11.1 Overview

The Portable Object Adaptor 11

The Portable Object Adaptor chapter has been updated based on CORE changes frorr
ptc/98-09-04.

This chapter describes the Portable Object Adapter, or POA. It presents the design
goals, a description of the abstract model of the POA and its interfaces, followed by a
detailed description of the interfaces themselves.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 11-1
“Abstract Model Description” 11-2
“Interfaces” 11-13
“IDL for PortableServer module” 11-41
“UML Description of PortableServer” 11-48
“Usage Scenarios” 11-49

The POA is designed to meet the following goals:

¢ Allow programmers to construct object implementations that are portable between
different ORB products.

CORBAV2.3 June 1999 111

11

« Provide support for objects with persistent identities. More precisely, the POA is
designed to allow programmers to build object implementations that can provide
consistent service for objects whose lifetimes (from the perspective of a client
holding a reference for such an object) span multiple server lifetimes.

« Provide support for transparent activation of objects.
« Allow a single servant to support multiple object identities simultaneously.
« Allow multiple distinct instances of the POA to exist in a server.

* Provide support for transient objects with minimal programming effort and
overhead.

« Provide support for implicit activation of servants with POA-allocated Obiject Ids.

« Allow object implementations to be maximally responsible for an object’'s behavior.
Specifically, an implementation can control an object’s behavior by establishing the
datum that defines an object’s identity, determining the relationship between the
object’s identity and the object’s state, managing the storage and retrieval of the
object’s state, providing the code that will be executed in response to requests, and
determining whether or not the object exists at any point in time.

« Avoid requiring the ORB to maintain persistent state describing individual objects,
their identities, where their state is stored, whether certain identity values have been
previously used or not, whether an object has ceased to exist or not, and so on.

« Provide an extensible mechanism for associating policy information with objects
implemented in the POA.

« Allow programmers to construct object implementations that inherit from static
skeleton classes, generated by OMG IDL compilers, or a DSI implementation.

11.2 Abstract Model Description

11-2

The POA interfaces described in this chapter imply a particular abstract computational
model. This section presents that model and defines terminology and basic concepts
that will be used in subsequent sections.

This section provides the rationale for the POA design, describes some of its intended
uses, and provides a background for understanding the interface descriptions.

11.2.1 Model Components

The model supported by the POA is a specialization of the general object model
described in the OMA guide. Most of the elements of the CORBA object model are
present in the model described here, but there are some new components, and some ¢
the names of existing components are defined more precisely than they are in the
CORBA object model. The abstract model supported by the POA has the following
components:

* Client—A client is a computational context that makes requests on an object
through one of its references.

CORBA V2.3 June 1999

11

* Server—A server is a computational context in which the implementation of an
object exists. Generally, a server corresponds to a process. Notehiand
serverare roles that programs play with respect to a given object. A program that is
a client for one object may be the server for another. The same process may be both
client and server for a single object.

¢ Object—In this discussion, we ussbjectto indicate a CORBA object in the
abstract sense, that is, a programming entity with an identity, an interface, and an
implementation. From a client’s perspective, the object’s identity is encapsulated in
the object’s reference. This specification defines the server’s view of object identity,
which is explicitly managed by object implementations through the POA interface.

e Servamnt—A servant is a programming language object or entity that implements
requests on one or more objects. Servants generally exist within the context of a
server process. Requests made on an object’s references are mediated by the ORB
and transformed into invocations on a particular servant. In the course of an object’s
lifetime it may be associated with (that is, requests on its references will be targeted
at) multiple servants.

* Object I&—An Object Id is a value that is used by the POA and by the user-supplied
implementation to identify a particular abstract CORBA object. Object Id values
may be assigned and managed by the POA, or they may be assigned and managec
by the implementation. Object Id values are hidden from clients, encapsulated by
references. Object Ids have no standard form; they are managed by the POA as
uninterpreted octet sequences.

Note that the Object Id defined in this specification is a mechanical device used by
an object implementation to correlate incoming requests with references it has
previously created and exposed to clients. It does not constitute a unique logical
identity for an object in any larger sense. The assignment and interpretation of
Object Id values is primarily the responsibility of the application developer, although
the SYSTEM_ID policy enables the POA to generate Object Id values for the
application.

* Object Referenee-An object reference in this model is the same as in the CORBA
object model. This model implies, however, that a reference specifically
encapsulates an Object Id and a POA identity.

Note that a concrete reference in a specific ORB implementation will contain more
information, such as the location of the server and POA in question. For example, it
might contain the full name of the POA (the names of all POAs starting from the
root and ending with the specific POA). The reference might not, in fact, actually
contain the Object Id, but instead contain more compact values managed by the
ORB which can be mapped to the Object Id. This is a description of the abstract
information model implied by the POA. Whatever encoding is used to represent the
POA name and the Object Id must not restrict the ability to use any legal character
in a POA name or any legal octet in an Obiject Id.

CORBAV2.3 Abstract Model Description June 1999 11-3

11

11-4

« POA—A POA is an identifiable entity within the context of a server. Each POA
provides a namespace for Object Ids and a namespace for other (nested or child)
POAs. Policies associated with a POA describe characteristics of the objects
implemented in that POA. Nested POAs form a hierarchical name space for objects
within a server.

* Policy—A Policy is an object associated with a POA by an application in order to
specify a characteristic shared by the objects implemented in that POA. This
specification defines policies controlling the POAs threading model as well as a
variety of other options related to the management of objects. Other specifications
may define other policies that affect how an ORB processes requests on objects
implemented in the POA.

« POA ManagerA POA manager is an object that encapsulates the processing state
of one or more POAs. Using operations on a POA manager, the developer can cause
requests for the associated POAs to be queued or discarded. The developer can als
use the POA manager to deactivate the POAs.

« Servant Manage+r-A servant manager is an object that the application developer
can associate with a POA. The ORB will invoke operations on servant managers to
activate servants on demand, and to deactivate servants. Servant managers are
responsible for managing the association of an object (as characterized by its Object
Id value) with a particular servant, and for determining whether an object exists or
not. There are two kinds of servant managers, c8dantActivator and
ServantLocator ; the type used in a particular situation depends on policies in the
POA.

« Adapter Activator—An adapter activator is an object that the application developer
can associate with a POA. The ORB will invoke an operation on an adapter
activator when a request is received for a child POA that does not currently exist.
The adapter activator can then create the required POA on demand.

11.2.2 Model Architecture

This section describes the architecture of the abstract model implied by the POA, and
the interactions between various components. The ORB is an abstraction visible to
both the client and server. The POA is an object visible to the server. User-supplied
implementations are registered with the POA (this statement is a simplification; more
detail is provided below). Clients hold references upon which they can make requests.
The ORB, POA, and implementation all cooperate to determine which servant the
operation should be invoked on, and to perform the invocation.

Figure 11-1 shows the detail of the relationship between the POA and the
implementation. Ultimately, a POA deals with an Object Id and an active servant. By
active servantwe mean a programming object that exists in memory and has been
presented to the POA with one or more associated object identities. There are several
ways for this association to be made.

CORBA V2.3 June 1999

11

Object Reference :
/ | Object Id
/ORB Y \
POA O
5 O
O
User-supplied
servants
POA
O
Client Server

Figure 11-1 Abstract POA Model

If the POA supports thRETAIN policy, it maintains a map, labelédtive Object Map

that associates Object Ids with active servants, each association constituting an active
object. If the POA has thdSE_DEFAULT_SERVANT policy, a default servant may

be registered with the POA. Alternatively, if the POA has the
USE_SERVANT_MANAGER policy, a user-written servant manager may be

registered with the POA. If the Active Object Map is not used, or a request arrives for an
object not present in the Active Object Map, the POA either uses the default servant to
perform the request or it invokes the servant manager to obtain a servant to perform the
request. If theRETAIN policy is used, the servant returned by a servant manager is
retained in the Active Object Map. Otherwise, the servant is used only to process the one
request.

In this specification, the termctiveis applied equally to servants, Object Ids, and
objects. An object is active in a POA if the POAs Active Object Map contains an entry
that associates an Object Id with an existing servant. When this specification refers to
active Object Idsandactive servantsit means that the Object Id value or servant in
question is part of an entry in the Active Object Map. An Object Id can appear in a
POA's Active Object Map only once.

CORBAV2.3 Abstract Model Description June 1999 11-5

11

11-6

POA
Object Id/O h S/I_D\M'
(@]
A
s
A a
c
n
t
i a s,
v g :
o\
0
" Is.

User-supplied
servant

e

/ POAA \ User-supplied
default servant// servant
Active Object Ma| User-supplied
. : p// servant
Object Id O™
Object Id O-—-_N '
Obiject Id O /

?(POAB

servant mqr.

Object Id O~
Object Id O]
Object Id O

Object Id O

VA

User-supplied
servant

User-supplied

ServantManagel.

.

.7

.

User-supplied
servant

-7

servant

User-supplied

User-supplied

servant

AdapterActivato

_

Figure 11-2 POA Architecture

11.2.3 POA Creation

To implement an object using the POA requires that the server application obtain a
POA object. A distinguished POA obiject, called thet POA is managed by the ORB
and provided to the application using the ORB initialization interface under the initial
object name “RootPOA.” The application developer can create objects using the root
POA if those default policies are suitable. The root POA has the following policies.

 Thread PolicyORB_CTRL_MODEL
« Lifespan Policy.TRANSIENT

CORBA V2.3

> Object reference

—> Servant pointer

Object Id Uniqueness PolicWINIQUE_ID
Id Assignment PolicySYSTEM_ID
Servant Retention PolicRETAIN

Request Processing PolidySE_ACTIVE_OBJECT_MAP_ONLY
Implicit Activation Policy: IMPLICIT_ACTIVATION

June 1999

11

The developer can also create new POAs. Creating a new POA allows the application
developer to declare specific policy choices for the new POA and to provide a different
adapter activator and servant manager (these are callback objects used by the POA to
activate objects and nested POAs on demand). Creating hew POAs also allows the
application developer to partition the name space of objects, as Object Ids are
interpreted relative to a POA. Finally, by creating new POAs, the developer can
independently control request processing for multiple sets of objects.

A POA is created as a child of an existing POA usingctikate POA operation on
the parent POA. When a POA is created, the POA is given a name that must be unique
with respect to all other POAs with the same parent.

POA objects are not persistent. No POA state can be assumed to be saved by the ORB
It is the responsibility of the server application to create and initialize the appropriate
POA objects during server initialization or to set an AdapterActivater to create POA
objects needed later.

Creating the appropriate POA objects is particularly important for persistent objects,
objects whose existence can span multiple server lifetimes. To support an object
reference created in a previous server process, the application must recreate the POA
that created the object reference as well as all of its ancestor POAs. To ensure
portability, each POA must be created with the same name as the corresponding POA
in the original server process and with the same policies. (It is the user’s responsibility
to create the POA with these conditions.)

A portable server application can presume that there is no conflict between its POA
names and the POA names chosen by other applications. It is the responsibility of the
ORB implementation to provide a way to support this behavior.

11.2.4 Reference Creation

Object references are created in servers. Once they are created, they may be exportec
to clients.

From this model's perspective, object references encapsulate object identity
information and information required by the ORB to identify and locate the server and
POA with which the object is associated (that is, in whose scope the reference was
created.) References are created in the following ways:

* The server application may directly create a reference witrdate reference
andcreate_reference_with_id operations on a POA object. These operations
collect the necessary information to constitute the reference, either from
information associated with the POA or as parameters to the operation. These
operations only create a reference. In doing so, they bring the abstract object into
existence, but do not associate it with an active servant.

« The server application may explicitly activate a servant, associating it with an object
identity using theactivate_object or activate_object_with_id operations. Once
a servant is activated, the server application can map the servant to its
corresponding reference using thervant_to reference orid_to reference
operations.

CORBAV2.3 Abstract Model Description June 1999 11-7

11

11-8

e The server application may cause a servant to implicitly activate itself. This
behavior can only occur if the POA has been created with the
IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object reference
corresponding to an inactive servant, the POA may automatically assign a generated
unique Object Id to the servant and activate the resulting object. The reference may
be obtained by invokin@OA::servant_to_reference with an inactive servant, or
by performing an explicit or implicit type conversion from the servant to a reference
type in programming language mappings that permit this conversion.

Once a reference is created in the server, it can be made available to clients in a variety
of ways. It can be advertised through the OMG Naming and Trading Services. It can be
converted to a string vi@RB::object_to_string and published in some way that

allows the client to discover the string and convert it to a reference using
ORB::string_to_object . It can be returned as the result of an operation invocation.

Once a reference becomes available to a client, that reference constitutes the identity of
the object from the client’s perspective. As long as the client program holds and uses
that reference, requests made on the reference should be sent to the “same” object.

Note —The meaning of object identity and “sameness” is at present the subject of debate
in the OMG. This specification does not attempt to resolve that debate in any way,
particularly by defining a concrete notion of identity that is exposed to clients, beyond
the existing notions of identity described in the CORBA specifications and the OMA
guide.

The states of servers and implementation objects are opaque to clients. This
specification deals primarily with the view of the ORB from the server’s perspective.

11.2.5 Object Activation States

At any point in time, a CORBA object may or may not be associated with an active
servant.

If the POA has th&®@ETAIN policy, the servant and its associated Object Id are entered
into the Active Object Map of the appropriate POA. This type of activation can be
accomplished in one of the following ways.

e The server application itself explicitly activates individual objects (via the
activate_object or activate_object_with_id operations).

« The server application instructs the POA to activate objects on demand by having the
POA invoke a user-supplied servant manager. The server application registers this
servant manager witbet_servant_manager .

¢ Under some circumstances (when l#LICIT_ACTIVATION policy is also in
effect and the language binding allows such an operation), the POA may implicitly
activate an object when the server application attempts to obtain a reference for a
servant that is not already active (that is, not associated with an Object Id).

