
 The Portable Object Adaptor 11
s from

n
by a

een
The Portable Object Adaptor chapter has been updated based on CORE change
ptc/98-09-04.

This chapter describes the Portable Object Adapter, or POA. It presents the desig
goals, a description of the abstract model of the POA and its interfaces, followed
detailed description of the interfaces themselves.

Contents

This chapter contains the following sections.

11.1 Overview

 The POA is designed to meet the following goals:

• Allow programmers to construct object implementations that are portable betw
different ORB products.

Section Title Page

“Overview” 11-1

“Abstract Model Description” 11-2

“Interfaces” 11-13

“IDL for PortableServer module” 11-41

“UML Description of PortableServer” 11-48

“Usage Scenarios” 11-49
 CORBA V2.3 June 1999 11-1

11

 is
e

s.

or.
 the
e
e
, and

cts,
been
n.

ts

ional
pts

nded

re
ome of
e
g
• Provide support for objects with persistent identities. More precisely, the POA
designed to allow programmers to build object implementations that can provid
consistent service for objects whose lifetimes (from the perspective of a client
holding a reference for such an object) span multiple server lifetimes.

• Provide support for transparent activation of objects.

• Allow a single servant to support multiple object identities simultaneously.

• Allow multiple distinct instances of the POA to exist in a server.

• Provide support for transient objects with minimal programming effort and
overhead.

• Provide support for implicit activation of servants with POA-allocated Object Id

• Allow object implementations to be maximally responsible for an object’s behavi
Specifically, an implementation can control an object’s behavior by establishing
datum that defines an object’s identity, determining the relationship between th
object’s identity and the object’s state, managing the storage and retrieval of th
object’s state, providing the code that will be executed in response to requests
determining whether or not the object exists at any point in time.

• Avoid requiring the ORB to maintain persistent state describing individual obje
their identities, where their state is stored, whether certain identity values have
previously used or not, whether an object has ceased to exist or not, and so o

• Provide an extensible mechanism for associating policy information with objec
implemented in the POA.

• Allow programmers to construct object implementations that inherit from static
skeleton classes, generated by OMG IDL compilers, or a DSI implementation.

11.2 Abstract Model Description

The POA interfaces described in this chapter imply a particular abstract computat
model. This section presents that model and defines terminology and basic conce
that will be used in subsequent sections.

This section provides the rationale for the POA design, describes some of its inte
uses, and provides a background for understanding the interface descriptions.

11.2.1 Model Components

The model supported by the POA is a specialization of the general object model
described in the OMA guide. Most of the elements of the CORBA object model a
present in the model described here, but there are some new components, and s
the names of existing components are defined more precisely than they are in th
CORBA object model. The abstract model supported by the POA has the followin
components:

• Client—A client is a computational context that makes requests on an object
through one of its references.
11-2 CORBA V2.3 June 1999

11

at is
 both

 an
d in
tity,
ce.

f a
 ORB

ject’s
eted

lied

naged
 by
as

d by

al

gh

BA

ore
le, it
e

lly
he
ct

t the
cter
• Server—A server is a computational context in which the implementation of an
object exists. Generally, a server corresponds to a process. Note that client and
server are roles that programs play with respect to a given object. A program th
a client for one object may be the server for another. The same process may be
client and server for a single object.

• Object—In this discussion, we use object to indicate a CORBA object in the
abstract sense, that is, a programming entity with an identity, an interface, and
implementation. From a client’s perspective, the object’s identity is encapsulate
the object’s reference. This specification defines the server’s view of object iden
which is explicitly managed by object implementations through the POA interfa

• Servant—A servant is a programming language object or entity that implements
requests on one or more objects. Servants generally exist within the context o
server process. Requests made on an object’s references are mediated by the
and transformed into invocations on a particular servant. In the course of an ob
lifetime it may be associated with (that is, requests on its references will be targ
at) multiple servants.

• Object Id—An Object Id is a value that is used by the POA and by the user-supp
implementation to identify a particular abstract CORBA object. Object Id values
may be assigned and managed by the POA, or they may be assigned and ma
by the implementation. Object Id values are hidden from clients, encapsulated
references. Object Ids have no standard form; they are managed by the POA
uninterpreted octet sequences.

Note that the Object Id defined in this specification is a mechanical device use
an object implementation to correlate incoming requests with references it has
previously created and exposed to clients. It does not constitute a unique logic
identity for an object in any larger sense. The assignment and interpretation of
Object Id values is primarily the responsibility of the application developer, althou
the SYSTEM_ID policy enables the POA to generate Object Id values for the
application.

• Object Reference—An object reference in this model is the same as in the COR
object model. This model implies, however, that a reference specifically
encapsulates an Object Id and a POA identity.

Note that a concrete reference in a specific ORB implementation will contain m
information, such as the location of the server and POA in question. For examp
might contain the full name of the POA (the names of all POAs starting from th
root and ending with the specific POA). The reference might not, in fact, actua
contain the Object Id, but instead contain more compact values managed by t
ORB which can be mapped to the Object Id. This is a description of the abstra
information model implied by the POA. Whatever encoding is used to represen
POA name and the Object Id must not restrict the ability to use any legal chara
in a POA name or any legal octet in an Object Id.
CORBA V2.3 Abstract Model Description June 1999 11-3

11

ild)

jects

to

a
ions
ts

tate
cause
n also

r
rs to
re
bject

s or

e

er

ist.

 and
to
ed
ore
ests.

By
n
veral
• POA—A POA is an identifiable entity within the context of a server. Each POA
provides a namespace for Object Ids and a namespace for other (nested or ch
POAs. Policies associated with a POA describe characteristics of the objects
implemented in that POA. Nested POAs form a hierarchical name space for ob
within a server.

• Policy—A Policy is an object associated with a POA by an application in order
specify a characteristic shared by the objects implemented in that POA. This
specification defines policies controlling the POA’s threading model as well as
variety of other options related to the management of objects. Other specificat
may define other policies that affect how an ORB processes requests on objec
implemented in the POA.

• POA Manager—A POA manager is an object that encapsulates the processing s
of one or more POAs. Using operations on a POA manager, the developer can
requests for the associated POAs to be queued or discarded. The developer ca
use the POA manager to deactivate the POAs.

• Servant Manager—A servant manager is an object that the application develope
can associate with a POA. The ORB will invoke operations on servant manage
activate servants on demand, and to deactivate servants. Servant managers a
responsible for managing the association of an object (as characterized by its O
Id value) with a particular servant, and for determining whether an object exist
not. There are two kinds of servant managers, called ServantActivator and
ServantLocator ; the type used in a particular situation depends on policies in th
POA.

• Adapter Activator—An adapter activator is an object that the application develop
can associate with a POA. The ORB will invoke an operation on an adapter
activator when a request is received for a child POA that does not currently ex
The adapter activator can then create the required POA on demand.

11.2.2 Model Architecture

This section describes the architecture of the abstract model implied by the POA,
the interactions between various components. The ORB is an abstraction visible
both the client and server. The POA is an object visible to the server. User-suppli
implementations are registered with the POA (this statement is a simplification; m
detail is provided below). Clients hold references upon which they can make requ
The ORB, POA, and implementation all cooperate to determine which servant the
operation should be invoked on, and to perform the invocation.

Figure 11-1 shows the detail of the relationship between the POA and the
implementation. Ultimately, a POA deals with an Object Id and an active servant.
active servant, we mean a programming object that exists in memory and has bee
presented to the POA with one or more associated object identities. There are se
ways for this association to be made.
11-4 CORBA V2.3 June 1999

11

tive

r an
nt to
m the

e one

try
rs to

a
Figure 11-1 Abstract POA Model

If the POA supports the RETAIN policy, it maintains a map, labeled Active Object Map,
that associates Object Ids with active servants, each association constituting an ac
object. If the POA has the USE_DEFAULT_SERVANT policy, a default servant may
be registered with the POA. Alternatively, if the POA has the
USE_SERVANT_MANAGER policy, a user-written servant manager may be
registered with the POA. If the Active Object Map is not used, or a request arrives fo
object not present in the Active Object Map, the POA either uses the default serva
perform the request or it invokes the servant manager to obtain a servant to perfor
request. If the RETAIN policy is used, the servant returned by a servant manager is
retained in the Active Object Map. Otherwise, the servant is used only to process th
request.

In this specification, the term active is applied equally to servants, Object Ids, and
objects. An object is active in a POA if the POA’s Active Object Map contains an en
that associates an Object Id with an existing servant. When this specification refe
active Object Ids and active servants, it means that the Object Id value or servant in
question is part of an entry in the Active Object Map. An Object Id can appear in
POA's Active Object Map only once.

Client Server

Object Reference

User-supplied
servants

POA

POA

?

ORB

Object Id
CORBA V2.3 Abstract Model Description June 1999 11-5

11

 a

itial
root
.
Figure 11-2 POA Architecture

11.2.3 POA Creation

To implement an object using the POA requires that the server application obtain
POA object. A distinguished POA object, called the root POA, is managed by the ORB
and provided to the application using the ORB initialization interface under the in
object name “RootPOA.” The application developer can create objects using the
POA if those default policies are suitable. The root POA has the following policies

• Thread Policy: ORB_CTRL_MODEL
• Lifespan Policy: TRANSIENT
• Object Id Uniqueness Policy: UNIQUE_ID
• Id Assignment Policy: SYSTEM_ID
• Servant Retention Policy: RETAIN
• Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY
• Implicit Activation Policy: IMPLICIT_ACTIVATION

default servant

 servant mgr.

Object Id

Object Id
Object Id
Object Id

POA A

POA B

POA C

User-supplied
servant

User-supplied
ServantManager.

User-supplied
servant

User-supplied
servant

Object Id

Object Id
Object Id

Object Id

User-supplied
servant

User-supplied
servant

User-supplied
servant

User-supplied
servant

Active Object Map

A
d
a
p
t
e
r

A
c
t
i
v
a
t
o
r

root
POA

User-supplied
servant

Object Id

Object reference
Servant pointer

P
O
A
M
a
n
a
g
e
r

AdapterActivator.
11-6 CORBA V2.3 June 1999

11

ation
rent
OA to
e

nique

 ORB.
iate
A

ts,

 POA

 POA
ility

A
f the

ported

and
as

e
into

ject
The developer can also create new POAs. Creating a new POA allows the applic
developer to declare specific policy choices for the new POA and to provide a diffe
adapter activator and servant manager (these are callback objects used by the P
activate objects and nested POAs on demand). Creating new POAs also allows th
application developer to partition the name space of objects, as Object Ids are
interpreted relative to a POA. Finally, by creating new POAs, the developer can
independently control request processing for multiple sets of objects.

A POA is created as a child of an existing POA using the create_POA operation on
the parent POA. When a POA is created, the POA is given a name that must be u
with respect to all other POAs with the same parent.

POA objects are not persistent. No POA state can be assumed to be saved by the
It is the responsibility of the server application to create and initialize the appropr
POA objects during server initialization or to set an AdapterActivater to create PO
objects needed later.

Creating the appropriate POA objects is particularly important for persistent objec
objects whose existence can span multiple server lifetimes. To support an object
reference created in a previous server process, the application must recreate the
that created the object reference as well as all of its ancestor POAs. To ensure
portability, each POA must be created with the same name as the corresponding
in the original server process and with the same policies. (It is the user’s responsib
to create the POA with these conditions.)

A portable server application can presume that there is no conflict between its PO
names and the POA names chosen by other applications. It is the responsibility o
ORB implementation to provide a way to support this behavior.

11.2.4 Reference Creation

Object references are created in servers. Once they are created, they may be ex
to clients.

From this model’s perspective, object references encapsulate object identity
information and information required by the ORB to identify and locate the server
POA with which the object is associated (that is, in whose scope the reference w
created.) References are created in the following ways:

• The server application may directly create a reference with the create_reference
and create_reference_with_id operations on a POA object. These operations
collect the necessary information to constitute the reference, either from
information associated with the POA or as parameters to the operation. Thes
operations only create a reference. In doing so, they bring the abstract object
existence, but do not associate it with an active servant.

• The server application may explicitly activate a servant, associating it with an ob
identity using the activate_object or activate_object_with_id operations. Once
a servant is activated, the server application can map the servant to its
corresponding reference using the servant_to_reference or id_to_reference
operations.
CORBA V2.3 Abstract Model Description June 1999 11-7

11

ce
rated
 may

nce

ariety
n be

n.

tity of
ses

ect.

bate

nd

e.

e

red

g the
his

tly
 a
• The server application may cause a servant to implicitly activate itself. This
behavior can only occur if the POA has been created with the
IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object referen
corresponding to an inactive servant, the POA may automatically assign a gene
unique Object Id to the servant and activate the resulting object. The reference
be obtained by invoking POA::servant_to_reference with an inactive servant, or
by performing an explicit or implicit type conversion from the servant to a refere
type in programming language mappings that permit this conversion.

Once a reference is created in the server, it can be made available to clients in a v
of ways. It can be advertised through the OMG Naming and Trading Services. It ca
converted to a string via ORB::object_to_string and published in some way that
allows the client to discover the string and convert it to a reference using
ORB::string_to_object . It can be returned as the result of an operation invocatio

Once a reference becomes available to a client, that reference constitutes the iden
the object from the client’s perspective. As long as the client program holds and u
that reference, requests made on the reference should be sent to the “same” obj

Note – The meaning of object identity and “sameness” is at present the subject of de
in the OMG. This specification does not attempt to resolve that debate in any way,
particularly by defining a concrete notion of identity that is exposed to clients, beyo
the existing notions of identity described in the CORBA specifications and the OMA
guide.

The states of servers and implementation objects are opaque to clients. This
specification deals primarily with the view of the ORB from the server’s perspectiv

11.2.5 Object Activation States

At any point in time, a CORBA object may or may not be associated with an activ
servant.

If the POA has the RETAIN policy, the servant and its associated Object Id are ente
into the Active Object Map of the appropriate POA. This type of activation can be
accomplished in one of the following ways.

