectra A.

Proof. By [Hov99, 1.3.18], we may as well check the corresponding statement for
the right adjoints, i.e., that for a fibrant object Z of C, the map

Map(f, Z) : Map(Y, Z)→ Map(X,Z)

is a π∗-isomorphism. The functor

Map(−, Z) : (C∆)op → SSet∗

preserves weak equivalences between frames if Z is fibrant. Since Map(Y,Z) and
Map(X,Z) are levelwise of the form Map(Yn, Z) and Map(Xn, Z) for frames Xn

and Yn and f is a levelwise weak equivalence, the map

Map(f, Z) : Map(Y, Z)→ Map(X,Z)

is a level weak equivalence. This is what we wanted to prove. Note that Map(Y, Z)
and Map(X,Z) are Ω-spectra, hence the notions of level weak equivalence and
π∗-isomorphism agree. �

Definition 5.8. For a stable model category C, let SF (C) denote the full subcate-
gory of C∆(Σ) given by all stable frames and Ho(SF (C)) the full subcategory of the
homotopy category of C∆(Σ) given by stable frames.

Now we have carried together enough information to prove the stable analogue
of Theorem 3.18.
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Theorem 5.9. Let X be a cofibrant object of C, Y a cofibrant-fibrant object; let
ωX be a stable frame on X and ωY a fibrant stable frame on Y.
a) Any map f : X → Y extends (nonuniquely) to a map F : ωX → ωY and hence
to a natural transformation ωX ∧− → ωY ∧− covering f on the sphere spectrum.
b) Let f ′ : X → Y be homotopic to f. Then any F and F’ constructed from f and f’
as in a) are homotopic and hence induce the same derived natural transformation
between the derived functors of ωX ∧ − and ωY ∧ −.
c) If f is a weak equivalence, any map ωX → ωY as in a) is a natural weak
equivalence.
d) Evaluation in degree (0, 0) induces an equivalence of categories

ev(0,0) : Ho(SF (C))
∼=→ Ho(C)

from the homotopy category Ho(SF (C)) of stable frames in C to Ho(C).

Proof. For a), we first extend f to a map F0 : ω0X → ω0Y : Since ω0Y is Reedy
fibrant and homotopically constant, the map ω0Y → cY is an acyclic fibration. We
also have a map ω0X → cY adjoint to f , and this map lifts to a map F0 : ω0X →
ω0Y since ω0X is cofibrant and ω0Y → cY is an acyclic fibration.
Now we want to produce a map F1 : ω1X → ω1Y extending F0 to a map of
cospectra up to degree 1 which is nothing else but a lift in the diagram

ω1Y

��
ω1X // Ωω0X

F0 // Ωω0Y

where the maps ω1X → Ωω0X and ω1Y → Ωω0Y are the structure maps. Since
ωY is fibrant, the map on the right is a realization weak equivalence by Proposition
3.23 and a Reedy fibration; hence we find a lift in this diagram by Proposition 3.24.
Proceeding like this, we find maps Fn : ωnX → ωnY which form a morphism of
cospectra and cover f . This proves a).
For b), it is by the preceding corollary enough to see that the homotopy type of
a map F : ωX → ωY is determined by the homotopy type of the restriction of
F to f : X → Y . By [Hov99, 5.5.2] or Theorem 3.18, it suffices to see that the
homotopy type of F is determined by the homotopy type of F0 : ω0X → ω0Y since
the homotopy type of F0 is determined by f .
Let ev0 : C∆(Σ)→ C∆ denote the left Quillen functor given by evaluation in degree
0. We get an induced map of the simplicial mapping spaces Map(ωX,ωY ) →
Map(ω0X,ω0Y ). On π0, this map induces [ωX,ωY ] → [ω0X,ω0Y ]. The maps
F and F ′ go to the same element in [ω0X,ω0Y ] by assumption; hence we are
finished if we can see that the map Map(ωX,ωY )→ Map(ω0X,ω0Y ) is a homotopy
equivalence (and thus induces an isomorphism on π0).
Let ω≤nX resp. ω≤nY denote the partial cosimplicial cospectrum obtained by only
taking the first n+ 1 objects of ωX resp. ωY . We get a pullback square as follows,
where the unnamed maps are induced from the structure maps of ωX and ωY and
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the mapping spaces are those of C∆:

Map(ω≤1X,ω≤1Y )

ev0

��

ev1 // Map(ω1X,ω1Y )

��
Map(ω0X,ω0Y )

Ω
// Map(Ωω0X,Ωω0Y ) // Map(ω1X,Ωω0Y )

The map on the right is a fibration since the map ω1Y → Ωω0Y is a fibration
and Map(ω1X,−) is right Quillen; note that this does not follow from 3.8, but re-
quires an argument that ω1X ∧S − preserves acyclic cofibrations; compare [Hov99,
5.4.3]. By [Hov99, 6.1.2], we have that the induced map πn Map(ω1X,ω1Y ) →
πn Map(ω1X,Ωω0Y ) is just the map [Σnω1X,ω1Y ]→ [Σnω1X,Ωω0Y ] induced by
the structure map of Y , which is an isomorphism since Σnω1X is a frame and
ω1Y → Ωω0Y is a realization weak equivalence. So the map on the right induces
an isomorphism on all homotopy groups with basepoint the zero map. To see that
it is in fact a π∗-isomorphism, we have to extend this to all basepoints.
Since we can find a frame Z with ΣZ ' ω1X, we see that Map(ω1X,ω1Y ) '
Map(ΣZ, ω1Y ) ' Ω Map(Z, ω1Y ) is a loopspace up to weak equivalence; and
similarly Map(ω1X,Ωω0Y ) ' Ω Map(Z,Ωω0Y ) is a loopspace, and the induced
map between the two spaces is up to homotopy Ω of the map Map(Z, ω1Y ) →
Map(Z,Ωω0Y ). But in a loopspace, all components are weakly equivalent in a
way respected by loop maps, hence we can conclude that Map(ω1X,ω1Y ) →
Map(ω1X,Ωω0Y ) is a π∗-isomorphism and hence an acyclic fibration. Then the
pullback map Map(ω≤1X,ω≤1Y )→ Map(ω0X,ω0Y ) is an acyclic fibration as well.
Now consider for any n the square

Map(ω≤nX,ω≤nY )

��

evn // Map(ωnX,ωnY )

��
Map(ω≤n−1X,ω≤n−1Y )

evn−1

// Map(ωn−1X,ωn−1Y ) // Map(ωnX,Ωωn−1Y )

Again, this is a pullback square and the map on the right is an acyclic fibration,
so the map on the left also is. Hence, for any n, the map Map(ω≤nX,ω≤nY ) →
Map(ω≤n−1X,ω≤n−1Y ) forgetting the degree n-part is an acyclic fibration. Fur-
thermore, we have limn Map(ω≤nX,ω≤nY ) = Map(ωX,ωY ). Thus the map
Map(ωX,ωY ) → Map(ω0X,ω0Y ) is also an acyclic fibration as a limit of acyclic
fibrations, proving our claim.
For c), first note that F0 is a weak equivalence since it is a map between homo-
topically constant cosimplicial objects covering the weak equivalence f in degree 0.
Now we look at the commutative diagram

ΣωX1

��

ΣF1 // ΣωY1

��
ωX0

F0

// ωY0

The two vertical maps and F0 are weak equivalences, so ΣF1 also is. By Theorem
3.18 and since ωX1 and ωY1 are frames, this means F1 is a weak equivalence. By
iterating this argument, we find that F is a weak equivalence, which induces a
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natural weak equivalence between the functors ωX ∧ − and ωY ∧ −.
For d), first note that ev(0,0) indeed induces a functor ev : Ho(SF (C)) → Ho(C)
since ev(0,0) : C∆(Σ) → C is just the functor − ∧ S which has a derived functor by
Corollary 5.5. Since one can build a stable frame on any cofibrant-fibrant object
of C and every object of Ho(C) is isomorphic to such an object, we get that ev is
surjective on isomorphism classes of objects.
That ev is full is just a reformulation of part a). Given a morphism g : A → B in
Ho(C), we may assume that A and B are cofibrant-fibrant and we obtain an actual
morphism f : A→ B in C. Let X be a stable frame on A, Y a fibrant stable frame
on X. By a), f extends to a map F : X → Y and ev(0,0)(F ) = f , hence ev(F ) = g.
Finally, that ev is faithful follows directly from part c) since two maps of stable
frames which are homotopic in degree (0, 0) are homotopic. �

6. Enrichments

We adopt the definitions of modules over a monoidal category from [Hov99, 4.1]:
this is how the homotopy category of a stable model category will be enriched over
SHC.

Now we construct our enrichment functor (or, rather, module functor). Let C be
a stable model category. We have a functor

− ∧− : SF (C)× Sp→ C

Lemma 6.1. This functor has a derived functor Φ : Ho(SF (C))× SHC → Ho(C)

Note that there is no claim that − ∧ − is a Quillen bifunctor; we just want an
induced functor on the homotopy categories.

Proof. Straightforward. �

Now choose an inverse ω to the equivalence evS : Ho(SF (C)) → Ho(C). In the
terminology of [Hov99], ω is what one might call a stable framing for C; the choice
of ω boils down to choosing, for each cofibrant object A of C, a fibrant stable frame
ωA with a weak equivalence A → ωA ∧ S ∼= (ωA)0,0. The following definition
depends on the choice of ω, but in no essential way.
Now we can define the enrichment functor:

Definition 6.2. The enrichment functor

⊗ : Ho(C)× SHC → Ho(C)
is given as the composition

Ho(C)× SHC ω×Id // Ho(SF (C))× SHC Φ // Ho(C)

Theorem 6.3. For C = Sp, the functor ⊗ : SHC ×SHC → SHC makes SHC into
a monoidal category with unit S. For arbitrary C, ⊗ : Ho(C)×SHC → Ho(C) makes
Ho(C) into a closed SHC-module with respect to the monoidal structure on SHC
given by ⊗. A left Qullen functor C → D between stable model categories induces
an SHC-module functor Ho(C)→ Ho(D).

Proof. Consider the categories Ho(SF (C)) and Ho(SF (Sp)), regarded as functor
categories. We obtain a functor Ho(SF (C))× Ho(SF (Sp)) → Ho(SF (C)) by com-
position of derived Quillen functors SHC → SHC with derived Quillen functors
SHC → Ho(C) and horizontal composition of natural transformations. Because
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of our conventions regarding left Quillen functors and the homotopy category, the
composition of their derived functors is strictly associative, and the identity of
SHC, which is a left derived functor, acts as strict identity on Ho(SF (C)). Hence
Ho(SF (Sp)) is monoidal and Ho(SF (C)) is a Ho(SF (Sp))-module. Clearly, compo-
sition with derived left Quillen functors induces (strict) Ho(SF (Sp))-module func-
tors Ho(SF (C))→ Ho(SF (D)).
Since SHC is equivalent to Ho(SF (Sp)), we can, after choosing inverse equiva-
lences, pull the monoidal structure from the latter category over to SHC; this
destroys strict associativity and strict unitality, but it is still a coherent monoidal
product, and this is actually the definition we have given above. That the result is
again a monoidal category is certainly no surprise; the proof is just a long, tedious
and uninspired diagram chase. The argument that left Quillen functors induce
SHC-module functors is similar. �

In particular, we have constructed a smash product on SHC; the obvious question
is whether we have actually constructed something new. The following Theorem
says that this is not so.

Theorem 6.4. Let C be a monoidal stable model category with pairing � and unit
U . Choose a left Quillen functor F : Sp → C sending S to a cofibrant replacement
of U . Then the following holds:

• The composition

Ho(C)× SHC Id×F // Ho(C)×Ho(C) −�− // Ho(C)

is a possible model for the enrichment functor for C.
• The derived functor F : SHC → Ho(C) is strong monoidal. In particular,

if C is any symmetric monoidal model for stable homotopy theory, then F
induces a strong monoidal equivalence.