CORBA V2.3 June 1999

11

If the USE_DEFAULT_SERVANT policy is also in effect, the server application

instructs the POA to activate unknown objects by having the POA invoke a single
servant no matter what the Object Id is. The server application registers this servant with
set_servant .

If the POA has th&lON_RETAIN policy, for every request, the POA may use either a
default servant or a servant manager to locate an active servant. From the POA’s point of
view, the servant is active only for the duration of that one request. The POA does not
enter the servant-object association into the Active Object Map.

11.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well as the
identification of the POA that created the target object reference. When a client issues
a request, the ORB first locates an appropriate server (perhaps starting one if needed)
and then it locates the appropriate POA within that server.

If the POA does not exist in the server process, the application has the opportunity to
re-create the required POA by using an adapter activator. An adapter activator is a user:
implemented object that can be associated with a POA. It is invoked by the ORB when
a request is received for a non-existent child POA. The adapter activator has the
opportunity to create the required POA. If it does not, the client receives the
OBJECT_NOT_EXIST exception.

Once the ORB has located the appropriate POA, it delivers the request to that POA. The
further processing of that request depends both upon the policies associated with that
POA as well as the object's current state of activation.

If the POA has th&ETAIN policy, the POA looks in the Active Object Map to find out
if there is a servant associated with the Object Id value from the request. If such a servant
exists, the POA invokes the appropriate method on the servant.

If the POA has th&lON_RETAIN policy or has th&RETAIN policy but didn't find a
servant in the Active Object Map, the POA takes the following actions:

¢ If the POA has th&JSE_ DEFAULT_SERVANT policy, a default servant has been
associated with the POA so the POA will invoke the appropriate method on that
servant. If no servant has been associated with the POA, the POA raises the
OBJ_ADAPTER system exception.

e If the POA has th&JSE_SERVANT_MANAGER policy, a servant manager has
been associated with the POA so the POA will inviokarnate or preinvoke on it
to find a servant that may handle the request. (The choice of method depends on the
NON_RETAIN or RETAIN policy of the POA.) If no servant manager has been
associated with the POA, the POA raises@i)_ADAPTER system exception.

e If the USE_OBJECT_MAP_ONLY policy is in effect, the POA raises the
OBJECT_NOT_EXIST system exception.

If a servant manager is located and invoked, but the servant manager is not directly
capable of incarnating the object, it (the servant manager) may deal with the
circumstance in a variety of ways, all of which are the application’s responsibility.

CORBAV2.3 Abstract Model Description June 1999 11-9

11

11-10

Any system exception raised by the servant manager will be returned to the client in
the reply. In addition to standard CORBA exceptions, a servant manager is capable of
raising aForwardRequest exception. This exception includes an object reference. The
ORB will process this exception as stated below.

11.2.7 Implicit Activation

A POA can be created with a policy that indicates that its objects may be implicitly
activated. This policylMPLICIT_ACTIVATION, also requires th8 YSTEM_ID and
RETAIN policies. When a POA supports implicit activation, an inactive servant may
be implicitly activated in that POA by certain operations that logically require an
Object Id to be assigned to that servant. Implicit activation of an object involves
allocating a system-generated Object Id and registering the servant with that Object Id
in the Active Object Map. The interface associated with the implicitly activated object
is determined from the servant (using static information from the skeleton, or, in the
case of a dynamic servant, using theimary_interface() operation).

The operations that support implicit activation include:

e ThePOA:servant_to reference operation, which takes a servant parameter and
returns a reference.

e ThePOA:servant_to_id operation, which takes a servant parameter and returns
an Obiject Id.

¢ Operations supported by a language mapping to obtain an object reference or an
Object Id for a servant. For example, thtis() servant member function in
C++ returns an object reference for the servant.

« Implicit conversions supported by a language mapping that convert a servant to an
object reference or an Object Id.

The last two categories of operations are language-mapping-dependent.

If the POA has th& NIQUE_ID policy, then implicit activation will occur when any of
these operations are performed on a servant that is not currently active (that is, it is
associated with no Object Id in the POA's Active Object Map).

If the POA has thtMULTIPLE_ID policy, theservant_to_reference and

servant_to_id operations willalwaysperform implicit activation, even if the servant

is already associated with an Object Id. The behavior of language mapping operations
in the MULTIPLE_ID case is specified by the language mapping. For example, in
C++, the_this() servant member function will not implicitly activate a

MULTIPLE_ID servant if the invocation ofthis() is immediately within the

dynamic context of a request invocation directed by the POA to that servant; instead, it
returns the object reference used to issue the request.

Note —The exact timing of implicit activation is ORB implementation-dependent. For
example, instead of activating the object immediately upon creation of a local object
reference, the ORB could defer the activation until the Object Id is actually needed (for
example, when the object reference is exported outside the process).

CORBA V2.3 June 1999

11

11.2.8 Multi-threading

The POA does not require the use of threads and does not specify what support is
needed from a threads package. However, in order to allow the development of portable
servers that utilize threads, the behavior of the POA and related interfaces when used
within a multiple-thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used in a
threaded environment, nor does it require that an ORB must utilize threads in the
processing of requests. The only requirement given here is that if an ORB does provide
support for multi-threading, these are the behaviors that will be supported by that
ORB. This allows a programmer to take advantage of multiple ORBs that support
threads in a portable manner across those ORBs.

The POA’s processing is affected by the thread-related calls available in the ORB:
work_pending , perform_work , run, andshutdown .

11.2.8.1 POA Threading Models

The POA supports two models of threading when used in conjunction with multi-
threaded ORB implementations; ORB controlled and single thread behavior. The two
models can be used together or independently. Either model can be used in
environments where a single-threaded ORB is used.

The threading model associated with a POA is indicated when the POA is created by
including aThreadPolicy object in the policies parameter of the POA’s

create POA operation. Once a POA is created with one model, it cannot be changed
to the other. All uses of the POA within the server must conform to that threading
model associated with the POA.

11.2.8.2 Using the Single Thread Model

Requests for a single-threaded POA are processed sequentially. In a multi-threaded
environment, all upcalls made by this POA to implementation code (servants, servant
managers, and adapter activators) are made in a manner that is safe for code that is
multi-thread-unaware.

11.2.8.3 Using the ORB Controlled Model

The ORB controlled model of threading is used in environments where the developer
wants the ORB/POA to control the use of threads in the manner provided by the ORB.
This model can also be used in environments that do not support threads.

In this model, the ORB is responsible for the creation, management, and destruction of
threads used with one or more POAs.

CORBAV2.3 Abstract Model Description June 1999 11-11

11

11-12

11.2.8.4 Limitations When Using Multiple Threads

There are no guarantees that the ORB and POA will do anything specific about
dispatching requests across threads with a single POA. Therefore, a server programmelt
who wants to use one or more POAs within multiple threads must take on all of the
serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple
threads at the same time. The programmer must be aware of this possibility and code
with it in mind.

11.2.9 Dynamic Skeleton Interface

The POA is designed to enable programmers to connect servants to:
* type-specific skeletons, typically generated by OMG IDL compilers, or

¢ dynamic skeletons.

Servants that are members of type-specific skeleton classes are referred to as type-
specific servants. Servants connected to dynamic skeletons are used to implement the
Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarnated by a DSI servant or a type-specific
servant is transparent to its clients. Two CORBA objects supporting the same interface
may be incarnated, one by a DSI servant and the other with a type-specific servant.
Furthermore, a CORBA object may be incarnated by a DSI servant only during some
period of time, while the rest of the time is incarnated by a static servant.

The mapping for POA DSI servants is language-specific, with each language providing
a set of interfaces to the POA. These interfaces are used only by the POA. The
interfaces required are the following.

* Take aCORBA::ServerRequest object from the POA and perform the processing
necessary to execute the request.

* Return the Interface Repository Id identifying the most-derived interface supported
by the target CORBA object in a request.

The reason for the first interface is the entire reason for existence of the DSI: to be able
to handle any request in the way the programmer wishes to handle it. A single DSI
servant may be used to incarnate several CORBA objects, potentially supporting
different interfaces.

The reason for the second interface can be understood by comparing DSI servants to
type-specific servants.

A type-specific servant may incarnate several CORBA objects but all of them will
support the same IDL interface as the most-derived IDL interface. In C++, for
example, an IDL interfac&/indow in moduleGraphicalSystem will generate a
type-specific skeleton class call@dindow in namespacPOA_GraphicalSystem

A type-specific servant which is directly derived from the

CORBA V2.3 June 1999

11

11.3

POA_GraphicalSystem::Window skeleton class may incarnate several CORBA
objects at a time, but all those CORBA objects will support the
GraphicalSystem::Window interface as the most-derived interface.

A DSI servant may incarnate several CORBA objects, not necessarily supporting the
same IDL interface as the most-derived IDL interface.

In both cases (type-specific and DSI) the POA may need to determine, at runtime, the
Interface Repository Id identifying the most-derived interface supported by the target
CORBA object in a request. The POA should be able to determine this by asking the
servant that is going to serve the CORBA object.

In the case of type-specific servants, the POA obtains that information from the type-
specific skeleton class from which the servant is directly derived. In the case of DSI
servants, the POA obtains that information by using the second language-specific
interface above.

11.2.10 Location Transparency

Interfaces

The POA supports location transparency for objects implemented using the POA.
Unless explicitly stated to the contrary, all POA behavior described in this
specification applies regardless of whether the client is local (same process) or remote.
For example, like a request from a remote client, a request from a local client may
cause object activation if the object is not active, block indefinitely if the target
object's POA is in the holding state, be rejected if the target object's POA is in the
discarding or inactive states, be delivered to a thread-unaware object implementation,
or be delivered to a different object if the target object's servant manager raises the
ForwardRequest exception. The Object Id and POA of the target object will also be
available to the server via tl@&urrent object, regardless of whether the client is local

or remote.

Note —The implication of these requirements on the ORB implementation is to require
the ORB to mediate all requests to POA-based objects, even if the client is co-resident in
the same process. This specification is not intended to change CORBAServices
specifications that allow for behaviors that are not location transparent. This specification
does not prohibit (nonstandard) POA extensions to support object behavior that is not
location-transparent.

The POA-related interfaces are defined in a module separate froBORBA
module, thePortableServer module. It consists of these interfaces:

- POA

« POAManager

¢ ServantManager
» ServantActivator
« ServantLocator

CORBA V2.3 Interfaces June 1999 11-13

11

» AdapterActivator

« ThreadPolicy

« LifespanPolicy

« ldUniquenessPolicy
 IdAssignmentPolicy

* ImplicitActivationPolicy

» ServantRetentionPolicy

» RequestProcessingPolicy
» Current

In addition, the POA defines ti&ervant native type.

11.3.1 The Servant IDL Type

This specification defines a native tyPertableServer::Servant . Values of the type
Servant are programming-language-specific implementations of CORBA interfaces.
Each language mapping must specify l®&rvant is mapped to the programming
language data type that corresponds to an object implementatio®efvent type

has the following characteristics and constraints.

11-14

Values of typeServant are opaque from the perspective of CORBA application
programmers. There are no operations that can be performed directly on them by
user programs. They can be passed as parameters to certain POA operations. Som
language mappings may alld®ervant values to be implicitly converted to object
references under appropriate conditions.

Values of typeServant support a language-specific programming interface that can
be used by the ORB to obtain a default POA for that servant. This interface is used
only to support implicit activation. A language mapping may provide a default
implementation of this interface that returns the root POA of a default ORB.

Values of type Servant provide default implementations of the standard object
reference operationget_interface , is_a, andnon_existent . These operations

can be overridden by the programmer to provide additional behavior needed by the
object implementation. The default implementationgetf interface andis_a
operations use the most derived interface of a static servant or the most derived
interface retrieved from a dynamic servant to perform the operation. The default
implementation of th@on_existent operation returnEALSE. These operations

are invoked by the POA just like any other operation invocation, so the
PortableServer::Current interface and any language-mapping-provided method

of accessing the invocation context are available.

Values of typeServant must be testable for identity.

Values of typeServant have no meaning outside of the process context or address
space in which they are generated.

CORBA V2.3 June 1999

11

11.3.2 POAManager Interface

Each POA object has an associa®AManager object. A POA manager may be
associated with one or more POA objects. A POA manager encapsulates the processing
state of the POAs it is associated with. Using operations on the POA manager, an
application can cause requests for those POAs to be queued or discarded, and can
cause the POAs to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit POA manager
object is provided at POA creation time, a POA manager is created when a POA is
created and is automatically associated with that POA. A POA manager object is
implicitly destroyed when all of its associated POAs have been destroyed.

11.3.2.1 Processing States

A POA manager has four possible processing statesje inactive holding, and
discarding The processing state determines the capabilities of the associated POAs
and the disposition of requests received by those POAs. Figure 11-3 on page 11-16
illustrates the processing states and the transitions between them. For simplicity of
presentation, this specification sometimes describes these states as POA states,
referring to the POA or POAs that have been associated with a particular POA
manager. A POA manager is created intib&ling state. The root POA is therefore
initially in the holding state.

For simplicity in the figure and the explanation, operations that would not cause a state
change are not shown. For example, if a POA is in “active” state, it does not change
state due to an activate operation. Such operations complete successfully with no
special notice.

The only exception is the inactive state: a “deactivate” operation raises an exception
just the same as every other attempted state change operation.

CORBA V2.3 Interfaces June 1999 11-15

11

11-16

®
destroy

inactive deactivate

deactivate
deactivate

discard_requests
active dizcarding |
activate —

activate hold_requests

hold_reguests

hialding \I

dizcard_requests

create_PO&

®

Figure 11-3 Processing States

Active State

When a POA manager is in thetive state, the associated POAs will receive and start
processing requests (assuming that appropriate thread resources are available). Note
that even in the active state, a POA may need to queue requests depending upon the
ORB implementation and resource limits. The number of requests that can be received
and/or queued is an implementation limit. If this limit is reached, the POA should
return aTRANSIENT system exception to indicate that the client should re-issue the
request.