• The server application itself explicitly activates individual objects (via the
activate_object or activate_object_with_id operations).

• The server application instructs the POA to activate objects on demand by havin
POA invoke a user-supplied servant manager. The server application registers t
servant manager with set_servant_manager .

• Under some circumstances (when the IMPLICIT_ACTIVATION policy is also in
effect and the language binding allows such an operation), the POA may implici
activate an object when the server application attempts to obtain a reference for
servant that is not already active (that is, not associated with an Object Id).
11-8 CORBA V2.3 June 1999

11

t with

 a
int of

 not

s the
sues
eded)

ty to
 user-
hen

. The
hat

t
rvant

n the

tly

If the USE_DEFAULT_SERVANT policy is also in effect, the server application
instructs the POA to activate unknown objects by having the POA invoke a single
servant no matter what the Object Id is. The server application registers this servan
set_servant .

If the POA has the NON_RETAIN policy, for every request, the POA may use either
default servant or a servant manager to locate an active servant. From the POA’s po
view, the servant is active only for the duration of that one request. The POA does
enter the servant-object association into the Active Object Map.

11.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well a
identification of the POA that created the target object reference. When a client is
a request, the ORB first locates an appropriate server (perhaps starting one if ne
and then it locates the appropriate POA within that server.

If the POA does not exist in the server process, the application has the opportuni
re-create the required POA by using an adapter activator. An adapter activator is a
implemented object that can be associated with a POA. It is invoked by the ORB w
a request is received for a non-existent child POA. The adapter activator has the
opportunity to create the required POA. If it does not, the client receives the
OBJECT_NOT_EXIST exception.

Once the ORB has located the appropriate POA, it delivers the request to that POA
further processing of that request depends both upon the policies associated with t
POA as well as the object's current state of activation.

If the POA has the RETAIN policy, the POA looks in the Active Object Map to find ou
if there is a servant associated with the Object Id value from the request. If such a se
exists, the POA invokes the appropriate method on the servant.

If the POA has the NON_RETAIN policy or has the RETAIN policy but didn't find a
servant in the Active Object Map, the POA takes the following actions:

• If the POA has the USE_DEFAULT_SERVANT policy, a default servant has been
associated with the POA so the POA will invoke the appropriate method on that
servant. If no servant has been associated with the POA, the POA raises the
OBJ_ADAPTER system exception.

• If the POA has the USE_SERVANT_MANAGER policy, a servant manager has
been associated with the POA so the POA will invoke incarnate or preinvoke on it
to find a servant that may handle the request. (The choice of method depends o
NON_RETAIN or RETAIN policy of the POA.) If no servant manager has been
associated with the POA, the POA raises the OBJ_ADAPTER system exception.

• If the USE_OBJECT_MAP_ONLY policy is in effect, the POA raises the
OBJECT_NOT_EXIST system exception.

If a servant manager is located and invoked, but the servant manager is not direc
capable of incarnating the object, it (the servant manager) may deal with the
circumstance in a variety of ways, all of which are the application’s responsibility.
CORBA V2.3 Abstract Model Description June 1999 11-9

11

t in
le of
he

ly

ay

ct Id
ject
he

nd

rns

 an

o an

 is

tions

ad, it

r
t
 (for
Any system exception raised by the servant manager will be returned to the clien
the reply. In addition to standard CORBA exceptions, a servant manager is capab
raising a ForwardRequest exception. This exception includes an object reference. T
ORB will process this exception as stated below.

11.2.7 Implicit Activation

A POA can be created with a policy that indicates that its objects may be implicit
activated. This policy, IMPLICIT_ACTIVATION , also requires the SYSTEM_ID and
RETAIN policies. When a POA supports implicit activation, an inactive servant m
be implicitly activated in that POA by certain operations that logically require an
Object Id to be assigned to that servant. Implicit activation of an object involves
allocating a system-generated Object Id and registering the servant with that Obje
in the Active Object Map. The interface associated with the implicitly activated ob
is determined from the servant (using static information from the skeleton, or, in t
case of a dynamic servant, using the _primary_interface() operation).

The operations that support implicit activation include:

• The POA::servant_to_reference operation, which takes a servant parameter a
returns a reference.

• The POA::servant_to_id operation, which takes a servant parameter and retu
an Object Id.

• Operations supported by a language mapping to obtain an object reference or
Object Id for a servant. For example, the _this() servant member function in
C++ returns an object reference for the servant.

• Implicit conversions supported by a language mapping that convert a servant t
object reference or an Object Id.

The last two categories of operations are language-mapping-dependent.

If the POA has the UNIQUE_ID policy, then implicit activation will occur when any of
these operations are performed on a servant that is not currently active (that is, it
associated with no Object Id in the POA's Active Object Map).

If the POA has the MULTIPLE_ID policy, the servant_to_reference and
servant_to_id operations will always perform implicit activation, even if the servant
is already associated with an Object Id. The behavior of language mapping opera
in the MULTIPLE_ID case is specified by the language mapping. For example, in
C++, the _this() servant member function will not implicitly activate a
MULTIPLE_ID servant if the invocation of _this() is immediately within the
dynamic context of a request invocation directed by the POA to that servant; inste
returns the object reference used to issue the request.

Note – The exact timing of implicit activation is ORB implementation-dependent. Fo
example, instead of activating the object immediately upon creation of a local objec
reference, the ORB could defer the activation until the Object Id is actually needed
example, when the object reference is exported outside the process).
11-10 CORBA V2.3 June 1999

11

is
rtable
used

n a

ovide

:

 two

d by

ged

ded
vant
t is

per
RB.

on of
11.2.8 Multi-threading

The POA does not require the use of threads and does not specify what support
needed from a threads package. However, in order to allow the development of po
servers that utilize threads, the behavior of the POA and related interfaces when
within a multiple-thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used i
threaded environment, nor does it require that an ORB must utilize threads in the
processing of requests. The only requirement given here is that if an ORB does pr
support for multi-threading, these are the behaviors that will be supported by that
ORB. This allows a programmer to take advantage of multiple ORBs that support
threads in a portable manner across those ORBs.

The POA’s processing is affected by the thread-related calls available in the ORB
work_pending , perform_work , run , and shutdown .

11.2.8.1 POA Threading Models

The POA supports two models of threading when used in conjunction with multi-
threaded ORB implementations; ORB controlled and single thread behavior. The
models can be used together or independently. Either model can be used in
environments where a single-threaded ORB is used.

The threading model associated with a POA is indicated when the POA is create
including a ThreadPolicy object in the policies parameter of the POA’s
create_POA operation. Once a POA is created with one model, it cannot be chan
to the other. All uses of the POA within the server must conform to that threading
model associated with the POA.

11.2.8.2 Using the Single Thread Model

Requests for a single-threaded POA are processed sequentially. In a multi-threa
environment, all upcalls made by this POA to implementation code (servants, ser
managers, and adapter activators) are made in a manner that is safe for code tha
multi-thread-unaware.

11.2.8.3 Using the ORB Controlled Model

The ORB controlled model of threading is used in environments where the develo
wants the ORB/POA to control the use of threads in the manner provided by the O
This model can also be used in environments that do not support threads.

In this model, the ORB is responsible for the creation, management, and destructi
threads used with one or more POAs.
CORBA V2.3 Abstract Model Description June 1999 11-11

11

mmer
he

le
code

pe-
nt the

rface
nt.
me

iding

g

rted

 able
SI

ts to

11.2.8.4 Limitations When Using Multiple Threads

There are no guarantees that the ORB and POA will do anything specific about
dispatching requests across threads with a single POA. Therefore, a server progra
who wants to use one or more POAs within multiple threads must take on all of t
serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multip
threads at the same time. The programmer must be aware of this possibility and
with it in mind.

11.2.9 Dynamic Skeleton Interface

The POA is designed to enable programmers to connect servants to:

• type-specific skeletons, typically generated by OMG IDL compilers, or

• dynamic skeletons.

Servants that are members of type-specific skeleton classes are referred to as ty
specific servants. Servants connected to dynamic skeletons are used to impleme
Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarnated by a DSI servant or a type-specific
servant is transparent to its clients. Two CORBA objects supporting the same inte
may be incarnated, one by a DSI servant and the other with a type-specific serva
Furthermore, a CORBA object may be incarnated by a DSI servant only during so
period of time, while the rest of the time is incarnated by a static servant.

The mapping for POA DSI servants is language-specific, with each language prov
a set of interfaces to the POA. These interfaces are used only by the POA. The
interfaces required are the following.

• Take a CORBA::ServerRequest object from the POA and perform the processin
necessary to execute the request.

• Return the Interface Repository Id identifying the most-derived interface suppo
by the target CORBA object in a request.

The reason for the first interface is the entire reason for existence of the DSI: to be
to handle any request in the way the programmer wishes to handle it. A single D
servant may be used to incarnate several CORBA objects, potentially supporting
different interfaces.

The reason for the second interface can be understood by comparing DSI servan
type-specific servants.

A type-specific servant may incarnate several CORBA objects but all of them will
support the same IDL interface as the most-derived IDL interface. In C++, for
example, an IDL interface Window in module GraphicalSystem will generate a
type-specific skeleton class called Window in namespace POA_GraphicalSystem .
A type-specific servant which is directly derived from the
11-12 CORBA V2.3 June 1999

11

the

, the
get
 the

pe-
I

.

mote.
y

e
tion,

the
e
l

ire
ent in

ation
not
POA_GraphicalSystem::Window skeleton class may incarnate several CORBA
objects at a time, but all those CORBA objects will support the
GraphicalSystem::Window interface as the most-derived interface.

A DSI servant may incarnate several CORBA objects, not necessarily supporting
same IDL interface as the most-derived IDL interface.

In both cases (type-specific and DSI) the POA may need to determine, at runtime
Interface Repository Id identifying the most-derived interface supported by the tar
CORBA object in a request. The POA should be able to determine this by asking
servant that is going to serve the CORBA object.

In the case of type-specific servants, the POA obtains that information from the ty
specific skeleton class from which the servant is directly derived. In the case of DS
servants, the POA obtains that information by using the second language-specific
interface above.

11.2.10 Location Transparency

The POA supports location transparency for objects implemented using the POA
Unless explicitly stated to the contrary, all POA behavior described in this
specification applies regardless of whether the client is local (same process) or re
For example, like a request from a remote client, a request from a local client ma
cause object activation if the object is not active, block indefinitely if the target
object's POA is in the holding state, be rejected if the target object's POA is in th
discarding or inactive states, be delivered to a thread-unaware object implementa
or be delivered to a different object if the target object's servant manager raises
ForwardRequest exception. The Object Id and POA of the target object will also b
available to the server via the Current object, regardless of whether the client is loca
or remote.

Note – The implication of these requirements on the ORB implementation is to requ
the ORB to mediate all requests to POA-based objects, even if the client is co-resid
the same process. This specification is not intended to change CORBAServices
specifications that allow for behaviors that are not location transparent. This specific
does not prohibit (nonstandard) POA extensions to support object behavior that is
location-transparent.

11.3 Interfaces

The POA-related interfaces are defined in a module separate from the CORBA
module, the PortableServer module. It consists of these interfaces:

• POA
• POAManager
• ServantManager
• ServantActivator
• ServantLocator
CORBA V2.3 Interfaces June 1999 11-13

11

s.

 by
 Some

an
used

y the

d
lt

d

ess
• AdapterActivator
• ThreadPolicy
• LifespanPolicy
• IdUniquenessPolicy
• IdAssignmentPolicy
• ImplicitActivationPolicy
• ServantRetentionPolicy
• RequestProcessingPolicy
• Current

In addition, the POA defines the Servant native type.

11.3.1 The Servant IDL Type

This specification defines a native type PortableServer::Servant . Values of the type
Servant are programming-language-specific implementations of CORBA interface
Each language mapping must specify how Servant is mapped to the programming
language data type that corresponds to an object implementation. The Servant type
has the following characteristics and constraints.

• Values of type Servant are opaque from the perspective of CORBA application
programmers. There are no operations that can be performed directly on them
user programs. They can be passed as parameters to certain POA operations.
language mappings may allow Servant values to be implicitly converted to object
references under appropriate conditions.

• Values of type Servant support a language-specific programming interface that c
be used by the ORB to obtain a default POA for that servant. This interface is
only to support implicit activation. A language mapping may provide a default
implementation of this interface that returns the root POA of a default ORB.

• Values of type Servant provide default implementations of the standard object
reference operations get_interface , is_a , and non_existent . These operations
can be overridden by the programmer to provide additional behavior needed b
object implementation. The default implementations of get_interface and is_a
operations use the most derived interface of a static servant or the most derive
interface retrieved from a dynamic servant to perform the operation. The defau
implementation of the non_existent operation returns FALSE . These operations
are invoked by the POA just like any other operation invocation, so the
PortableServer::Current interface and any language-mapping-provided metho
of accessing the invocation context are available.

• Values of type Servant must be testable for identity.

• Values of type Servant have no meaning outside of the process context or addr
space in which they are generated.
11-14 CORBA V2.3 June 1999

11

essing
n
an

ager
is

As
16
of

state
ge

ion
11.3.2 POAManager Interface

Each POA object has an associated POAManager object. A POA manager may be
associated with one or more POA objects. A POA manager encapsulates the proc
state of the POAs it is associated with. Using operations on the POA manager, a
application can cause requests for those POAs to be queued or discarded, and c
cause the POAs to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit POA man
object is provided at POA creation time, a POA manager is created when a POA
created and is automatically associated with that POA. A POA manager object is
implicitly destroyed when all of its associated POAs have been destroyed.

11.3.2.1 Processing States

A POA manager has four possible processing states; active, inactive, holding, and
discarding. The processing state determines the capabilities of the associated PO
and the disposition of requests received by those POAs. Figure 11-3 on page 11-
illustrates the processing states and the transitions between them. For simplicity
presentation, this specification sometimes describes these states as POA states,
referring to the POA or POAs that have been associated with a particular POA
manager. A POA manager is created in the holding state. The root POA is therefore
initially in the holding state.

