
OMG IDL Syntax and Semantics 3
the
ribes

G
This chapter has been updated based on CORE changes from ptc/98-09-04 and
Objects by Value documents (ptc/98-07-05 and orbos/98-01-18). This chapter desc
OMG Interface Definition Language (IDL) semantics and gives the syntax for OM
IDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 3-2

“Lexical Conventions” 3-3

“Preprocessing” 3-12

“OMG IDL Grammar” 3-12

“OMG IDL Specification” 3-17

“Module Declaration” 3-17

“Interface Declaration” 3-18

“Value Declaration” 3-23

“Constant Declaration” 3-28

“Type Declaration” 3-31

“Exception Declaration” 3-40

“Operation Declaration” 3-41

“Attribute Declaration” 3-43
CORBA V2.3 June 1999 3-1

3

e

ded

e
ght

rd
vant

cal
 in
MG

 a

mar

a
d by
3.1 Overview

The OMG Interface Definition Language (IDL) is the language used to describe th
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information nee
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct will depend on th
facilities available in the client language. For example, an OMG IDL exception mi
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDL concepts to several
programming languages is described in this manual.

OMG IDL obeys the same lexical rules as C++1, although new keywords are
introduced to support distribution concepts. It also provides full support for standa
C++ preprocessing features. The OMG IDL specification is expected to track rele
changes to C++ introduced by the ANSI standardization effort.

The description of OMG IDL’s lexical conventions is presented in Section 3.2, “Lexi
Conventions,” on page 3-3. A description of OMG IDL preprocessing is presented
Section 3.3, “Preprocessing,” on page 3-12. The scope rules for identifiers in an O
IDL specification are described in Section 3.14, “CORBA Module,” on page 3-44.

The OMG IDL grammar is a subset of the proposed ANSI C++ standard, with
additional constructs to support the operation invocation mechanism. OMG IDL is
declarative language. It supports C++ syntax for constant, type, and operation
declarations; it does not include any algorithmic structures or variables. The gram
is presented in Section 3.4, “OMG IDL Grammar,” on page 3-12.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in
specification; the textual location of these pragmas may be semantically constraine
a particular implementation.

“CORBA Module” 3-44

“Names and Scoping” 3-45

“Differences from C++” 3-51

“Standard Exceptions” 3-51

1. Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++ Reference Manual, Add-
ison-Wesley Publishing Company, Reading, Massachusetts, 1990, ISBN 0-201-51459-1

Section Title Page
3-2 CORBA V2.3 Overview June 1999

3

on

rmat

tion.

kens.
n unit.

rals,
is
lank)
A source file containing interface specifications written in OMG IDL must have an
“.idl” extension. The file orb.idl contains OMG IDL type definitions and is available
every ORB implementation.

The description of OMG IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols used in this fo
and their meaning.

3.2 Lexical Conventions

This section2 presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitu
Preprocessing is controlled by directives introduced by lines having # as the first
character other than white space. The result of preprocessing is a sequence of to
Such a sequence of tokens, that is, a file after preprocessing, is called a translatio

OMG IDL uses the ASCII character set, except for string literals and character lite
which use the ISO Latin-1 (8859.1) character set. The ISO Latin-1 character set
divided into alphabetic characters (letters) digits, graphic characters, the space (b

Table 3-1 IDL EBNF

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time

2. This section is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it
differs in the list of legal keywords and punctuation.
CORBA V2.3 Lexical Conventions June 1999 3-3

3

character, and formatting characters. Table 3-2 shows the ISO Latin-1 alphabetic
characters; upper and lower case equivalences are paired. The ASCII alphabetic
characters are shown in the left-hand column of Table 3-2.

Table 3-3 lists the decimal digit characters.

Table 3-2 The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with diaeresis

Qq Upper/Lower-case Q Ññ Upper/Lower-case N with tilde

Rr Upper/Lower-case R Òò Upper/Lower-case O with grave accent

Ss Upper/Lower-case S Óó Upper/Lower-case O with acute accent

Tt Upper/Lower-case T Ôô Upper/Lower-case O with circumflex accent

Uu Upper/Lower-case U Õõ Upper/Lower-case O with tilde

Vv Upper/Lower-case V Öö Upper/Lower-case O with diaeresis

Ww Upper/Lower-case W Øø Upper/Lower-case O with oblique stroke

Xx Upper/Lower-case X Ùù Upper/Lower-case U with grave accent

Yy Upper/Lower-case Y Úú Upper/Lower-case U with acute accent

Zz Upper/Lower-case Z Ûû Upper/Lower-case U with circumflex accent

Üü Upper/Lower-case U with diaeresis

 ß Lower-case German sharp S

 ÿ Lower-case Y with diaeresis

Table 3-3 Decimal Digits

0 1 2 3 4 5 6 7 8 9
3-4 CORBA V2.3 Lexical Conventions June 1999

3

Table 3-4 shows the graphic characters.

Table 3-4 The 65 Graphic Characters

Char. Description Char. Description

! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

number sign £ pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand broken bar

’ apostrophe § section/paragraph sign

(left parenthesis ¨ diaeresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen, minus sign soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ° ring above, degree sign

; semicolon ± plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

> greater-than sign ´ acute

? question mark µ micro

@ commercial at ¶ pilcrow

[left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

‘ grave vulgar fraction 1/4

{ left curly bracket vulgar fraction 1/2

| vertical line vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde × multiplication sign

÷ division sign
CORBA V2.3 Lexical Conventions June 1999 3-5

3

nts
to

token
en.

e
e end
cial

 the
ents
d,

ore

ge 3-4

lly
The formatting characters are shown in Table 3-5.

3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comme
(collective, “white space”), as described below, are ignored except as they serve
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next
is taken to be the longest string of characters that could possibly constitute a tok

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. Thes
comments do not nest. The characters // start a comment, which terminates at th
of the line on which they occur. The comment characters //, /*, and */ have no spe
meaning within a // comment and are treated just like other characters. Similarly,
comment characters // and /* have no special meaning within a /* comment. Comm
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form fee
and newline characters.

3.2.3 Identifiers

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and undersc
(“_”) characters. The first character must be an ASCII alphabetic character. All
characters are significant.

When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. Table 3-2 on pa
defines the equivalence mapping of upper- and lower-case letters.

• All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under
certain circumstances. An identifier for a given definition must be spelled identica
(e.g., with respect to case) throughout a specification.