A user program can legally transition a POA manager fronat¢hieestate to either the
discarding holding, orinactive state by calling theiscard_requests ,
hold_requests , ordeactivate operations, respectively. The POA entersdhve
state through the use of thetivate operation when in thdiscardingor holding state.

Discarding State

When a POA manager is in tldéscardingstate, the associated POAs will discard all
incoming requests (whose processing has not yet begun). When a request is discarded
the TRANSIENT system exception must be returned to the client-side to indicate that
the request should be re-issued. (Of course, an ORB may always reject a request for
other reasons and raise some other system exception.)

CORBA V2.3 June 1999

11

In addition, when a POA manager is in thiscardingstate, the adapter activators
registered with the associated POAs will not get called. Instead, requests that require the
invocation of an adapter activator will be discarded, as described in the previous
paragraph.

The primary purpose of th#iscardingstate is to provide an application with flow-
control capabilities when it determines that an object's implementation or POA is being
flooded with requests. It is expected that the application will restore the POA manager
to theactive state after correcting the problem that caused flow-control to be needed.

A POA manager can legally transition from tiscardingstate to either thactive
holding orinactive state by calling thactivate , hold_requests , or deactivate
operations, respectively. The POA entersdiseardingstate through the use of the
discard_requests operation when in thactive or holding state.

Holding State

When a POA manager is in theldingstate, the associated POAs will queue incoming
requests. The number of requests that can be queued is an implementation limit. If this
limit is reached, the POAs may discard requests and returiRA&ISIENT system
exception to the client to indicate that the client should reissue the request. (Of course,
an ORB may always reject a request for other reasons and raise some other system
exception.)

In addition, when a POA manager is in tt@dding state, the adapter activators registered
with the associated POAs will not get called. Instead, requests that require the invocation
of an adapter activator will be queued, as described in the previous paragraph.

A POA manager can legally transition from thelding state to either thactive
discarding or inactive state by calling thactivate , discard_requests , or
deactivate operations, respectively. The POA entershblkling state through the use
of thehold_requests operation when in thactive or discardingstate. A POA
manager is created in the holding state.

Inactive State

Theinactivestate is entered when the associated POAs are to be shut down. Unlike the
discardingstate, thenactivestate is not a temporary state. When a POA manager is in
theinactive state, the associated POAs will reject new requests. The rejection
mechanism used is specific to the vendor. The GIOP location forwarding mechanism
and CloseConnection message are examples of mechanisms that could be used to
indicate the rejection. If the client is co-resident in the same process, the ORB could
raise theOBJ _ADAPTER exception to indicate that the object implementation is
unavailable.

In addition, when a POA manager is in thactive state, the adapter activators
registered with the associated POAs will not get called. Instead, requests that require
the invocation of an adapter activator will be rejected, as described in the previous
paragraph.

Theinactive state is entered using theactivate operation. It is legal to enter the
inactive state from either thactive holding, or discardingstates.

CORBA V2.3 Interfaces June 1999 11-17

11

If the transition into theénactive state is a result of callindgeactivate with an
etherealize_objects parameter of

¢ TRUE - the associated POAs will calherealize for each active object associated
with the POA once all currently executing requests have completed processing (if
the POAs have thRETAIN andUSE_SERVANT_MANAGER policies). If a
servant manager has been registered for the POA, the POA will get rid of the object.
If there are any queued requests that have not yet started executing, they will be
treated as if they were new requests and rejected.

¢ FALSE - No deactivations or etherealizations will be attempted.

11.3.2.2 Locality Constraints

A POAManager object must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exception. An attempt to usB@AManager object with

the DIl may raise th&lO_IMPLEMENT exception.

11.3.2.3 activate

void activate()
raises (Adapterlnactive);

This operation changes the state of the POA managmstitee If issued while the
POA manager is in thmactive state, theAdapterlnactive exception is raised.
Entering theactive state enables the associated POAs to process requests.

11.3.2.4 hold_requests

void hold_requests(in boolean wait_for_completion)
raises(Adapterlnactive);

This operation changes the state of the POA manad®slding If issued while the

POA manager is in thmactive state, theAdapterlnactive exception is raised.

Entering theholding state causes the associated POAs to queue incoming requests.
Any requests that have been queued but have not started executing will continue to be
qgueued while in théolding state.

If the wait_for_completion parameter i$ALSE, this operation returns immediately

after changing the state. If the parametefRUE and the current thread is not in an
invocation context dispatched by some POA belonging to the same ORB as this POA,
this operation does not return until either there are no actively executing requests in any
of the POAs associated with this POA manager (that is, all requests that were started
prior to the state change have completed) or the state of the POA manager is changed tc
a state other thamolding If the parameter iSRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this POA the
BAD_INV_ORDER exception is raised and the state is not changed.

11-18 CORBA V2.3 June 1999

11

11.3.2.5 discard_requests

void discard_requests(in boolean wait_for_completion)
raises (Adapterlnactive);

This operation changes the state of the POA managisc¢arding If issued while the

POA manager is in thimactive state, theAdapterlnactive exception is raised.

Entering thaliscardingstate causes the associated POAs to discard incoming requests.
In addition, any requests that have been queued but have not started executing are
discarded. When a request is discardeRANSIENT system exception is returned

to the client.

If the wait_for_completion parameter is FALSE, this operation returns immediately
after changing the state. If the parameter is TRUE and the current thread is not in an
invocation context dispatched by some POA belonging to the same ORB as this POA,
this operation does not return until either there are no actively executing requests in any
of the POAs associated with this POA manager (that is, all requests that were started
prior to the state change have completed) or the state of the POA manager is changed tc
a state other thadiscarding If the parameteis TRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this POA the
BAD_INV_ORDER exception is raised and the state is not changed.

11.3.2.6 deactivate

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion);
raises (Adapterlnactive);

This operation changes the state of the POA managrattive If issued while the

POA manager is in thmactive state, theAdapterlnactive exception is raised.

Entering the inactive state causes the associated POAs to reject requests that have no
begun to be executed as well as any new requests.

After changing the state, if thetherealize_objects parameter is

¢ TRUE - the POA manager will cause all associated POAs that haRER&IN
andUSE_SERVANT_MANAGER policies to perform thetherealize operation
on the associated servant manager for all active objects.

¢ FALSE - theetherealize operation is not called. The purpose is to provide
developers with a means to shut down POAs in a crisis (for example, unrecoverable
error) situation.

If the wait_for_completion parameter is FALSE, this operation will return

immediately after changing the state. If the parameter is TRUE and the current thread is
not in an invocation context dispatched by some POA belonging to the same ORB as this
POA, this operation does not return until there are no actively executing requests in any
of the POAs associated with this POA manager (that is, all requests that were started
prior to the state change have completed) and, in the case of a TRUE
etherealize_objects , all invocations oetherealize have completed for POAs having

the RETAIN andUSE_SERVANT_MANAGER policies.If the parameteis TRUE

CORBA V2.3 Interfaces June 1999 11-19

11

11-20

and the current thread is in an invocation context dispatched by some POA belonging to
the same ORB as this POA tBAD INV_ORDER exception is raised and the state is
not changed.

If the ORB::shutdown operation is called, it makes a call deactivate with a

TRUE etherealize_objects parameter for each POA manager known in the process;
thewait_for_completion parameter taleactivate will be the same as the similarly
named parameter @RB::shutdown .

If deactivate is called multiple times before destruction is complete (because there
are active requests), tletherealize_objects parameter applies only to the first call
of deactivate; subsequent calls with conflictiretherealize_objects settings will

use the value of thetherealize_objects from the first call. The

wait_for_completion parameter will be handled as defined above for each individual
call (some callers may choose to block, while others may not).

11.3.2.7 get_state

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE}
State get_state();

This operation returns the state of the POA manager.

11.3.3 AdapterActivator Interface

Adapter activators are associated with POAs. An adapter activator supplies a POA with
the ability to create child POAs on demand, as a side-effect of receiving a request that
names the child POA (or one of its children), or whird_POA is called with an

activate parameter value of TRUE. An application server that creates all its needed POAs
at the beginning of execution does not need to use or provide an adapter activator; it is
necessary only for the case in which POAs need to be created during request processing

While a request from the POA to an adapter activator is in progress, all requests to
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new POA
before requests are delivered to that POA.

11.3.3.1 Locality Constraints

An AdapterActivator object must be local to the process containing the POA objects it
is registered with.

11.3.3.2 unknown_adapter

boolean unknown_adapter(in POA parent, in string name);

This operation is invoked when the ORB receives a request for an object reference that
identifies a target POA that does not exist. The ORB invokes this operation once for
each POA that must be created in order for the target POA to exist (starting with the

CORBA V2.3 June 1999

11

ancestor POA closest to the root POA). The operation is invoked on the adapter
activator associated with the POA that is the parent of the POA that needs to be
created. That parent POA is passed agptrent parameter. The name of the POA to
be created (relative to the parent) is passed asaime parameter.

The implementation of this operation should either create the specified POA and return
TRUE, or it should return FALSE. If the operation returns TRUE, the ORB will

proceed with processing the request. If the operation returns FALSE, the ORB will
returnOBJECT_NOT_EXIST to the client. If multiple POAs need to be created, the
ORB will invoke unknown_adapter once for each POA that needs to be created. If

the parent of a nonexistent POA does not have an associated adapter activator, the ORE
will return theOBJECT_NOT_EXIST exception.

If unknown_adapter raises a system exception, the ORB will report an
OBJ_ADAPTER exception.

Note —It is possible for another thread to create the same POA the AdapterActivator is
being asked to create if AdapterActivators are used in conjunction with other threads
calling create_ POA with the same POA name. Applications should be prepared to deal
with failures from either the manual or automatic (AdapterActivator) POA creation
request. There can be no guarantee of the order of such calls.

For example, if the target object reference was created by a POA whose full name is
“A", “B”, “C”, “D” and only POAs “A” and “B” currently exist, the

unknown_adapter operation will be invoked on the adapter activator associated with
POA “B” passing POA “B” as the parent parameter and “C” as the name of the missing
POA. Assuming that the adapter activator creates POA “C” and returns TRUE, the
ORB will then invokeunknown_adapter on the adapter activator associated with

POA “C”, passing POA “C” as the parent parameter and “D” as the name.

Theunknown_adapter operation is also invoked whéimd_POA is called on the

POA with which the AdapterActivator is associated, the specified child does not exist,
and theactivate it parameter tdind_POA is TRUE. Ifunknown_adapter creates

the specified POA and returns TRUE, that POA is returned firwain POA .

Note —This allows the same code, theknown_adapter implementation, to be used

to initialize a POA whether that POA is created explicitly by the application or as a side-
effect of processing a request. Furthermore, it makes this initialization atomic with
respect to delivery of requests to the POA.

11.3.4 ServantManager Interface

Servant managers are associated with POAs. A servant manager supplies a POA with
the ability to activate objects on demand when the POA receives a request targeted at
an inactive object. A servant manager is registered with a POA as a callback object, to
be invoked by the POA when necessary. An application server that activates all its

needed objects at the beginning of execution does not need to use a servant manager; i
is used only for the case in which an object must be activated during request processing

CORBA V2.3 Interfaces June 1999 11-21

11

The ServantManager interface is itself empty. It is inherited by two other interfaces,
ServantActivator andServantLocator .

The two types of servant managers correspond to the PREATAIN policy
(ServantActivator) and to theNON_RETAIN policy (ServantLocator). The
meaning of the policies and the operations that are available for POAs using each
policy are listed under the two types of derived interfaces.

Each servant manager type contains two operations, the first called to find and return a
servant and the second to deactivate a servant. The operations differ according to the
amount of information usable for their situation.

11.3.4.1 Common information for servant manager types
The two types of servant managers have certain semantics that are identical.

Theincarnate andpreinvoke operation may raise any system exception deemed
appropriate (for exampl€@BJECT_NOT_EXIST if the object corresponding to the
Object Id value has been destroyed).

Note —If a user-written routine (servant manager or method code) raises the
OBJECT_NOT_EXIST exception, the POA does nothing but pass on that exception. It
is the user’s responsibility to deactivate the object if it had been previously activated.

Theincarnate andpreinvoke operation may also raiseFarwardRequest

exception. If this occurs, the ORB is responsible for delivering the current request and
subsequent requests to the object denoted ifotivard _reference member of the
exception. The behavior of this mechanism must be the functional equivalent of the
GIOP location forwarding mechanism. If the current request was delivered via an
implementation of the GIOP protocol (such as IIOP), the reference in the exception
should be returned to the client in a reply message V@BATION FORWARD

reply status. If some other protocol or delivery mechanism was used, the ORB is
responsible for providing equivalent behavior, from the perspectives of the client and
the object denoted by the new reference.

If a ServantManager returns a null Servant (or the equivalent in a language
mapping) as the result of amcarnate() or preinvoke() operation, the POA wiill
return theOBJ_ADAPTER system exception as the result of the request. If the
ServantManager returns the wrong type of Servant, it is indeterminate when that
error is detected. It is likely to result inBsAD_OPERATION or MARSHAL

exception at the time of method invocation.

11.3.4.2 Locality Constraints

A ServantManager object must be local to the process containing the POA objects it is
registered with.

11-22 CORBA V2.3 June 1999

11

11.3.5 ServantActivator Interface

When the POA has tHRETAIN policy it uses servant managers that are
ServantActivators. When using such servant managers, the following statements apply
for a givenObjectld used in théncarnate andetherealize operations:

* Servants incarnated by the servant manager will be placed in the Active Object Map
with objects they have activated.

¢ Invocations ofincarnate on the servant manager are serialized.
« Invocations ofetherealize on the servant manager are serialized.

¢ Invocations ofincarnate andetherealize on the servant manager are mutually
exclusive.

* Incarnations of a particular object may not overlap; thahtgrnate shall not be
invoked with a particula®bjectld while, within the same POA, thé@bjectld is in
use as th®bjectld of an activated object or as the argument of a call to incarnate
or etherealize that has not completed.