For simplicity in the figure and the explanation, operations that would not cause a
change are not shown. For example, if a POA is in “active” state, it does not chan
state due to an activate operation. Such operations complete successfully with no
special notice.

The only exception is the inactive state: a “deactivate” operation raises an except
just the same as every other attempted state change operation.
CORBA V2.3 Interfaces June 1999 11-15

11

rt
Note
 the

eived

he

l
arded,
that
 for
Figure 11-3 Processing States

Active State

When a POA manager is in the active state, the associated POAs will receive and sta
processing requests (assuming that appropriate thread resources are available).
that even in the active state, a POA may need to queue requests depending upon
ORB implementation and resource limits. The number of requests that can be rec
and/or queued is an implementation limit. If this limit is reached, the POA should
return a TRANSIENT system exception to indicate that the client should re-issue t
request.

A user program can legally transition a POA manager from the active state to either the
discarding, holding, or inactive state by calling the discard_requests ,
hold_requests , or deactivate operations, respectively. The POA enters the active
state through the use of the activate operation when in the discarding or holding state.

Discarding State

When a POA manager is in the discarding state, the associated POAs will discard al
incoming requests (whose processing has not yet begun). When a request is disc
the TRANSIENT system exception must be returned to the client-side to indicate
the request should be re-issued. (Of course, an ORB may always reject a request
other reasons and raise some other system exception.)
11-16 CORBA V2.3 June 1999

11

re the

eing
ager
ed.

g
If this

urse,
m

d
ation

e the
 in

sm
to
ld

uire
s
In addition, when a POA manager is in the discarding state, the adapter activators
registered with the associated POAs will not get called. Instead, requests that requi
invocation of an adapter activator will be discarded, as described in the previous
paragraph.

The primary purpose of the discarding state is to provide an application with flow-
control capabilities when it determines that an object's implementation or POA is b
flooded with requests. It is expected that the application will restore the POA man
to the active state after correcting the problem that caused flow-control to be need

A POA manager can legally transition from the discarding state to either the active,
holding, or inactive state by calling the activate , hold_requests , or deactivate
operations, respectively. The POA enters the discarding state through the use of the
discard_requests operation when in the active or holding state.

Holding State

When a POA manager is in the holding state, the associated POAs will queue incomin
requests. The number of requests that can be queued is an implementation limit.
limit is reached, the POAs may discard requests and return the TRANSIENT system
exception to the client to indicate that the client should reissue the request. (Of co
an ORB may always reject a request for other reasons and raise some other syste
exception.)

In addition, when a POA manager is in the holding state, the adapter activators registere
with the associated POAs will not get called. Instead, requests that require the invoc
of an adapter activator will be queued, as described in the previous paragraph.

A POA manager can legally transition from the holding state to either the active,
discarding, or inactive state by calling the activate , discard_requests , or
deactivate operations, respectively. The POA enters the holding state through the use
of the hold_requests operation when in the active or discarding state. A POA
manager is created in the holding state.

Inactive State

The inactive state is entered when the associated POAs are to be shut down. Unlik
discarding state, the inactive state is not a temporary state. When a POA manager is
the inactive state, the associated POAs will reject new requests. The rejection
mechanism used is specific to the vendor. The GIOP location forwarding mechani
and CloseConnection message are examples of mechanisms that could be used
indicate the rejection. If the client is co-resident in the same process, the ORB cou
raise the OBJ_ADAPTER exception to indicate that the object implementation is
unavailable.

In addition, when a POA manager is in the inactive state, the adapter activators
registered with the associated POAs will not get called. Instead, requests that req
the invocation of an adapter activator will be rejected, as described in the previou
paragraph.

The inactive state is entered using the deactivate operation. It is legal to enter the
inactive state from either the active, holding, or discarding states.
CORBA V2.3 Interfaces June 1999 11-17

11

 (if

ject.
be

with
ill

s.
 to be

OA,
 any

ted
ged to

A the
If the transition into the inactive state is a result of calling deactivate with an
etherealize_objects parameter of

• TRUE - the associated POAs will call etherealize for each active object associated
with the POA once all currently executing requests have completed processing
the POAs have the RETAIN and USE_SERVANT_MANAGER policies). If a
servant manager has been registered for the POA, the POA will get rid of the ob
If there are any queued requests that have not yet started executing, they will
treated as if they were new requests and rejected.

• FALSE - No deactivations or etherealizations will be attempted.

11.3.2.2 Locality Constraints

A POAManager object must not be exported to other processes, or externalized
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. An attempt to use a POAManager object with
the DII may raise the NO_IMPLEMENT exception.

11.3.2.3 activate

void activate()
raises (AdapterInactive);

This operation changes the state of the POA manager to active. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised.
Entering the active state enables the associated POAs to process requests.

11.3.2.4 hold_requests

void hold_requests(in boolean wait_for_completion)
raises(AdapterInactive);

This operation changes the state of the POA manager to holding. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised.
Entering the holding state causes the associated POAs to queue incoming request
Any requests that have been queued but have not started executing will continue
queued while in the holding state.

If the wait_for_completion parameter is FALSE , this operation returns immediately
after changing the state. If the parameter is TRUE and the current thread is not in an
invocation context dispatched by some POA belonging to the same ORB as this P
this operation does not return until either there are no actively executing requests in
of the POAs associated with this POA manager (that is, all requests that were star
prior to the state change have completed) or the state of the POA manager is chan
a state other than holding. If the parameter is TRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this PO
BAD_INV_ORDER exception is raised and the state is not changed.
11-18 CORBA V2.3 June 1999

11

ests.
re

ly
 an
OA,
n any
ted
ged to

A the

ve not

rable

ad is
s this
 any

ted

11.3.2.5 discard_requests

void discard_requests(in boolean wait_for_completion)
raises (AdapterInactive);

This operation changes the state of the POA manager to discarding. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised.
Entering the discarding state causes the associated POAs to discard incoming requ
In addition, any requests that have been queued but have not started executing a
discarded. When a request is discarded, a TRANSIENT system exception is returned
to the client.

If the wait_for_completion parameter is FALSE, this operation returns immediate
after changing the state. If the parameter is TRUE and the current thread is not in
invocation context dispatched by some POA belonging to the same ORB as this P
this operation does not return until either there are no actively executing requests i
of the POAs associated with this POA manager (that is, all requests that were star
prior to the state change have completed) or the state of the POA manager is chan
a state other than discarding. If the parameter is TRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this PO
BAD_INV_ORDER exception is raised and the state is not changed.

11.3.2.6 deactivate

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion);

raises (AdapterInactive);

This operation changes the state of the POA manager to inactive. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised.
Entering the inactive state causes the associated POAs to reject requests that ha
begun to be executed as well as any new requests.

After changing the state, if the etherealize_objects parameter is

• TRUE - the POA manager will cause all associated POAs that have the RETAIN
and USE_SERVANT_MANAGER policies to perform the etherealize operation
on the associated servant manager for all active objects.

• FALSE - the etherealize operation is not called. The purpose is to provide
developers with a means to shut down POAs in a crisis (for example, unrecove
error) situation.

If the wait_for_completion parameter is FALSE, this operation will return
immediately after changing the state. If the parameter is TRUE and the current thre
not in an invocation context dispatched by some POA belonging to the same ORB a
POA, this operation does not return until there are no actively executing requests in
of the POAs associated with this POA manager (that is, all requests that were star
prior to the state change have completed) and, in the case of a TRUE
etherealize_objects , all invocations of etherealize have completed for POAs having
the RETAIN and USE_SERVANT_MANAGER policies. If the parameter is TRUE
CORBA V2.3 Interfaces June 1999 11-19

11

ing to
s

ss;

re
l

ual

 with
that

POAs
; it is
essing.

to

OA

ts it

e that
for
the
and the current thread is in an invocation context dispatched by some POA belong
the same ORB as this POA the BAD_INV_ORDER exception is raised and the state i
not changed.

If the ORB::shutdown operation is called, it makes a call on deactivate with a
TRUE etherealize_objects parameter for each POA manager known in the proce
the wait_for_completion parameter to deactivate will be the same as the similarly
named parameter of ORB::shutdown .

If deactivate is called multiple times before destruction is complete (because the
are active requests), the etherealize_objects parameter applies only to the first cal
of deactivate; subsequent calls with conflicting etherealize_objects settings will
use the value of the etherealize_objects from the first call. The
wait_for_completion parameter will be handled as defined above for each individ
call (some callers may choose to block, while others may not).

11.3.2.7 get_state

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

This operation returns the state of the POA manager.

11.3.3 AdapterActivator Interface

Adapter activators are associated with POAs. An adapter activator supplies a POA
the ability to create child POAs on demand, as a side-effect of receiving a request
names the child POA (or one of its children), or when find_POA is called with an
activate parameter value of TRUE. An application server that creates all its needed
at the beginning of execution does not need to use or provide an adapter activator
necessary only for the case in which POAs need to be created during request proc

While a request from the POA to an adapter activator is in progress, all requests
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new P
before requests are delivered to that POA.

11.3.3.1 Locality Constraints

An AdapterActivator object must be local to the process containing the POA objec
is registered with.

11.3.3.2 unknown_adapter

boolean unknown_adapter(in POA parent, in string name);

This operation is invoked when the ORB receives a request for an object referenc
identifies a target POA that does not exist. The ORB invokes this operation once
each POA that must be created in order for the target POA to exist (starting with
11-20 CORBA V2.3 June 1999

11

eturn

ll
e
If
e ORB

r is
s
eal

e is

ith
sing
e

ist,

side-

 with
ed at
ct, to

ger; it
ssing.
ancestor POA closest to the root POA). The operation is invoked on the adapter
activator associated with the POA that is the parent of the POA that needs to be
created. That parent POA is passed as the parent parameter. The name of the POA to
be created (relative to the parent) is passed as the name parameter.

The implementation of this operation should either create the specified POA and r
TRUE, or it should return FALSE. If the operation returns TRUE, the ORB will
proceed with processing the request. If the operation returns FALSE, the ORB wi
return OBJECT_NOT_EXIST to the client. If multiple POAs need to be created, th
ORB will invoke unknown_adapter once for each POA that needs to be created.
the parent of a nonexistent POA does not have an associated adapter activator, th
will return the OBJECT_NOT_EXIST exception.

If unknown_adapter raises a system exception, the ORB will report an
OBJ_ADAPTER exception.

Note – It is possible for another thread to create the same POA the AdapterActivato
being asked to create if AdapterActivators are used in conjunction with other thread
calling create_POA with the same POA name. Applications should be prepared to d
with failures from either the manual or automatic (AdapterActivator) POA creation
request. There can be no guarantee of the order of such calls.

For example, if the target object reference was created by a POA whose full nam
“A”, “B”, “C”, “D” and only POAs “A” and “B” currently exist, the
unknown_adapter operation will be invoked on the adapter activator associated w
POA “B” passing POA “B” as the parent parameter and “C” as the name of the mis
POA. Assuming that the adapter activator creates POA “C” and returns TRUE, th
ORB will then invoke unknown_adapter on the adapter activator associated with
POA “C”, passing POA “C” as the parent parameter and “D” as the name.

The unknown_adapter operation is also invoked when find_POA is called on the
POA with which the AdapterActivator is associated, the specified child does not ex
and the activate_it parameter to find_POA is TRUE. If unknown_adapter creates
the specified POA and returns TRUE, that POA is returned from find_POA .

Note – This allows the same code, the unknown_adapter implementation, to be used
to initialize a POA whether that POA is created explicitly by the application or as a
effect of processing a request. Furthermore, it makes this initialization atomic with
respect to delivery of requests to the POA.

11.3.4 ServantManager Interface

Servant managers are associated with POAs. A servant manager supplies a POA
the ability to activate objects on demand when the POA receives a request target
an inactive object. A servant manager is registered with a POA as a callback obje
be invoked by the POA when necessary. An application server that activates all its
needed objects at the beginning of execution does not need to use a servant mana
is used only for the case in which an object must be activated during request proce
CORBA V2.3 Interfaces June 1999 11-21

11

s,

h

urn a
o the

. It
d.

 and

he

n

nd

 it is
The ServantManager interface is itself empty. It is inherited by two other interface
ServantActivator and ServantLocator .

The two types of servant managers correspond to the POA’s RETAIN policy
(ServantActivator) and to the NON_RETAIN policy (ServantLocator). The
meaning of the policies and the operations that are available for POAs using eac
policy are listed under the two types of derived interfaces.

Each servant manager type contains two operations, the first called to find and ret
servant and the second to deactivate a servant. The operations differ according t
amount of information usable for their situation.

11.3.4.1 Common information for servant manager types

The two types of servant managers have certain semantics that are identical.

The incarnate and preinvoke operation may raise any system exception deemed
appropriate (for example, OBJECT_NOT_EXIST if the object corresponding to the
Object Id value has been destroyed).

Note – If a user-written routine (servant manager or method code) raises the
OBJECT_NOT_EXIST exception, the POA does nothing but pass on that exception
is the user’s responsibility to deactivate the object if it had been previously activate

The incarnate and preinvoke operation may also raise a ForwardRequest
exception. If this occurs, the ORB is responsible for delivering the current request
subsequent requests to the object denoted in the forward_reference member of the
exception. The behavior of this mechanism must be the functional equivalent of t
GIOP location forwarding mechanism. If the current request was delivered via an
implementation of the GIOP protocol (such as IIOP), the reference in the exceptio
should be returned to the client in a reply message with LOCATION_FORWARD
reply status. If some other protocol or delivery mechanism was used, the ORB is
responsible for providing equivalent behavior, from the perspectives of the client a
the object denoted by the new reference.

If a ServantManager returns a null Servant (or the equivalent in a language
mapping) as the result of an incarnate() or preinvoke() operation, the POA will
return the OBJ_ADAPTER system exception as the result of the request. If the
ServantManager returns the wrong type of Servant, it is indeterminate when that
error is detected. It is likely to result in a BAD_OPERATION or MARSHAL
exception at the time of method invocation.