At first glance, this seems to be an extremely strong statement, but it actually is
not, and it is already mainly known: In [Shi01], it is proven that symmetric spectra
are in a certain sense initial among all stable monoidal model categories, and an
analogue of our theorem holds for Ho(SpΣ) instead of Ho(Sp). Hence the only new
statement we make is that our smash product on SHC is compatible with the one
from SpΣ.

Proof. For i), we construct a particular inverse ω : Ho(C) → Ho(SF (C)) to eval-
uation at the sphere spectrum as follows: For any cofibrant object X of C, the
functor X�− is left Quillen, and we set ω(X) = X�F (−) : Sp→ C. By definition,
ω(X)(S) ∼= X in the homotopy category. A morphism f : X → Y in C induces
a natural transformation ωX → ωY covering, up to homotopy, f on the sphere
spectrum; on the homotopy category, these constructions hence yield a functor
ω : Ho(C)→ Ho(SF (C)) inverse to evaluation at the sphere spectrum, and we may
use this particular inverse to construct the enrichment. Now, for an object X of
Ho(C) and a spectrum A, we have X ⊗ A = ω(X)(A) = X�F (A) by definition,
and the claim follows.
For ii), we have to produce a natural isomorphism F (A ⊗ B) ∼= F (A)�F (B). By
naturality of the enrichment with respect to left Quillen functors, we have an iso-
morphism F (A⊗B) ∼= F (A)⊗B, and by part i) we may arrange things such that
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F (A) ⊗ B = F (A)�F (B). This isomorphism is natural in both variables; it re-
mains to check the commutativity of various coherence diagrams, cf. [ML98, XI.2].
This is left to the reader; the only point is that one can always assume that one of
the involved objects is the sphere spectrum since all involved functors and natural
transformations are determined by their behaviour on the sphere spectrum. �

Corollary 6.5. Let C be any symmetric monoidal model for the stable homotopy
category. The smash product on Ho(Sp) we have constructed is, under the Quillen
equivalence Sp→ C sending S to the unit of C, equivalent to the one in Ho(C).

Remark 6.6. The proof of the Theorem actually proves something slightly stronger:
There is no need for a monoidal structure on C, one only needs a monoidal structure
on Ho(C) which is induced by Quillen functors and natural transformations, but
which may be not associative or unital on the nose - as for example our construction
of the smash product in SHC = Ho(Sp).

6.1. Compatibility with the triangulated structure. Both SHC and Ho(C)
are triangulated categories; so the enrichment functor SHC×Ho(C)→ Ho(C) ought
to be compatible with this structure. The following theorem tells us this is indeed
so:

Theorem 6.7. The functor ⊗ : Ho(C)× SHC → Ho(C) is biexact: For any object
A of SHC and any X in Ho(C), the functors

−⊗A : Ho(C)→ Ho(C)
and

X ⊗− : SHC → Ho(C)
preserve triangles and are additive.

Proof. This is proven similarly to the corresponding unstable result in [Hov99]. �

7. An explicit description of the smash product on SHC

In this chapter, we want to give an explicit description of the smash product on
SHC = Ho(Sp) as we have constructed it above. We obtain a comparison of our
smash product with the original smash product on SHC by Boardman.

7.1. Quillen endofunctors of spectra. Given two spectra A and B, the following
is the most naive candidate for A ∧ B: Choose a function q : N → N which is
monotone, q(n) ≤ n and such that q(n+ 1)− q(n) is at most 1. Then p = Id− q :
N → N has the same properties and p + q = Id. Furthermore, we demand that
both p and q are unbounded. Then for spectra A and B, we define the naive smash
product with respect to q A ∧q B levelwise as

(A ∧q B)n = Aq(n) ∧Bp(n)

with the following structure maps: If q(n+1) = q(n), we use the structure map of B
to obtain a map Aq(n) ∧Bp(n) ∧ S1 → Aq(n+1) ∧Bp(n+1); else we use the structure

map of A after commuting the S1 past the Bp(n). Clearly, this is a functorial
construction - both A ∧q − and − ∧q B are functors Sp→ Sp.