It should be noted that there may be a period of time between an object's deactivation
and the etherealization (during which outstanding requests are being processed) in
which arriving requests on that object should not be passed to its servant. During this
period, requests targeted for such an object act as if the POA weskling state until
etherealize completes. Ietherealize is called as a consequence afeactivate call

with anetherealize_objects parameter of TRUE, incoming requests are rejected.

It should also be noted that a similar situation occurs inithrnate . There may be a
period of time after the POA invokéscarnate and before that method returns in
which arriving requests bound for that object should not be passed to the servant.

A single servant manager object may be concurrently registered with multiple POAs.
Invocations ofincarnate andetherealize on a servant manager in the context of
different POAs are not necessarily serialized or mutually exclusive. There are no
assumptions made about the thread in wiitterealize is invoked.

11.3.5.1 incarnate

Servant incarnate (
in Objectld oid,
in POA adapter)
raises (ForwardRequest);

This operation is invoked by the POA whenever the POA receives a request for an
object that is not currently active, assuming the POA has the
USE_SERVANT_MANAGER andRETAIN policies.

Theoid parameter contains tl@bjectld value associated with the incoming request.
Theadapter is an object reference for the POA in which the object is being activated.

CORBA V2.3 Interfaces June 1999 11-23

11

11-24

The user-supplied servant manager implementation is responsible for locating or
creating an appropriate servant that corresponds tOIbjectld value if possible.

incarnate returns a value of type Servant, which is the servant that will be used to
process the incoming request (and potentially subsequent requests, since the POA has
the RETAIN policy).

The POA enters the returned Servant value into the Active Object Map so that
subsequent requests with the sadigectld value will be delivered directly to that
servant without invoking the servant manager.

If the incarnate operation returns a servant that is already active for a different Object
Id and if the POA also has thidNIQUE_ID policy, theincarnate has violated the

POA policy and is considered to be in error. The POA will rais®Bd_ADAPTER
system exception for the request.

Note —If the same servant is used in two different POAs, it is legal for the POAs to use
that servant even if the POAs have different Object Id uniqueness policies. The POAs do
not interact with each other in this regard.

11.3.5.2 etherealize

void etherealize (

in Objectld oid,

in POA adapter,

in Servant sery,

in boolean cleanup_in_progress,
in boolean remaining_activations);

This operation is invoked whenever a servant for an object is deactivated, assuming the
POA has th&JSE_SERVANT_MANAGER andRETAIN policies. Note that an active
servant may be deactivated by the servant managetheaealize even if it was not
incarnated by the servant manager.

Theoid parameter contains the Object Id value of the object being deactivated. The
adapter parameter is an object reference for B@A in whose scope the object was
active. Theserv parameter contains a reference to the servant that is associated with
the object being deactivated. If the servant denoted byettveparameter is associated
with other objects in thBPOA denoted by thadapter parameter (that is, in tHeOA's
Active Object Map) at the time thatherealize is called, the

remaining_activations parameter has the valdl&®RUE. Otherwise, it has the value
FALSE.

If the cleanup_in_progress parameter iFRUE, the reason for thetherealize
operation is that either thdeactivate or destroy operation was called with an
etherealize_objects parameter oTRUE. If the parameter iBALSE, the
etherealize operation is called for other reasons.

Deactivation occurs in the following circumstances:

CORBA V2.3 June 1999

11

« When an object is deactivated explicitly by an invocation of
POA::deactivate_object

* When the ORB or POA determines internally that an object must be deactivated.
For example, an ORB implementation may provide policies that allow objects to be
deactivated after some period of quiescence, or when the number of active objects
reaches some limit.

* If POAManager::deactivate is invoked on a POA manager associated with a
POA that has currently active objects.

Destroying a servant that is in the Active Object Map or is otherwise known to the
POA can lead to undefined results.

In a multi-threaded environment, tROA makes certain guarantees that allow servant
managers to safely destroy servants. Specifically, the servant's entry in the Active
Object Map corresponding to the target object is removed befoegealize is called.
Because calls tmcarnate andetherealize are serialized, this prevents new requests
for the target object from being invoked on the servant during etherealization. After
removing the entry from the Active Object Map, if tROA determines before

invoking etherealize that other requests for the same target object are already in
progress on the servant, it delays the cabttwerealize until all active methods for

the target object have completed. Therefore, wdthrerealize is called, the servant
manager can safely destroy the servant if it wants to, unless the
remaining_activations argument is TRUE.

If the etherealize operation returns a system exception, PG ignores the
exception.

11.3.6 ServantLocator Interface

When the POA has thdON_RETAIN policy it uses servant managers that are
ServantLocators . Because the POA knows that the servant returned by this servant
manager will be used only for a single request, it can supply extra information to the
servant manager’s operations and the servant manager’s pair of operations may be able
to cooperate to do something different than a ServantActivator.

When the POA uses tt&ervantLocator interface, immediately after performing the
operation invocation on the servant returnecisinvoke , the POA will invoke
postinvoke on the servant manager, passing @®gectld value and th&ervant

value as parameters (among others). The next request witBhfastld value will

then caus@reinvoke to be invoked again. This feature may be used to force every
request for objects associated witP@A to be mediated by the servant manager.

When using such 8ervantLocator , the following statements apply for a given
Objectld used in thepreinvoke andpostinvoke operations:

* The servant returned kpreinvoke is used only to process the single request that
causedpreinvoke to be invoked.

* No servant incarnated by the servant manager will be placed in the Active Object
Map.

CORBA V2.3 Interfaces June 1999 11-25

11

11-26

¢ When the invocation of the request on the servant is completénvoke will be
invoked for the object.

* No serialization of invocations gfreinvoke or postinvoke may be assumed;
there may be multiple concurrent invocationprdinvoke for the samébjectid .
(However, if theSINGLE_THREAD_ MODEL policy is being used, that policy will
serialize these calls.)

* The same thread will be usedpmeinvoke the object, process the request, and
postinvoke the object.

e Thepreinvoke and postinvoke operations are always called in pairs in response to
any ORB activity. In particular, for a response tGI®P Locate message &IOP-
conforming ORB may (or may not) call preinvoke to determine whether the object
could be served at this location. If the ORB makes such a call, whatever the result,
the ORB does not invoke a method, but does call postinvoke before responding to
the Locate message. (Note that ti8ervantActivator interface does not behave
similarly with respect to &IOP Locate message since the etherealize operation is
not associated with request processing.)

11.3.6.1 preinvoke

Servant preinvoke(

in Objectld oid,

in POA adapter,

in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);

This operation is invoked by the POA whenever the POA receives a request for an
object that is not currently active, assuming the POA has the
USE_SERVANT_MANAGER andNON_RETAIN policies.

Theoid parameter contains tl@bjectld value associated with the incoming request.
Theadapter is an object reference for the POA in which the object is being activated.

The user-supplied servant manager implementation is responsible for locating or
creating an appropriate servant that corresponds tOMbfectld value if possible.
preinvoke returns a value of typ8ervant, which is the servant that will be used to
process the incoming request.

The Cookie is a type opaque to tHeOA that can be set by the servant manager for
use later bypostinvoke . The operation is the name of the operation that will be called
by thePOA when the servant is returned.

11.3.6.2 postinvoke

void postinvoke(

in Objectld oid,

in POA adapter,

in CORBA::Identifier operation,

in Cookie the_cookie,

CORBA V2.3 June 1999

11

in Servant the_servant);

This operation is invoked whenever a servant completes a request, assuming the POA
has theUSE_SERVANT_MANAGER andNON_RETAIN policies.

The postinvoke operation is considered to be part of a request on an object. That is,
the request is not complete until postinvoke finishes. If the method finishes normally
but postinvoke raises a system exception, the method's normal return is overridden; the
request completes with the exception.

Theoid parameter contains the Object Id value of the object on which the request was
made. Theadapter parameter is an object reference for the POA in whose scope the
object was active. Thihe_servant parameter contains a reference to the servant that
is associated with the object.

The Cookie is a type opaque to tHe&OA; it contains any value that was set by the
preinvoke operation. The operation is the name of the operation that was called by the
POA for the request.

Destroying a servant that is known to @A can lead to undefined results.

11.3.7 POA Policy Objects

Interfaces derived frol@ORBA::Policy are used with th®OA::create_ POA

operation to specify policies that apply to a POA. Policy objects are created using
factory operations on any pre-existing POA, such as the root POA. Policy objects are
specified when a POA is created. Policies may not be changed on an existing POA.
Policies are not inherited from the parent POA.

11.3.7.1 Thread Policy

Objects with theThreadPolicy interface are obtained using the
POA::create_thread_policy operation and passed to tROA::create_ POA
operation to specify the threading model used with the created POA. The value
attribute ofThreadPolicy contains the value supplied to the
POA::create_thread_policy operation from which it was obtained. The following
values can be supplied.

* ORB_CTRL_MODEL - The ORB is responsible for assigning requests for an ORB-
controlled POA to threads. In a multi-threaded environment, concurrent requests
may be delivered using multiple threads.

* SINGLE_THREAD_MODEL - Requests for a single-threaded POA are processed
sequentially. In a multi-threaded environment, all upcalls made by this POA to
implementation code (servants and servant managers) are made in a manner that is
safe for code that is multi-thread-unaware.

If no ThreadPolicy object is passed toreate POA, the thread policy defaults to
ORB_CTRL_MODEL.

CORBA V2.3 Interfaces June 1999 11-27

11

11-28

Note —In some environments, calling multi-thread-unaware code safely (that is, using the
SINGLE_THREAD_MODEL) may mean that the POA will use only the main thread,

in which case the application programmer is responsible to ensure that the main thread is
given to the ORB, usin@RB::perform_work or ORB::run .

POAs using th&INGLE_ THREAD MODEL may need to cooperate to ensure that
calls are safe even when implementation code (such as a servant manager) is shared by
multiple single-threaded POAs.

These models presume that the ORB and the application are using compatible threading
primitives in a multi-threaded environment.

11.3.7.2 Lifespan Policy

Objects with the_ifespanPolicy interface are obtained using the
POA:.create_lifespan_policy operation and passed to tA®A:.create POA

operation to specify the lifespan of the objects implemented in the created POA. The
following values can be supplied.

« TRANSIENT - The objects implemented in ti®A cannot outlive théOA
instance in which they are first created. OnceRA is deactivated, use of any
object references generated from it will result inGBJECT_NOT_EXIST
exception.

« PERSISTENT - The objects implemented in tiROA can outlive the process in
which they are first created.

« Persistent objects haveP®A associated with them (tH@OA which created
them). When the ORB receives a request on a persistent object, it first searches
for the matching?OA, based on the names of tR®A and all of its ancestors.

« Administrative action beyond the scope of this specification may be necessary to
inform the ORB's location service of the creation and eventual termination of
existence of thi®OA, and optionally to arrange for on-demand activation of a
process implementing thRBOA.

* POA names must be unique within their enclosing scope (the pa@h}. A
portable program can assume tR&QA names used in other processes will not
conflict with its ownPOA names. A conforming CORBA implementation will
provide a method for ensuring this property.

If no LifespanPolicy object is passed reate POA , the lifespan policy defaults to
TRANSIENT.

11.3.7.3 Object Id Uniqueness Policy

Objects with thddUniquenessPolicy interface are obtained using the
POA:.create_id_uniqueness_policy operation and passed to the

POA:.create POA operation to specify whether the servants activated in the created
POA must have unique object identities. The following values can be supplied.

CORBA V2.3 June 1999

11

* UNIQUE_ID - Servants activated with that POA support exactly one Obiject Id.

¢ MULTIPLE_ID - a servant activated with that POA may support one or more Object
Ids.

If no IdUniquenessPolicy is specified at POA creation, the defaultyNIQUE_ID.

11.3.7.4 1d Assignment Policy

Objects with thddAssignmentPolicy interface are obtained using the
POA:.create_id_assignment_policy operation and passed to the
POA:.create_ POA operation to specify whether Object Ids in the cre@ed are
generated by the application or by the ORB. The following values can be supplied.

e« USER_ID - Objects created with th®OA are assigned Object Ids only by the
application.

e SYSTEM_ID - Objects created with th®OA are assigned Object Ids only by the
POA. If the POA also has th&®ERSISTENT policy, assigned Object Ids must be
unique across all instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the defaulSSTEM_ID.

11.3.7.5 Servant Retention Policy

Objects with theServantRetentionPolicy interface are obtained using the
POA:.create_servant_retention_policy operation and passed to the
POA:.create_ POA operation to specify whether the creaf®0A retains active
servants in an Active Object Map. The following values can be supplied.

e RETAIN - The POA will retain active servants in its Active Object Map.
*« NON_RETAIN - Servants are not retained by the POA.

If no ServantRetentionPolicy is specified at POA creation, the defaulRETAIN.

Note —The NON_RETAIN policy requires either thed SE_ DEFAULT_SERVANT or
USE_SERVANT_MANAGER npolicies.

11.3.7.6 Request Processing Policy

Objects with the RequestProcessingPolicy interface are obtained using the
POA:.create_request_processing_policy operation and passed to the
POA:.create_ POA operation to specify how requests are processed by the created
POA. The following values can be supplied.

e USE_ACTIVE_OBJECT_MAP_ONLY - If the Object Id is not found in the
Active Object Map, atOBJECT_NOT_EXIST exception is returned to the client.
The RETAIN policy is also required.

CORBA V2.3 Interfaces June 1999 11-29

11

11-30

e USE_DEFAULT _SERVANT - If the Object Id is not found in the Active Object
Map or theNON_RETAIN policy is present, and a default servant has been
registered with th€OA using theset_servant operation, the request is dispatched
to the default servant. If no default servant has been register@BRMDAPTER
exception is returned to the client. TMRJLTIPLE_ID policy is also required.

e USE_SERVANT_MANAGER - If the Object Id is not found in the Active Object
Map or theNON_RETAIN policy is present, and a servant manager has been
registered with théOA using theset_servant_manager operation, the servant
manager is given the opportunity to locate a servant or raise an exception. If no
servant manager has been registered)BAECT ADAPTER exception is
returned to the client.