11.3.4.2 Locality Constraints

A ServantManager object must be local to the process containing the POA objects
registered with.
11-22 CORBA V2.3 June 1999

11

pply

Map

ate

ation
in
 this

.

s.

n

t.
ed.
11.3.5 ServantActivator Interface

When the POA has the RETAIN policy it uses servant managers that are
ServantActivators. When using such servant managers, the following statements a
for a given ObjectId used in the incarnate and etherealize operations:

• Servants incarnated by the servant manager will be placed in the Active Object
with objects they have activated.

• Invocations of incarnate on the servant manager are serialized.

• Invocations of etherealize on the servant manager are serialized.

• Invocations of incarnate and etherealize on the servant manager are mutually
exclusive.

• Incarnations of a particular object may not overlap; that is, incarnate shall not be
invoked with a particular ObjectId while, within the same POA, that ObjectId is in
use as the ObjectId of an activated object or as the argument of a call to incarn
or etherealize that has not completed.

It should be noted that there may be a period of time between an object's deactiv
and the etherealization (during which outstanding requests are being processed)
which arriving requests on that object should not be passed to its servant. During
period, requests targeted for such an object act as if the POA were in holding state until
etherealize completes. If etherealize is called as a consequence of a deactivate call
with an etherealize_objects parameter of TRUE, incoming requests are rejected.

It should also be noted that a similar situation occurs with incarnate . There may be a
period of time after the POA invokes incarnate and before that method returns in
which arriving requests bound for that object should not be passed to the servant

A single servant manager object may be concurrently registered with multiple POA
Invocations of incarnate and etherealize on a servant manager in the context of
different POAs are not necessarily serialized or mutually exclusive. There are no
assumptions made about the thread in which etherealize is invoked.

11.3.5.1 incarnate

 Servant incarnate (
in ObjectId oid,
in POA adapter)
raises (ForwardRequest);

This operation is invoked by the POA whenever the POA receives a request for a
object that is not currently active, assuming the POA has the
USE_SERVANT_MANAGER and RETAIN policies.

The oid parameter contains the ObjectId value associated with the incoming reques
The adapter is an object reference for the POA in which the object is being activat
CORBA V2.3 Interfaces June 1999 11-23

11

o
A has

ject

use
s do

g the

he

with

The user-supplied servant manager implementation is responsible for locating or
creating an appropriate servant that corresponds to the ObjectId value if possible.
incarnate returns a value of type Servant, which is the servant that will be used t
process the incoming request (and potentially subsequent requests, since the PO
the RETAIN policy).

The POA enters the returned Servant value into the Active Object Map so that
subsequent requests with the same ObjectId value will be delivered directly to that
servant without invoking the servant manager.

If the incarnate operation returns a servant that is already active for a different Ob
Id and if the POA also has the UNIQUE_ID policy, the incarnate has violated the
POA policy and is considered to be in error. The POA will raise an OBJ_ADAPTER
system exception for the request.

Note – If the same servant is used in two different POAs, it is legal for the POAs to
that servant even if the POAs have different Object Id uniqueness policies. The POA
not interact with each other in this regard.

11.3.5.2 etherealize

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

This operation is invoked whenever a servant for an object is deactivated, assumin
POA has the USE_SERVANT_MANAGER and RETAIN policies. Note that an active
servant may be deactivated by the servant manager via etherealize even if it was not
incarnated by the servant manager.

The oid parameter contains the Object Id value of the object being deactivated. T
adapter parameter is an object reference for the POA in whose scope the object was
active. The serv parameter contains a reference to the servant that is associated
the object being deactivated. If the servant denoted by the serv parameter is associated
with other objects in the POA denoted by the adapter parameter (that is, in the POA's
Active Object Map) at the time that etherealize is called, the
remaining_activations parameter has the value TRUE. Otherwise, it has the value
FALSE .

If the cleanup_in_progress parameter is TRUE, the reason for the etherealize
operation is that either the deactivate or destroy operation was called with an
etherealize_objects parameter of TRUE. If the parameter is FALSE , the
etherealize operation is called for other reasons.

Deactivation occurs in the following circumstances:
11-24 CORBA V2.3 June 1999

11

d.
 be

jects

nt

ts
er

ant
 the
e able

y

t

ect
• When an object is deactivated explicitly by an invocation of
POA::deactivate_object .

• When the ORB or POA determines internally that an object must be deactivate
For example, an ORB implementation may provide policies that allow objects to
deactivated after some period of quiescence, or when the number of active ob
reaches some limit.

• If POAManager::deactivate is invoked on a POA manager associated with a
POA that has currently active objects.

Destroying a servant that is in the Active Object Map or is otherwise known to the
POA can lead to undefined results.

In a multi-threaded environment, the POA makes certain guarantees that allow serva
managers to safely destroy servants. Specifically, the servant's entry in the Active
Object Map corresponding to the target object is removed before etherealize is called.
Because calls to incarnate and etherealize are serialized, this prevents new reques
for the target object from being invoked on the servant during etherealization. Aft
removing the entry from the Active Object Map, if the POA determines before
invoking etherealize that other requests for the same target object are already in
progress on the servant, it delays the call to etherealize until all active methods for
the target object have completed. Therefore, when etherealize is called, the servant
manager can safely destroy the servant if it wants to, unless the
remaining_activations argument is TRUE.

If the etherealize operation returns a system exception, the POA ignores the
exception.

11.3.6 ServantLocator Interface

When the POA has the NON_RETAIN policy it uses servant managers that are
ServantLocators . Because the POA knows that the servant returned by this serv
manager will be used only for a single request, it can supply extra information to
servant manager’s operations and the servant manager’s pair of operations may b
to cooperate to do something different than a ServantActivator.

When the POA uses the ServantLocator interface, immediately after performing the
operation invocation on the servant returned by preinvoke , the POA will invoke
postinvoke on the servant manager, passing the ObjectId value and the Servant
value as parameters (among others). The next request with this ObjectId value will
then cause preinvoke to be invoked again. This feature may be used to force ever
request for objects associated with a POA to be mediated by the servant manager.

When using such a ServantLocator , the following statements apply for a given
ObjectId used in the preinvoke and postinvoke operations:

• The servant returned by preinvoke is used only to process the single request tha
caused preinvoke to be invoked.

• No servant incarnated by the servant manager will be placed in the Active Obj
Map.
CORBA V2.3 Interfaces June 1999 11-25

11

e to

ect
sult,

g to

 is

n

t.
ed.

r
ed
• When the invocation of the request on the servant is complete, postinvoke will be
invoked for the object.

• No serialization of invocations of preinvoke or postinvoke may be assumed;
there may be multiple concurrent invocations of preinvoke for the same ObjectId .
(However, if the SINGLE_THREAD_MODEL policy is being used, that policy will
serialize these calls.)

• The same thread will be used to preinvoke the object, process the request, and
postinvoke the object.

• The preinvoke and postinvoke operations are always called in pairs in respons
any ORB activity. In particular, for a response to a GIOP Locate message a GIOP-
conforming ORB may (or may not) call preinvoke to determine whether the obj
could be served at this location. If the ORB makes such a call, whatever the re
the ORB does not invoke a method, but does call postinvoke before respondin
the Locate message. (Note that the ServantActivator interface does not behave
similarly with respect to a GIOP Locate message since the etherealize operation
not associated with request processing.)

11.3.6.1 preinvoke

Servant preinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)
raises (ForwardRequest);

This operation is invoked by the POA whenever the POA receives a request for a
object that is not currently active, assuming the POA has the
USE_SERVANT_MANAGER and NON_RETAIN policies.

The oid parameter contains the ObjectId value associated with the incoming reques
The adapter is an object reference for the POA in which the object is being activat

The user-supplied servant manager implementation is responsible for locating or
creating an appropriate servant that corresponds to the ObjectId value if possible.
preinvoke returns a value of type Servant , which is the servant that will be used to
process the incoming request.

The Cookie is a type opaque to the POA that can be set by the servant manager fo
use later by postinvoke . The operation is the name of the operation that will be call
by the POA when the servant is returned.

11.3.6.2 postinvoke

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
11-26 CORBA V2.3 June 1999

11

POA

t is,
lly

n; the

 was
the
at

 the

 are
A.

B-
ts

ed

that is
in Servant the_servant);

This operation is invoked whenever a servant completes a request, assuming the
has the USE_SERVANT_MANAGER and NON_RETAIN policies.

The postinvoke operation is considered to be part of a request on an object. Tha
the request is not complete until postinvoke finishes. If the method finishes norma
but postinvoke raises a system exception, the method's normal return is overridde
request completes with the exception.

The oid parameter contains the Object Id value of the object on which the request
made. The adapter parameter is an object reference for the POA in whose scope
object was active. The the_servant parameter contains a reference to the servant th
is associated with the object.

The Cookie is a type opaque to the POA; it contains any value that was set by the
preinvoke operation. The operation is the name of the operation that was called by
POA for the request.

Destroying a servant that is known to the POA can lead to undefined results.

11.3.7 POA Policy Objects

Interfaces derived from CORBA::Policy are used with the POA::create_POA
operation to specify policies that apply to a POA. Policy objects are created using
factory operations on any pre-existing POA, such as the root POA. Policy objects
specified when a POA is created. Policies may not be changed on an existing PO
Policies are not inherited from the parent POA.

11.3.7.1 Thread Policy

Objects with the ThreadPolicy interface are obtained using the
POA::create_thread_policy operation and passed to the POA::create_POA
operation to specify the threading model used with the created POA. The value
attribute of ThreadPolicy contains the value supplied to the
POA::create_thread_policy operation from which it was obtained. The following
values can be supplied.

• ORB_CTRL_MODEL - The ORB is responsible for assigning requests for an OR
controlled POA to threads. In a multi-threaded environment, concurrent reques
may be delivered using multiple threads.

• SINGLE_THREAD_MODEL - Requests for a single-threaded POA are process
sequentially. In a multi-threaded environment, all upcalls made by this POA to
implementation code (servants and servant managers) are made in a manner
safe for code that is multi-thread-unaware.

If no ThreadPolicy object is passed to create_POA , the thread policy defaults to
ORB_CTRL_MODEL .
CORBA V2.3 Interfaces June 1999 11-27

11

 the
,

ead is

red by

ading

The

hes

ry to

ted
Note – In some environments, calling multi-thread-unaware code safely (that is, using
SINGLE_THREAD_MODEL) may mean that the POA will use only the main thread
in which case the application programmer is responsible to ensure that the main thr
given to the ORB, using ORB::perform_work or ORB::run .

POAs using the SINGLE_THREAD_MODEL may need to cooperate to ensure that
calls are safe even when implementation code (such as a servant manager) is sha
multiple single-threaded POAs.

These models presume that the ORB and the application are using compatible thre
primitives in a multi-threaded environment.

11.3.7.2 Lifespan Policy

Objects with the LifespanPolicy interface are obtained using the
POA::create_lifespan_policy operation and passed to the POA::create_POA
operation to specify the lifespan of the objects implemented in the created POA.
following values can be supplied.

• TRANSIENT - The objects implemented in the POA cannot outlive the POA
instance in which they are first created. Once the POA is deactivated, use of any
object references generated from it will result in an OBJECT_NOT_EXIST
exception.

• PERSISTENT - The objects implemented in the POA can outlive the process in
which they are first created.

• Persistent objects have a POA associated with them (the POA which created
them). When the ORB receives a request on a persistent object, it first searc
for the matching POA, based on the names of the POA and all of its ancestors.

• Administrative action beyond the scope of this specification may be necessa
inform the ORB's location service of the creation and eventual termination of
existence of this POA, and optionally to arrange for on-demand activation of a
process implementing this POA.

• POA names must be unique within their enclosing scope (the parent POA). A
portable program can assume that POA names used in other processes will not
conflict with its own POA names. A conforming CORBA implementation will
provide a method for ensuring this property.

If no LifespanPolicy object is passed to create_POA , the lifespan policy defaults to
TRANSIENT.

11.3.7.3 Object Id Uniqueness Policy

Objects with the IdUniquenessPolicy interface are obtained using the
POA::create_id_uniqueness_policy operation and passed to the
POA::create_POA operation to specify whether the servants activated in the crea
POA must have unique object identities. The following values can be supplied.
11-28 CORBA V2.3 June 1999

11

ject

d.

d

• UNIQUE_ID - Servants activated with that POA support exactly one Object Id.

• MULTIPLE_ID - a servant activated with that POA may support one or more Ob
Ids.

If no IdUniquenessPolicy is specified at POA creation, the default is UNIQUE_ID.

11.3.7.4 Id Assignment Policy

Objects with the IdAssignmentPolicy interface are obtained using the
POA::create_id_assignment_policy operation and passed to the
POA::create_POA operation to specify whether Object Ids in the created POA are
generated by the application or by the ORB. The following values can be supplie

• USER_ID - Objects created with that POA are assigned Object Ids only by the
application.

• SYSTEM_ID - Objects created with that POA are assigned Object Ids only by the
POA. If the POA also has the PERSISTENT policy, assigned Object Ids must be
unique across all instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

11.3.7.5 Servant Retention Policy

Objects with the ServantRetentionPolicy interface are obtained using the
POA::create_servant_retention_policy operation and passed to the
POA::create_POA operation to specify whether the created POA retains active
servants in an Active Object Map. The following values can be supplied.

• RETAIN - The POA will retain active servants in its Active Object Map.

• NON_RETAIN - Servants are not retained by the POA.

If no ServantRetentionPolicy is specified at POA creation, the default is RETAIN.

Note – The NON_RETAIN policy requires either the USE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER policies.

11.3.7.6 Request Processing Policy

Objects with the RequestProcessingPolicy interface are obtained using the
POA::create_request_processing_policy operation and passed to the
POA::create_POA operation to specify how requests are processed by the create
POA. The following values can be supplied.

