
 ORB Interface 4

-01-
ial
The ORB Interface chapter has been updated based on the CORE changes from
(ptc/98-09-04) and the Objects by Value documents (ptc/98-07-06) and (orbos/98
18). Changes from RTF 2.4 (ptc/99-03-01) and policy management related mater
from the Messaging specification (orbos/98-05-05) have also been incorporated.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 4-2

“The ORB Operations” 4-2

“Object Reference Operations” 4-8

“ValueBase Operations” 4-16

“ORB and OA Initialization and Initial References” 4-16

“ORB Initialization” 4-16

“Obtaining Initial Object References” 4-18

“Current Object” 4-19

“Policy Object” 4-20

“Management of Policy Domains” 4-28

“Thread-Related Operations” 4-33
 CORBA V2.3 June 1999 4-1

4

d

rface
se

e
icit
 that
Base

e not

ke

ecific
4.1 Overview

This chapter introduces the operations that are implemented by the ORB core, an
describes some basic ones, while providing reference to the description of the
remaining operations that are described elsewhere. The ORB interface is the inte
to those ORB functions that do not depend on which object adapter is used. The
operations are the same for all ORBs and all object implementations, and can be
performed either by clients of the objects or implementations. The Object interfac
contains operations that are implemented by the ORB, and are accessed as impl
operations of the Object Reference. The ValueBase interface contains operations
are implemented by the ORB, and are accessed as implicit operations of the Value
Reference.

Because the operations in this section are implemented by the ORB itself, they ar
in fact operations on objects, although they are described that way for the Object or
ValueBase interface operations and the language binding will, for consistency, ma
them appear that way.

4.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and
servers. These operations do not depend on any specific object adapter or any sp
object reference.

module CORBA {

interface NVList; // forward declaration
interface OperationDef; // forward declaration
interface TypeCode; // forward declaration

typedef short PolicyErrorCode;
// for the definition of consts see “PolicyErrorCode” on page 4-22

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;

exception PolicyError {PolicyErrorCode reason;};

typedef string RepositoryId;
typedef string Identifier;

// StructMemberSeq defined in Chapter 10
// UnionMemberSeq defined in Chapter 10
// EnumMemberSeq defined in Chapter 10

typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;
4-2 CORBA V2.3 June 1999

4

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;

};

struct ServiceInformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

};

native ValueFactory;

interface ORB { // PIDL
#pragma version ORB 2.3

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

string object_to_string (
in Object obj

);

Object string_to_object (
in string str

);

// Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,
out NVList new_list

);

void get_default_context (
out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
CORBA V2.3 The ORB Operations June 1999 4-3

4

in RequestSeq req
);

boolean poll_next_response();

void get_next_response(
out Request req

);

// Service information operations

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);

ObjectIdList list_initial_services ();

// Initial reference operation

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

// Type code creation operations

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);
4-4 CORBA V2.3 June 1999

4

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc // deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMembersSeq members

);

TypeCode create_value_box_tc (
in RepositoryId id,
in Identifier name,
in TypeCode boxed_type
CORBA V2.3 The ORB Operations June 1999 4-5

4

);

TypeCode create_native_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_recursive_tc(
in RepositoryId id

);

TypeCode create_abstract_interface_tc(
in RepositoryId id,
in Identifier name

);

// Thread related operations

boolean work_pending();

void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

);

void destroy();

// Policy related operations

Policy create_policy(
in PolicyType type,
in any val

) raises (PolicyError);

// Dynamic Any related operations deprecated and removed
// from primary list of ORB operations

// Value factory operations

ValueFactory register_value_factory(
in RepositoryId id,
in ValueFactory factory

);

void unregister_value_factory(in RepositoryId id);

ValueFactory lookup_value_factory(in RepositoryId id);
};
4-6 CORBA V2.3 June 1999

4

 in

n

ific

ject
stent
ms
};

All types defined in this chapter are part of the CORBA module. When referenced
OMG IDL, the type names must be prefixed by “CORBA:: ”.

The operations object_to_string and string_to_object are described in
“Converting Object References to Strings” on page 4-7.

For a description of the create_list and create_operation_list operations, see
Section 7.4, “List Operations,” on page 7-10. The get_default_context operation is
described in the section Section 7.6.1, “get_default_context,” on page 7-14. The
send_multiple_requests_oneway and send_multiple_requests_deferred
operations are described in the section Section 7.3.2, “send_multiple_requests,” o
page 7-9. The poll_next_response and get_next_response operations are
described in the section Section 7.3.5, “get_next_response,” on page 7-10.

The list_intial_services and resolve_initial_references operations are described
in “Obtaining Initial Object References” on page 4-18.

The Type code creation operations with names of the form create_<type>_tc are
described in Section 10.7.3, “Creating TypeCodes,” on page 10-53.

The work_pending , perform_work , shutdown , destroy and run operations are
described in “Thread-Related Operations” on page 4-33.

The create_policy operations is described in “Create_policy” on page 4-23.

The register_value_factory , unregister_value_factory and
lookup_value_factory operations are described in Section 5.4.3, “Language Spec
Value Factory Requirements,” on page 5-9.

4.2.1 Converting Object References to Strings

4.2.1.1 object_to_string

string object_to_string (
in Object obj

);

4.2.1.2 string_to_object

Object string_to_object (
in string str

);

Because an object reference is opaque and may differ from ORB to ORB, the ob
reference itself is not a convenient value for storing references to objects in persi
storage or communicating references by means other than invocation. Two proble
CORBA V2.3 The ORB Operations June 1999 4-7

4

t can
rned

 that

 on

A

ble

e is
RB).

ions in
on to
ect
bove,
must be solved: allowing an object reference to be turned into a value that a clien
store in some other medium, and ensuring that the value can subsequently be tu
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string . The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently, the string_to_object operation will
accept a string produced by object_to_string and return the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference,
ORB’s object_to_string operation must be used to produce the string. For all
conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same
object, if the two operations are performed on the same ORB. For all conforming
ORB's supporting IOP, this remains true even if the two operations are performed
different ORBs.