Table 3-5 The Formatting Characters

Description Abbreviation ISO 646 Octal Value

alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015
3-6 CORBA V2.3 Lexical Conventions June 1999

3

ame
or.

ntly

uage
mes

hich
s

g
There is only one namespace for OMG IDL identifiers in each scope. Using the s
identifier for a constant and an interface, for example, produces a compilation err

For example:

module M {
typedef long Foo;
const long thing = 1;
interface thing { // error: reuse of identifier

void doit (
in Foo foo // error: Foo and foo collide and refer to

different things
);

readonly attribute long Attribute; // error: Attribute collides with
keyword attribute

};
};

3.2.3.1 Escaped Identifiers

As IDL evolves, new keywords that are added to the IDL language may inadverte
collide with identifiers used in existing IDL and programs that use that IDL. Fixing
these collisions will require not only the IDL to be modified, but programming
language code that depends upon that IDL will have to change as well. The lang
mapping rules for the renamed IDL identifiers will cause the mapped identifier na
(e.g., method names) to be changed.

To minimize the amount of work, users may lexically “escape” identifiers by
prepending an underscore (_) to an identifier. This is a purely lexical convention w
ONLY turns off keyword checking. The resulting identifier follows all the other rule
for identifier processing. For example, the identifier _AnIdentifier is treated as if it
were AnIdentifier .

The following is a non-exclusive list of implications of these rules:

• The underscore does not appear in the Interface Repository.

• The underscore is not used in the DII and DSI.

• The underscore is not transmitted over “the wire”.

• Case sensitivity rules are applied to the identifier after stripping off the leadin
underscore.

For example:
CORBA V2.3 Lexical Conventions June 1999 3-7

3

ces
ewly

nly
ally

be

e
ple,
module M {
interface thing {

attribute boolean abstract; // error: abstract collides with
// keyword abstract

attribute boolean _abstract; // ok: abstract is an identifier
};

};

To avoid unnecessary confusion for readers of IDL, it is recommended that interfa
only use the escaped form of identifiers when the unescaped form clashes with a n
introduced IDL keyword. It is also recommended that interface designers avoid
defining new identifiers that are known to require escaping. Escaped literals are o
recommended for IDL that expresses legacy interface, or for IDL that is mechanic
generated.

3.2.4 Keywords

The identifiers listed in Table 3-6 are reserved for use as keywords and may not
used otherwise, unless escaped with a leading underscore.

Keywords must be written exactly as shown in the above list. Identifiers that collid
with keywords (see Section 3.2.3, “Identifiers,” on page 3-6) are illegal. For exam
“boolean ” is a valid keyword; “Boolean ” and “BOOLEAN ” are illegal identifiers.

For example:

module M {
typedef Long Foo; // Error: keyword is long not Long
typedef boolean BOOLEAN; // Error: BOOLEAN collides with

// the keyword boolean;
};

Table 3-6 Keywords

abstract double long readonly unsigned

any enum module sequence union

attribute exception native short ValueBase

boolean factory Object string valuetype

case FALSE octet struct void

char fixed oneway supports wchar

const float out switch wstring

context in private TRUE

custom inout public truncatable

default interface raises typedef
3-8 CORBA V2.3 Lexical Conventions June 1999

3

en)
 be
of
The

XC.

al).
l
rd
he

e of
e
OMG IDL specifications use the characters shown in Table 3-7 as punctuation.

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

3.2.5 Literals

This section describes the following literals:

• Integer

• Character

• Floating-point

• String

• Fixed-point

3.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base t
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence
digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen).
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0

3.2.5.2 Character Literals

A character literal is one or more characters enclosed in single quotes, as in ’x’.
Character literals have type char .

A character is an 8-bit quantity with a numerical value between 0 and 255 (decim
The value of a space, alphabetic, digit, or graphic character literal is the numerica
value of the character as defined in the ISO Latin-1 (8859.1) character set standa
(See Table 3-2 on page 3-4, Table 3-3 on page 3-4, and Table 3-4 on page 3-5). T
value of a null is 0. The value of a formatting character literal is the numerical valu
the character as defined in the ISO 646 standard (see Table 3-5 on page 3-6). Th
meaning of all other characters is implementation-dependent.

Table 3-7 Punctuation Characters

; { } : , = + - () < > []

' " \ | ^ & * / % ~

Table 3-8 Preprocessor Tokens

! || &&
CORBA V2.3 Lexical Conventions June 1999 3-9

3

elow in
nd

s

gits
ists of
ken

 by
teral.
l
ly
wide
ral.
 \u

s not
nt is
Nongraphic characters must be represented using escape sequences as defined b
Table 3-9. Note that escape sequences must be used to represent single quote a
backslash characters in character literals.

If the character following a backslash is not one of those specified, the behavior i
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal di
that are taken to specify the value of the desired character. The escape \xhh cons
the backslash followed by x followed by one or two hexadecimal digits that are ta
to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u’, followed
one, two, three or four hexadecimal digits. This represents a unicode character li
Thus the literal “\u002E” represents the unicode period ‘.’ character and the litera
“\u3BC” represents the unicode greek small letter ‘mu’. The \u escape is valid on
with wchar and wstring types. Since wide string literal is defined as a sequence of
character literals a sequence of \u literals can be used to define a wide string lite
Attempt to set a char type to a \u defined literal or a string type to a sequence of
literals result in an error.

A sequence of octal or hexadecimal digits is terminated by the first character that i
an octal digit or a hexadecimal digit, respectively. The value of a character consta
implementation dependent if it exceeds that of the largest char.

Wide character literals have an L prefix, for example:

Table 3-9 Escape Sequences

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo

hexadecimal
number

\xhh

unicode
character

\uhhhh
3-10 CORBA V2.3 Lexical Conventions June 1999

3

ssign

 the

n e
th
ction
and

ter

kept

tes,
ring,

a
.

 ISO
const wchar C1 = L'X';

Attempts to assign a wide character literal to a non-wide character constant or to a
a non-wide character literal to a wide character constant result in a compile-time
diagnostic.

Both wide and non-wide character literals must be specified using characters from
ISO 8859-1 character set.

3.2.5.3 Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, a
or E, and an optionally signed integer exponent. The integer and fraction parts bo
consist of a sequence of decimal (base ten) digits. Either the integer part or the fra
part (but not both) may be missing; either the decimal point or the letter e (or E)
the exponent (but not both) may be missing.