If no RequestProcessingPolicy is specified aPOA creation, the default is
USE_ACTIVE_OBJECT_MAP_ONLY.

By means of combining theSE_ACTIVE_OBJECT_MAP_ONLY /
USE_DEFAULT_SERVANT / USE_SERVANT_MANAGER policies and the

RETAIN / NON_RETAIN policies, the programmer is able to define a rich number of
possible behaviors.

RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY

This combination represents the situation whereP®a does no automatic object
activation (that is, th®OA searches only the Active Object Map). The server must
activate all objects served by tROA explicitly, using either thactivate_object or
activate_object_with_id operation.

RETAIN and USE_SERVANT_MANAGER

This combination represents a very common situation, where there is an Active Object
Map and aServantManager .

BecauseRETAIN is in effect, the application can calttivate_object or
activate_object_with_id to establish known servants in the Active Object Map for
use in later requests.

If the POA doesn't find a servant in the Active Object Map for a given object, it tries
to determine the servant by means of invoking incarnate iS¢hneantManager
(specifically a ServantActivator) registered with the POA. IfSevantManager is
available, thePOA raises th@DBJECT _ADAPTER system exception.

RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default servant defined for
all requests involving unknown objects.

BecauseRETAIN is in effect, the application can calttivate_object or
activate_object_with_id to establish known servants in the Active Object Map for
use in later requests.

CORBA V2.3 June 1999

11

The POA first tries to find a servant in the Active Object Map for a given object. If it
does not find such a servant, it uses the default servant. If no default servant is
available, thePOA raises theOBJECT_ADAPTER system exception.

NON-RETAIN and USE_SERVANT_MANAGER
This combination represents the situation where one servant is used per method call.

The POA doesn't try to find a servant in the Active Object Map because the
ActiveObjectMap does not exist. In every request, it will call preinvoke on the
ServantManager (specifically aServantLocator) registered with th&OA. If no
ServantManager is available, théOA will raise theOBJECT_ADAPTER system
exception.

NON-RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is one single servant defined for
all CORBA objects.

The POA does not try to find a servant in the Active Object Map because the
ActiveObjectMap doesn't exist. In every request, tROA will invoke the
appropriate operation on the default servant registered witR@#e If no default
servant is available, tHeOA will raise theOBJECT_ADAPTER system exception.

11.3.7.7 Implicit Activation Policy

Objects with themplicitActivationPolicy interface are obtained using the
POA::create_implicit_activation_policy operation and passed to the
POA:.create POA operation to specify whether implicit activation of servants is
supported in the created POA. The following values can be supplied.

e IMPLICIT_ACTIVATION - the POA will support implicit activation of servants.
IMPLICIT_ACTIVATION also requires th8YSTEM_ID andRETAIN policies.

* NO_IMPLICIT_ACTIVATION - the POA will not support implicit activation of
servants.

If no ImplicitActivationPolicy is specified at POA creation, the default is
NO_IMPLICIT_ACTIVATION.

11.3.8 POA Interface

A POA object manages the implementation of a collection of objects. The POA
supports a name space for the objects, which are identified by Object Ids.

A POA also provides a name space for POAs. A POA is created as a child of an
existing POA, which forms a hierarchy starting with the root POA.

CORBA V2.3 Interfaces June 1999 11-31

11

11-32

11.3.8.1 Locality Constraints

A POA object must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exception. An attempt to use®@A object with the DIl may
raise theNO_IMPLEMENT exception.

11.3.8.2 create_ POA

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy);

This operation creates a new POA as a child of the target POA. The specified nhame
identifies the new POA with respect to other POAs with the same parent POA. If the
target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If the a_POAManager parameter is null, a neROAManager object is created and
associated with the new POA. Otherwise, the specHi®@dManager object is
associated with the new POA. TROAManager object can be obtained using the
attribute namehe_POAManager .

The specified policy objects are associated with the POA and used to control its
behavior. The policy objects are effectively copied before this operation returns, so the
application is free to destroy them while the POA is in use. Policiesaaiaherited

from the parent POA.

If any of the policy objects specified are not valid for the ORB implementation, if
conflicting policy objects are specified, or if any of the specified policy objects require
prior administrative action that has not been performednealidPolicy exception is
raised containing the index in the policies parameter value of the first offending policy
object.

Note —Creating a POA using a POA manager that is in the active state can lead to race
conditions if the POA supports preexisting objects, because the new POA may receive a
request before its adapter activator, servant manager, or default servant have been
initialized. These problems do not occur if the POA is created by an adapter activator
registered with a parent of the new POA, because requests are queued until the adapter
activator returns. To avoid these problems when a POA must be explicitly initialized, the
application can initialize the POA by invokifigd_POA with a TRUE activate

parameter.

11.3.8.3 find_POA

POA find_POA(
in string adapter_name,

CORBA V2.3 June 1999

11

in boolean activate_it)
raises (AdapterNonExistent);

If the targetPOA is the parent of a chilBOA with the specified name (relative to the
targetPOA), that childPOA is returned. If a child®OA with the specified name does
not exist and the value of tleetivate it parameter iSRUE, the targePOA's
AdapterActivator , if one exists, is invoked, and, if it successfully activates the child
POA, that childPOA is returned. Otherwise, thedapterNonExistent exception is
raised.

11.3.8.4 destroy

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

This operation destroys tH®OA and all descendafOAs. All descendanPOAs are
destroyed (recursively) before the destruction of the contair®g. The POA so
destroyed (that is, thROA with its name) may be re-created later in the same process.
(This differs from thePOAManager::deactivate operation that does not allow a re-
creation of its associaté®lOA in the same process. After a deactivate, re-creation is
allowed only if thePOA is later destroyed.)

Whendestroy is called thePOA behaves as follows:
e ThePOA callsdestroy on all of its immediate descendants.

e After all descendarPOAs have been destroyed and their servants etherealized, the
POA continues to process requests until there are no requests executing@Athe
The apparent destruction of tR&©A occurs only after all executing requests in the
POA have completed. After destruction has become apparerifQAemay be re-
created via either aAdapterActivator or a call tocreate_POA .

« If the etherealize_objects parameter iSRUE, the POA has theRETAIN policy,
and a servant manager is registered withR&, the etherealize operation on the
servant manager is called for each active object in the Active Object Map. The
apparent destruction of the POA occurs before any calls to etherealize are made.
Thus, for example, an etherealize method that attempts to invoke operations on the
POA receives th®©BJECT_NOT_EXIST exception. Once apparent destruction
has occurred, thBOA behaves as if itBOAManager is in the holding state until
destruction is complete. Thus, for example, an invocatiarrezte POA with the
same name blocks unflOA destruction has finished.

Thewait_for_completion parameter is handled as follows:

e If wait_for_completion is TRUE and the current thread is not in an invocation
context dispatched from sonOA belonging to the same ORB as tRi®A, the
destroy operation returns only after all active requests have completed and all
invocations ofetherealize have completed.

¢ If wait_for_completion is TRUE and the current thread is in an invocation
context dispatched from sonOA belonging to the same ORB as tRi®A, the
BAD_INV_ORDER exception is raised arfdOA destruction does not occur.

CORBA V2.3 Interfaces June 1999 11-33

11

11-34

« If wait_for_completion is FALSE, thedestroy operation destroys the POA and
its children but waits neither for active requests to complete nor for etherealization
to occur. Ifdestroy is called multiple times before destruction is complete (because
there are active requests), thierealize_objects parameter applies only to the
first call of destroy . Subsequent calls with conflictiretherealize_objects
settings use the value etherealize_objects from the first call. The
wait_for_completion parameter is handled as defined above for each individual
call (some callers may choose to block, while others may not).

11.3.8.5 Policy Creation Operations

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);
LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);
IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);
IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);
ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);
ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);
RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

These operations each return a reference to a policy object with the specified value.
The application is responsible for calling the inheridedtroy operation on the
returned reference when it is no longer needed.

11.3.8.6 the _name

readonly attribute string the_name;

This attribute identifies the POA relative to its parent. This name is assigned when the
POA is created. The name of the root POA is system-dependent and should not be
relied upon by the application.

11.3.8.7 the_parent

readonly attribute POA the_parent;

This attribute identifies the parent of the POA. The parent of the root POA is null.

11.3.8.8 the_children

readonly attribute POAList the_children;

CORBA V2.3 June 1999

11

This attribute identifies the current set of all child POAs of the POA. The set of child
POAs includes only the POA's immediate children, and not their descendants.

11.3.8.9 the_POAManager

readonly attribute POAManager the_ POAManager;

This attribute identifies the POA manager associated with the POA.

11.3.8.10 the_activator

attribute AdapterActivator the_activator;

This attribute identifies the adapter activator associated with the POA. A newly created
POA has no adapter activator (the attribute is null). It is system-dependent whether the
root POA initially has an adapter activator; the application is free to assign its own
adapter activator to the root POA.

11.3.8.11 get_servant_manager

ServantManager get_servant_manager()
raises(WrongPolicy);

This operation requires tHéSE_ SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

If the ServantRetentionPolicy of thePOA is RETAIN, then theServantManager
argument ifngr) shall support the ServantActivator interface (e.g., in @agr is
narrowable tdServantActivator). If the ServantRetentionPolicy of the POA is
NON_RETAIN, then theServantManager argument shall support the
ServantLocator interface. If the argument tsl, or does not support the required
interface, then th©BJ_ADAPTER exception is raised.

This operation returns the servant manager associated with the POA. If no servant
manager has been associated with the POA, it returns a null reference.

11.3.8.12 set_servant_manager

void set_servant_manager(in ServantManager imgr)
raises(WrongPolicy);

This operation requires tHéSE_ SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation sets the default servant manager associated with the POA. This
operation may only be invoked once after a POA has been created. Attempting to set
the servant manager after one has already been set will result in the
BAD_INV_ORDER exception being raised.

CORBA V2.3 Interfaces June 1999 11-35

11

11-36

11.3.8.13 get_servant

Servant get_servant()
raises(NoServant, WrongPolicy);

This operation requires tHéSE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation returns the default servant associated with the POA. If no servant has
been associated with the POA, tleServant exception is raised.

11.3.8.14 set_servant

void set_servant(in Servant p_servant)
raises(WrongPolicy);

This operation requires tHéSE_ DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation registers the specified servant with the POA as the default servant. This
servant will be used for all requests for which no servant is found in the Active Object
Map.

11.3.8.15 activate_object

Objectld activate_object(in Servant p_servant)
raises (ServantAlreadyActive, WrongPolicy);

This operation requires ti®YSTEM_ID andRETAIN policy; if not present, the
WrongPolicy exception is raised.

If the POA has th& NIQUE_ID policy and the specified servant is already in the
Active Object Map, theservantAlreadyActive exception is raised. Otherwise, the
activate_object operation generates an Object Id and enters the Object Id and the
specified servant in the Active Object Map. The Object Id is returned.

11.3.8.16 activate_object_with_id

void activate _object_with_id(
in Objectld oid,
in Servant p_servant)
raises (ObjectAlreadyActive, ServantAlreadyActive, WrongPolicy);

This operation requires tHRETAIN policy; if not present, th&/rongPolicy exception
is raised.

If the CORBA object denoted by the Object Id value is already active in this POA
(there is a servant bound to it in the Active Object Map)QbgctAlreadyActive
exception is raised. If the POA has tBIQUE_ID policy and the servant is already

CORBA V2.3 June 1999

11

in the Active Object Map, th8ervantAlreadyActive exception is raised. Otherwise,
the activate_object_with_id operation enters an association between the specified
Object Id and the specified servant in the Active Object Map.

If the POA has theSYSTEM_ID policy and it detects that the Object Id value was not
generated by the system or for tROA, theactivate_object with_id operation

may raise thé8AD_PARAM system exception. An ORB is not required to detect all
such invalid Object Id values, but a portable application must not invoke
activate_object_with_id on aPOA that has th&YSTEM_ID policy with an Object

Id value that was not previously generated by the system foP®aft or, if thePOA
also has th&ERSISTENT policy, for a previous instantiation of the saP®@A.

11.3.8.17 deactivate_object

void deactivate_object(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires tHRETAIN policy; if not present, th&/rongPolicy exception
is raised.

This operation causes ti@bjectld specified in theoid parameter to be deactivated.
An Objectld which has been deactivated continues to process requests until there are
no active requests for th&bjectld . A deactivatedbjectld is removed from the
Active Object Map when all requests executing for tbbjectld have completed. If a
servant manager is associated with B, ServantActivator::etherealize is
invoked with theoid and the associated servant after @gectld has been removed
from the Active Object Map. Reactivation for t@bjectld blocks until etherealization
(if necessary) is complete. This includes implicit activation (as described in
etherealize) and explicit activation VRDA::activate_object_with_id . Once an
Objectld has been removed from the Active Object Map and etherealized (if
necessary) it may then be reactivated through the usual mechanisms.

The operation does not wait for requests or etherealization to complete and always
returns immediately after deactivating t@bjectid .

Note —If the servant associated with tbiel is serving multiple Object Ids,
ServantActivator::etherealize may be invoked multiple times with the same servant
when the other objects are deactivated. It is the responsibility of the object
implementation to refrain from destroying the servant while it is active with any Id.

11.3.8.18 create_reference

Object create_reference (
in CORBA::Repositoryld intf)
raises (WrongPolicy);

This operation requires tH®YSTEM_ID policy; if not present, th&/rongPolicy
exception is raised.

CORBA V2.3 Interfaces June 1999 11-37

11

11-38

This operation creates an object reference that encapsulates a POA-generated Obiject I
value and the specified interface repository id. The specified repository id, which may
be a null string, will become thgpe_id of the generated object reference. A

repository id that does not identify the most derived interface of the object or one of its
base interfaces will result in undefined behavior.