• USE_ACTIVE_OBJECT_MAP_ONLY - If the Object Id is not found in the
Active Object Map, an OBJECT_NOT_EXIST exception is returned to the client.
The RETAIN policy is also required.
CORBA V2.3 Interfaces June 1999 11-29

11

d

o

of

bject

r

es

 for

r
• USE_DEFAULT_SERVANT - If the Object Id is not found in the Active Object
Map or the NON_RETAIN policy is present, and a default servant has been
registered with the POA using the set_servant operation, the request is dispatche
to the default servant. If no default servant has been registered, an OBJ_ADAPTER
exception is returned to the client. The MULTIPLE_ID policy is also required.

• USE_SERVANT_MANAGER - If the Object Id is not found in the Active Object
Map or the NON_RETAIN policy is present, and a servant manager has been
registered with the POA using the set_servant_manager operation, the servant
manager is given the opportunity to locate a servant or raise an exception. If n
servant manager has been registered, an OBJECT_ADAPTER exception is
returned to the client.

If no RequestProcessingPolicy is specified at POA creation, the default is
USE_ACTIVE_OBJECT_MAP_ONLY .

By means of combining the USE_ACTIVE_OBJECT_MAP_ONLY /
USE_DEFAULT_SERVANT / USE_SERVANT_MANAGER policies and the
RETAIN / NON_RETAIN policies, the programmer is able to define a rich number
possible behaviors.

RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY

This combination represents the situation where the POA does no automatic object
activation (that is, the POA searches only the Active Object Map). The server must
activate all objects served by the POA explicitly, using either the activate_object or
activate_object_with_id operation.

RETAIN and USE_SERVANT_MANAGER

This combination represents a very common situation, where there is an Active O
Map and a ServantManager .

Because RETAIN is in effect, the application can call activate_object or
activate_object_with_id to establish known servants in the Active Object Map fo
use in later requests.

If the POA doesn't find a servant in the Active Object Map for a given object, it tri
to determine the servant by means of invoking incarnate in the ServantManager
(specifically a ServantActivator) registered with the POA. If no ServantManager is
available, the POA raises the OBJECT_ADAPTER system exception.

RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default servant defined
all requests involving unknown objects.

Because RETAIN is in effect, the application can call activate_object or
activate_object_with_id to establish known servants in the Active Object Map fo
use in later requests.
11-30 CORBA V2.3 June 1999

11

 it

call.

d for
The POA first tries to find a servant in the Active Object Map for a given object. If
does not find such a servant, it uses the default servant. If no default servant is
available, the POA raises the OBJECT_ADAPTER system exception.

NON-RETAIN and USE_SERVANT_MANAGER

This combination represents the situation where one servant is used per method

The POA doesn't try to find a servant in the Active Object Map because the
ActiveObjectMap does not exist. In every request, it will call preinvoke on the
ServantManager (specifically a ServantLocator) registered with the POA. If no
ServantManager is available, the POA will raise the OBJECT_ADAPTER system
exception.

NON-RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is one single servant define
all CORBA objects.

The POA does not try to find a servant in the Active Object Map because the
ActiveObjectMap doesn't exist. In every request, the POA will invoke the
appropriate operation on the default servant registered with the POA. If no default
servant is available, the POA will raise the OBJECT_ADAPTER system exception.

11.3.7.7 Implicit Activation Policy

Objects with the ImplicitActivationPolicy interface are obtained using the
POA::create_implicit_activation_policy operation and passed to the
POA::create_POA operation to specify whether implicit activation of servants is
supported in the created POA. The following values can be supplied.

• IMPLICIT_ACTIVATION - the POA will support implicit activation of servants.
IMPLICIT_ACTIVATION also requires the SYSTEM_ID and RETAIN policies.

• NO_IMPLICIT_ACTIVATION - the POA will not support implicit activation of
servants.

If no ImplicitActivationPolicy is specified at POA creation, the default is
NO_IMPLICIT_ACTIVATION .

11.3.8 POA Interface

A POA object manages the implementation of a collection of objects. The POA
supports a name space for the objects, which are identified by Object Ids.

A POA also provides a name space for POAs. A POA is created as a child of an
existing POA, which forms a hierarchy starting with the root POA.
CORBA V2.3 Interfaces June 1999 11-31

11

ill

me
the

 the

ire

licy

 race
ive a

tor
apter

, the
11.3.8.1 Locality Constraints

A POA object must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. An attempt to use a POA object with the DII may
raise the NO_IMPLEMENT exception.

11.3.8.2 create_POA

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy);

This operation creates a new POA as a child of the target POA. The specified na
identifies the new POA with respect to other POAs with the same parent POA. If
target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If the a_POAManager parameter is null, a new POAManager object is created and
associated with the new POA. Otherwise, the specified POAManager object is
associated with the new POA. The POAManager object can be obtained using the
attribute name the_POAManager .

The specified policy objects are associated with the POA and used to control its
behavior. The policy objects are effectively copied before this operation returns, so
application is free to destroy them while the POA is in use. Policies are not inherited
from the parent POA.

If any of the policy objects specified are not valid for the ORB implementation, if
conflicting policy objects are specified, or if any of the specified policy objects requ
prior administrative action that has not been performed, an InvalidPolicy exception is
raised containing the index in the policies parameter value of the first offending po
object.

Note – Creating a POA using a POA manager that is in the active state can lead to
conditions if the POA supports preexisting objects, because the new POA may rece
request before its adapter activator, servant manager, or default servant have been
initialized. These problems do not occur if the POA is created by an adapter activa
registered with a parent of the new POA, because requests are queued until the ad
activator returns. To avoid these problems when a POA must be explicitly initialized
application can initialize the POA by invoking find_POA with a TRUE activate
parameter.

11.3.8.3 find_POA

POA find_POA(
in string adapter_name,
11-32 CORBA V2.3 June 1999

11

ild

ss.

s

 the

e

de.
n the
in boolean activate_it)
raises (AdapterNonExistent);

If the target POA is the parent of a child POA with the specified name (relative to the
target POA), that child POA is returned. If a child POA with the specified name does
not exist and the value of the activate_it parameter is TRUE, the target POA's
AdapterActivator , if one exists, is invoked, and, if it successfully activates the ch
POA, that child POA is returned. Otherwise, the AdapterNonExistent exception is
raised.

11.3.8.4 destroy

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

This operation destroys the POA and all descendant POAs . All descendant POAs are
destroyed (recursively) before the destruction of the containing POA. The POA so
destroyed (that is, the POA with its name) may be re-created later in the same proce
(This differs from the POAManager::deactivate operation that does not allow a re-
creation of its associated POA in the same process. After a deactivate, re-creation i
allowed only if the POA is later destroyed.)

When destroy is called the POA behaves as follows:

• The POA calls destroy on all of its immediate descendants.

• After all descendant POAs have been destroyed and their servants etherealized,
POA continues to process requests until there are no requests executing in the POA.
The apparent destruction of the POA occurs only after all executing requests in th
POA have completed. After destruction has become apparent, the POA may be re-
created via either an AdapterActivator or a call to create_POA .

• If the etherealize_objects parameter is TRUE, the POA has the RETAIN policy,
and a servant manager is registered with the POA, the etherealize operation on the
servant manager is called for each active object in the Active Object Map. The
apparent destruction of the POA occurs before any calls to etherealize are ma
Thus, for example, an etherealize method that attempts to invoke operations o
POA receives the OBJECT_NOT_EXIST exception. Once apparent destruction
has occurred, the POA behaves as if its POAManager is in the holding state until
destruction is complete. Thus, for example, an invocation of create_POA with the
same name blocks until POA destruction has finished.

The wait_for_completion parameter is handled as follows:

• If wait_for_completion is TRUE and the current thread is not in an invocation
context dispatched from some POA belonging to the same ORB as this POA, the
destroy operation returns only after all active requests have completed and all
invocations of etherealize have completed.

• If wait_for_completion is TRUE and the current thread is in an invocation
context dispatched from some POA belonging to the same ORB as this POA, the
BAD_INV_ORDER exception is raised and POA destruction does not occur.
CORBA V2.3 Interfaces June 1999 11-33

11

tion
se

al

ue.

 the
be
• If wait_for_completion is FALSE , the destroy operation destroys the POA and
its children but waits neither for active requests to complete nor for etherealiza
to occur. If destroy is called multiple times before destruction is complete (becau
there are active requests), the etherealize_objects parameter applies only to the
first call of destroy . Subsequent calls with conflicting etherealize_objects
settings use the value of etherealize_objects from the first call. The
wait_for_completion parameter is handled as defined above for each individu
call (some callers may choose to block, while others may not).

11.3.8.5 Policy Creation Operations

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);

ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);

ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);

RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

These operations each return a reference to a policy object with the specified val
The application is responsible for calling the inherited destroy operation on the
returned reference when it is no longer needed.

11.3.8.6 the_name

readonly attribute string the_name;

This attribute identifies the POA relative to its parent. This name is assigned when
POA is created. The name of the root POA is system-dependent and should not
relied upon by the application.

11.3.8.7 the_parent

readonly attribute POA the_parent;

This attribute identifies the parent of the POA. The parent of the root POA is null.

11.3.8.8 the_children

readonly attribute POAList the_children;
11-34 CORBA V2.3 June 1999

11

ild

ated
r the
n

nt

 set
This attribute identifies the current set of all child POAs of the POA. The set of ch
POAs includes only the POA's immediate children, and not their descendants.

11.3.8.9 the_POAManager

readonly attribute POAManager the_POAManager;

This attribute identifies the POA manager associated with the POA.

11.3.8.10 the_activator

attribute AdapterActivator the_activator;

This attribute identifies the adapter activator associated with the POA. A newly cre
POA has no adapter activator (the attribute is null). It is system-dependent whethe
root POA initially has an adapter activator; the application is free to assign its ow
adapter activator to the root POA.

11.3.8.11 get_servant_manager

ServantManager get_servant_manager()
raises(WrongPolicy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

If the ServantRetentionPolicy of the POA is RETAIN, then the ServantManager
argument (imgr) shall support the ServantActivator interface (e.g., in C++ imgr is
narrowable to ServantActivator). If the ServantRetentionPolicy of the POA is
NON_RETAIN, then the ServantManager argument shall support the
ServantLocator interface. If the argument is nil , or does not support the required
interface, then the OBJ_ADAPTER exception is raised.

This operation returns the servant manager associated with the POA. If no serva
manager has been associated with the POA, it returns a null reference.

11.3.8.12 set_servant_manager

void set_servant_manager(in ServantManager imgr)
raises(WrongPolicy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation sets the default servant manager associated with the POA. This
operation may only be invoked once after a POA has been created. Attempting to
the servant manager after one has already been set will result in the
BAD_INV_ORDER exception being raised.
CORBA V2.3 Interfaces June 1999 11-35

11

has

 This
ject

e

11.3.8.13 get_servant

Servant get_servant()
raises(NoServant, WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation returns the default servant associated with the POA. If no servant
been associated with the POA, the NoServant exception is raised.

11.3.8.14 set_servant

void set_servant(in Servant p_servant)
raises(WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation registers the specified servant with the POA as the default servant.
servant will be used for all requests for which no servant is found in the Active Ob
Map.

11.3.8.15 activate_object

ObjectId activate_object(in Servant p_servant)
raises (ServantAlreadyActive, WrongPolicy);

This operation requires the SYSTEM_ID and RETAIN policy; if not present, the
WrongPolicy exception is raised.

If the POA has the UNIQUE_ID policy and the specified servant is already in the
Active Object Map, the ServantAlreadyActive exception is raised. Otherwise, the
activate_object operation generates an Object Id and enters the Object Id and th
specified servant in the Active Object Map. The Object Id is returned.

11.3.8.16 activate_object_with_id

void activate_object_with_id(
in ObjectId oid,
in Servant p_servant)
raises (ObjectAlreadyActive, ServantAlreadyActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.

If the CORBA object denoted by the Object Id value is already active in this POA
(there is a servant bound to it in the Active Object Map), the ObjectAlreadyActive
exception is raised. If the POA has the UNIQUE_ID policy and the servant is already
11-36 CORBA V2.3 June 1999

11

ot

l

e are

ys

nt
in the Active Object Map, the ServantAlreadyActive exception is raised. Otherwise,
the activate_object_with_id operation enters an association between the specified
Object Id and the specified servant in the Active Object Map.

If the POA has the SYSTEM_ID policy and it detects that the Object Id value was n
generated by the system or for this POA, the activate_object_with_id operation
may raise the BAD_PARAM system exception. An ORB is not required to detect al
such invalid Object Id values, but a portable application must not invoke
activate_object_with_id on a POA that has the SYSTEM_ID policy with an Object
Id value that was not previously generated by the system for that POA, or, if the POA
also has the PERSISTENT policy, for a previous instantiation of the same POA.

11.3.8.17 deactivate_object

void deactivate_object(
in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.

This operation causes the ObjectId specified in the oid parameter to be deactivated.
An ObjectId which has been deactivated continues to process requests until ther
no active requests for that ObjectId . A deactivated ObjectId is removed from the
Active Object Map when all requests executing for that ObjectId have completed. If a
servant manager is associated with the POA, ServantActivator::etherealize is
invoked with the oid and the associated servant after the ObjectId has been removed
from the Active Object Map. Reactivation for the ObjectId blocks until etherealization
(if necessary) is complete. This includes implicit activation (as described in
etherealize) and explicit activation via POA::activate_object_with_id . Once an
ObjectId has been removed from the Active Object Map and etherealized (if
necessary) it may then be reactivated through the usual mechanisms.

The operation does not wait for requests or etherealization to complete and alwa
returns immediately after deactivating the ObjectId .

Note – If the servant associated with the oid is serving multiple Object Ids,
ServantActivator::etherealize may be invoked multiple times with the same serva
when the other objects are deactivated. It is the responsibility of the object
implementation to refrain from destroying the servant while it is active with any Id.

11.3.8.18 create_reference

Object create_reference (
in CORBA::RepositoryId intf)
raises (WrongPolicy);

This operation requires the SYSTEM_ID policy; if not present, the WrongPolicy
exception is raised.
CORBA V2.3 Interfaces June 1999 11-37

11

ject Id
may

f its

 may
 the
ct Id

.