Remark 7.1. One might want to make up for the ”commuting the S1 past the B
factor” in some way, and this in in fact appers in the original definition in topological
spaces; however, there is no natural way to do this in our simplicial context; and
all our arguments go through without a problem in this regard.
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Of course our aim is to see that A ∧q B is a model for A⊗ B. To see this, it is
enough to see that A∧q− is left Quillen for cofibrant A sending S to A. That A∧q−
is left Quillen is easy to check by noting that A ∧q − commutes with colimits and
is hence a left adjoint and then writing down the associated Σ-cospectrum which
happens to be a stable frame if q is unbounded. To see that A ∧q S ∼= A, note that
−∧q S is also left Quillen, thanks to the fact that also p is unbounded, and clearly
S∧q S ∼= S;: hence −∧q S is weakly equivalent to the identity and our claim follows.
We obtain the following:

Theorem 7.2. The functor Sp×Sp→ Sp, (A,B)→ A∧qB, represents the smash
product functor SHC × SHC → SHC.

Proof. This is clear by the preceding discussion and the construction of the smash
product via Quillen functors. Note that a map f : A → A′ induces a natural
transformation A ∧q − → A′ ∧q −. �

This can be used to give a direct proof that the smash product is symmetric:
After all, A∧qB ∼= B∧pA, and both are models for the smash product A∧B. The
following, similar statement is also interesting in its own right:

Proposition 7.3. Given two left Quillen functors F,G : Sp → Sp, the derived
functors satisfy FG ∼= GF .

Proof. The derived functors of F and G are determined up to isomorphism by
A = F (S) and B = G(S); hence we may assume F = A ∧q − and G = B ∧p −.
To see that the derived functors FG and GF are isomorphic, it suffices to see that
F (G(S)) ∼= G(F (S)); however, F (G(S)) ∼= F (B) = A ∧q B ∼= B ∧p A ∼= G(A) ∼=
G(F (S)) as desired. �

7.2. The original definition of the smash product. We will follow [Ada95] in
our description of the smash product.
The basic idea is very similar to the one outlined above, with one subtle difference
regarding the structure maps. Choose functions p, q : N → N as above. Given
two topological spectra A and B, we again define a spectrum A ∧q B with n-th
space Ap(n) ∧ Bq(n), but with slightly different structure maps. In the topological

setting, there is a ”multiplication by -1”-map τ on S1; regarding S1 as the one-point
compactification of R, this is just the map sending x to −x. Now, If q(n + 1) =
q(n) + 1, we just use the structure map of B to obtain a map Ap(n) ∧Bq(n) ∧S1 →
Ap(n+1) ∧ Bq(n+1); however, if q(n + 1) = q(n), we first permute the S1 past the

Bq(n), then use τ to obtain a self-map Ap(n) ∧ S1 ∧ Bq(n) → Ap(n) ∧ S1 ∧ Bq(n),
and then use the structure map of A to obtain a map to Ap(n+1) ∧ Bq(n+1). The

classical smash product − ∧− : Ho(SpTop)×Ho(SpTop)→ Ho(SpTop) constructed
in [Ada95] has the following basic property:

Theorem 7.4. For arbitrary p, q, there is a natural isomorphism A∧qB → A∧B.

The following is easy to check:

Proposition 7.5. For cofibrant spectra A, B, the functors A∧q− : SpTop → SpTop

and − ∧q B : SpTop → SpTop are left Quillen and send the topological sphere
spectrum STop to A resp. B up to weak equivalence.
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The associativity and commutativity isomorphisms for the smash product are
then obtained by making intelligent choices for p and q. In particular, things are
arranged such that the associativity, unit and commutativity isomorphisms stem
from natural transformations of the overlying Quillen functors. Thus we may apply
6.4 (or, rather, the remark following the proof) to obtain the following:

Theorem 7.6. Let F : Sp→ SpTop denote the geometric realization functor. Then
F induces a monoidal equivalence Ho(Sp)→ Ho(SpTop) where the first category is

equipped with the smash product we have constructed and Ho(SpTop) is equipped
with the classical smash product just described.
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