This operation does not cause an activation to take place. The resulting reference may
be passed to clients, so that subsequent requests on those references will cause the
appropriate servant manager to be invoked, if one is available. The generated Object Id
value may be obtained by invokiffDA::reference_to id with the created reference.

11.3.8.19 create_reference_with_id

Object create_reference_with_id (
in Objectld oid,
in CORBA::Repositoryld intf);

This operation creates an object reference that encapsulates the specified Object Id anc
interface repository Id values. The specified repository id, which may be a null string,
will become thetype_id of the generated object reference. A repository id that does

not identify the most derived interface of the object or one of its base interfaces will
result in undefined behavior.

This operation does not cause an activation to take place. The resulting reference may
be passed to clients, so that subsequent requests on those references will cause the
object to be activated if necessary, or the default servant used, depending on the
applicable policies.

If the POA has theSYSTEM _ID policy and it detects that the Object Id value was not
generated by the system or for this POA, ¢heate_reference_with_id operation

may raise thé8AD_PARAM system exception. An ORB is not required to detect all
such invalid Object Id values, but a portable application must not invoke this operation
on a POA that has tf@YSTEM_ID policy with an Object Id value that was not
previously generated by the system for th&A, or, if thePOA also has the
PERSISTENT policy, for a previous instantiation of the saRP@A.

11.3.8.20 servant_to_id

Objectld servant_to_id(
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

This operation requires thé¢SE_DEFAULT_SERVANT policy or a combination of
the RETAIN policy and either the NIQUE_ID or IMPLICIT_ACTIVATION policies;
if not present, th&VrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has theUNIQUE_ID policy and the specified servant is active, the
Object Id associated with that servant is returned.

CORBA V2.3 June 1999

11

2. If the POA has thdMPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servant is activated
using a POA-generated Object Id and the Interface Id associated with the servant,
and that Object Id is returned.

3. If the POA has thdUSE_DEFAULT_SERVANT policy, the servant specified is the
default servant, and the operation is being invoked in the context of executing a
request on the default servant, then the Objectld associated with the current
invocation is returned.

4. Otherwise, th&ervantNotActive exception is raised.

11.3.8.21 servant_to_reference

Object servant_to_reference (
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

This operation requires tHRETAIN policy and either th&NIQUE_ID or
IMPLICIT_ACTIVATION policies if invoked outside the context of an operation
dispatched by this POA. If this operation is not invoked in the context of executing a
request on the specified servant and the policies specified previously are not present
the WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both thRETAIN and theUNIQUE_ID policy and the specified
servant is active, an object reference encapsulating the information used to activate
the servant is returned.

2. If the POA has both thé&kETAIN and thelMPLICIT_ACTIVATION policy and
either thePOA has theMULTIPLE_ID policy or the specified servant is not active,
the servant is activated using a POA-generated Object Id and the Interface Id
associated with the servant, and a corresponding object reference is returned.

3. If the operation was invoked in the context of executing a request on the specified
servant, the reference associated with the current invocation is returned.

4. Otherwise, th&ervantNotActive exception is raised.

Note —The allocation of an Object Id value and installation in the Active Object Map
caused by implicit activation may actually be deferred until an attempt is made to
externalize the reference. The real requirement here is that a reference is produced that
will behave appropriately (that is, yield a consistent Object Id value when asked politely).

11.3.8.22 reference_to_servant

Servant reference_to_servant (
in Object reference)
raises (ObjectNotActive, WrongAdapter, WrongPolicy);

CORBA V2.3 Interfaces June 1999 11-39

11

11-40

This operation requires tHRETAIN policy or theUSE_DEFAULT _SERVANT policy.
If neither policy is present, th&/rongPolicy exception is raised.

If the POA has theRETAIN policy and the specified object is present in the Active
Object Map, this operation returns the servant associated with that object in the Active
Object Map. Otherwise, if thEOA has thdJSE_DEFAULT _SERVANT policy and a
default servant has been registered withRI#\, this operation returns the default
servant. Otherwise, th®bjectNotActive exception is raised.

If the object reference was not created by B@A, the WrongAdapter exception is
raised.

11.3.8.23 reference_to_id

Obijectld reference_to_id(
in Object reference)
raises (WrongAdapter, WrongPolicy);

The WrongPolicy exception is declared to allow future extensions.

This operation returns the Object Id value encapsulated by the speeffegnce .

This operation is valid only if the reference was created by the POA on which the
operation is being performed. If the reference was not created by that POA, a
WrongAdapter exception is raised. The object denoted by the reference does not have
to be active for this operation to succeed.

11.3.8.24 id_to_servant

Servant id_to_servant(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires tHRETAIN policy or theUSE_DEFAULT _SERVANT
policy. If neither policy is present, th&rongPolicy exception is raised.

If the POA has th&ETAIN policy and the specified Objectld is in the Active Object
Map, this operation returns the servant associated with that object in the Active Object
Map. Otherwise, if the POA has thiSE_ DEFAULT_SERVANT policy and a default
servant has been registered with the POA, this operation returns the default servant.
Otherwise theDbjectNotActive exception is raised.

11.3.8.25 id_to_reference

Object id_to_reference(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires tHRETAIN policy; if not present, th&/rongPolicy exception
is raised.

CORBA V2.3 June 1999

11

If an object with the specified Object Id value is currently active, a reference
encapsulating the information used to activate the object is returned. If the Object Id
value is not active in the POA, @bjectNotActive exception is raised.

11.3.9 Current operations

The PortableServer::Current interface, derived fronCORBA::Current , provides
method implementations with access to the identity of the object on which the method
was invoked. The Current interface is provided to support servants that implement
multiple objects, but can be used within the context of POA-dispatched method
invocations on any servant. To provide location transparency, ORBs are required to
support use o€urrent in the context of both locally and remotely invoked operations.

An instance of Current can be obtained by the application by issuing the
CORBA::ORB::resolve_initial_references("POACurrent") operation.
Thereafter, it can be used within the context of a method dispatched Bpthé¢o
obtain thePOA andObjectld that identify the object on which that operation was
invoked.

11.3.9.1 get_POA

POA get_ POA()
raises (NoContext);

This operation returns a reference to the POA implementing the object in whose
context it is called. If called outside the context of a POA-dispatched operation, a
NoContext exception is raised.

11.3.9.2 get_object id

Objectld get_object_id()
raises (NoContext);

This operation returns the Objectld identifying the object in whose context it is called.
If called outside the context of a POA-dispatched operatidig@ontext exception is
raised.

11.4 IDL for PortableServer module

#pragma prefix "omg.org"

module PortableServer {

pragma version PortableServer 2.3
interface POA, / forward declaration
typedef sequence<POA> POAList;

native Servant;

typedef sequence<octet> Objectld;

CORBA V2.3 IDL for PortableServer module June 1999 11-41

11

exception ForwardRequest {
Object forward_reference;

¥
/l Policy interfaces

const CORBA::PolicyType THREAD_POLICY_ID = 16;

const CORBA::PolicyType LIFESPAN_POLICY_ID = 17,

const CORBA::PolicyType ID_UNIQUENESS POLICY_ID = 18;

const CORBA::PolicyType ID_ASSIGNMENT_POLICY_ID = 19;

const CORBA::PolicyType IMPLICIT_ACTIVATION_POLICY_ID = 20;
const CORBA::PolicyType SERVANT_RETENTION_POLICY_ID = 21;
const CORBA::PolicyType REQUEST_PROCESSING_POLICY_ID = 22;

enum ThreadPolicyValue {
ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL

3

interface ThreadPolicy : CORBA::Policy {
readonly attribute ThreadPolicyValue value;

¥

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

I3

interface LifespanPolicy : CORBA::Policy {
readonly attribute LifespanPolicyValue value;

¥

enum IdUniguenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

I3

interface IdUniquenessPolicy : CORBA::Policy {
readonly attribute IdUniquenessPolicyValue value;

¥

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

I3

interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;

h

enum ImplicitActivationPolicyValue {

11-42 CORBA V2.3 June 1999

11

IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

k

interface ImplicitActivationPolicy : CORBA::Policy {
readonly attribute ImplicitActivationPolicyValue value;

h

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN

k

interface ServantRetentionPolicy : CORBA::Policy {
readonly attribute ServantRetentionPolicyValue value;

k

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

k

interface RequestProcessingPolicy : CORBA::Policy {
readonly attribute RequestProcessingPolicyValue value;

h
/I POAManager interface

interface POAManager {
exception Adapterinactive{};

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE},

void activate()
raises(Adapterlnactive);

void hold_requests(
in boolean wait_for_completion)
raises(Adapterinactive);

void discard_requests(
in boolean wait_for_completion)
raises(Adapterlnactive);

void deactivate(
in boolean etherealize_objects,
in boolean wait_for_completion)
raises(Adapterlnactive);

State get_state();

k

/I AdapterActivator interface

CORBA V2.3 IDL for PortableServer module June 1999 11-43

11

interface AdapterActivator {
pragma version AdapterActivator 2.3
boolean unknown_adapter(
in POA parent,
in string name);

¥
/I ServantManager interface
interface ServantManager{ };

interface ServantActivator : ServantManager {

pragma version ServantActivator 2.3
Servant incarnate (
in Objectld oid,
in POA adapter)

raises (ForwardRequest);

void etherealize (

in Objectld oid,

in POA adapter,

in Servant sery,

in boolean cleanup_in_progress,
in boolean remaining_activations);

I3

interface ServantLocator : ServantManager {
pragma version ServantLocator 2.3
native Cookie;
Servant preinvoke(

in Objectld oid,

in POA adapter,

in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);

void postinvoke(

in Objectld oid,

in POA adapter,

in CORBA::Identifier operation,

in Cookie the_cookie,
in Servant the_servant

);
3

/I POA interface
interface POA {
pragma version POA 2.3

exception AdapterAlreadyEXxists {};
exception AdapterNonExistent {};

11-44 CORBA V2.3 June 1999

11

exception InvalidPolicy {unsigned short index;};
exception NoServant {};

exception ObjectAlreadyActive {};

exception ObjectNotActive {};

exception ServantAlreadyActive {};

exception ServantNotActive {};

exception WrongAdapter {};

exception WrongPolicy {};

/I POA creation and destruction

POA create_ POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy);

POA find_POA(
in string adapter_name,
in boolean activate _it)
raises (AdapterNonExistent);

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

/I Factories for Policy objects

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);
LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);
IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);
IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);
ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);
ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);
RequestProcessingPolicy create request processing_policy(
in RequestProcessingPolicyValue value);

/ POA attributes

readonly attribute string the_name;

readonly attribute POA the_parent;

readonly attribute POAList the_children;

readonly attribute POAManager the_ POAManager;
attribute AdapterActivator the_activator;

CORBA V2.3 IDL for PortableServer module June 1999 11-45

11

/I Servant Manager registration:

ServantManager get_servant_manager()
raises (WrongPolicy);

void set_servant_manager(
in ServantManager imgr)
raises (WrongPolicy);

/I operations for the USE_DEFAULT_SERVANT policy

Servant get_servant()
raises (NoServant, WrongPolicy);

void set_servant(in Servant p_servant)
raises (WrongPolicy);

/I object activation and deactivation

Objectld activate _object(
in Servant p_servant)
raises (ServantAlreadyActive, WrongPolicy);

void activate _object_with_id(
in Objectld id,
in Servant p_servant)
raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);

void deactivate_object(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

Il reference creation operations

Object create_reference (
in CORBA::Repositoryld intf)
raises (WrongPolicy);

Object create_reference_with_id (
in Objectld oid,
in CORBA::Repositoryld intf)
raises (WrongPolicy);

/I ldentity mapping operations:
Objectld servant_to_id(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(
in Servant p_servant)

11-46 CORBA V2.3 June 1999

11

CORBA V2.3 IDL for PortableServer module June 1999

k

raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant(
in Object reference)
raises(ObjectNotActive, Wrongpolicy);

Obijectld reference_to_id(
in Object reference)
raises (WrongAdapter, WrongPolicy);

Servant id_to_servant(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

Object id_to_reference(in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

/I Current interface

interface Current : CORBA::Current {

pragma version Current 2.3
exception NoContext { };

POA get POA()
raises (NoContext);

Objectld get_object_id()
raises (NoContext);

11-47

11

11.5 UML Description of PortableServer

The following diagrams were generated by an automated tool and then annotated with
the cardinalities of the associations. They are intended to be an aid in comprehension
to those who enjoy such representations. They are not normative.

PortableServer::POAManager
(from Portable Server)

PortableServer::AdapterActivator the_parent

11-48

(from Portable Server)

unknown_adapter()

activate()
hold_requests()

discard_requests()
deactivate()
get_state()

T

PortableServer::ServantManager
(from Portable Server)

the ager

PortableServer::ServantLocator
(from Portable Server)

(from Portable Server)

PortableServer::ServantActivator

preinvoke()
postinvoke()

incarnate()
etherealize()

AR

PortableServer::Cookie
(from Portable Server)

PortableServer::Servant
(from Portable Server)

CORBA::Current

PortableServer::Current
(from Portable Server)

(from CORBA Core)

get_POA()
get_object_id()

_

CORBA::Policy
(from CORBA Core)

enforces

policy_type : CORBA::PolicyType

copy()
destroy()

0..n 1

PortableServer::POA
(from Portable Server)

the_name : string

the_parent : PortableServer::POA

the_children : PortableServer::POAList

the_manager : PortableServer::POAManager
the_activator : PortableServer::AdapterActivator
the_servant_manager : PortableServer::ServantManage

create_POA ()

find_POA()

destroy()

create_thread_policy()
create_lifespan_policy()
create_id_uniqueness_policy()
create_id_assignment_policy()
create_implicit_activation_policy()
create_servant_retention_policy()
create_request_processing_policy()
get_servant_manager()
set_servant_manager()
get_servant()

set_servant()

activate_object()
activate_object_with_id()
deactivate_object()
create_reference()
create_reference_with_id()
servant_to_id()
servant_to_reference()
reference_to_servant()
reference_to_id()

id_to_servant()

id_to_reference()

z

PortableServer::Objectld
(from Portable Server)

Figure 11-4 UML for main part of PortableServer

CORBA V2.3

June 1999

IdAssignmentPolicy

value:ldAssignmentPolicyValue
={USER_ID, SYSTEM_ID}

IdUniquessPolicy

ImplicitActivationPolicy

value:ldUniquenessPolicyValue
= {UNIQUE_ID, MULTIPLE_ID}

value:ImpliciActivationPolicyValue
= {IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION}

CORBA::Policy
(from CORBA core)

policy_type : CORBA::PolicyType

copy()
destroy()

ServantRetentionPolicy

value:ServantRetentionPolicyValue
= {RETAIN, NON_RETAIN}

LifespanPolicy

RequestProcessingPolicy ThreadPolicy

value:LifespanPolicyValue
= {TRANSIENT,
PERSISTENT}

value:ThreadPolicyValue
={ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL.

value:RequestProcessingPolicyValue
= {USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER}

Figure 11-5 UML for PortableServer policies

11.6 Usage Scenarios

This section illustrates how different capabilities of the POA may be used in
applications.