3.2.5.4 String Literals

A string literal is a sequence of characters (as defined in Section 3.2.5.2, “Charac
Literals,” on page 3-9) surrounded by double quotes, as in "...".

Adjacent string literals are concatenated. Characters in concatenated strings are
distinct. For example,

 "\xA" "B"

contains the two characters '\xA' and 'B' after concatenation (and not the single
hexadecimal character '\xAB').

The size of a string literal is the number of character literals enclosed by the quo
after concatenation. The size of the literal is associated with the literal. Within a st
the double quote character " must be preceded by a \.

A string literal may not contain the character '\0'.

Wide string literals have an L prefix, for example:

const wstring S1 = L"Hello";

Attempts to assign a wide string literal to a non-wide string constant or to assign
non-wide string literal to a wide string constant result in a compile-time diagnostic

Both wide and non-wide string literals must be specified using characters from the
8859-1 character set.

A wide string literal shall not contain the wide character with value zero.
CORBA V2.3 Lexical Conventions June 1999 3-11

3

part
 (base
; the

acro
es
, to

may

or.
e rest
f the
of

rce
nd

 the

3.2.5.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction
and a d or D. The integer and fraction parts both consist of a sequence of decimal
10) digits. Either the integer part or the fraction part (but not both) may be missing
decimal point (but not the letter d (or D)) may be missing.

3.3 Preprocessing

OMG IDL preprocessing, which is based on ANSI C++ preprocessing, provides m
substitution, conditional compilation, and source file inclusion. In addition, directiv
are provided to control line numbering in diagnostics and for symbolic debugging
generate a diagnostic message with a given token sequence, and to perform
implementation-dependent actions (the #pragma directive). Certain predefined names
are available. These facilities are conceptually handled by a preprocessor, which
or may not actually be implemented as a separate process.

Lines beginning with # (also called “directives”) communicate with this preprocess
White space may appear before the #. These lines have syntax independent of th
of OMG IDL; they may appear anywhere and have effects that last (independent o
OMG IDL scoping rules) until the end of the translation unit. The textual location
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a sou
file by placing a backslash character (“\”), immediately before the newline at the e
of the line to be continued. The preprocessor effects the continuation by deleting
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token (see Section 3.2.1, “Tokens,” on
page 3-6), a file name as in a #include directive, or any single character other than
white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with a #include directive is treated as
if it appeared in the including file. A complete description of the preprocessing
facilities may be found in The Annotated C++ Reference Manual. The #pragma
directive that is used to include RepositoryIds is described in Section 10.6,
“RepositoryIds,” on page 10-39.

3.4 OMG IDL Grammar
(1) <specification> ::= <definition> +

(2) <definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”

(3) <module> ::= “module” <identifier> “{“ <definition> + “}”
3-12 CORBA V2.3 Preprocessing June 1999

3

(4) <interface> ::= <interface_dcl>
| <forward_dcl>

(5) <interface_dcl> ::= <interface_header> “{” <interface_body> “}”
(6) <forward_dcl> ::= [“abstract”] “interface” <identifier>
(7) <interface_header> ::= [“abstract”] “interface” <identifier>

[<interface_inheritance_spec>]
(8) <interface_body> ::= <export> *

(9) <export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

(10)<interface_inheritance_spec>::=“:” <interface_name>
{ “,” <interface_name> } *

(11) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>

| “::” <identifier>
| <scoped_name> “::” <identifier>

(13) <value> ::= (<value_dcl> | <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)

(14) <value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>
(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>
(16) <value_abs_dcl> ::= “abstract” “valuetype” <identifier>

[<value_inheritance_spec>]
“{“ <export>* “}”

(17) <value_dcl> ::= <value_header> “{“ < value_element>* “}”
(18) <value_header> ::= [“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(19)<value_inheritance_spec> ::= [“:” [“truncatable”] <value_name>

{ “,” <value_name> }*]
[“supports” <interface_name>
{ “,” <interface_name> }*]

(20) <value_name> ::= <scoped_name>
(21) <value_element> ::= <export> | < state_member> | <init_dcl>
(22) <state_member> ::= (“public” | “private”)

<type_spec> <declarators> “;”
(23) <init_dcl> ::= “factory” <identifier>

“(“ [<init_param_decls>] “)” “;”
(24) <init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> }
(25) <init_param_decl> ::= <init_param_attribute> <param_type_spec>

<simple_declarator>
(26) <init_param_attribute> ::= “in”
(27) <const_dcl> ::= <const_dcl>::=“const” <const_type>

<identifier> “=” <const_exp>
(28) <const_type> ::= <integer_type>

| <char_type>
| <wide_char_type>
CORBA V2.3 OMG IDL Grammar June 1999 3-13

3

| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

(29) <const_exp> ::= <or_expr>
(30) <or_expr> ::= <xor_expr>

| <or_expr> “|” <xor_expr>
(31) <xor_expr> ::= <and_expr>

| <xor_expr> “^” <and_expr>
(32) <and_expr> ::= <shift_expr>

| <and_expr> “&” <shift_expr>
(33) <shift_expr> ::= <add_expr>

| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(34) <add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

(35) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(36) <unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

(37) <unary_operator> ::= “-”
| “+”
| “~”

(38) <primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

(39) <literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

(40) <boolean_literal> ::= “TRUE”
| “FALSE”

(41) <positive_int_const> ::= <const_exp>
(42) <type_dcl> ::= “typedef” <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
3-14 CORBA V2.3 OMG IDL Grammar June 1999

3

(43) <type_declarator> ::= <type_spec> <declarators>
(44) <type_spec> ::= <simple_type_spec>

| <constr_type_spec>
(45) <simple_type_spec> ::= <base_type_spec>

| <template_type_spec>
| <scoped_name>

(46) <base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
| <value_base_type>

(47) <template_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(48) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(49) <declarators> ::= <declarator> { “,” <declarator> } ∗

(50) <declarator> ::= <simple_declarator>
| <complex_declarator>

(51) <simple_declarator> ::= <identifier>
(52) <complex_declarator> ::= <array_declarator>
(53) <floating_pt_type> ::= “float”

| “double”
| “long” “double”

(54) <integer_type> ::= <signed_int>
| <unsigned_int>

(55) <signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(56) <signed_short_int> ::= “short”
(57) <signed_long_int> ::= “long”
(58) <signed_longlong_int> ::= “long” “long”
(59) <unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

