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Why invariants?

Definition
Let X and Y be topological spaces. We say that a continuous map
f : X → Y is a homeomorphism if it has a continuous inverse, i.e. if there
is a continuous map g : Y → X with g ◦ f = idX and f ◦ g = idY .
If there is a homeomorphism from X to Y , we say that X and Y are
homeomorphic.

Question
How can we decide whether two spaces are not homeomorphic?

Our failure to write down a homeomorphism proves nothing. So we need
some invariant which helps us distinguishing spaces.
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The Fundamental Group

One of the most basic invariants in topology is the fundamental group.

Let X be a topological space. We pick a basepoint x ∈ X .

Definition
A loop in X is a continuous map f : [0, 1]→ X with f (0) = f (1) = x . Let
L(X ) be the set of all such loops.

The set L(X ) is already an invariant of X - but a really bad one. So we
have to be more clever.
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The Fundamental Group

Definition
Let f , g : [0, 1]→ X be two loops in X . We say that f and g are
homotopic if there is a continuous map H : [0, 1]× [0, 1]→ X with
H(−, 0) = f , H(−, 1) = g and H(0, t) = H(1, t) = x for all t, and we say
that H is a homotopy from f to g .

The relation of being homotopic is an equivalence relation.

Definition
Let π1(X , x) be the set of equivalence classes of loops under the
homotopy-relation.

Currently, π1(X , x) is only a set. But it can be turned into a group.
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The Fundamental Group

Let f , g : [0, 1]→ X be two loops, representing elements of π1(X , x).

We define a new loop f ? g : [0, 1]→ X . Informally speaking, f ? g is
obtained by running through f twice as fast as before, and then running
through g twice as fast as before. In formulas:

(f ? g)(t) =
{

f (2t) if 0 ≤ t ≤ 1
2

g(2t − 1) if 1
2 ≤ t ≤ 1

It is not hard to check that the homotopy class of f ? g in π1(X , x) does
only depend on the homotopy classes of f and g in π1(X , x). Hence we
get a well-defined multiplication on π1(X , x).

Fabian Lenhardt (FU Berlin) Fundamental Groups and Covering Spaces 21.02.2012 6 / 19



The Fundamental Group

Let f , g : [0, 1]→ X be two loops, representing elements of π1(X , x).
We define a new loop f ? g : [0, 1]→ X . Informally speaking, f ? g is
obtained by running through f twice as fast as before, and then running
through g twice as fast as before.

In formulas:

(f ? g)(t) =
{

f (2t) if 0 ≤ t ≤ 1
2

g(2t − 1) if 1
2 ≤ t ≤ 1

It is not hard to check that the homotopy class of f ? g in π1(X , x) does
only depend on the homotopy classes of f and g in π1(X , x). Hence we
get a well-defined multiplication on π1(X , x).

Fabian Lenhardt (FU Berlin) Fundamental Groups and Covering Spaces 21.02.2012 6 / 19



The Fundamental Group

Let f , g : [0, 1]→ X be two loops, representing elements of π1(X , x).
We define a new loop f ? g : [0, 1]→ X . Informally speaking, f ? g is
obtained by running through f twice as fast as before, and then running
through g twice as fast as before. In formulas:

(f ? g)(t) =
{

f (2t) if 0 ≤ t ≤ 1
2

g(2t − 1) if 1
2 ≤ t ≤ 1

It is not hard to check that the homotopy class of f ? g in π1(X , x) does
only depend on the homotopy classes of f and g in π1(X , x). Hence we
get a well-defined multiplication on π1(X , x).

Fabian Lenhardt (FU Berlin) Fundamental Groups and Covering Spaces 21.02.2012 6 / 19



The Fundamental Group

Let f , g : [0, 1]→ X be two loops, representing elements of π1(X , x).
We define a new loop f ? g : [0, 1]→ X . Informally speaking, f ? g is
obtained by running through f twice as fast as before, and then running
through g twice as fast as before. In formulas:

(f ? g)(t) =
{

f (2t) if 0 ≤ t ≤ 1
2

g(2t − 1) if 1
2 ≤ t ≤ 1

It is not hard to check that the homotopy class of f ? g in π1(X , x) does
only depend on the homotopy classes of f and g in π1(X , x). Hence we
get a well-defined multiplication on π1(X , x).

Fabian Lenhardt (FU Berlin) Fundamental Groups and Covering Spaces 21.02.2012 6 / 19



The Fundamental Group

1 On π1(X , x), this multiplication is associative: There is a homotopy
between (f ? g) ? h and f ? (g ? h) for all loops f , g , h.

2 Let e : [0, 1]→ X be the constant loop with e(t) = x for all t. Then
f ? e and e ? f are both homotopic to f , so e is a neutral element.