Note —In some of the following C++ examples, PortableServer names are not explicitly
scoped. It is assumed that all the examples have the C++ statement
using namespace PortableServer;

11.6.1 Getting the root POA

All server applications must obtain a reference to the root POA, either to use it directly
to manage objects, or to create new POA objects. The following example demonstrates
how the application server can obtain a reference to the root POA.

Il C++

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::Object_ptr pfobj =
orb->resolve_initial_references(“RootPOA");

CORBA V2.3 Usage Scenarios June 1999 11-49

11

11-50

PortableServer::POA_ptr rootPOA,
rootPOA = PortableServer::POA::narrow(pfobj);

11.6.2 Creating a POA

For a variety of reasons, a server application might want to create a new POA. The
POA is created as a child of an existing POA. In this example, it is created as a child
of the root POA.

Il C++

CORBA::PolicyList policies(2);

policies.length(2);

policies[0] = rootPOA->create_thread_policy(
PortableServer::ThreadPolicy::ORB_CTRL_MODEL);
policies[1] = rootPOA->create_lifespan_policy(
PortableServer::LifespanPolicy:: TRANSIENT);
PortableServer::POA_ptr poa =

rootPOA->create_ POA(“my_little_poa”,
PortableServer::POAManager::_nil(), policies);

11.6.3 Explicit Activation with POA-assigned Object Ids

By specifying theSYSTEM_ID policy on a POA, objects may be explicitly activated
through the POA without providing a user-specified identity value. Using this
approach, objects are activated by performingaittevate _object operation on the
POA with the object in question. For this operation, the POA allocates, assigns, and
returns a unique identity value for the object.

Generally this capability is most useful for transient objects, where the Object Id needs
to be valid only as long as the servant is active in the server. The Object Ids can remain
completely hidden and no servant manager need be provided. When this is the case, the
identity and lifetime of the servant and the abstract object are essentially equivalent.
When POA-assigned Object Ids are used with persistent objects or objects that are
activated on demand, the application must be able to associate the generated Object Id
value with its corresponding object state.

This example illustrates a simple implementation of transient objects using POA-
assigned Object Ids. It presumes a POA that haSY&TEM_ID,
USE_SERVANT_MANAGER, andRETAIN policies.

Assume this interface:

/I IDL
interface Foo {
long doit();

¥

This might result in the generation of the following skeleton:

CORBA V2.3 June 1999

11

class POA_Foo : public ServantBase

{
public:

virtual CORBA::Long doit() = 0;
}

Derive your implementation:

class MyFooServant : public POA_Foo
{
public:
MyFooServant(POA_ptr poa, Long value)
: my_poa(POA::_duplicate(poa)), my_value(value) {}
~MyFooServant() {CORBA::release(my_poa);}
virtual POA_ptr _default POA()
{return POA::_duplicate(my_poa);}
virtual Long doit() {return my_value;}
protected:
POA_ptr my_poa;
Long my_value;
3

Now, somewhere in the program during initialization, probablgn&in() :

MyFooServant* afoo = new MyFooServant(poa,27);

PortableServer::Objectld_var oid =
poa->activate_object(afoo);

Foo_var foo = afoo->_this();

poa->the POAManager()->activate();

orb->run();

This object is activated with a generated Object Id.

11.6.4 Explicit Activation with User-assigned Object Ids

An object may be explicitly activated by a server using a user-assigned identity. This
may be done for several reasons. For example, a programmer may know that certain
objects are commonly used, or act as initial points of contact through which clients
access other objects (for example, factories). The server could be implemented to
create and explicitly activate these objects during initialization, avoiding the need for a
servant manager.

If an implementation has a reasonably small number of servants, the server may be
designed to keep them all active continuously (as long as the server is executing). If
this is the case, the implementation need not provide a servant manager. When the
server initializes, it could create all available servants, loading their state and identities
from some persistent store. The POA supports an explicit activation operation,
activate_object_with_id , that associates a servant with an Object Id. This operation
would be used to activate all of the existing objects managed by the server during
server initialization. Assuming the POA has th8E_SERVANT_MANAGER policy

CORBA V2.3 Usage Scenarios June 1999 11-51

11

11-52

and no servant manager is associated with a POA, any request received by the POA for
an Object Id value not present in the Active Object Map will result in an
OBJECT_ADAPTER exception.

In simple cases of well-known, long-lived objects, it may be sufficient to activate them
with well-known Object Id values during server initialization, before activating the
POA. This approach ensures that the objects are always available when the POA is
active, and doesn't require writing a servant manager. It has severe practical limitations
for a large number of objects, though.

This example illustrates the explicit activation of an object using a user-chosen Object
Id. This example presumes a POA that hasuB&R_ID,
USE_SERVANT_MANAGER, andRETAIN policies.

The code is like the previous example, but replace the last portion of the example
shown above with the following code:

Il C++

MyFooServant* afoo = new MyFooServant(poa, 27);

PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld(“myLittleF00”);

poa->activate_object_with_id(oid.in(), afoo);

Foo_var foo = afoo->_this();

11.6.5 Creating References before Activation

It is sometimes useful to create references for objects before activating them. This
example extends the previous example to illustrate this option:

Il C++

PortableServer::Objectld_var oid =

PortableServer::string_to_Objectld(“myLittleF00”);

CORBA::Object_var obj = poa->create_reference_with_id(
oid.in(), “IDL:F00:1.0");

Foo_var foo = Foo::_narrow(obj);

Il .. later...
MyFooServant* afoo = new MyFooServant(poa, 27);
poa->activate_object_with_id(oid.in(), afoo);

11.6.6 Servant Manager Definition and Creation

Servant managers are object implementations, and are required to satisfy all of the
requirements of object implementations necessary for their intended function. Because
servant managers are local objects, and their use is limited to a single narrow role,
some simplifications in their implementation are possible. Note that these
simplifications are suggestions, not normative requirements. They are intended as
examples of ways to reduce the programming effort required to define servant
managers.

CORBA V2.3 June 1999

11

A servant manager implementation must provide the following things:

« implementation code for either
* incarnate() andetherealize(), or
* preinvoke() andpostinvoke()

« implementation code for the servant operations, as for all servants

The first two are obvious; their content is dictated by the requirements of the
implementation that the servant manager is managing. For the third point, the default
servant manager on the root POA already supplies this implementation code. User-
written servant managers will have to provide this themselves.

Since servant managers are objects, they themselves must be activated. It is expected th:
most servant managers can be activated on the root POA with its default set of policies
(see “POA Creation” on page 11-6). It is for this reason that the root POA has the
IMPLICIT_ACTIVATION policy so that a servant manager can easily be activated.

Users may choose to activate a servant manager on other POAs.

The following is an example servant manager to activate objects on demand. This
example presumes a POA that hasWisER_ID, USE_SERVANT _MANAGER, and
RETAIN policies.

Since RETAIN is in effect, the type of servant manager used is a ServantActivator. The
ORB supplies a servant activator skeleton class in a library:

/I C++
namespace POA_PortableServer
{
class ServantActivator : public virtual ServantManager
{
public:
virtual ~ServantActivator();
virtual Servant incarnate(
const Objectld& POA_ptr poa) = 0;
virtual void etherealize(
const Objectld&, POA_ptr poa,
Servant, Boolean remaining_activations) = 0;
h

k

A ServantActivator servant manager might then look like:

Il C++
class MyFooServantActivator : public
POA_PortableServer::ServantActivator
{
public:
...
Servant incarnate(
const Objectld& oid, POA_ptr poa)

{

CORBA V2.3 Usage Scenarios June 1999 11-53

11

11-54

String_var s = PortbleServer::Objectld_to_string
(oid);
if (stremp(s, “myLittleFoo”) == 0) {
return new MyFooServant(poa, 27);
else {
throw CORBA::OBJECT_NOT_EXIST();

}
}

void etherealize(
const Objectld& oid,
POA_ptr poa,
Servant servant,
Boolean remaining_activations)

if (remaining_activations == 0)
delete servant;

k

11.6.7 Object Activation on Demand

The precondition for this scenario is the existence of a client with a reference for an
object with which no servant is associated at the time the client makes a request on the
reference. It is the responsibility of the ORB, in collaboration with the POA and the
server application to find or create an appropriate servant and perform the requested
operation on it. Such an object is said tarmarnated(or incarnation) when it has an

active servant. Note that the client had to obtain the reference in question previously
from some source. From the client’s perspective, the abstract object exists as long as it
holds a reference, until it receives @BJECT_NOT_EXIST system exception in a

reply from an attempted request on the object. Incarnation state does not imply
existence or non-existence of the abstract object.

Note —This specification does not address the issues of communication or server process
activation, as they are immaterial to the POA interface and operation. It is assumed that
the ORB activates the server if necessary, and can deliver the request to the appropriate
POA.

To support object activation on demand, the server application must register a servant
manager with the appropriate POA. Upon receiving the request, if the POA consults
the Active Object Map and discovers that there is no active servant associated with the
target Object Id, the POA invokes tiiearnate operation on the servant manager.

CORBA V2.3 June 1999

11

Note —An implication that this model has for GIOP is that the object key in the request
message must encapsulate the Object Id value. In addition, it may encapsulate other
values as necessitated by the ORB implementation. For example, the server must be abl
to determine to which POA the request should be directed. It could assign a different
communication endpoint to each POA so that the POA identity is implicit in the request,
or it could use a single endpoint for the entire server and encapsulate POA identities in
object key values. Note that this is not a concrete requirement; the object key may not
actually contain any of those values. Whatever the concrete information is, the ORB and
POA must be able to use it to find the servant manager, invoke activate if necessary
(which requires the actual Object Id value), and/or find the active servant in some map.

Theincarnate invocation passes the Object Id value to the servant manager. At this
point, the servant manager may take any action necessary to produce a servant that it
considers to be a valid incarnation of the object in question. The operation returns the
servant to the POA, which invokes the operation on it. iibarnate operation may
alternatively raise a®@BJECT_NOT_EXIST system exception that will be returned to

the invoking client. In this way, the user-supplied implementation is responsible for
determining object existence and non-existence.

After activation, the POA maintains the association of the servant and the Object Id in
the Active Object Map. (This example presumesRIETAIN and
USE_SERVANT_MANAGER policies.)

As an obvious example of transparent activation, the Object Id value could contain a
key for a record in a database that contains the object’s state. The servant manager
would retrieve the state from the database, construct a servant of the appropriate
implementation class (assuming an object-oriented programming language), initialize it
with the state from the database, and return it to the POA.

The example servant manager in the last section (“Servant Manager Definition and
Creation” on page 11-52) could be used for this scenario. Recall that the POA would
have theUSER_ID, USE_SERVANT_MANAGER, andRETAIN policies.

Given such a ServantActivator, all that remains is initialization code such as the
following.

PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld(“myLittleFo0");

CORBA::Object_var obj = poa->create_reference_with_id(
oid, “IDL:fo0:1.0");

MyFooServantActivator* foolM = new MyFooServantActivator;

ServantActivator_var IMref = foolM->_this();

poa->set_servant_manager(IMref);

poa->the POAmanager()->activate();

orb->run();

CORBA V2.3 Usage Scenarios June 1999 11-55

11

11.6.8 Persistent Objects with POA-assigned Ids

It is possible to access the Obiject Id value assigned to an object by the POA, with the
POA::reference_to _id operation. If the reference is for an object managed by the
POA that is the operation’s target, the operation will return the Object Id value,
whether it was assigned by the POA or the user. By doing this, an implementation may
provide a servant manager that associates the POA-allocated Object Id values with
persistently stored state. It may also pass the POA-allocated Object Id values to POA
operations such activate_object_with_id andcreate_reference_with_id

A POA with thePERSISTENT policy may be destroyed and later reinstantiated in the
same or a different process. A POA with both ®%STEM_ID andPERSISTENT

policies generates Object Id values that are unique across all instantiations of the same
POA.

11.6.9 Multiple Object Ids Mapping to a Single Servant

Each POA is created with a policy that indicates whether or not servants are allowed to
support multiple object identities simultaneously. If a POA allows multiple identities
per servant, the POA's treatment of the servants is affected in the following ways:
« Servants of the type may be explicitly activated multiple times with different
identity values without raising an exception.
« A servant cannot be mapped onto or converted to an individual object reference
using that POA, since the identity is potentially ambiguous.

11.6.10 One Servant for all Objects

By using theUSE_DEFAULT_SERVANT policy, the developer can create a POA

that will use a single servant to implement all of its objects. This approach is useful
when there is very little data associated with each object, so little that the data can be
encoded in the Object Id.

The following example illustrates this approach by using a single servant to incarnate
all CORBA objects that export a given interface in the context of a server. This
example presumes a POA that hasW8ER_ID, NON_RETAIN, and
USE_DEFAULT_SERVANT policies.