4.2.2 Getting Service Information

4.2.2.1 get_service_information

boolean get_service_information (
in ServiceType service_type;
out ServiceInformation service_information;

);

The get_service_information operation is used to obtain information about CORB
facilities and services that are supported by this ORB. The service type for which
information is being requested is passed in as the in parameter service_type , the
values defined by constants in the CORBA module. If service information is availa
for that type, that is returned in the out parameter service_information , and the
operation returns the value TRUE. If no information for the requested services typ
available, the operation returns FALSE (i.e., the service is not supported by this O

4.3 Object Reference Operations

There are some operations that can be done on any object. These are not operat
the normal sense, in that they are implemented directly by the ORB, not passed
the object implementation. We will describe these as being operations on the obj
reference, although the interfaces actually depend on the language binding. As a
where we used interface Object to represent the object reference, we define an
interface for Object :

module CORBA {

interface DomainManager; // forward declaration
typedef sequence <DomainManager> DomainManagersList;
4-8 CORBA V2.3 June 1999

4

interface Policy; // forward declaration
typedef sequence <Policy> PolicyList;
typedef unsigned long PolicyType;

interface Context; // forward declaration

typedef string Identifier;
interface Request; // forward declaration
interface NVList; // forward declaration
struct NamedValue{}; // an implicitly well known type
typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

interface Object { // PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

boolean is_a (
in string logical_type_id

);

boolean non_existent();

boolean is_equivalent (
in Object other_object

);

unsigned long hash(
in unsigned long maximum

);

void create_request (
in Context ctx
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flag

);

Policy get_policy (
in PolicyType policy_type

);
CORBA V2.3 Object Reference Operations June 1999 4-9

4

ess to

 the

tory.
nts

clients

ate,
 was
DomainManagersList get_domain_managers ();

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

);
};

};

The create_request operation is part of the Object interface because it creates a
pseudo-object (a Request) for an object. It is described with the other Request
operations in the section Section 7.2, “Request Operations,” on page 7-4.

Unless otherwise stated below, the operations in the IDL above do not require acc
remote information.

4.3.1 Determining the Object Interface

4.3.1.1 get_interface

InterfaceDef get_interface();

An operation on the object reference, get_interface , returns an object in the Interface
Repository, which provides type information that may be useful to a program. See
Interface Repository chapter for a definition of operations on the Interface Reposi
The implementation of this operation may involve contacting the ORB that impleme
the target object.

4.3.2 Duplicating and Releasing Copies of Object References

4.3.2.1 duplicate

Object duplicate();

4.3.2.2 release

void release();

Because object references are opaque and ORB-dependent, it is not possible for
or implementations to allocate storage for them. Therefore, there are operations
defined to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the duplic
and that the implementation cannot distinguish whether the original or a duplicate
used in a particular request.
4-10 CORBA V2.3 June 1999

4

ot
d by

ver

 if

il at
e
his

y
 in
pe
When an object reference is no longer needed by a program, its storage may be
reclaimed by use of the release operation. Note that the object implementation is n
involved, and that neither the object itself nor any other references to it are affecte
the release operation.

4.3.3 Nil Object References

4.3.3.1 is_nil

boolean is_nil();

An object reference whose value is OBJECT_NIL denotes no object. An object
reference can be tested for this value by the is_nil operation. The object
implementation is not involved in the nil test.

4.3.4 Equivalence Checking Operation

4.3.4.1 is_a

boolean is_a(
in RepositoryId logical_type_id

);

An operation is defined to facilitate maintaining type-safety for object references o
the scope of an ORB.

The logical_type_id is a string denoting a shared type identifier (RepositoryId).
The operation returns true if the object is really an instance of that type, including
that type is an ancestor of the “most derived” type of that object.

Determining whether an object's type is compatible with the logical_type_id may
require contacting a remote ORB or interface repository. Such an attempt may fa
either the local or the remote end. If is_a cannot make a reliable determination of typ
compatibility due to failure, it raises an exception in the calling application code. T
enables the application to distinguish among the TRUE, FALSE , and indeterminate
cases.

This operation exposes to application programmers functionality that must alread
exist in ORBs which support “type safe narrow” and allows programmers working
environments that do not have compile time type checking to explicitly maintain ty
safety.

4.3.5 Probing for Object Non-Existence

4.3.5.1 non_existent

boolean non_existent ();
CORBA V2.3 Object Reference Operations June 1999 4-11

4

ther

nt
e” to
, as a
e,

 the
n-

t
o

s,
e not

joint
e
ance

y be

h

t
h
The non_existent operation may be used to test whether an object (e.g., a proxy
object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (ra
than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively that
the object does not exist; otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, eve
channels, and base relationship services, might use this operation in their “idle tim
sift through object tables for objects that no longer exist, deleting them as they go
form of garbage collection. In the case of proxies, this kind of activity can cascad
such that cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements
target object. Such an attempt may fail at either the local or the remote end. If no
existent cannot make a reliable determination of object existence due to failure, i
raises an exception in the calling application code. This enables the application t
distinguish among the true, false, and indeterminate cases.

4.3.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object reference
services need to support a notion of object reference identity. Such services includ
just bridges, but relationship services and other layered facilities.

Two identity-related operations are provided. One maps object references into dis
groups of potentially equivalent references, and the other supports more expensiv
pairwise equivalence testing. Together, these operations support efficient mainten
and search of tables keyed by object references.

4.3.6.1 Hashing Object Identifiers

hash

unsigned long hash(
in unsigned long maximum

);

Object references are associated with ORB-internal identifiers which may indirectl
accessed by applications using the hash operation. The value of this identifier does
not change during the lifetime of the object reference, and so neither will any has
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another objec
reference may return the same hash value. However, if two object references has
differently, applications can determine that the two object references are not identical.
4-12 CORBA V2.3 June 1999

4

sh
l use

e

could
t

bject

inct

can
n
are
ects.

able.

hers

icy

The maximum parameter to the hash operation specifies an upper bound on the ha
value returned by the ORB. The lower bound of that value is zero. Since a typica
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and th
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there
be many proxy objects representing a given “real” object. Those proxies would no
necessarily hash to the same value.

4.3.6.2 Equivalence Testing

is_equivalent

boolean is_equivalent(
in Object other_object

);

The is_equivalent operation is used to determine if two object references are
equivalent, so far as the ORB can easily determine. It returns TRUE if the target o
reference is known to be equivalent to the other object reference passed as its
parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object
references which in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two dist
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service,
make such determination impractically expensive. This means that a FALSE retur
from is_equivalent should be viewed as only indicating that the object references
distinct, and not necessarily an indication that the references indicate distinct obj

A typical application use of this operation is to match object references in a hash t
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, ot
during idle time.