(60) <unsigned_short_int> ::= “unsigned” “short”
(61) <unsigned_long_int> ::= “unsigned” “long”
(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
(63) <char_type> ::= “char”
(64) <wide_char_type> ::= “wchar”
(65) <boolean_type> ::= “boolean”
CORBA V2.3 OMG IDL Grammar June 1999 3-15

3

(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”
(68) <object_type> ::= “Object”
(69) <struct_type> ::= “struct” <identifier> “{” <member_list> “}”
(70) <member_list> ::= <member> +

(71) <member> ::= <type_spec> <declarators> “;”
(72) <union_type> ::= “union” <identifier> “switch”

“(” <switch_type_spec> “)”
“{” <switch_body> “}”

(73) <switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

(74) <switch_body> ::= <case> +

(75) <case> ::= <case_label> + <element_spec> “;”
(76) <case_label> ::= “case” <const_exp> “:”

| “default” “:”
(77) <element_spec> ::= <type_spec> <declarator>
(78) <enum_type> ::= “enum” <identifier>

“{” <enumerator> { “,” <enumerator> } ∗ “}”
(79) <enumerator> ::= <identifier>
(80) <sequence_type> ::= “sequence” “<” <simple_type_spec> “,”

<positive_int_const> “>”
| “sequence” “<” <simple_type_spec> “>”

(81) <string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

(82) <wide_string_type> ::= “wstring” “<” <positive_int_const> “>”
| “wstring”

(83) <array_declarator> ::= <identifier> <fixed_array_size> +

(84) <fixed_array_size> ::= “[” <positive_int_const> “]”
(85) <attr_dcl> ::= [“readonly”] “attribute”

<param_type_spec> <simple_declarator>
{ “,” <simple_declarator> }*

(86) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”
(87) <op_dcl> ::= [<op_attribute>] <op_type_spec>

<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(88) <op_attribute> ::= “oneway”
(89) <op_type_spec> ::= <param_type_spec>

| “void”
(90) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> } ∗ “)”

| “(” “)”
(91) <param_dcl> ::= <param_attribute> <param_type_spec>

<simple_declarator>
(92) <param_attribute> ::= “in”
3-16 CORBA V2.3 OMG IDL Grammar June 1999

3

-40

>.
| “out”
| “inout”

(93) <raises_expr> ::= “raises” “(” <scoped_name>
{ “,” <scoped_name> } ∗ “)”

(94) <context_expr> ::= “context” “(” <string_literal>
{ “,” <string_literal> } ∗ “)”

(95) <param_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>

(96) <fixed_pt_type> ::= “fixed” “<“ <positive_int_const> “,”
<positive_int_const> “>”

(97) <fixed_pt_const_type> ::= “fixed”
(98) <value_base_type> ::= “ValueBase”

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

<specification> ::= <definition> +

<definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”

See Section 3.9, “Constant Declaration,” on page 3-28, Section 3.10, “Type
Declaration,” on page 3-31, and Section 3.11, “Exception Declaration,” on page 3
respectively for specifications of <const_dcl> , <type_dcl> , and <except_dcl> .

See Section 3.7, “Interface Declaration,” on page 3-18 for the specification of
<interface>.

See Section 3.6, “Module Declaration,” on page 3-17 for the specification of
<module>.

See Section 3.8, “Value Declaration,” on page 3-23 for the specification of <value

3.6 Module Declaration

A module definition satisfies the following syntax:

<module>::=“module” <identifier> “{“ <definition> + “}”

The module construct is used to scope OMG IDL identifiers; see Section 3.14,
“CORBA Module,” on page 3-44 for details.
CORBA V2.3 OMG IDL Specification June 1999 3-17

3

d in

ame

nces
ce

ces
nt
3.7 Interface Declaration

An interface definition satisfies the following syntax:

<interface> ::= <interface_dcl>
| <forward_dcl>

<interface_dcl> ::= <interface_header> “{” <interface_body> “}”

<forward_dcl> ::= [“abstract”] “interface” <identifier>

<interface_header> ::= [“abstract”] “interface” <identifier>

 [<interface_inheritance_spec>]

<interface_body> ::= <export> *

<export> ::= <type_dcl> “;”
 | <const_dcl> “;”

 | <except_dcl> “;”
 | <attr_dcl> “;”
 | <op_dcl> “;”

3.7.1 Interface Header

The interface header consists of three elements:

• An optional modifier specifying if the interface is an abstract interface.

• The interface name. The name must be preceded by the keyword interface , and
consists of an identifier that names the interface.

• An optional inheritance specification. The inheritance specification is describe
the next section.

The <identifier> that names an interface defines a legal type name. Such a type n
may be used anywhere an <identifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold refere
to an object, the meaning of a parameter or structure member which is an interfa
type is as a reference to an object supporting that interface. Each language binding
describes how the programmer must represent such interface references.

Abstract interfaces have slightly different rules and semantics from “regular” interfa
as described in Chapter 6, “Abstract Interface Semantics”. They also follow differe
language mapping rules.

3.7.2 Interface Inheritance Specification

The syntax for inheritance is as follows:

<interface_inheritance_spec>::= “:” <interface_name>

{“,” <interface_name>}*

<interface_name> ::= <scoped_name>
3-18 CORBA V2.3 Interface Declaration June 1999

3

-20

;
n,”

s;

ace
n

e

 and
ypes
 a

n

rface

ply

t
<scoped_name> ::= <identifier>
| “::” <identifier>
| <scoped_name> “::” <identifier>

Each <scoped_name> in an <interface_inheritance_spec> must denote a
previously defined interface. See Section 3.7.5, “Interface Inheritance,” on page 3
for the description of inheritance.

3.7.3 Interface Body

The interface body contains the following kinds of declarations:

• Constant declarations, which specify the constants that the interface exports
constant declaration syntax is described in Section 3.9, “Constant Declaratio
on page 3-28.

• Type declarations, which specify the type definitions that the interface export
type declaration syntax is described in Section 3.10, “Type Declaration,” on
page 3-31.

• Exception declarations, which specify the exception structures that the interf
exports; exception declaration syntax is described in Section 3.11, “Exceptio
Declaration,” on page 3-40.

• Attribute declarations, which specify the associated attributes exported by th
interface; attribute declaration syntax is described in Section 3.13, “Attribute
Declaration,” on page 3-43.