Two interfaces are defined in IDL. THeéleDescriptor interface is supported by

objects that will encapsulate access to operations in a file associated with a file system.
Global operations in a file system, such as the ones necessary to create
FileDescriptor objects, are supported by objects that exporFileSystem

interface.

// IDL
interface FileDescriptor {
typedef sequence<octet> DataBuffer;

long write (in DataBuffer buffer);
DataBuffer read (

11-56 CORBA V2.3 June 1999

11

in long num_bytes);
void destroy ();
h

interface FileSystem {

FileDescriptor open (
in string file_name,
in long flags);

k

Implementation of these two IDL interfaces may inherit from static skeleton classes
generated by an IDL to C++ compiler as follows:

Il C++
class FileDescriptorimpl : public POA_FileDescriptor
{
public:
FileDescriptorimpl(POA_ptr poa);
~FileDescriptorimpl();
POA_ptr _default_ POA();
CORBA::Long write(
const FileDescriptor::DataBuffer& buffer);
FileDescriptor::DataBuffer* read(
CORBA::Long num_bytes);
void destroy();
private:
POA_ptr my_poa,;

h
class FileSystemIimpl : public POA_FileSystem
{
public:
FileSystemImpl(POA_ptr poa);
~FileSystemImpl();
POA_ptr _default_ POA();
FileDescriptor_ptr open(
const char* file_name, CORBA::Long flags);
private:
POA_ptr my_poa,;
FileDescriptorimpl* fd_servant;
h

A single servant may be used to serve all requests issued-iteBiescriptor objects
created by &ileSystem object. The following fragment of code illustrates the steps
to perform when &ileSystem servant is created.

Il C++

FileSystemImpl::FileSystemImpl(POA_ptr poa)
: my_poa(POA::_duplicate(poa))

CORBA V2.3 Usage Scenarios June 1999 11-57

11

11-58

fd_servant = new FileDescriptorimpl(poa);
poa->set_servant(fd_servant);

k

The following fragment of code illustrates hd&ieDescriptor objects are created as

a result of invoking an operatioofden) exported by &ileSystem object. First, a

local file descriptor is created using the appropriate operating system call. Then a
CORBA object reference is created and returned to the client. The value of the local
file descriptor will be used to distinguish the nEBikeDescriptor object from other
FileDescriptor objects. Note that FileDescriptor objects in the example are transient,
since they use the value of their file descriptors for their Objectlds, and of course the file
descriptors are only valid for the life of a process.

Il C++
FileDescriptor_ptr
FileSystemImpl::open(
const char* file_name, CORBA::Long flags)
{
int fd = ::open(file_name, flags);
ostrstream ostr;
ostr << fd;
PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld(ostr.str());
Object_var obj = my_poa->create_reference_with_id(
oid.in(),"IDL:FileDescriptor:1.0");
return FileDescriptor::_narrow(obj);

k

Any request issued toRileDescriptor object is handled by the same servant. In the
context of a method invocation, the servant determines which particular object is being
incarnated by invoking an operation that returns a reference to the target object and,
after that, invokingPOA::reference_to_id . In C++, the operation used to obtain a
reference to the target object ithis() . Typically, theObjectld value associated

with the reference will be used to retrieve the state of the target object. However, in
this example, such a step is not required since the only thing that is needed is the value
for the local file descriptor and that value coincides withQbgctld value associated

with the reference.

Implementation of theead operation is rather simple. The servant determines which
object it is incarnating, obtains the local file descriptor matching its identity, performs
the appropriate operating system call, and returns the resubamaBuffer sequence.

/I C++
FileDescriptor::DataBuffer*
FileDescriptorimpl::read(CORBA::Long hum_bytes)
{
FileDescriptor_var me = _this();
PortableServer::Objectld_var oid =
my_poa->reference_to_id(me.in());
CORBA::String_var s =

CORBA V2.3 June 1999

11

PortableServer::Objectld_to_string(oid.in());
istrstream is(s);
int fd;
is >> fd;
CORBA::Octet* buffer = DataBuffer::alloc_buf(num_bytes);
int len = ::read(fd, buffer, num_bytes);
DataBuffer* result = new DataBuffer(len, len, buffer, 1);
return result;

h
Using a single servant per interface is useful in at least two situations.

« In one case, it may be appropriate for encapsulating access to legacy APIs that are
not object-oriented (system calls in the Unix environment, as we have shown in the
example).

¢ In another case, this technique is useful in handling scalability issues related to the
number of CORBA objects that can be associated with a server. In the example
above, there may be a millidgrileDescriptor objects in the same server and this
would only require one entry in the ORB. Although there are operating system
limitations in this respect (a Unix server is not able to open so many local file
descriptors) the important point to take into account is that usage of CORBA doesn't
introduce scalability problems but provides mechanisms to handle them.

11.6.11 Single Servant, Many Objects and Types, Using DSI

The ability to associate a single DSI servant with many CORBA objects is rather
powerful in some scenarios. It can be the basis for development of gateways to legacy
systems or software that mediates with external hardware, for example.

Usage of the DSl is illustrated in the following example. This example presumes a
POA that supports thdSER_ID, USE_DEFAULT_SERVANT andRETAIN
policies.

A single servant will be used to incarnate a huge number of CORBA objects, each of
them representing a separate entry in a Database. There may be several types of entrie
in the Database, representing different entity types in the Database model. Each type of
entry in the Database is associated with a separate interface which comprises
operations supported by the Database on entries of that type. All these interfaces
inherit from theDatabaseEntry interface. Finally, an object supporting the
DatabaseAgent interface supports basic operations in the database such as creating a
new entry, destroying an existing entry, etc.

/I IDL
interface DatabaseEntry {
readonly attribute string name;

I3

interface Employee : DatabaseEntry {
attribute long id;

CORBA V2.3 Usage Scenarios June 1999 11-59

11

11-60

attribute long salary;

h

interface DatabaseAgent {
DatabaseEntry create_entry (
in string key,
in CORBA::Identifier entry_type,
in NVPairSequence initial_attribute_values

);
void destroy_entry (
in string key);
¥

Implementation of th®atabaseEntry interface may inherit from the standard
dynamic skeleton class as follows:

Il C++
class DatabaseEntrylmpl :
public PortableServer::Dynamiclmplementation

{
public:
DatabaseEntrylmpl (DatabaseAccessPoint db);
virtual void invoke (ServerRequest_ptr request);
~DatabaseEntrylmpl ();
virtual POA_ptr _default_ POA()
{
return poa;
}
h

On the other hand, implementation of DatabaseAgent interface may inherit from
a static skeleton class generated by an IDL to C++ compiler as follows:

/I C++
class DatabaseAgentimpl :
public DatabaseAgentimplBase
{
protected:
DatabaseAccessPoint mydb;
DatabaseEntrylmpl * common_servant;
public:
DatabaseAgentimpl ();
virtual DatabaseEntry _ptr create_entry (
const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values

);

CORBA V2.3 June 1999

11

virtual void destroy_entry (const char * key);
~DatabaseAgentimpl ();

kh

A single servant may be used to serve all requests issuedDatabaseEntry

objects created by BatabaseAgent object. The following fragment of code

illustrates the steps to perform wheiDatabaseAgent servant is created. First,

access to the database is initialized. As a result, some kind of descriptor (a
DatabaseAccessPoint local object) used to operate on the database is obtained. Finally
a servant will be created and associated with the POA.

/I C++

void DatabaseAgentimpl::DatabaseAgentimpl ()

{
mydb = ..,;
common_servant = new DatabaseEntrylmpl(mydb);
poa->set_servant(common_servant);

kh

The code used to credDatabaseEntry objects representing entries in the database is
similar to the one used for creatiRfjeDescriptor objects in the example of the
previous section. In this case, a new entry is created in the database and the key
associated with that entry will be used to represent the identity for the corresponding
DatabaseEntry object. All requests issued toDmtabaseEntry object are handled

by the same servant because references to this type of object are associated with a
common POA created with tHéSE_DEFAULT _SERVANT policy.

/I C++

DatabaseEntry ptr DatabaseAgentimpl::create_entry (
const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values)

/I creates a new entry in the database:
mydb->new_entry (key, ...);

I creates a reference to the CORBA object used to

/I encapsulate access to the new entry in the database.

/I There is an interface for each entry type:

CORBA::Object_ptr obj = poa->create_reference_with_id(
string_to_Obijectld (key),
identifierToRepositoryld (entry_type),

);

DatabaseEntry ptr entry = DatabaseEntry::_narrow (obj);

CORBA::release (obj);
return entry;

CORBA V2.3 Usage Scenarios June 1999 11-61

11

11-62

Any request issued to@atabaseEntry object is handled by the same servant. In the
context of a method invocation, the servant determines which particular object it is
incarnating, obtains the database key matching its identity, invokes the appropriate
operation in the database and returns the result as an output parameter in the
ServerRequest object.

Sometimes, a program may need to determine the type of an entry in the database in
order to invoke operations on the entry. If that is the case, the servant may obtain the
type of an entry based on the interface supported biptht@baseEntry object
encapsulating access to that entry. This interface may be obtained by means of
invoking theget_interface operation exported by the reference to the

DatabaseEntry object.

Il C++
void DatabaseEntrylmpl::invoke (ServerRequest_ptr request)

{
CORBA::Object_ptr current_obj = _this ();

/I The servant determines the key associated with

/l the database entry represented by current_obj:

PortableServer::Objectld oid =
poa->reference_to_id (current_obj);

char * key = Objectld_to_string (oid);

/I The servant handles the incoming CORBA request. This
/I typically involves the following steps:

/I 1. mapping the CORBA request into a database request
I using the key obtained previously

/[2. constructing output parameters to the CORBA request
I from the response to the database request

k

Note that in this example, we may have a bill@atabaseEntry objects in a server
requiring only a single entry in map tables supported by the POA (that is, the ORB at
the server). No permanent storage is required for references to DatabaseEntry objects
at the server. Actually, references to DatabaseEntry objects will only occupy space:

e at clients, as long as those references are used; or

e at the server, only while a request is being served.

Scalability problems can be handled using this technique. There are many scenarios
where this scalability causes no penalty in terms of performance (basically, when there
is no need to restore the state of an object, each time a request to it is being served).

CORBA V2.3 June 1999

	The Portable Object Adaptor
	11.1 Overview
	11.2 Abstract Model Description
	11.2.1 Model Components
	11.2.2 Model Architecture
	11.2.3 POA Creation
	11.2.4 Reference Creation
	11.2.5 Object Activation States
	11.2.6 Request Processing
	11.2.7 Implicit Activation
	11.2.8 Multi-threading
	11.2.8.1 POA Threading Models
	11.2.8.2 Using the Single Thread Model
	11.2.8.3 Using the ORB Controlled Model
	11.2.8.4 Limitations When Using Multiple Threads

	11.2.9 Dynamic Skeleton Interface
	11.2.10 Location Transparency

	11.3 Interfaces
	11.3.1 The Servant IDL Type
	11.3.2 POAManager Interface
	11.3.2.1 Processing States
	11.3.2.2 Locality Constraints
	11.3.2.3 activate
	11.3.2.4 hold_requests
	11.3.2.5 discard_requests
	11.3.2.6 deactivate
	11.3.2.7 get_state

	11.3.3 AdapterActivator Interface
	11.3.3.1 Locality Constraints
	11.3.3.2 unknown_adapter

	11.3.4 ServantManager Interface
	11.3.4.1 Common information for servant manager types
	11.3.4.2 Locality Constraints

	11.3.5 ServantActivator Interface
	11.3.5.1 incarnate
	11.3.5.2 etherealize

	11.3.6 ServantLocator Interface
	11.3.6.1 preinvoke
	11.3.6.2 postinvoke

	11.3.7 POA Policy Objects
	11.3.7.1 Thread Policy
	11.3.7.2 Lifespan Policy
	11.3.7.3 Object Id Uniqueness Policy
	11.3.7.4 Id Assignment Policy
	11.3.7.5 Servant Retention Policy
	11.3.7.6 Request Processing Policy
	11.3.7.7 Implicit Activation Policy

	11.3.8 POA Interface
	11.3.8.1 Locality Constraints
	11.3.8.2 create_POA
	11.3.8.3 find_POA
	11.3.8.4 destroy
	11.3.8.5 Policy Creation Operations
	11.3.8.6 the_name
	11.3.8.7 the_parent
	11.3.8.8 the_children
	11.3.8.9 the_POAManager
	11.3.8.10 the_activator
	11.3.8.11 get_servant_manager
	11.3.8.12 set_servant_manager
	11.3.8.13 get_servant
	11.3.8.14 set_servant
	11.3.8.15 activate_object
	11.3.8.16 activate_object_with_id
	11.3.8.17 deactivate_object
	11.3.8.18 create_reference
	11.3.8.19 create_reference_with_id
	11.3.8.20 servant_to_id
	11.3.8.21 servant_to_reference
	11.3.8.22 reference_to_servant
	11.3.8.23 reference_to_id
	11.3.8.24 id_to_servant
	11.3.8.25 id_to_reference

	11.3.9 Current operations
	11.3.9.1 get_POA
	11.3.9.2 get_object_id

	11.4 IDL for PortableServer module
	11.5 UML Description of PortableServer
	11.6 Usage Scenarios
	11.6.1 Getting the root POA
	11.6.2 Creating a POA
	11.6.3 Explicit Activation with POA-assigned Object Ids
	11.6.4 Explicit Activation with User-assigned Object Ids
	11.6.5 Creating References before Activation
	11.6.6 Servant Manager Definition and Creation
	11.6.7 Object Activation on Demand
	11.6.8 Persistent Objects with POA-assigned Ids
	11.6.9 Multiple Object Ids Mapping to a Single Servant
	11.6.10 One Servant for all Objects
	11.6.11 Single Servant, Many Objects and Types, Using DSI