4.3.7 Getting Policy Associated with the Object

4.3.7.1 get_policy

The get_policy operation returns the policy object of the specified type (see “Pol
Object” on page 4-20), which applies to this object. It returns the effective Policy for
the object reference. The effective Policy is the one that would be used if a request
were made. This Policy is determined first by obtaining the effective override for the
PolicyType as returned by get_client_policy . The effective override is then
compared with the Policy as specified in the IOR. The effective Policy is the
CORBA V2.3 Object Reference Operations June 1999 4-13

4

ing:

mpt

se
 type

on

er

rride
intersection of the values allowed by the effective override and the IOR-specified
Policy . If the intersection is empty, the system exception INV_POLICY is raised.
Otherwise, a Policy with a value legally within the intersection is returned as the
effective Policy . The absence of a Policy value in the IOR implies that any legal value
may be used. Invoking non_existent on an object reference prior to get_policy
ensures the accuracy of the returned effective Policy . If get_policy is invoked prior
to the object reference being bound, the returned effective Policy is implementation
dependent. In that situation, a compliant implementation may do any of the follow
raise the system exception BAD_INV_ORDER, return some value for that
PolicyType which may be subject to change once a binding is performed, or atte
a binding and then return the effective Policy . Note that if the effective Policy may
change from invocation to invocation due to transparent rebinding.

Policy get_policy (
in PolicyType policy_type

);

Parameter(s)
policy_type - The type of policy to be obtained.

Return Value

A Policy object of the type specified by the policy_type parameter.

Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either becau
the specified type is not supported by this ORB or because a policy object of that
is not associated with this Object.

The implementation of this operation may involve remote invocation of an operati
(e.g. DomainManager::get_domain_policy for some security policies) for some
policy types.

4.3.8 Overriding Associated Policies on an Object Reference

4.3.8.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new
policies associated with it. It takes two input parameters. The first parameter policies
is a sequence of references to Policy objects. The second parameter set_add of type
SetOverrideType indicates whether these policies should be added onto any oth
overrides that already exist (ADD_OVERRIDE) in the object reference, or they should
be added to a clean override free object reference (SET_OVERRIDE). This operation
associates the policies passed in the first parameter with a newly created object
reference that it returns. Only certain policies that pertain to the invocation of an
operation at the client end can be overridden using this operation. Attempts to ove
any other policy will result in the raising of the CORBA::NO_PERMISSION
exception.
4-14 CORBA V2.3 June 1999

4

 of

e

cy

ins”

ain
ith at

nts
enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

);

Parameter(s)

policies - a sequence of Policy objects that are to be associated with the new copy
the object reference returned by this operation

set_add - whether the association is in addition to (ADD_OVERRIDE) or as
replacement of (SET_OVERRIDE) any existing overrides already associated with th
object reference.

Return Value

A copy of the object reference with the overrides from policies associated with it in
accordance with the value of set_add .

Exception(s)

CORBA::NO_PERMISSION - raised when an attempt is made to override any poli
that cannot be overridden.

4.3.9 Getting the Domain Managers Associated with the Object

4.3.9.1 get_domain_managers

The get_domain_managers operation allows administration services (and
applications) to retrieve the domain managers (see “Management of Policy Doma
on page 4-28), and hence the security and other policies applicable to individual
objects that are members of the domain.

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one dom
manager is always returned in the list since by default each object is associated w
least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that impleme
the target object.
CORBA V2.3 Object Reference Operations June 1999 4-15

4

value
tually

.

s.

).

BA

ace

t the
root
nd
A
4.4 ValueBase Operations

ValueBase serves a similar role for value types that Object serves for interfaces. Its
mapping is language-specific and must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all
types. Any operations that are required to be supported for all values are concep
defined on ValueBase , although in reality their actual mapping depends upon the
specifics of any particular language mapping.

Analogous to the definition of the Object interface for implicit operations of object
references, the implicit operations of ValueBase are defined on a pseudo-valuetype
as follows:

module CORBA {
valuetype ValueBase{ PIDL

ValueDef get_value_def();
};

};

The get_value_def () operation returns a description of the value’s definition as
described in the interface repository (Section 10.5.24, “ValueDef,” on page 10-34)

4.5 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:

• Be initialized into the ORB and possibly the object adapter (POA) environment

• Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including the root POA or some Object Adapter objects

The following operations are provided to initialize applications and obtain the
appropriate object references:

• Operations providing access to the ORB. These operations reside in the COR
module, but not in the ORB interface and are described in Section 4.6, “ORB
Initialization,” on page 4-16.

• Operations providing access to Object Adapters, Interface Repository, Naming
Service, and other Object Services. These operations reside in the ORB interf
and are described in Section 4.7, “Obtaining Initial Object References,” on
page 4-18.

4.6 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to ge
ORB pseudo-object reference and possibly an OA object reference (such as the
POA). This serves two purposes. First, it initializes an application into the ORB a
OA environments. Second, it returns the ORB pseudo-object reference and the O
object reference to the application for use in future ORB and OA operations.
4-16 CORBA V2.3 June 1999

4

fore

tion
is is

 The
ld.
.

is
nces

 the

n is

ot
e
lti-

mes

 This

ssary
eters
The ORB and OA initialization operations must be ordered with ORB occurring be
OA: an application cannot call OA initialization routines until ORB initialization
routines have been called for the given ORB. The operation to initialize an applica
in the ORB and get its pseudo-object reference is not performed on an object. Th
because applications do not initially have an object on which to invoke operations.
ORB initialization operation is an application’s bootstrap call into the CORBA wor
The ORB_init call is part of the CORBA module but not part of the ORB interface

Applications can be initialized in one or more ORBs. When an ORB initialization
complete, its pseudo reference is returned and can be used to obtain other refere
for that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init
operation. The parameters to the call comprise an identifier for the ORB for which
pseudo-object reference is required, and an arg_list , which is used to allow
environment-specific data to be passed into the call. PIDL for the ORB initializatio
as follows:

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

};

The identifier for the ORB will be a name of type CORBA::ORBid . All ORBid
strings other than the empty string are allocated by ORB administrators and are n
managed by the OMG. ORBid strings other than the empty string are intended to b
used to uniquely identify each ORB used within the same address space in a mu
ORB application. These special ORBid strings are specific to each ORB
implementation and the ORB administrator is responsible for ensuring that the na
are unambiguous.

If an empty ORBid string is passed to ORB_init , then the arg_list arguments shall be
examined to determine if they indicate an ORB reference that should be returned.
is achieved by searching the arg_list parameters for one preceded by “-ORBid ” for
example, “-ORBid example_orb ” (the white space after the “-ORBid ” tag is
ignored) or “-ORBidMyFavoriteORB ” (with no white space following the “-ORBid ”
tag). Alternatively, two sequential parameters with the first being the string “-ORBid ”
indicates that the second is to be treated as an ORBid parameter. If an empty string is
passed and no arg_list parameters indicate the ORB reference to be returned, the
default ORB for the environment will be returned.