• Operation declarations, which specify the operations that the interface exports
the format of each, including operation name, the type of data returned, the t
of all parameters of an operation, legal exceptions which may be returned as
result of an invocation, and contextual information which may affect method
dispatch; operation declaration syntax is described in Section 3.12, “Operatio
Declaration,” on page 3-41.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the inte
body.

3.7.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax consists sim
of the keyword interface followed by an <identifier> that names the interface. The
actual definition must follow later in the specification.

Multiple forward declarations of the same interface name are legal.

It is illegal to inherit from a forward-declared interface whose definition has not ye
been seen:
CORBA V2.3 Interface Declaration June 1999 3-19

3

are
n,

nce

hich
4,

 a

re

more
wing
module Example {
interface base; // Forward declaration

// ...

interface derived : base {};// Error
interface base {}; // Define base
interface derived : base {};// OK

};

3.7.5 Interface Inheritance

An interface can be derived from another interface, which is then called a base
interface of the derived interface. A derived interface, like all interfaces, may decl
new elements (constants, types, attributes, exceptions, and operations). In additio
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::”) may be used to refer to a base element explicitly; this permits refere
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names w
have been inherited; the scope rules for such names are described in Section 3.1
“CORBA Module,” on page 3-44.

An interface is called a direct base if it is mentioned in the
<interface_inheritance_spec> and an indirect base if it is not a direct base but is
base interface of one of the interfaces mentioned in the
<interface_inheritance_spec> .

An interface may be derived from any number of base interfaces. Such use of mo
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface
than once; it may be an indirect base interface more than once. Consider the follo
example:

interface A { ... }
interface B: A { ... }
interface C: A { ... }
interface D: B, C { ... }
interface E: A, B { ... }; // OK
3-20 CORBA V2.3 Interface Declaration June 1999

3

”

base
eption
e

on or

t is

 is a
The relationships between these interfaces is shown in Figure 3-1. This “diamond
shape is legal, as is the definition of E on the right.

Figure 3-1 Legal Multiple Inheritance Example

References to base interface elements must be unambiguous. A Reference to a
interface element is ambiguous if the name is declared as a constant, type, or exc
in more than one base interface. Ambiguities can be resolved by qualifying a nam
with its interface name (that is, using a <scoped_name>). It is illegal to inherit from
two interfaces with the same operation or attribute name, or to redefine an operati
attribute name in the derived interface.

So for example in:

interface A {
typedef long L1;
short opA(in L1 l_1);

};

interface B {
typedef short L1;
L1 opB(in long l);

};

interface C: B, A {
typedef L1 L2; // Error: L1 ambiguous
typedef A::L1 L3; // A::L1 is OK
B::L1 opC(in L3 l_3); // all OK no ambiguities

};

References to constants, types, and exceptions are bound to an interface when i
defined (i.e., replaced with the equivalent global <scoped_name> s). This guarantees
that the syntax and semantics of an interface are not changed when the interface
base interface for a derived interface. Consider the following example:

A

B C

D

A

B C

D

E

CORBA V2.3 Interface Declaration June 1999 3-21

3

ntees

and

 be
on
urrent

c
ject

utes
const long L = 3;

interface A {
typedef float coord[L]:
void f (in coord s); // s has three floats

};

interface B {
const long L = 4;

};

interface C: B, A { }; // what is C::f()’s signature?

The early binding of constants, types, and exceptions at interface definition guara
that the signature of operation f in interface C is

typedef float coord[3];
void f (in coord s);

which is identical to that in interface A. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations
attributes inherited from a base interface.

Interface inheritance causes all identifiers in the closure of the inheritance tree to
imported into the current naming scope. A type name, constant name, enumerati
value name, or exception name from an enclosing scope can be redefined in the c
scope. An attempt to use an ambiguous name without qualification produces a
compilation error. Thus in

interface A {
typedef string<128> string_t;

};

interface B {
typedef string<256> string_t;

};

interface C: A, B {
attribute string_t Title; // Error: string_t ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK

};

Operation and attribute names are used at run-time by both the stub and dynami
interfaces. As a result, all operations attributes that might apply to a particular ob
must have unique names. This requirement prohibits redefining an operation or
attribute name in a derived interface, as well as inheriting two operations or attrib
with the same name.
3-22 CORBA V2.3 Interface Declaration June 1999

3

alue

pe

n is

n of
interface A {
void make_it_so();

};

interface B: A {
short make_it_so(in long times); // Error: redefinition of make_it_so

};

3.8 Value Declaration

There are several kinds of value type declarations: “regular” value types, boxed v
types, abstract value types, and forward declarations.

A value declaration satisfies the following syntax:

<value> ::= (<value_dcl>
| <value_abs_dcl>
| <value_box_dcl>
| <value_forward_dcl>) “;”

3.8.1 Regular Value Type

A regular value type satisfies the following syntax:

<value_dcl> ::= <value_header> “{“ < value_element >* “}”

<value_header> ::= [“custom”] “valuetype” <identifier>
[<value_inheritance_spec>]

<value_element> ::= <export>
| < state_member>
| <init_dcl>

3.8.1.1 Value Header

The value header consists of two elements:

• The value type’s name and optional modifier specifying whether the value ty
uses custom marshaling.

• An optional value inheritance specification. The value inheritance specificatio
described in the next section.

3.8.1.2 Value Element

A value can contain all the elements that an interface can as well as the definitio
state members, and initializers for that state.

3.8.1.3 Value Inheritance Specification

<value_inheritance_spec> ::= [“:” [“truncatable”] <value_name>
 { “,” <value_name> }*]
CORBA V2.3 Value Declaration June 1999 3-23

3

type

om

ent to
ther
 the
state

d to
e

 the
lly

y be
ame
[“supports” <interface_name>
 { “,” interface_name> }*]

<value_name> ::= <scoped_name>

Each <value_name> and <interface_name> in a <value_inheritance_spec>
must denote previously defined value type or interface. See Section 3.8.5, “Value
Inheritance,” on page 3-27 for the description of value type inheritance.

The truncatable modifier may not be used if the value type being defined is a cust
value.

3.8.1.4 State Members

<state_member> ::=(“public” | “private”) <type_spec> <declarators> “;”

Each <state_member> defines an element of the state which is marshaled and s
the receiver when the value type is passed as a parameter. A state member is ei
public or private. The annotation directs the language mapping to hide or expose
different parts of the state to the clients of the value type. The private part of the
is only accessible to the implementation code and the marshaling routines.