3 The inverse of f is the loop f ′ obtained from f by running in the
other direction: f ′(t) = f (1− t).

4 Hence π1(X , x) is a group, called the fundamental group of X .
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Covering maps

Basic example of a covering map:

p : R→ S1, t 7→ e2πit
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Covering maps

Basic example of a covering map:

p : R→ S1, t 7→ e2πit

Definition
Assume X is path-connected. Let p : X̃ → X be a continuous map with X̃
also path-connected. We say that p is a covering map if the following
holds:
Each point x ∈ X has a neighborhood U such that there is a
homeomorphism p−1(U) ∼= p−1(x)× U under which the projection
p : p−1(U)→ U corresponds to the projection onto the second factor
p−1(x)× U → U.

If in addition π1(X̃ ) = 0, we say that X̃ is the universal cover of X .
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Lifting properties

Proposition
Let p : X̃ → X be a covering map. Let f : [0, 1]→ X be a loop at x . Pick
x̃ ∈ X̃ with p(x̃) = x . Then there is a unique path f̃ : [0, 1]→ X̃ with
f̃ (0) = x̃ lifting f , i.e. such that p ◦ f̃ = f .

If H is a homotopy from f to g , there is a unique homotopy
H̃ : [0, 1]× [0, 1]→ X̃ lifting H, i.e. such that p ◦ H̃ = H. This homotopy
fixes the endpoints of f̃ and g̃ . Conversely, each homotopy of paths from f̃
to another path h̃, fixing the endpoints, gives rise to a homotopy of loops
from f = p ◦ f̃ to h = p ◦ h̃.

So the homotopy class of the loop f is uniquely determined by the
homotopy class of the path f̃ , where we demand that homotopies fix the
endpoints of our paths.
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Reading off π1(X )

If in addition X̃ is the universal cover, i.e. π1(X̃ ) = 0, one can show that
there is a unique homotopy class of paths connecting two given points of
X̃ .

It follows that the elements of π1(X ) are in 1− 1 correspondence with
p−1(x): Fix x̃ ∈ p−1(x). For each y ∈ p−1(x), there is a path f̃ , unique up
to homotopy, from x̃ to y . Then f = p ◦ f̃ is a loop.
This sets up a correspondence between π1(X ) and p−1(x) as sets.
But what about the group structure?

Fabian Lenhardt (FU Berlin) Fundamental Groups and Covering Spaces 21.02.2012 14 / 19



Reading off π1(X )

If in addition X̃ is the universal cover, i.e. π1(X̃ ) = 0, one can show that
there is a unique homotopy class of paths connecting two given points of
X̃ .
It follows that the elements of π1(X ) are in 1− 1 correspondence with
p−1(x): Fix x̃ ∈ p−1(x). For each y ∈ p−1(x), there is a path f̃ , unique up
to homotopy, from x̃ to y . Then f = p ◦ f̃ is a loop.

This sets up a correspondence between π1(X ) and p−1(x) as sets.
But what about the group structure?

Fabian Lenhardt (FU Berlin) Fundamental Groups and Covering Spaces 21.02.2012 14 / 19



Reading off π1(X )

If in addition X̃ is the universal cover, i.e. π1(X̃ ) = 0, one can show that
there is a unique homotopy class of paths connecting two given points of
X̃ .
It follows that the elements of π1(X ) are in 1− 1 correspondence with
p−1(x): Fix x̃ ∈ p−1(x). For each y ∈ p−1(x), there is a path f̃ , unique up
to homotopy, from x̃ to y . Then f = p ◦ f̃ is a loop.
This sets up a correspondence between π1(X ) and p−1(x) as sets.

But what about the group structure?

Fabian Lenhardt (FU Berlin) Fundamental Groups and Covering Spaces 21.02.2012 14 / 19



Reading off π1(X )

If in addition X̃ is the universal cover, i.e. π1(X̃ ) = 0, one can show that
there is a unique homotopy class of paths connecting two given points of
X̃ .
It follows that the elements of π1(X ) are in 1− 1 correspondence with
p−1(x): Fix x̃ ∈ p−1(x). For each y ∈ p−1(x), there is a path f̃ , unique up
to homotopy, from x̃ to y . Then f = p ◦ f̃ is a loop.
This sets up a correspondence between π1(X ) and p−1(x) as sets.
But what about the group structure?

Fabian Lenhardt (FU Berlin) Fundamental Groups and Covering Spaces 21.02.2012 14 / 19



Deck transformations

Definition
A deck transformation of X̃ is a homeomorphism φ : X → X such that
p ◦ φ = p : X̃ → X

Proposition
For each y ∈ p−1(x), there is a unique deck transformation φ : X̃ → X̃
such that φ(x̃) = y .
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Deck Transformations

The set of all deck transformations forms a group G under composition.

Each deck transformation φ determines a loop T (φ): Pick a path f̃ from x̃
to φ(x̃) and form the loop f = p ◦ f̃ .
This gives rise to a group homomorphism T : G → π1(X , x).
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Theorem
The map T : G → π1(X , x) is an isomorphism

Hence the fundamental group can be read off from the group of deck
transformations, which is often easy to determine.
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