Id and
ing,
s
ill

 may
 the

ot

l
tion
This operation creates an object reference that encapsulates a POA-generated Ob
value and the specified interface repository id. The specified repository id, which
be a null string, will become the type_id of the generated object reference. A
repository id that does not identify the most derived interface of the object or one o
base interfaces will result in undefined behavior.

This operation does not cause an activation to take place. The resulting reference
be passed to clients, so that subsequent requests on those references will cause
appropriate servant manager to be invoked, if one is available. The generated Obje
value may be obtained by invoking POA::reference_to_id with the created reference

11.3.8.19 create_reference_with_id

Object create_reference_with_id (
in ObjectId oid,
in CORBA::RepositoryId intf);

This operation creates an object reference that encapsulates the specified Object
interface repository Id values. The specified repository id, which may be a null str
will become the type_id of the generated object reference. A repository id that doe
not identify the most derived interface of the object or one of its base interfaces w
result in undefined behavior.

This operation does not cause an activation to take place. The resulting reference
be passed to clients, so that subsequent requests on those references will cause
object to be activated if necessary, or the default servant used, depending on the
applicable policies.

If the POA has the SYSTEM_ID policy and it detects that the Object Id value was n
generated by the system or for this POA, the create_reference_with_id operation
may raise the BAD_PARAM system exception. An ORB is not required to detect al
such invalid Object Id values, but a portable application must not invoke this opera
on a POA that has the SYSTEM_ID policy with an Object Id value that was not
previously generated by the system for that POA, or, if the POA also has the
PERSISTENT policy, for a previous instantiation of the same POA.

11.3.8.20 servant_to_id

ObjectId servant_to_id(
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy or a combination of
the RETAIN policy and either the UNIQUE_ID or IMPLICIT_ACTIVATION policies;
if not present, the WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has the UNIQUE_ID policy and the specified servant is active, the
Object Id associated with that servant is returned.
11-38 CORBA V2.3 June 1999

11

ted
ant,

a

g a
ent

tivate

,

ified

d that
tely).
2. If the POA has the IMPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servant is activa
using a POA-generated Object Id and the Interface Id associated with the serv
and that Object Id is returned.

3. If the POA has the USE_DEFAULT_SERVANT policy, the servant specified is the
default servant, and the operation is being invoked in the context of executing
request on the default servant, then the ObjectId associated with the current
invocation is returned.

4. Otherwise, the ServantNotActive exception is raised.

11.3.8.21 servant_to_reference

Object servant_to_reference (
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

This operation requires the RETAIN policy and either the UNIQUE_ID or
IMPLICIT_ACTIVATION policies if invoked outside the context of an operation
dispatched by this POA. If this operation is not invoked in the context of executin
request on the specified servant and the policies specified previously are not pres
the WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both the RETAIN and the UNIQUE_ID policy and the specified
servant is active, an object reference encapsulating the information used to ac
the servant is returned.

2. If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policy and
either the POA has the MULTIPLE_ID policy or the specified servant is not active
the servant is activated using a POA-generated Object Id and the Interface Id
associated with the servant, and a corresponding object reference is returned.

3. If the operation was invoked in the context of executing a request on the spec
servant, the reference associated with the current invocation is returned.

4. Otherwise, the ServantNotActive exception is raised.

Note – The allocation of an Object Id value and installation in the Active Object Map
caused by implicit activation may actually be deferred until an attempt is made to
externalize the reference. The real requirement here is that a reference is produce
will behave appropriately (that is, yield a consistent Object Id value when asked poli

11.3.8.22 reference_to_servant

Servant reference_to_servant (
in Object reference)
raises (ObjectNotActive, WrongAdapter, WrongPolicy);
CORBA V2.3 Interfaces June 1999 11-39

11

ctive

have

t
bject

nt.
This operation requires the RETAIN policy or the USE_DEFAULT_SERVANT policy.
If neither policy is present, the WrongPolicy exception is raised.

If the POA has the RETAIN policy and the specified object is present in the Active
Object Map, this operation returns the servant associated with that object in the A
Object Map. Otherwise, if the POA has the USE_DEFAULT_SERVANT policy and a
default servant has been registered with the POA, this operation returns the default
servant. Otherwise, the ObjectNotActive exception is raised.

If the object reference was not created by this POA, the WrongAdapter exception is
raised.

11.3.8.23 reference_to_id

ObjectId reference_to_id(
in Object reference)
raises (WrongAdapter, WrongPolicy);

The WrongPolicy exception is declared to allow future extensions.

This operation returns the Object Id value encapsulated by the specified reference .
This operation is valid only if the reference was created by the POA on which the
operation is being performed. If the reference was not created by that POA, a
WrongAdapter exception is raised. The object denoted by the reference does not
to be active for this operation to succeed.

11.3.8.24 id_to_servant

Servant id_to_servant(
in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy or the USE_DEFAULT_SERVANT
policy. If neither policy is present, the WrongPolicy exception is raised.

If the POA has the RETAIN policy and the specified ObjectId is in the Active Objec
Map, this operation returns the servant associated with that object in the Active O
Map. Otherwise, if the POA has the USE_DEFAULT_SERVANT policy and a default
servant has been registered with the POA, this operation returns the default serva
Otherwise the ObjectNotActive exception is raised.

11.3.8.25 id_to_reference

Object id_to_reference(
in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.
11-40 CORBA V2.3 June 1999

11

t Id

thod
t

o
s.

led.
If an object with the specified Object Id value is currently active, a reference
encapsulating the information used to activate the object is returned. If the Objec
value is not active in the POA, an ObjectNotActive exception is raised.

11.3.9 Current operations

The PortableServer::Current interface, derived from CORBA::Current , provides
method implementations with access to the identity of the object on which the me
was invoked. The Current interface is provided to support servants that implemen
multiple objects, but can be used within the context of POA-dispatched method
invocations on any servant. To provide location transparency, ORBs are required t
support use of Current in the context of both locally and remotely invoked operation

An instance of Current can be obtained by the application by issuing the
CORBA::ORB::resolve_initial_references("POACurrent") operation.
Thereafter, it can be used within the context of a method dispatched by the POA to
obtain the POA and ObjectId that identify the object on which that operation was
invoked.

11.3.9.1 get_POA

POA get_POA()
raises (NoContext);

This operation returns a reference to the POA implementing the object in whose
context it is called. If called outside the context of a POA-dispatched operation, a
NoContext exception is raised.

11.3.9.2 get_object_id

ObjectId get_object_id()
raises (NoContext);

This operation returns the ObjectId identifying the object in whose context it is cal
If called outside the context of a POA-dispatched operation, a NoContext exception is
raised.

11.4 IDL for PortableServer module

#pragma prefix "omg.org"
module PortableServer {
pragma version PortableServer 2.3

interface POA; // forward declaration
typedef sequence<POA> POAList;

native Servant;

typedef sequence<octet> ObjectId;
CORBA V2.3 IDL for PortableServer module June 1999 11-41

11
exception ForwardRequest {
Object forward_reference;

};

// Policy interfaces

const CORBA::PolicyType THREAD_POLICY_ID = 16;
const CORBA::PolicyType LIFESPAN_POLICY_ID = 17;
const CORBA::PolicyType ID_UNIQUENESS_POLICY_ID = 18;
const CORBA::PolicyType ID_ASSIGNMENT_POLICY_ID = 19;
const CORBA::PolicyType IMPLICIT_ACTIVATION_POLICY_ID = 20;
const CORBA::PolicyType SERVANT_RETENTION_POLICY_ID = 21;
const CORBA::PolicyType REQUEST_PROCESSING_POLICY_ID = 22;

enum ThreadPolicyValue {
ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL

};

interface ThreadPolicy : CORBA::Policy {
readonly attribute ThreadPolicyValue value;

};

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

};

interface LifespanPolicy : CORBA::Policy {
readonly attribute LifespanPolicyValue value;

};

enum IdUniquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

};

interface IdUniquenessPolicy : CORBA::Policy {
readonly attribute IdUniquenessPolicyValue value;

};

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

};

interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;

};

enum ImplicitActivationPolicyValue {
11-42 CORBA V2.3 June 1999

11
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

};

interface ImplicitActivationPolicy : CORBA::Policy {
readonly attribute ImplicitActivationPolicyValue value;

};

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN

};

interface ServantRetentionPolicy : CORBA::Policy {
readonly attribute ServantRetentionPolicyValue value;

};

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

};

interface RequestProcessingPolicy : CORBA::Policy {
readonly attribute RequestProcessingPolicyValue value;

};

// POAManager interface

interface POAManager {
exception AdapterInactive{};

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};

void activate()
raises(AdapterInactive);

void hold_requests(
in boolean wait_for_completion)
raises(AdapterInactive);

void discard_requests(
in boolean wait_for_completion)
raises(AdapterInactive);

void deactivate(
in boolean etherealize_objects,
in boolean wait_for_completion)
raises(AdapterInactive);

State get_state();
};

// AdapterActivator interface
CORBA V2.3 IDL for PortableServer module June 1999 11-43

11
interface AdapterActivator {
pragma version AdapterActivator 2.3

boolean unknown_adapter(
in POA parent,
in string name);

};

// ServantManager interface

interface ServantManager{ };

interface ServantActivator : ServantManager {
pragma version ServantActivator 2.3

Servant incarnate (
in ObjectId oid,
in POA adapter)

raises (ForwardRequest);

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

};

interface ServantLocator : ServantManager {
pragma version ServantLocator 2.3

native Cookie;
Servant preinvoke(

in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant

);
};

// POA interface

interface POA {
pragma version POA 2.3

exception AdapterAlreadyExists {};
exception AdapterNonExistent {};
11-44 CORBA V2.3 June 1999

11
exception InvalidPolicy {unsigned short index;};
exception NoServant {};
exception ObjectAlreadyActive {};
exception ObjectNotActive {};
exception ServantAlreadyActive {};
exception ServantNotActive {};
exception WrongAdapter {};
exception WrongPolicy {};

// POA creation and destruction

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExists, InvalidPolicy);

POA find_POA(
in string adapter_name,
in boolean activate_it)

raises (AdapterNonExistent);

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

// Factories for Policy objects

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);

ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);

ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);

RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

// POA attributes

readonly attribute string the_name;
readonly attribute POA the_parent;
readonly attribute POAList the_children;
readonly attribute POAManager the_POAManager;
attribute AdapterActivator the_activator;
CORBA V2.3 IDL for PortableServer module June 1999 11-45

11
// Servant Manager registration:

ServantManager get_servant_manager()
raises (WrongPolicy);

void set_servant_manager(
in ServantManager imgr)

raises (WrongPolicy);

// operations for the USE_DEFAULT_SERVANT policy

Servant get_servant()
raises (NoServant, WrongPolicy);

void set_servant(in Servant p_servant)
raises (WrongPolicy);

// object activation and deactivation

ObjectId activate_object(
in Servant p_servant)

raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id(
in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);

void deactivate_object(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);

// reference creation operations

Object create_reference (
in CORBA::RepositoryId intf)

raises (WrongPolicy);

Object create_reference_with_id (
in ObjectId oid,
in CORBA::RepositoryId intf)

raises (WrongPolicy);

// Identity mapping operations:

ObjectId servant_to_id(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(
in Servant p_servant)
11-46 CORBA V2.3 June 1999

11
raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant(
in Object reference)

raises(ObjectNotActive, Wrongpolicy);

ObjectId reference_to_id(
in Object reference)

raises (WrongAdapter, WrongPolicy);

Servant id_to_servant(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);

Object id_to_reference(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

};

// Current interface

interface Current : CORBA::Current {
pragma version Current 2.3

exception NoContext { };

POA get_POA()
raises (NoContext);

ObjectId get_object_id()
raises (NoContext);

};
};
CORBA V2.3 IDL for PortableServer module June 1999 11-47

11

 with
sion
11.5 UML Description of PortableServer

The following diagrams were generated by an automated tool and then annotated
the cardinalities of the associations. They are intended to be an aid in comprehen
to those who enjoy such representations. They are not normative.

Figure 11-4 UML for main part of PortableServer

PortableServer::AdapterActivator
(from Portable Server)

unknown_adapter()

PortableServer::POAManager
(from Portable Server)

activate()
hold_requests()
discard_requests()
deactivate()

PortableServer::ServantManager
(from Portable Server)

PortableServer::ServantLocator
(from Portable Server)

preinvoke()
postinvoke()

PortableServer::ServantActivator
(from Portable Server)

incarnate()
etherealize()

PortableServer::Cookie
(from Portable Server)

PortableServer::Servant
(from Portable Server)

PortableServer::Current
(from Portable Server)

PortableServer::ObjectId
(from Portable Server)

CORBA::Policy
(from CORBA Core)

Portab leServer::PO A
(from Portab le Server)

CORBA::Current
(from CORBA Core)

get_POA()
get_object_id()

policy_type : CORBA::PolicyType

copy()

destroy()

the_nam e : string
the_parent : PortableServer::PO A

the_m anager : PortableServer::PO AM anager
the_activator : PortableServer::AdapterActivator

create_PO A ()
find_PO A()
destroy()
create_thread_policy()
create_lifespan_policy()
create_id_un iqueness_policy()
create_id_ass ignm ent_po licy()
create_im plicit_activa tion_po licy()
create_servant_retention_policy()
create_request_processing_po licy()
ge t_servant_m anager()
se t_servant_m anager()
ge t_servant()
se t_servant()
activate_ob ject()
activate_ob ject_w ith_ id()
deactivate_ob ject()
create_reference()
create_reference_w ith_ id()
servant_to_id()
servant_to_reference()
re ference_to_servant()
re ference_to_id()
id_ to_servant()
id_ to_reference()

0..n 1

the_parent

1..1
the_manager

1..n

0..n

0..n

0..1

0..1

the_servant_m anager : PortableServer::ServantM anager

get_state()

 the_children : Portab leServer::PO AList

7
enforces

*

11-48 CORBA V2.3 June 1999

11

citly

ctly
trates
Figure 11-5 UML for PortableServer policies

11.6 Usage Scenarios

This section illustrates how different capabilities of the POA may be used in
applications.