Note that certain programming languages may not have the built in facilities neede
distinguish between the public and private members. In these cases, the languag
mapping specifies the rules that programmers are responsible for following.

3.8.1.5 Initializers

<init_dcl> ::= “factory” <identifier>
 “(“ [<init_param_decls>] “)” “;”

<init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> }

<init_param_decl> ::= <init_param_attribute> <param_type_spec>
 <simple_declarator>

<init_param_attribute> ::= “in”

In order to ensure portability of value implementations, designers may also define
signatures of initializers (or constructors) for non abstract value types. Syntactica
these look like local operation signatures except that they are prefixed with the
keyword factory , have no return type, and must use only in parameters. There ma
any number of factory declarations. The names of the initializers are part of the n
scope of the value type.
3-24 CORBA V2.3 Value Declaration June 1999

3

y of
he

with
lue

 to

If no initializers are specified in IDL, the value type does not provide a portable wa
creating a runtime instance of its type. There is no default initializer. This allows t
definition of IDL value types which are not intended to be directly instantiated by
client code.

3.8.1.6 Value Type Example

interface Tree {
void print()

};

valuetype WeightedBinaryTree {
// state definition

private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;

// initializer
factory init(in unsigned long w);

// local operations
WeightSeq pre_order();
WeightSeq post_order();

};
valuetype WTree: WeightedBinaryTree supports Tree {};

3.8.2 Boxed Value Type

<value_box_dcl> ::= “valuetype” <identifier> <type_spec>

It is often convenient to define a value type with no inheritance or operations and
a single state member. A shorthand IDL notation is used to simplify the use of va
types for this kind of simple containment, referred to as a “value box”.

This is particularly useful for strings and sequences. Basically one does not have
create what is in effect an additional namespace that will contain only one name.

An example is the following IDL:

module Example {
interface Foo {

... /* anything */
};
valuetype FooSeq sequence<Foo>;
interface Bar {

void doIt (in FooSeq seq1);
};

};

The above IDL provides similar functionality to writing the following IDL. However
the type identities (repository ID’s) would be different.
CORBA V2.3 Value Declaration June 1999 3-25

3

uction

ed
ation.

alue
ied.
ation

.

refer

yet
module Example {
interface Foo {

... /* anything */
};
valuetype FooSeq {

public sequence<Foo> data;
};
interface Bar {

void doIt (in FooSeq seq);
};

};

The former is easier to manipulate after it is mapped to a concrete programming
language.

The declaration of a boxed value type does not open a new scope.Thus a constr
such as:

valuetype FooSeq sequence <FooSeq>;

is not legal IDL. The identifier being declared as a boxed value type cannot be us
subsequent to its initial use and prior to the completion of the boxed value declar

3.8.3 Abstract Value Type

<value_abs_dcl> ::= “abstract” “valuetype” <identifier>
[<value_inheritance_spec>] “{“ <export>* “}”

Value types may also be abstract. They are called abstract because an abstract v
type may not be instantiated. No <state_member> or <initializers> may be specif
However, local operations may be specified. Essentially they are a bundle of oper
signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type

3.8.4 Value Forward Declaration

<value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>

A forward declaration declares the name of a value type without defining it. This
permits the definition of value types that refer to each other. The syntax consists
simply of the keyword valuetype followed by an <identifier> that names the value
type. The actual definition must follow later in the specification.

Multiple forward declarations of the same value type name are legal.

Boxed value types cannot be forward declared; such a forward declaration would
to a normal value type.

It is illegal to inherit from a forward-declared value type whose definition has not
been seen.
3-26 CORBA V2.3 Value Declaration June 1999

3

us to
ce,”

for
f a
once.
 of

mber

only

ent
y

hat it

e ->
arent
 the
e to

eiving

lse.
3.8.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogo
that used to describe interface inheritance (see Section 3.7.5, “Interface Inheritan
on page 3-20).

The name scoping and name collision rules for valuetypes are identical to those
interfaces. In addition, no valuetype may be specified as a direct abstract base o
derived valuetype more than once; it may be an indirect abstract base more than
See Section 3.7.5, “Interface Inheritance,” on page 3-20 for a detailed description
the analogous properties for interfaces.

Values may be derived from other values and can support an interface and any nu
of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance
hierarchy, all derived value types (which must of course implement the state) may
derive from a single (concrete) value type. They can however derive from other
additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first elem
specified in the inheritance list of the value declaration’s IDL. It may be followed b
other abstract values from which it inherits. The interface and abstract interfaces t
supports are listed following the supports keyword.

A stateful value that derives from another stateful value may specify that it is
truncatable. This means that it is to “truncate” (see Section 5.2.5.2, “Value instanc
Value type,” on page 5-5) an instance to be an instance of any of its truncatable p
(stateful) value types under certain conditions. Note that all the intervening types in
inheritance hierarchy must be truncatable in order for truncation to a particular typ
be allowed.

Because custom values require an exact type match between the sending and rec
context, truncatable may not be specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.

Boxed value types may not be derived from, nor may they derive from anything e

These rules are summarized in the following table:

Table 3-10 Allowable Inheritance Relationships

May inherit from: Interface Abstract
Interface

Abstract
Value

Stateful Value Boxed value

Interface multiple multiple no no no

Abstract Interface no multiple no no no

Abstract Value supports supports multiple no no

Stateful Value
supports single supports multiple single (may be

 truncatable)
no

Boxed Value no no no no no
CORBA V2.3 Value Declaration June 1999 3-27

3

3.9 Constant Declaration

This section describes the syntax for constant declarations.

3.9.1 Syntax

The syntax for a constant declaration is:

<const_dcl> ::= “const” <const_type> <identifier>
 “=” <const_exp>

<const_type> ::= <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

<const_exp> ::= <or_expr>

<or_expr> ::= <xor_expr>
| <or_expr> “|” <xor_expr>

<xor_expr> ::= <and_expr>
| <xor_expr> “^” <and_expr>

<and_expr> ::= <shift_expr>
| <and_expr> “&” <shift_expr>

<shift_expr> ::= <add_expr>
| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

<add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

<mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

<unary_operator> ::= “-”
| “+”
| “~”

<primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”
3-28 CORBA V2.3 Constant Declaration June 1999

3

se.

teral
iling
or

<literal> ::= <integer_literal>
| <string_literal>
| <character_literal>
| <floating_pt_literal>
| <boolean_literal>

<boolean_literal> ::= “TRUE”
| “FALSE”

<positive_int_const> ::= <const_exp>

3.9.2 Semantics

The <scoped_name> in the <const_type> production must be a previously defined
name of an <integer_type> , <char_type> , <wide_char_type> , <boolean_type> ,
<floating_pt_type> , <string_type>, <wide_string_type> , <octet_type> , or
<enum_type> constant.