Other parameters of significance to the ORB can also be identified in arg_list , for
example, “Hostname ,” “ SpawnedServer ,” and so forth. To allow for other
parameters to be specified without causing applications to be re-written, it is nece
to specify the parameter format that ORB parameters may take. In general, param
shall be formatted as either one single arg_list parameter:

–ORB<suffix><optional white space> <value>
CORBA V2.3 ORB Initialization June 1999 4-17

4

n. If

RB
rings
,

ame
nt

ces.

d

ming

,
fined
l well-
 be

e
or as two sequential arg_list parameters:

-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init ,
the arg_list arguments are examined to determine if any ORB parameters are give
a non-empty ORBid string is passed to ORB_init , all ORBid parameters in the
arg_list are ignored. All other -ORB<suffix> parameters in the arg_list may be of
significance during the ORB initialization process.

Before ORB_init returns, it will remove from the arg_list parameter all strings that
match the -ORB<suffix> pattern described above and that are recognized by that O
implementation, along with any associated sequential parameter strings. If any st
in arg_list that match this pattern are not recognized by the ORB implementation
ORB_init will raise the BAD_PARAM system exception instead.

The ORB_init operation may be called any number of times and shall return the s
ORB reference when the same ORBid string is passed, either explicitly as an argume
to ORB_init or through the arg_list . All other -ORB<suffix> parameters in the
arg_list may be considered on subsequent calls to ORB_init .

4.7 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object referen
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in the Portable Object
Adaptor chapter; the Interface Repository is described in the Interface Repository
chapter; Object Services are described in CORBAservices: Common Object Services
Specification.) The functionality required by the application is similar to that provide
by the Naming Service. However, the OMG does not want to mandate that the Na
Service be made available to all applications in order that they may be portably
initialized. Consequently, the operations shown in this section provide a simplified
local version of the Naming Service that applications can use to obtain a small, de
set of object references which are essential to its operation. Because only a smal
defined set of objects are expected with this mechanism, the naming context can
flattened to be a single-level name space. This simplification results in only two
operations being defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are
provided in the ORB pseudo-object interface, providing facilities to list and resolv
initial object references.

list_initial_services

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
ObjectIdList list_initial_services ();
4-18 CORBA V2.3 June 1999

4

nents

tain

B
, the
h

the

le at
the

ce

n is
resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

The resolve_initial_references operation is an operation on the ORB rather than
the Naming Service’s NamingContext . The interface differs from the Naming
Service’s resolve in that ObjectId (a string) replaces the more complex Naming
Service construct (a sequence of structures containing string pairs for the compo
of the name). This simplification reduces the name space to one context.

ObjectIds are strings that identify the object whose reference is required. To main
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the OR
identifiers, the ObjectId name space requires careful management. To achieve this
OMG may, in the future, define which services are required by applications throug
this interface and specify names for those services.

Currently, reserved ObjectIds are RootPOA , POACurrent , InterfaceRepository,
NameService , TradingService , SecurityCurrent , TransactionCurrent, and
DynAnyFactory .

To allow an application to determine which objects have references available via
initial references mechanism, the list_initial_services operation (also a call on the
ORB) is provided. It returns an ObjectIdList , which is a sequence of ObjectIds .
ObjectIds are typed as strings. Each object, which may need to be made availab
initialization time, is allocated a string value to represent it. In addition to defining
id, the type of object being returned must be defined (i.e., “InterfaceRepository ”
returns an object of type Repository , and “NameService ” returns a
CosNamingContext object).

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type which was requested in the ObjectId. For
example, for InterfaceRepository the object returned would be narrowed to
Repository type.

In the future, specifications for Object Services (in CORBAservices: Common Object
Services Specification) will state whether it is expected that a service’s initial referen
be made available via the resolve_initial_references operation or not (i.e., whether
the service is necessary or desirable for bootstrap purposes).

4.8 Current Object

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running. This informatio
accessed in a structured manner using interfaces derived from the Current interface
defined in the CORBA module.
CORBA V2.3 Current Object June 1999 4-19

4

 the

oose

d

, and
.

ill

ffect
s

 to do
Each ORB or CORBA service that needs its own context derives an interface from
CORBA module's Current . Users of the service can obtain an instance of the
appropriate Current interface by invoking ORB::resolve_initial_references . For
example the Security service obtains the Current relevant to it by invoking

ORB::resolve_initial_references(“SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may ch
to do so.

module CORBA {
// interface for the Current object
interface Current {
};

};

Operations on interfaces derived from Current access state associated with the threa
in which they are invoked, not state associated with the thread from which the Current
was obtained. This prevents one thread from manipulating another thread's state
avoids the need to obtain and narrow a new Current in each method's thread context

Current objects must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. Current s are per-process singleton objects, so
no destroy operation is needed.

4.9 Policy Object

4.9.1 Definition of Policy Object

An ORB or CORBA service may choose to allow access to certain choices that a
its operation. This information is accessed in a structured manner using interface
derived from the Policy interface defined in the CORBA module. A CORBA service
does not have to use this method of accessing operating options, but may choose
so. The Security Service in particular uses this technique for associating Security Policy
with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition
interface Policy {

readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

};

typedef sequence <Policy> PolicyList;
};
4-20 CORBA V2.3 June 1999

4

e

”

o a

t

 that

t to

PolicyType defines the type of Policy object. In general the constant values that ar
allocated are defined in conjunction with the definition of the corresponding Policy
object. The values of PolicyTypes for policies that are standardized by OMG are
allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType
values identified by a 20 bit Vendor PolicyType Valueset ID (VPVID) for their own use.

PolicyType which is an unsigned long consists of the 20-bit VPVID in the high order
20 bits, and the vendor assigned policy value in the low order 12 bits. The VPVIDs 0
through \xf are reserved for OMG. All values for the standard PolicyTypes are
allocated within this range by OMG. Additionally, the VPVIDs \xfffff is reserved for
experimental use and OMGVMCID (Section 3.17.1, “Standard Exception Definitions,
on page 3-52) is reserved for OMG use. These will not be allocated to anybody.
Vendors can request allocation of VPVID by sending mail to tag-request@omg.org.

When a VMCID (Section 3.17, “Standard Exceptions,” on page 3-51) is allocated t
vendor automatically the same value of VPVID is reserved for the vendor and vice
versa. So once a vendor gets either a VMCID or a VPVID registered they can use tha
value for both their minor codes and their policy types.

4.9.1.1 Copy

Policy copy();

Return Value

This operation copies the policy object. The copy does not retain any relationships
the policy had with any domain, or object.

4.9.1.2 Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of the policy objec
determine whether it can be destroyed.