Note – In some of the following C++ examples, PortableServer names are not expli
scoped. It is assumed that all the examples have the C++ statement
using namespace PortableServer;

11.6.1 Getting the root POA

All server applications must obtain a reference to the root POA, either to use it dire
to manage objects, or to create new POA objects. The following example demons
how the application server can obtain a reference to the root POA.

// C++
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::Object_ptr pfobj =
orb->resolve_initial_references(“RootPOA”);

= {USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER}

IdAssignmentPolicy

value:IdAssignm entPolicyVa lue
IdUniquessPolicy

value:IdUniquenessPolicyValue

ImplicitActivationPolicy

value:ImpliciActivationPolicyValue

LifespanPolicy

value:LifespanPolicyValue
RequestProcess ingPolicy

va lue:RequestProcessingPolicyValue

ThreadPolicy

value:ThreadPolicyValue

ServantRetentionPolicy

value:ServantRetentionPolicyValue

CORBA::Policy
(from CORBA core)

policy_type : CORBA::PolicyType

copy()
destroy()

= {RETAIN, NON_RETAIN}

= {ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL}

= {IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION}= {UNIQUE_ID, MULTIPLE_ID}= {USER_ID, SYSTEM_ID}

= {TRANSIENT,
PERSISTENT}
CORBA V2.3 Usage Scenarios June 1999 11-49

11

he
hild

nd

eeds
main
e, the
nt.

ct Id
PortableServer::POA_ptr rootPOA;
rootPOA = PortableServer::POA::narrow(pfobj);

11.6.2 Creating a POA

For a variety of reasons, a server application might want to create a new POA. T
POA is created as a child of an existing POA. In this example, it is created as a c
of the root POA.

// C++
CORBA::PolicyList policies(2);
policies.length(2);
policies[0] = rootPOA->create_thread_policy(
PortableServer::ThreadPolicy::ORB_CTRL_MODEL);
policies[1] = rootPOA->create_lifespan_policy(
PortableServer::LifespanPolicy::TRANSIENT);
PortableServer::POA_ptr poa =
rootPOA->create_POA(“my_little_poa”,
PortableServer::POAManager::_nil(), policies);

11.6.3 Explicit Activation with POA-assigned Object Ids

By specifying the SYSTEM_ID policy on a POA, objects may be explicitly activated
through the POA without providing a user-specified identity value. Using this
approach, objects are activated by performing the activate_object operation on the
POA with the object in question. For this operation, the POA allocates, assigns, a
returns a unique identity value for the object.

Generally this capability is most useful for transient objects, where the Object Id n
to be valid only as long as the servant is active in the server. The Object Ids can re
completely hidden and no servant manager need be provided. When this is the cas
identity and lifetime of the servant and the abstract object are essentially equivale
When POA-assigned Object Ids are used with persistent objects or objects that are
activated on demand, the application must be able to associate the generated Obje
value with its corresponding object state.

This example illustrates a simple implementation of transient objects using POA-
assigned Object Ids. It presumes a POA that has the SYSTEM_ID,
USE_SERVANT_MANAGER , and RETAIN policies.

Assume this interface:

// IDL
interface Foo {

long doit();
};

This might result in the generation of the following skeleton:
11-50 CORBA V2.3 June 1999

11

his
rtain
ts
o
or a

be
). If
he
tities

ion
g
class POA_Foo : public ServantBase
{

public:
...

virtual CORBA::Long doit() = 0;
}

Derive your implementation:

class MyFooServant : public POA_Foo
{

public:
MyFooServant(POA_ptr poa, Long value)
: my_poa(POA::_duplicate(poa)), my_value(value) {}
~MyFooServant() {CORBA::release(my_poa);}
virtual POA_ptr _default_POA()

{return POA::_duplicate(my_poa);}
virtual Long doit() {return my_value;}

protected:
POA_ptr my_poa;
Long my_value;

};

Now, somewhere in the program during initialization, probably in main() :

MyFooServant* afoo = new MyFooServant(poa,27);
PortableServer::ObjectId_var oid =

poa->activate_object(afoo);
Foo_var foo = afoo->_this();
poa->the_POAManager()->activate();
orb->run();

This object is activated with a generated Object Id.

11.6.4 Explicit Activation with User-assigned Object Ids

An object may be explicitly activated by a server using a user-assigned identity. T
may be done for several reasons. For example, a programmer may know that ce
objects are commonly used, or act as initial points of contact through which clien
access other objects (for example, factories). The server could be implemented t
create and explicitly activate these objects during initialization, avoiding the need f
servant manager.

If an implementation has a reasonably small number of servants, the server may
designed to keep them all active continuously (as long as the server is executing
this is the case, the implementation need not provide a servant manager. When t
server initializes, it could create all available servants, loading their state and iden
from some persistent store. The POA supports an explicit activation operation,
activate_object_with_id , that associates a servant with an Object Id. This operat
would be used to activate all of the existing objects managed by the server durin
server initialization. Assuming the POA has the USE_SERVANT_MANAGER policy
CORBA V2.3 Usage Scenarios June 1999 11-51

11

A for

em

 is
tions

bject

is

e
ause
e,

s
and no servant manager is associated with a POA, any request received by the PO
an Object Id value not present in the Active Object Map will result in an
OBJECT_ADAPTER exception.

In simple cases of well-known, long-lived objects, it may be sufficient to activate th
with well-known Object Id values during server initialization, before activating the
POA. This approach ensures that the objects are always available when the POA
active, and doesn’t require writing a servant manager. It has severe practical limita
for a large number of objects, though.

This example illustrates the explicit activation of an object using a user-chosen O
Id. This example presumes a POA that has the USER_ID,
USE_SERVANT_MANAGER , and RETAIN policies.

The code is like the previous example, but replace the last portion of the example
shown above with the following code:

// C++
MyFooServant* afoo = new MyFooServant(poa, 27);
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId(“myLittleFoo”);
poa->activate_object_with_id(oid.in(), afoo);
Foo_var foo = afoo->_this();

11.6.5 Creating References before Activation

It is sometimes useful to create references for objects before activating them. Th
example extends the previous example to illustrate this option:

// C++
PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(“myLittleFoo”);
CORBA::Object_var obj = poa->create_reference_with_id(

oid.in(), “IDL:Foo:1.0”);
Foo_var foo = Foo::_narrow(obj);

// ...later...
MyFooServant* afoo = new MyFooServant(poa, 27);
poa->activate_object_with_id(oid.in(), afoo);

11.6.6 Servant Manager Definition and Creation

Servant managers are object implementations, and are required to satisfy all of th
requirements of object implementations necessary for their intended function. Bec
servant managers are local objects, and their use is limited to a single narrow rol
some simplifications in their implementation are possible. Note that these
simplifications are suggestions, not normative requirements. They are intended a
examples of ways to reduce the programming effort required to define servant
managers.
11-52 CORBA V2.3 June 1999

11

ault
-

ted that
licies

 The
A servant manager implementation must provide the following things:

• implementation code for either

• incarnate() and etherealize() , or

• preinvoke() and postinvoke()

• implementation code for the servant operations, as for all servants

The first two are obvious; their content is dictated by the requirements of the
implementation that the servant manager is managing. For the third point, the def
servant manager on the root POA already supplies this implementation code. User
written servant managers will have to provide this themselves.

Since servant managers are objects, they themselves must be activated. It is expec
most servant managers can be activated on the root POA with its default set of po
(see “POA Creation” on page 11-6). It is for this reason that the root POA has the
IMPLICIT_ACTIVATION policy so that a servant manager can easily be activated.
Users may choose to activate a servant manager on other POAs.

The following is an example servant manager to activate objects on demand. This
example presumes a POA that has the USER_ID, USE_SERVANT_MANAGER , and
RETAIN policies.

Since RETAIN is in effect, the type of servant manager used is a ServantActivator.
ORB supplies a servant activator skeleton class in a library:

// C++
namespace POA_PortableServer
{

class ServantActivator : public virtual ServantManager
{

public:
virtual ~ServantActivator();
virtual Servant incarnate(

const ObjectId& POA_ptr poa) = 0;
virtual void etherealize(

const ObjectId&, POA_ptr poa,
Servant, Boolean remaining_activations) = 0;

};
};

A ServantActivator servant manager might then look like:

// C++
class MyFooServantActivator : public

POA_PortableServer::ServantActivator
{

public:
// ...
Servant incarnate(

const ObjectId& oid, POA_ptr poa)
{

CORBA V2.3 Usage Scenarios June 1999 11-53

11

 an
n the
e
ted

sly
 as it

ocess
 that
priate

rvant
lts
h the
String_var s = PortbleServer::ObjectId_to_string
(oid);

if (strcmp(s, “myLittleFoo”) == 0) {
return new MyFooServant(poa, 27);

else {
throw CORBA::OBJECT_NOT_EXIST();

}
}

void etherealize(
const ObjectId& oid,
POA_ptr poa,
Servant servant,
Boolean remaining_activations)

{
if (remaining_activations == 0)

delete servant;
}
// ...

};

11.6.7 Object Activation on Demand

The precondition for this scenario is the existence of a client with a reference for
object with which no servant is associated at the time the client makes a request o
reference. It is the responsibility of the ORB, in collaboration with the POA and th
server application to find or create an appropriate servant and perform the reques
operation on it. Such an object is said to be incarnated (or incarnation) when it has an
active servant. Note that the client had to obtain the reference in question previou
from some source. From the client’s perspective, the abstract object exists as long
holds a reference, until it receives an OBJECT_NOT_EXIST system exception in a
reply from an attempted request on the object. Incarnation state does not imply
existence or non-existence of the abstract object.

Note – This specification does not address the issues of communication or server pr
activation, as they are immaterial to the POA interface and operation. It is assumed
the ORB activates the server if necessary, and can deliver the request to the appro
POA.

To support object activation on demand, the server application must register a se
manager with the appropriate POA. Upon receiving the request, if the POA consu
the Active Object Map and discovers that there is no active servant associated wit
target Object Id, the POA invokes the incarnate operation on the servant manager.
11-54 CORBA V2.3 June 1999

11

est
er
e able
nt
est,
s in
 not
 and
y
ap.

his
that it
s the

r

Id in

n a
ger

ize it

d
uld
Note – An implication that this model has for GIOP is that the object key in the requ
message must encapsulate the Object Id value. In addition, it may encapsulate oth
values as necessitated by the ORB implementation. For example, the server must b
to determine to which POA the request should be directed. It could assign a differe
communication endpoint to each POA so that the POA identity is implicit in the requ
or it could use a single endpoint for the entire server and encapsulate POA identitie
object key values. Note that this is not a concrete requirement; the object key may
actually contain any of those values. Whatever the concrete information is, the ORB
POA must be able to use it to find the servant manager, invoke activate if necessar
(which requires the actual Object Id value), and/or find the active servant in some m

The incarnate invocation passes the Object Id value to the servant manager. At t
point, the servant manager may take any action necessary to produce a servant
considers to be a valid incarnation of the object in question. The operation return
servant to the POA, which invokes the operation on it. The incarnate operation may
alternatively raise an OBJECT_NOT_EXIST system exception that will be returned to
the invoking client. In this way, the user-supplied implementation is responsible fo
determining object existence and non-existence.

After activation, the POA maintains the association of the servant and the Object
the Active Object Map. (This example presumes the RETAIN and
USE_SERVANT_MANAGER policies.)

As an obvious example of transparent activation, the Object Id value could contai
key for a record in a database that contains the object’s state. The servant mana
would retrieve the state from the database, construct a servant of the appropriate
implementation class (assuming an object-oriented programming language), initial
with the state from the database, and return it to the POA.

The example servant manager in the last section (“Servant Manager Definition an
Creation” on page 11-52) could be used for this scenario. Recall that the POA wo
have the USER_ID, USE_SERVANT_MANAGER , and RETAIN policies.

Given such a ServantActivator, all that remains is initialization code such as the
following.

PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(“myLittleFoo”);

CORBA::Object_var obj = poa->create_reference_with_id(
oid, “IDL:foo:1.0”);

MyFooServantActivator* fooIM = new MyFooServantActivator;
ServantActivator_var IMref = fooIM->_this();
poa->set_servant_manager(IMref);
poa->the_POAmanager()->activate();
orb->run();
CORBA V2.3 Usage Scenarios June 1999 11-55

11

h the

 may
ith
OA

he

 same

ed to
es
:

nce

ful
n be

nate

stem.
11.6.8 Persistent Objects with POA-assigned Ids

It is possible to access the Object Id value assigned to an object by the POA, wit
POA::reference_to_id operation. If the reference is for an object managed by the
POA that is the operation’s target, the operation will return the Object Id value,
whether it was assigned by the POA or the user. By doing this, an implementation
provide a servant manager that associates the POA-allocated Object Id values w
persistently stored state. It may also pass the POA-allocated Object Id values to P
operations such as activate_object_with_id and create_reference_with_id .

A POA with the PERSISTENT policy may be destroyed and later reinstantiated in t
same or a different process. A POA with both the SYSTEM_ID and PERSISTENT
policies generates Object Id values that are unique across all instantiations of the
POA.

11.6.9 Multiple Object Ids Mapping to a Single Servant

Each POA is created with a policy that indicates whether or not servants are allow
support multiple object identities simultaneously. If a POA allows multiple identiti
per servant, the POA’s treatment of the servants is affected in the following ways

• Servants of the type may be explicitly activated multiple times with different
identity values without raising an exception.

• A servant cannot be mapped onto or converted to an individual object refere
using that POA, since the identity is potentially ambiguous.

11.6.10 One Servant for all Objects

By using the USE_DEFAULT_SERVANT policy, the developer can create a POA
that will use a single servant to implement all of its objects. This approach is use
when there is very little data associated with each object, so little that the data ca
encoded in the Object Id.

The following example illustrates this approach by using a single servant to incar
all CORBA objects that export a given interface in the context of a server. This
example presumes a POA that has the USER_ID, NON_RETAIN, and
USE_DEFAULT_SERVANT policies.