An infix operator can combine two integers, floats or fixeds, but not mixtures of the
Infix operators are applicable only to integer, float and fixed types.

If the type of an integer constant is long or unsigned long , then each subexpression
of the associated constant expression is treated as an unsigned long by default, or a
signed long for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assigned type (long or unsigned
long), or if a final expression value (of type unsigned long) exceeds the precision of
the target type (long).

If the type of an integer constant is long long or unsigned long long , then each
subexpression of the associated constant expression is treated as an unsigned long
long by default, or a signed long long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the
assigned type (long long or unsigned long long), or if a final expression value (of
type unsigned long long) exceeds the precision of the target type (long long).

If the type of a floating-point constant is double , then each subexpression of the
associated constant expression is treated as a double. It is an error if any
subexpression value exceeds the precision of double .

If the type of a floating-point constant is long double , then each subexpression of the
associated constant expression is treated as a long double . It is an error if any
subexpression value exceeds the precision of long double .

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point li
has the apparent number of total and fractional digits, except that leading and tra
zeros are factored out, including non-significant zeros before the decimal point. F
example, 0123.450d is considered to be fixed<5,2> and 3000.00D is fixed<1,-3> .
Prefix operators do not affect the precision; a prefix + is optional, and does not change
CORBA V2.3 Constant Declaration June 1999 3-29

3

 infix

on,

n
ted.

h it
are 2’s

ion
se

e; if
the result. The upper bounds on the number of digits and scale of the result of an
expression, fixed<d1,s1> op fixed<d2,s2> , are shown in the following table:

A quotient may have an arbitrary number of decimal places, denoted by a scale ofs inf.
The computation proceeds pairwise, with the usual rules for left-to-right associati
operator precedence, and parentheses. All intermediate computations shall be
performed using double precision (i.e. 62 digit) arithmetic. If an individual
computation between a pair of fixed-point literals actually generates more than 31
significant digits, then a 31-digit result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are
discarded; rounding is not performed. The result of the individual computation the
proceeds as one literal operand of the next pair of fixed-point literals to be compu

Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-
point expressions. Unary (+ - ~) and binary (* / % + - << >> & | ^) operators are
applicable in integer expressions.

The “~” unary operator indicates that the bit-complement of the expression to whic
is applied should be generated. For the purposes of such expressions, the values
complement numbers. As such, the complement can be generated as follows:

The “%” binary operator yields the remainder from the division of the first express
by the second. If the second operand of “%” is 0, the result is undefined; otherwi

 (a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegativ
not, the sign of the remainder is implementation dependent.

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + s inf , s inf>

Integer Constant Expression Type Generated 2’s Complement Numbers

long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value
3-30 CORBA V2.3 Constant Declaration June 1999

3

fted
ts.

ifted
its.

t

ft

error.

 The
ames

e one

ge-

data
The “<<”binary operator indicates that the value of the left operand should be shi
left the number of bits specified by the right operand, with 0 fill for the vacated bi
The right operand must be in the range 0 <= right operand < 64.

The “>>” binary operator indicates that the value of the left operand should be sh
right the number of bits specified by the right operand, with 0 fill for the vacated b
The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and righ
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

The “^” binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the le
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

An octet constant can be defined using an integer literal or an integer constant
expression, for example:

 const octet O1 = 0x1;
 const long L = 3;
 const octet O2 = 5 + L;

Values for an octet constant outside the range 0 - 255 shall cause a compile-time

An enum constant can only be defined using a scoped name for the enumerator.
scoped name is resolved using the normal scope resolution rules Section 3.15, “N
and Scoping,” on page 3-45. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR = red;

module M {
enum Size { small, medium, large };

};
const M::Size MYSIZE = M::medium;

The constant name for the RHS of an enumerated constant definition must denot
of the enumerators defined for the enumerated type of the constant. For example:

const Color col = red; // is OK but
const Color another = M::medium; // is an error

3.10 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C langua
like declarations that associate an identifier with a type. OMG IDL uses the typedef
keyword to associate a name with a data type; a name is also associated with a
type via the struct , union , enum , and native declarations; the syntax is:
CORBA V2.3 Type Declaration June 1999 3-31

3

d

sign
cted
<type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
I “native” <simple_declarator>

<type_declarator> ::= <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent type
values. The syntax is as follows:

<type_spec> ::= <simple_type_spec>
| <constr_type_spec>

<simple_type_spec> ::= <base_type_spec>
| <template_type_spec>
| <scoped_name>

<base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object-type>
| <value_base_type>

<template_type_spec>::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

<declarators> ::= <declarator> { “,” <declarator> } ∗

<declarator> ::= <simple_declarator>
| <complex_declarator>

<simple_declarator> ::= <identifier>

<complex_declarator> ::= <array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined type.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to as
data types to operation parameters. The next sections describe basic and constru
type specifiers.

3.10.1 Basic Types

The syntax for the supported basic types is as follows:
3-32 CORBA V2.3 Type Declaration June 1999

3

uage

tion.
 may
al
fined
<floating_pt_type> ::= “float”
| “double”
| “long” “double”

<integer_type>: := <signed_int>
| <unsigned_int>

<signed_int> ::= <signed_long_int
| <signed_short_int>
| <signed_longlong_int>

<signed_long_int> ::= “long”

<signed_short_int> ::= “short”

<signed_longlong_int>::= “long” “long”

<unsigned_int> ::= <unsigned_long_int>
| <unsigned_short_int>
| <unsigned_longlong_int>

<unsigned_long_int> ::= “unsigned” “long”

<unsigned_short_int> ::= “unsigned” “short”

<unsigned_longlong_int>::= “unsigned” “long” “long”

<char_type> ::= “char”

<wide_char_type> ::= “wchar”

<boolean_type> ::= “boolean”

<octet_type> ::= “octet”

<any_type> ::= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate lang
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invoca
The invocation mechanism (client stub, dynamic invocation engine, and skeletons)
signal an exception condition to the client if an attempt is made to convert an illeg
value. The standard exceptions which are to be signalled in such situations are de
in Section 3.17, “Standard Exceptions,” on page 3-51.