Exception(s)

CORBA::NO_PERMISSION - raised when the policy object determines that it cannot be
destroyed.

4.9.1.3 Policy_type

readonly attribute policy_type

Return Value

This readonly attribute returns the constant value of type PolicyType that corresponds
to the type of the Policy object.
CORBA V2.3 Policy Object June 1999 4-21

4

 as
4.9.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objects is provided
described in this section.

module CORBA {

typedef short PolicyErrorCode;
const PolicyErrorCode BAD_POLICY = 0;
const PolicyErrorCode UNSUPPORTED_POLICY = 1;
const PolicyErrorCode BAD_POLICY_TYPE = 2;
const PolicyErrorCode BAD_POLICY_VALUE = 3;
const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;

exception PolicyError {PolicyErrorCode reason;};

interface ORB {

.....

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);
};

};

4.9.2.1 PolicyErrorCode

A request to create a Policy may be invalid for the following reasons:

BAD_POLICY - the requested Policy is not understood by the ORB.

UNSUPPORTED_POLICY - the requested Policy is understood to be valid by the
ORB, but is not currently supported.

BAD_POLICY_TYPE - The type of the value requested for the Policy is not valid for
that PolicyType .

BAD_POLICY_VALUE - The value requested for the Policy is of a valid type but is
not within the valid range for that type.

UNSUPPORTED_POLICY_VALUE - The value requested for the Policy is of a valid
type and within the valid range for that type, but this valid value is not currently
supported.

4.9.2.2 PolicyError

exception PolicyError {PolicyErrorCode reason;};
4-22 CORBA V2.3 June 1999

4

 to

y

d
s

tial

 is

licy,

y
t
PolicyError exception is raised to indicate problems with parameter values passed
the ORB::create_policy operation. Possible reasons are described above.

4.9.2.3 INV_POLICY

exception INV_POLICY

Due to an incompatibility between Policy overrides, the invocation cannot be made.
This is a standard system exception that can be raised from any invocation.

4.9.2.4 Create_policy

The ORB operation create_policy can be invoked to create new instances of polic
objects of a specific type with specified initial state. If create_policy fails to
instantiate a new Policy object due to its inability to interpret the requested type an
content of the policy, it raises the PolicyError exception with the appropriate reason a
described in “PolicyErrorCode” on page 4-22.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameter(s)
type - the PolicyType of the policy object to be created.

val - the value that will be used to set the initial state of the Policy object that is created.

ReturnValue

Reference to a newly created Policy object of type specified by the type parameter
and initialized to a state specified by the val parameter.

Exception(s)

PolicyError - raised when the requested policy is not supported or a requested ini
state for the policy is not supported.

When new policy types are added to CORBA or CORBA Services specification, it
expected that the IDL type and the valid values that can be passed to create_policy
also be specified.

4.9.3 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific po
with an interface derived from the policy interface. The type of the Policy object
determines how the policy information contained within it is used. Usually a Polic
object is associated with another object to associate the contained policy with tha
object.
CORBA V2.3 Policy Object June 1999 4-23

4

OA,
f
ct

jects

ith

use

tion
B

. The
tion
,

nt

ated

local

rence

cates
bject
 with

.
y
Objects with which policy objects are typically associated are Domain Managers, P
the execution environment, both the process/capsule/ORB instance and thread o
execution (Current object) and object references. Only certain types of policy obje
can be meaningfully associated with each of these types of objects.

These relationships are documented in sections that pertain to these individual ob
and their usages in various core facilities and object services. The use of Policy
Objects with the POA are discussed in the Portable Object Adaptor chapter. The use of
Policy objects in the context of the Security services, involving their association w
Domain Managers as well as with the Execution Environment are discussed in
CORBAservices, Security Service chapter.

In the following section the association of Policy objects with the Execution
Environment is discussed. In “Management of Policy Domains” on page 4-28 the
of Policy objects in association with Domain Managers is discussed.

4.9.4 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (e.g., QOP, Mechanism, invoca
credentials etc.) are associated by default with the process/capsule(RM-ODP)/OR
instance (hereinafter referred to as “capsule”) when the application is instantiated
together with the capsule. By default these policies are applicable whenever an
invocation of an operation is attempted by any code executing in the said capsule
Security service provides operations for modulating these policies on a per-execu
thread basis using operations in the Current interface. Certain of these policies (e.g.
invocation credentials, qop, mechanism etc.) which pertain to the invocation of an
operation through a specific object reference can be further modulated at the clie
end, using the set_policy_overrides operation of the Object reference. For a
description of this operation see “Overriding Associated Policies on an Object
Reference” on page 4-14. It associates a specified set of policies with a newly cre
object reference that it returns.

The association of these overridden policies with the object reference is a purely
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. the associations last until the object refe
in the capsule is destroyed or the capsule in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent dupli
of this new object reference apply to all invocations that are done through these o
references. The overridden policies apply even when the default policy associated
Current is changed. It is always possible that the effective policy on an object
reference at any given time will fail to be successfully applied, in which case the
invocation attempt using that object reference will fail and return a
CORBA::NO_PERMISSION exception. Only certain policies that pertain to the
invocation of an operation at the client end can be overridden using this operation
These are listed in the Security specification. Attempts to override any other polic
will result in the raising of the CORBA::NO_PERMISSION exception.
4-24 CORBA V2.3 June 1999

4

n
y
then
f
le is
ct of

re

tial
a
will

f

s
y

In general the policy of a specific type that will be used in an invocation through a
specific object reference using a specific thread of execution is determined first b
determining if that policy type has been overridden in that object reference. if so
the overridden policy is used. if not then if the policy has been set in the thread o
execution then that policy is used. If not then the policy associated with the capsu
used. For policies that matter, the ORB ensures that there is a default policy obje
each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not
available to use with an operation invocation.

4.9.5 Specification of New Policy Objects

When new PolicyType s are added to CORBA specifications, the following details
must be defined. It must be clearly stated which particular uses of a new policy a
legal and which are not:

• Specify the assigned CORBA::PolicyType and the policy's interface definition.

• If the Policy can be created through CORBA::ORB::create_policy , specify the
allowable values for the any argument 'val' and how they correspond to the ini
state/behavior of that Policy (such as initial values of attributes). For example, if
Policy has multiple attributes and operations, it is most likely that create_policy
receive some complex data for the implementation to initialize the state of the
specific policy:

//IDL
struct MyPolicyRange {

 long low;
 long high;

};

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

 readonly attribute long low;
 readonly attribute long high;

};

If this sample MyPolicy can be constructed via create_policy, the specification o
MyPolicy will have a statement such as: “When instances of MyPolicy are created,
a value of type MyPolicyRang e is passed to CORBA::ORB::create_policy and
the resulting MyPolicy's attribute 'low' has the same value as the MyPolicyRange
member 'low' and attribute 'high' has the same value as the MyPolicyRange
member 'high'.