Two interfaces are defined in IDL. The FileDescriptor interface is supported by
objects that will encapsulate access to operations in a file associated with a file sy
Global operations in a file system, such as the ones necessary to create
FileDescriptor objects, are supported by objects that export the FileSystem
interface.

// IDL
interface FileDescriptor {

typedef sequence<octet> DataBuffer;

long write (in DataBuffer buffer);
DataBuffer read (
11-56 CORBA V2.3 June 1999

11

es

s
in long num_bytes);
void destroy ();

};

interface FileSystem {
...
FileDescriptor open (

in string file_name,
in long flags);

...
};

Implementation of these two IDL interfaces may inherit from static skeleton class
generated by an IDL to C++ compiler as follows:

// C++
class FileDescriptorImpl : public POA_FileDescriptor
{

public:
FileDescriptorImpl(POA_ptr poa);
~FileDescriptorImpl();
POA_ptr _default_POA();
CORBA::Long write(

const FileDescriptor::DataBuffer& buffer);
FileDescriptor::DataBuffer* read(

CORBA::Long num_bytes);
void destroy();

private:
POA_ptr my_poa;

};

class FileSystemImpl : public POA_FileSystem
{

public:
FileSystemImpl(POA_ptr poa);
~FileSystemImpl();
POA_ptr _default_POA();
FileDescriptor_ptr open(

const char* file_name, CORBA::Long flags);
private:

POA_ptr my_poa;
FileDescriptorImpl* fd_servant;

};

A single servant may be used to serve all requests issued to all FileDescriptor objects
created by a FileSystem object. The following fragment of code illustrates the step
to perform when a FileSystem servant is created.

// C++
FileSystemImpl::FileSystemImpl(POA_ptr poa)

: my_poa(POA::_duplicate(poa))
CORBA V2.3 Usage Scenarios June 1999 11-57

11

cal

ent,
e file

e
eing
nd,

 in
 value

ch
rms
{
fd_servant = new FileDescriptorImpl(poa);
poa->set_servant(fd_servant);

};

The following fragment of code illustrates how FileDescriptor objects are created as
a result of invoking an operation (open) exported by a FileSystem object. First, a
local file descriptor is created using the appropriate operating system call. Then a
CORBA object reference is created and returned to the client. The value of the lo
file descriptor will be used to distinguish the new FileDescriptor object from other
FileDescriptor objects. Note that FileDescriptor objects in the example are transi
since they use the value of their file descriptors for their ObjectIds, and of course th
descriptors are only valid for the life of a process.

// C++
FileDescriptor_ptr
FileSystemImpl::open(

const char* file_name, CORBA::Long flags)
{

int fd = ::open(file_name, flags);
ostrstream ostr;
ostr << fd;
PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(ostr.str());
Object_var obj = my_poa->create_reference_with_id(

 oid.in(),"IDL:FileDescriptor:1.0");
return FileDescriptor::_narrow(obj);

};

Any request issued to a FileDescriptor object is handled by the same servant. In th
context of a method invocation, the servant determines which particular object is b
incarnated by invoking an operation that returns a reference to the target object a
after that, invoking POA::reference_to_id . In C++, the operation used to obtain a
reference to the target object is _this() . Typically, the ObjectId value associated
with the reference will be used to retrieve the state of the target object. However,
this example, such a step is not required since the only thing that is needed is the
for the local file descriptor and that value coincides with the ObjectId value associated
with the reference.

Implementation of the read operation is rather simple. The servant determines whi
object it is incarnating, obtains the local file descriptor matching its identity, perfo
the appropriate operating system call, and returns the result in a DataBuffer sequence.

// C++
FileDescriptor::DataBuffer*
FileDescriptorImpl::read(CORBA::Long num_bytes)
{

FileDescriptor_var me = _this();
PortableServer::ObjectId_var oid =

my_poa->reference_to_id(me.in());
CORBA::String_var s =
11-58 CORBA V2.3 June 1999

11

t are
 the

o the
le

esn't

gacy

a

h of
entries
pe of

ting a
PortableServer::ObjectId_to_string(oid.in());
istrstream is(s);
int fd;
is >> fd;
CORBA::Octet* buffer = DataBuffer::alloc_buf(num_bytes);
int len = ::read(fd, buffer, num_bytes);
DataBuffer* result = new DataBuffer(len, len, buffer, 1);
return result;

};

Using a single servant per interface is useful in at least two situations.

• In one case, it may be appropriate for encapsulating access to legacy APIs tha
not object-oriented (system calls in the Unix environment, as we have shown in
example).

• In another case, this technique is useful in handling scalability issues related t
number of CORBA objects that can be associated with a server. In the examp
above, there may be a million FileDescriptor objects in the same server and this
would only require one entry in the ORB. Although there are operating system
limitations in this respect (a Unix server is not able to open so many local file
descriptors) the important point to take into account is that usage of CORBA do
introduce scalability problems but provides mechanisms to handle them.

11.6.11 Single Servant, Many Objects and Types, Using DSI

The ability to associate a single DSI servant with many CORBA objects is rather
powerful in some scenarios. It can be the basis for development of gateways to le
systems or software that mediates with external hardware, for example.

Usage of the DSI is illustrated in the following example. This example presumes
POA that supports the USER_ID, USE_DEFAULT_SERVANT and RETAIN
policies.

A single servant will be used to incarnate a huge number of CORBA objects, eac
them representing a separate entry in a Database. There may be several types of
in the Database, representing different entity types in the Database model. Each ty
entry in the Database is associated with a separate interface which comprises
operations supported by the Database on entries of that type. All these interfaces
inherit from the DatabaseEntry interface. Finally, an object supporting the
DatabaseAgent interface supports basic operations in the database such as crea
new entry, destroying an existing entry, etc.

// IDL
interface DatabaseEntry {

readonly attribute string name;
};

interface Employee : DatabaseEntry {
attribute long id;
CORBA V2.3 Usage Scenarios June 1999 11-59

11
attribute long salary;
};

...

interface DatabaseAgent {
DatabaseEntry create_entry (

in string key,
in CORBA::Identifier entry_type,
in NVPairSequence initial_attribute_values

);

void destroy_entry (
in string key);
...

};

Implementation of the DatabaseEntry interface may inherit from the standard
dynamic skeleton class as follows:

// C++
class DatabaseEntryImpl :

public PortableServer::DynamicImplementation
{

public:
DatabaseEntryImpl (DatabaseAccessPoint db);
virtual void invoke (ServerRequest_ptr request);
~DatabaseEntryImpl ();

virtual POA_ptr _default_POA()
{

return poa;
}

};

On the other hand, implementation of the DatabaseAgent interface may inherit from
a static skeleton class generated by an IDL to C++ compiler as follows:

// C++
class DatabaseAgentImpl :

public DatabaseAgentImplBase
{

protected:
DatabaseAccessPoint mydb;
DatabaseEntryImpl * common_servant;

public:
DatabaseAgentImpl ();
virtual DatabaseEntry_ptr create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values

);
11-60 CORBA V2.3 June 1999

11

inally,

 is

ing

h a
virtual void destroy_entry (const char * key);
~DatabaseAgentImpl ();

};

A single servant may be used to serve all requests issued to all DatabaseEntry
objects created by a DatabaseAgent object. The following fragment of code
illustrates the steps to perform when a DatabaseAgent servant is created. First,
access to the database is initialized. As a result, some kind of descriptor (a
DatabaseAccessPoint local object) used to operate on the database is obtained. F
a servant will be created and associated with the POA.

// C++
void DatabaseAgentImpl::DatabaseAgentImpl ()
{

mydb = ...;
common_servant = new DatabaseEntryImpl(mydb);
poa->set_servant(common_servant);

};

The code used to create DatabaseEntry objects representing entries in the database
similar to the one used for creating FileDescriptor objects in the example of the
previous section. In this case, a new entry is created in the database and the key
associated with that entry will be used to represent the identity for the correspond
DatabaseEntry object. All requests issued to a DatabaseEntry object are handled
by the same servant because references to this type of object are associated wit
common POA created with the USE_DEFAULT_SERVANT policy.

// C++
DatabaseEntry_ptr DatabaseAgentImpl::create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values)

// creates a new entry in the database:
mydb->new_entry (key, ...);

// creates a reference to the CORBA object used to
// encapsulate access to the new entry in the database.
// There is an interface for each entry type:
CORBA::Object_ptr obj = poa->create_reference_with_id(

string_to_ObjectId (key),
identifierToRepositoryId (entry_type),

);

DatabaseEntry_ptr entry = DatabaseEntry::_narrow (obj);
CORBA::release (obj);

return entry;
};
CORBA V2.3 Usage Scenarios June 1999 11-61

11

e
is
te

se in
 the

B at
jects
e:

rios
there
ved).
Any request issued to a DatabaseEntry object is handled by the same servant. In th
context of a method invocation, the servant determines which particular object it
incarnating, obtains the database key matching its identity, invokes the appropria
operation in the database and returns the result as an output parameter in the
ServerRequest object.

Sometimes, a program may need to determine the type of an entry in the databa
order to invoke operations on the entry. If that is the case, the servant may obtain
type of an entry based on the interface supported by the DatabaseEntry object
encapsulating access to that entry. This interface may be obtained by means of
invoking the get_interface operation exported by the reference to the
DatabaseEntry object.

// C++
void DatabaseEntryImpl::invoke (ServerRequest_ptr request)
{

CORBA::Object_ptr current_obj = _this ();

// The servant determines the key associated with
// the database entry represented by current_obj:
PortableServer::ObjectId oid =

poa->reference_to_id (current_obj);
char * key = ObjectId_to_string (oid);

// The servant handles the incoming CORBA request. This
// typically involves the following steps:
// 1. mapping the CORBA request into a database request
// using the key obtained previously
// 2. constructing output parameters to the CORBA request
// from the response to the database request

...
};

Note that in this example, we may have a billion DatabaseEntry objects in a server
requiring only a single entry in map tables supported by the POA (that is, the OR
the server). No permanent storage is required for references to DatabaseEntry ob
at the server. Actually, references to DatabaseEntry objects will only occupy spac

• at clients, as long as those references are used; or

• at the server, only while a request is being served.

Scalability problems can be handled using this technique. There are many scena
where this scalability causes no penalty in terms of performance (basically, when
is no need to restore the state of an object, each time a request to it is being ser
11-62 CORBA V2.3 June 1999

	The Portable Object Adaptor
	11.1 Overview
	11.2 Abstract Model Description
	11.2.1 Model Components
	11.2.2 Model Architecture
	11.2.3 POA Creation
	11.2.4 Reference Creation
	11.2.5 Object Activation States
	11.2.6 Request Processing
	11.2.7 Implicit Activation
	11.2.8 Multi-threading
	11.2.8.1 POA Threading Models
	11.2.8.2 Using the Single Thread Model
	11.2.8.3 Using the ORB Controlled Model
	11.2.8.4 Limitations When Using Multiple Threads

	11.2.9 Dynamic Skeleton Interface
	11.2.10 Location Transparency

	11.3 Interfaces
	11.3.1 The Servant IDL Type
	11.3.2 POAManager Interface
	11.3.2.1 Processing States
	11.3.2.2 Locality Constraints
	11.3.2.3 activate
	11.3.2.4 hold_requests
	11.3.2.5 discard_requests
	11.3.2.6 deactivate
	11.3.2.7 get_state

	11.3.3 AdapterActivator Interface
	11.3.3.1 Locality Constraints
	11.3.3.2 unknown_adapter

	11.3.4 ServantManager Interface
	11.3.4.1 Common information for servant manager types
	11.3.4.2 Locality Constraints

	11.3.5 ServantActivator Interface
	11.3.5.1 incarnate
	11.3.5.2 etherealize

	11.3.6 ServantLocator Interface
	11.3.6.1 preinvoke
	11.3.6.2 postinvoke

	11.3.7 POA Policy Objects
	11.3.7.1 Thread Policy
	11.3.7.2 Lifespan Policy
	11.3.7.3 Object Id Uniqueness Policy
	11.3.7.4 Id Assignment Policy
	11.3.7.5 Servant Retention Policy
	11.3.7.6 Request Processing Policy
	11.3.7.7 Implicit Activation Policy

	11.3.8 POA Interface
	11.3.8.1 Locality Constraints
	11.3.8.2 create_POA
	11.3.8.3 find_POA
	11.3.8.4 destroy
	11.3.8.5 Policy Creation Operations
	11.3.8.6 the_name
	11.3.8.7 the_parent
	11.3.8.8 the_children
	11.3.8.9 the_POAManager
	11.3.8.10 the_activator
	11.3.8.11 get_servant_manager
	11.3.8.12 set_servant_manager
	11.3.8.13 get_servant
	11.3.8.14 set_servant
	11.3.8.15 activate_object
	11.3.8.16 activate_object_with_id
	11.3.8.17 deactivate_object
	11.3.8.18 create_reference
	11.3.8.19 create_reference_with_id
	11.3.8.20 servant_to_id
	11.3.8.21 servant_to_reference
	11.3.8.22 reference_to_servant
	11.3.8.23 reference_to_id
	11.3.8.24 id_to_servant
	11.3.8.25 id_to_reference

	11.3.9 Current operations
	11.3.9.1 get_POA
	11.3.9.2 get_object_id

	11.4 IDL for PortableServer module
	11.5 UML Description of PortableServer
	11.6 Usage Scenarios
	11.6.1 Getting the root POA
	11.6.2 Creating a POA
	11.6.3 Explicit Activation with POA-assigned Object Ids
	11.6.4 Explicit Activation with User-assigned Object Ids
	11.6.5 Creating References before Activation
	11.6.6 Servant Manager Definition and Creation
	11.6.7 Object Activation on Demand
	11.6.8 Persistent Objects with POA-assigned Ids
	11.6.9 Multiple Object Ids Mapping to a Single Servant
	11.6.10 One Servant for all Objects
	11.6.11 Single Servant, Many Objects and Types, Using DSI