• If the Policy can be passed as an argument to POA::create_POA , specify the
effects of the new policy on that POA. Specifically define incompatibilities (or
inter-dependencies) with other POA policies, effects on the behavior of invocation
on objects activated with the POA, and whether or not presence of the POA polic
implies some IOR profile/component contents for object references created with
CORBA V2.3 Policy Object June 1999 4-25

4

ient
y
ct
ice

are
xact

ce
s an

res.

ed.

or
 be
e

ase,

f
that POA. If the POA policy implies some addition/modification to the object
reference it is marked as “client-exposed” and the exact details are specified
including which profiles are affected and how the effects are represented.

• If the component which is used to carry this information. can be set within a cl
to tune the client's behavior, specify the policy's effects on the client specificall
with respect to (a) establishment of connections and reconnections for an obje
reference; (b) effects on marshaling of requests; (c) effects on insertion of serv
contexts into requests; (d) effects upon receipt of service contexts in replies. In
addition, incompatibilities (or inter-dependencies) with other client-side policies
stated. For policies that cause service contexts to be added to requests, the e
details of this addition are given.

• If the Policy can be used with POA creation to tune IOR contents and can also be
specified (overridden) in the client, specify how to reconcile the policy's presen
from both the client and server. It is strongly recommended to avoid this case! A
exercise in completeness, most POA policies can probably be extended to have
some meaning in the client and vice versa, but this does not help make usable
systems, it just makes them more complicated without adding really useful featu
There are very few cases where a policy is really appropriate to specify in both
places, and for these policies the interaction between the two must be describ

• Pure client-side policies are assumed to be immutable. This allows efficient
processing by the runtime that can avoid re-evaluating the policy upon every
invocation and instead can perform updates only when new overrides are set (
policies change due to rebind). If the newly specified policy is mutable, it must
clearly stated what happens if non-readonly attributes are set or operations ar
invoked that have side-effects.

• For certain policy types, override operations may be disallowed. If this is the c
the policy specification must clearly state what happens if such overrides are
attempted.

4.9.6 Standard Policies

Table 4-1 below lists the standard policy types that are defined by various parts o
CORBA and CORBA Services in this version of CORBA.

Table 4-1 Standard Policy Types

Policy Type Policy Interface Defined in
Sect./Page

Uses
create_
policy

SecClientInvocationAccess SecurityAdmin::AccessPolicy Security Service No

SecTargetInvocationAccess SecurityAdmin::AccessPolicy Security Service No

SecApplicationAccess SecurityAdmin::AccessPolicy Security Service No

SecClientInvocationAudit SecurityAdmin::AuditPolicy Security Service No

SecTargetInvocationAudit SecurityAdmin::AuditPolicy Security Service No
4-26 CORBA V2.3 June 1999

4

SecApplicationAudit SecurityAdmin::AuditPolicy Security Service No

SecDelegation SecurityAdmin::DelegationPolicy Security Service No

SecClientSecureInvocation SecurityAdmin::SecureInvocationPolicy Security Service No

SecTargetSecureInvocation SecurityAdmin::SecureInvocationPolicy Security Service No

SecNonRepudiation NRService::NRPolicy Security Service No

SecConstruction CORBA::SecConstruction CORBA Core - ORB
Interface chapter

No

SecMechanismPolicy SecurityLevel2::MechanismPolicy Security Service Yes

SecInvocationCredentialsPolicy SecurityLevel2::InvocationCredentialsPolicy Security Service Yes

SecFeaturesPolicy SecurityLevel2::FeaturesPolicy Security Service Yes

SecQOPPolicy SecurityLevel2::QOPPolicy Security Service Yes

THREAD_POLICY_ID PortableServer::ThreadPolicy CORBA Core -
Portable Object
Adapter chapter

Yes

LIFESPAN_POLICY_ID PortableServer::LifespanPolicy CORBA Core -
Portable Object
Adapter chapter
Core Chapter 11

Yes

ID_UNIQUENESS_POLICY_ID PortableServer::IdUniquenessPolicy CORBA Core -
Portable Object
Adapter chapter
Core Chapter 11

Yes

ID_ASSIGNMENT_POLICY_ID PortableServer::IdAssignmentPolicy CORBA Core -
Portable Object
Adapter chapter

Yes

IMPLICIT_ACTIVATION_POLICY_ID PortableServer::ImplicitActivationPolicy CORBA Core -
Portable Object
Adapter chapter

Yes

SERVENT_RETENTION_POLICY_ID PortableServer::ServentRetentionPolicy CORBA Core -
Portable Object
Adapter chapter

Yes

REQUEST_PROCESSING_POLICY_ID PortableServer::RequestProcessingPolicy CORBA Core -
Portable Object
Adapter chapter

Yes

BIDIRECTIONAL_POLICY_TYPE BiDirPolicy::BidirectionalPolicy CORBA Core -
General Inter-ORB
Protocol chapter

Yes

SecDelegationDirectivePolicy SecurityLevel2::DelegtionDirectivePolicy Security Service Yes

SecEstablishTrustPolicy SecurityLevel2::EstablishTrustPolicy Security Service Yes

Table 4-1 Standard Policy Types

Policy Type Policy Interface Defined in
Sect./Page

Uses
create_
policy
CORBA V2.3 Policy Object June 1999 4-27

4

e this
ribing

in
nd
ect
more
cale
her

in
ain

add
sibly

in a
he

ach.
licy
ted

icy,

ject

ion
ences
4.10 Management of Policy Domains

4.10.1 Basic Concepts

This section describes how policies, such as security policies, are associated with
objects that are managed by an ORB. The interfaces and operations that facilitat
aspect of management is described in this section together with the section desc
Policy objects.

4.10.1.1 Policy Domain

A policy domain is a set of objects to which the policies associated with that doma
apply. These objects are the domain members. The policies represent the rules a
criteria that constrain activities of the objects which belong to the domain. On obj
reference creation, the ORB implicitly associates the object reference with one or
policy domains. Policy domains provide leverage for dealing with the problem of s
in policy management by allowing application of policy at a domain granularity rat
than at an individual object instance granularity.

4.10.1.2 Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the doma
manager, which has associated with it the policy objects for that domain. The dom
manager also records the membership of the domain and provides the means to
and remove members. The domain manager is itself a member of a domain, pos
the domain it manages.

4.10.1.3 Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated
policy object is associated with the domain by associating the policy object with t
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for e
There is at most one policy of each type associated with a policy domain. The po
objects are thus shared between objects in the domain, rather than being associa
with individual objects. Consequently, if an object needs to have an individual pol
then it must be a singleton member of a domain.

4.10.1.4 Object Membership of Policy Domains

Since the only way to access objects is through object references, associating ob
references with policy domains, implicitly associates the domain policies with the
object associated with the object reference. Care should be taken by the applicat
that is creating object references using POA operations to ensure that object refer
4-28 CORBA V2.3 June 1999

4

ain
t

at
e
or
This
s to
ing

ay

nd
licy

in

s to

ope of

hem;
ed to

tion
tly be

e
to the same object are not created by the server of that object with different dom
associations. Henceforth whenever the concept of “object membership” is used, i
actually means the membership of an object reference to the object in question.

An object can simultaneously be a member of more than one policy domain. In th
case the object is governed by all policies of its enclosing domains. The referenc
model allows an object to be a member of multiple domains, which may overlap f
the same type of policy (for example, be subject to overlapping access policies).
would require conflicts among policies defined by the multiple overlapping domain
be resolved. The specification does not include explicit support for such overlapp
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

• The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects m
also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), a
then uses the policy object returned to enforce the policy. The caller finding a po
and then enforcing it does not see the domain manager objects and the doma
structure.

• The administrative interfaces used to set policies (e.g., specifying which event
audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so he is aware of the sc
what he is administering.

Note – This specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them; moving objects between t
changing the domain structure and adding, changing, and removing policies appli
the domains.

4.10.1.5 Domains Association at Object Reference Creation

When a new object reference is created, the ORB implicitly associates the object
reference (and hence the object that it is associated with) with the following elements
forming its environment:

• One or more Policy Domains, defining all the policies to which the object
associated with the object reference is subject.

• The Technology Domains, characterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORB will establish these associations when one of the object reference crea
operations of the POA is called. Some or all of these associations may subsequen
explicitly referenced and modified by administrative or application activity, which
might be specifically security-related but could also occur as a side-effect of som
other activity, such as moving an object to another host machine.
CORBA V2.3 Management of Policy Domains June 1999 4-29

4

 with a
a
o be
ed
cy is
eates

he
 one

ject,

ain to
ed

s

e are
 set, it

eded,
ect. A

, the
 may

the
ain

 no
ons.

ains
l be
In some cases, when a new object reference is created, it needs to be associated
new domain. Within a given domain a construction policy can be associated with
specific object type thus causing a new domain (i.e., a domain manager object) t
created whenever an object reference of that type is created and the newly creat
object reference associated with the new domain manager. This construction poli
enforced at the same time as the domain membership (i.e., by the POA when it cr
an object reference).

4.10.1.6 Implementor’s View of Object Creation

For policy domains, the construction policy of the application or factory creating t
object proceeds as follows. The application (which may be a generic factory) calls
of the object reference creation operations of the POA to create the new object
reference. The ORB obtains the construction policy associated with the creating ob
or the default domain absent a creating object.

By default, the new object reference that is created is made a member of the dom
which the parent belongs. Non-object applications on the client side are associat
with a default, per-ORB instance policy domain by the ORB.

Each domain manager has a construction policy associated with it, which control
whether, in addition to creating the specified new object reference, a new domain
manager is created with it. This object provides a single operation
make_domain_manager which can be invoked with the constr_policy parameter
set to TRUE to indicate to the ORB that new object references of the specified typ
to be associated their own separate domains. Once such a construction policy is
can be reversed by invoking make_domain_manager again with the constr_policy
parameter set to FALSE.

When creating an object reference of the type specified in the
make_domain_manager call with constr_policy set to TRUE, the ORB must also
create a new domain for the newly created object reference. If a new domain is ne
the ORB creates both the requested object reference and a domain manager obj
reference to this domain manager can be found by calling get_domain_managers
on the newly created object reference.

While the management interface to the construction policy object is standardized
interface from the ORB to the policy object is assumed to be a private one, which
be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of
enclosing domain. The ORB will always arrange to provide a default enclosing dom
with default ORB policies associated with it, in those cases where there would be
such domain as in the case of a non-object client invoking object creation operati

The calling application, or an administrative application later, can change the dom
to which this object belongs, using the domain management interfaces, which wil
defined in the future.
4-30 CORBA V2.3 June 1999

4

 it is
 that

rs and

are

s
 to
le

.

r

aces
t
Since the ORB has control only over domain associations with object references,
the responsibility of the creator of new object to ensure that the object references
are created to the new object are associated meaningfully with domains.

4.10.2 Domain Management Operations

This section defines the interfaces and operations needed to find domain manage
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, or to manage which policies
associated with domains.

This section also includes the interface to the construction policy object, as that i
relevant to domains. The basic definitions of the interfaces and operations related
these are part of the CORBA module, since other definitions in the CORBA modu
depend on these.

module CORBA {
interface DomainManager {

Policy get_domain_policy (
in PolicyType policy_type

);
};

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy{
void make_domain_manager(

in CORBA::InterfaceDef object_type,
in boolean constr_policy

);
};

typedef sequence <DomainManager> DomainManagersList;
};

4.10.2.1 Domain Manager

The domain manager provides mechanisms for:

• Establishing and navigating relationships to superior and subordinate domains

• Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, fo
example, it must be possible to add new policies to a domain with a preexisting
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required. It should be noted that interf
for adding new policies to domains or for changing domain memberships have no
currently been standardized.
CORBA V2.3 Management of Policy Domains June 1999 4-31

4

ers

of that

ffect

 the

 the
olicy

cy in
All domain managers provide the get_domain_policy operation. By virtue of being
an object, the Domain Managers also have the get_policy and
get_domain_managers operations, which is available on all objects (see “Getting
Policy Associated with the Object” on page 4-13 and “Getting the Domain Manag
Associated with the Object” on page 4-15).

CORBA::DomainManager::get_domain_policy

This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type

);

Parameter(s)

policy_type - The type of policy for objects in the domain which the application
wants to administer. For security, the possible policy types are described in
CORBAservices: Common Object Services Specification, Security chapter, Security
Policies Introduction section.

Return Value

A reference to the policy object for the specified type of policy in this domain.

Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either
because the specified type is not supported by this ORB or because a policy object
type is not associated with this Object.

4.10.2.2 Construction Policy

The construction policy object allows callers to specify that when instances of a
particular object reference are created, they should be automatically assigned
membership in a newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in e
in the domain with which this ConstructionPolicy object is associated. Construction
Policy can either be set so that when an object reference of the type specified by
input parameter is created, a new domain manager will be created and the newly
created object reference will respond to get_domain_managers by returning a
reference to this domain manager. Alternatively the policy can be set to associate
newly created object reference with the domain associated with the creator. This p
is implemented by the ORB during execution of any one of the object reference
creation operations of the POA, and results in the construction of the application-
specified object reference and a Domain Manager object if so dictated by the poli
effect at the time of the creation of the object reference.
4-32 CORBA V2.3 June 1999

4

be

main.
es

e

h the

r to
RB.

ject
ters.

o

work

it of
void make_domain_manager (
in InterfaceDef object_type,
in boolean constr_policy

);

Parameter(s)

object_type - The type of the object references for which Domain Managers will
created. If this is nil, the policy applies to all object references in the domain.

constr_policy - If TRUE the construction policy is set to create a new domain
manager associated with the newly created object reference of this type in this do
If FALSE construction policy is set to associate the newly created object referenc
with the domain of the creator or a default domain as described above.

4.11 Thread-Related Operations

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-
thread-unaware code, several operations are included in the ORB interface. Thes
operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Bot
ORB::run and ORB::shutdown are useful in fully multi-threaded programs.

Note – These operations are defined on the ORB rather than on an object adapte
allow the main thread to be used for all kinds of asynchronous processing by the O
Defining these operations on the ORB also allows the ORB to support multiple ob
adapters, without requiring the application main to know about all the object adap
The interface between the ORB and an object adapter is not standardized.

4.11.1 work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread t
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some
and a result of FALSE indicates that the ORB does not need the main thread.

4.11.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined un
work; otherwise, it does nothing.

It is platform-specific how the application and ORB arrange to use compatible
threading primitives.
CORBA V2.3 Thread-Related Operations June 1999 4-33

4

e
.
aded
t

d
rly.

ted

nnot

ted
d. In
oot
The work_pending() and perform_work() operations can be used to write a simpl
polling loop that multiplexes the main thread among the ORB and other activities
Such a loop would most likely be needed in a single-threaded server. A multi-thre
server would need a polling loop only if there were both ORB and other code tha
required use of the main thread.

Here is an example of such a polling loop:

// C++
for (;;) {

if (orb->work_pending()) {
orb->perform_work();

};
// do other things
// sleep?

};

Once the ORB has shutdown, work_pending and perform_work will raise the
BAD_INV_ORDER exception with minor code 4. An application can detect this
exception to determine when to terminate a polling loop.

4.11.3 run

void run();

This operation provides execution resources to the ORB so that it can perform its
internal functions. Single threaded ORB implementations, and some multi-threade
ORB implementations, need the use of the main thread in order to function prope
For maximum portability, an application should call either run or perform_work on
its main thread. run may be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initia
when some thread calls shutdown .

4.11.4 shutdown

void shutdown(
in boolean wait_for_completion

);

This operation instructs the ORB to shut down, that is, to stop processing in
preparation for destruction.

Shutting down the ORB causes all object adapters to be destroyed, since they ca
exist in the absence of an ORB. Shut down is complete when all ORB processing
(including request processing and object deactivation or other operations associa
with object adapters) has completed and the object adapters have been destroye
the case of the POA, this means that all object etherealizations have finished and r
POA has been destroyed (implying that all descendent POAs have also been
destroyed).
4-34 CORBA V2.3 June 1999

4

 an

l (or

. An

l to
.

own

 call
If the wait_for_completion parameter is TRUE, this operation blocks until the shut
down is complete. If an application does this in a thread that is currently servicing
invocation, the BAD_INV_ORDER system exception will be raised with the OMG
minor code 3, since blocking would result in a deadlock.

If the wait_for_completion parameter is FALSE , then shutdown may not have
completed upon return. An ORB implementation may require the application to cal
have a pending call to) run or perform_work after shutdown has been called with
its parameter set to FALSE , in order to complete the shutdown process.

While the ORB is in the process of shutting down, the ORB operates as normal,
servicing incoming and outgoing requests until all requests have been completed
implementation may impose a time limit for requests to complete while a shutdown
is pending.

Once an ORB has shutdown, only object reference management operations(duplicate ,
release and is_nil) may be invoked on the ORB or any object reference obtained
from it. An application may also invoke the destroy operation on the ORB itself.
Invoking any other operation will raise the BAD_INV_ORDER system exception with
the OMG minor code 4.

4.11.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the
application. Any operation invoked on a destroyed ORB reference will raise the
OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another cal
ORB_init with the same ORBid will return a reference to a newly constructed ORB

If destroy is called on an ORB that has not been shut down, it will start the shut d
process and block until the ORB has shut down before it destroys the ORB. If an
application calls destroy in a thread that is currently servicing an invocation, the
BAD_INV_ORDER system exception will be raised with the OMG minor code 3,
since blocking would result in a deadlock.

For maximum portability and to avoid resource leaks, an application should always
shutdown and destroy on all ORB instances before exiting.
CORBA V2.3 Thread-Related Operations June 1999 4-35

4

4-36 CORBA V2.3 June 1999

	ORB Interface
	4.1 Overview
	4.2 The ORB Operations
	4.2.1 Converting Object References to Strings
	4.2.2 Getting Service Information

	4.3 Object Reference Operations
	4.3.1 Determining the Object Interface
	4.3.2 Duplicating and Releasing Copies of Object References
	4.3.3 Nil Object References
	4.3.4 Equivalence Checking Operation
	4.3.5 Probing for Object Non-Existence
	4.3.6 Object Reference Identity
	4.3.7 Getting Policy Associated with the Object
	4.3.8 Overriding Associated Policies on an Object Reference
	4.3.9 Getting the Domain Managers Associated with the Object

	4.4 ValueBase Operations
	4.5 ORB and OA Initialization and Initial References
	4.6 ORB Initialization
	4.7 Obtaining Initial Object References
	4.8 Current Object
	4.9 Policy Object
	4.9.1 Definition of Policy Object
	4.9.2 Creation of Policy Objects
	4.9.3 Usages of Policy Objects
	4.9.4 Policy Associated with the Execution Environment
	4.9.5 Specification of New Policy Objects
	4.9.6 Standard Policies

	4.10 Management of Policy Domains
	4.10.1 Basic Concepts
	4.10.2 Domain Management Operations

	4.11 Thread-Related Operations
	4.11.1 work_pending
	4.11.2 perform_work
	4.11.3 run
	4.11.4 shutdown
	4.11.5 destroy