3.10.1.1 Integer Types

OMG IDL integer types are short , unsigned short , long , unsigned long , long
long and unsigned long long , representing integer values in the range indicated
below in Table 3-11.

Table 3-11 Range of integer types

short -215 .. 215 - 1

long -231 .. 231 - 1

long long -263 .. 263 - 1

unsigned short 0 .. 216 - 1
CORBA V2.3 Type Declaration June 1999 3-33

3

st 15

n.

ay,

,

tation
igit
and
g

 a
tional

set
 may

e
3.10.1.2 Floating-Point Types

OMG IDL floating-point types are float , double and long double . The float type
represents IEEE single-precision floating point numbers; the double type represents
IEEE double-precision floating point numbers.The long double data type represents
an IEEE double-extended floating-point number, which has an exponent of at lea
bits in length and a signed fraction of at least 64 bits. See IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specificatio

3.10.1.3 Char Type

OMG IDL defines a char data type that is an 8-bit quantity which (1) encodes a
single-byte character from any byte-oriented code set, or (2) when used in an arr
encodes a multi-byte character from a multi-byte code set. In other words, an
implementation is free to use any code set internally for encoding character data
though conversion to another form may be required for transmission.

The ISO 8859-1 (Latin1) character set standard defines the meaning and represen
of all possible graphic characters used in OMG IDL (i.e., the space, alphabetic, d
and graphic characters defined in Table 3-2 on page 3-4, Table 3-3 on page 3-4,
Table 3-4 on page 3-5). The meaning and representation of the null and formattin
characters (see Table 3-5 on page 3-6) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example,
character may be converted to and from the appropriate representation in interna
character sets.

3.10.1.4 Wide Char Type

OMG IDL defines a wchar data type which encodes wide characters from any
character set. As with character data, an implementation is free to use any code
internally for encoding wide characters, though, again, conversion to another form
be required for transmission. The size of wchar is implementation-dependent.

3.10.1.5 Boolean Type

The boolean data type is used to denote a data item that can only take one of th
values TRUE and FALSE.

unsigned long 0 .. 232 - 1

unsigned long long 0 .. 264 - 1

Table 3-11 Range of integer types
3-34 CORBA V2.3 Type Declaration June 1999

3

on

ype.

pping
 value

se of

so

be
3.10.1.6 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversi
when transmitted by the communication system.

3.10.1.7 Any Type

The any type permits the specification of values that can express any OMG IDL t

An any logically contains a TypeCode (see Section 3.10, “Type Declaration,” on
page 3-31) and a value that is described by the TypeCode. Each IDL language ma
provides operations that allow programers to insert and access the TypeCode and
contained in an any.

3.10.2 Constructed Types

The constructed types are:

<constr_type_spec> ::= <struct_type>
 | <union_type>

| <enum_type>

Although the IDL syntax allows the generation of recursive constructed type
specifications, the only recursion permitted for constructed types is through the u
the sequence template type. For example, the following is legal:

struct foo {
long value;
sequence<foo> chain;

}

See Section 3.10.3.1, “Sequences,” on page 3-37 for details of the sequence template
type.

3.10.2.1 Structures

The structure syntax is:

<struct_type> ::= “struct” <identifier> “{” <member_list> “}”

<member_list> ::= <member> +

<member> ::= <type_spec> <declarators> “;”

The <identifier> in <struct_type> defines a new legal type. Structure types may al
be named using a typedef declaration.

Name scoping rules require that the member declarators in a particular structure
unique. The value of a struct is the value of all of its members.
CORBA V2.3 Type Declaration June 1999 3-35

3

field

y

t
3.10.2.2 Discriminated Unions

The discriminated union syntax is:

<union_type> ::= “union” <identifier> “switch”
“(” <switch_type_spec> “)”
“{” <switch_body> “}”

<switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

<switch_body> ::= <case> +

<case> ::= <case_label> + <element_spec> “;”

<case_label> ::= “case” <const_exp> “:”
| “default” “:”

<element_spec> ::= <type_spec> <declarator>

OMG IDL unions are a cross between the C union and switch statements. IDL
unions must be discriminated; that is, the union header must specify a typed tag
that determines which union member to use for the current instance of a call. The
<identifier> following the union keyword defines a new legal type. Union types ma
also be named using a typedef declaration. The <const_exp> in a <case_label>

must be consistent with the <switch_type_spec> . A default case can appear at mos
once. The <scoped_name> in the <switch_type_spec> production must be a
previously defined integer , char , boolean or enum type.

Case labels must match or be automatically castable to the defined type of the
discriminator. The complete set of matching rules are shown in Table 3-12.

Table 3-12 Case Label Matching

Discriminator Type Matched By

long any integer value in the value range of long

long long any integer value in the range of long long

short any integer value in the value range of short

unsigned long any integer value in the value range of unsigned long

unsigned long long any integer value in the range of unsigned long long

unsigned short any integer value in the value range of unsigned short

char char

wchar wchar

boolean TRUE or FALSE

enum any enumerator for the discriminator enum type
3-36 CORBA V2.3 Type Declaration June 1999

3

ith

the

ent.

g a

lation.
d

d a
Name scoping rules require that the element declarators in a particular union be
unique. If the <switch_type_spec> is an <enum_type> , the identifier for the
enumeration is in the scope of the union; as a result, it must be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body> . The value of a union is the value of the discriminator together w
one of the following:

• If the discriminator value was explicitly listed in a case statement, the value of
the element associated with that case statement;

• If a default case label was specified, the value of the element associated with
default case label;

• No additional value.

Access to the discriminator and the related element is language-mapping depend

3.10.2.3 Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

<enum_type> ::= “enum” <identifier> “{” <enumerator> { “,”
<enumerator> } ∗ “}”

<enumerator> ::= <identifier>

A maximum of 232 identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representin
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping which permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering re
The <identifier> following the enum keyword defines a new legal type. Enumerate
types may also be named using a typedef declaration.

3.10.3 Template Types

The template types are:

<template_type_spec>::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

3.10.3.1 Sequences

OMG IDL defines the sequence type sequence . A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) an
length (which is determined at run time).

The syntax is:
CORBA V2.3 Type Declaration June 1999 3-37

3

the
uence
ion
e set
 an

value

Prior
r
ddress
anner.
f the

 For

g”.
te the
en.

pe,
ion),
he

itive

built-in
pe
n be
<sequence_type> ::= “sequence” “<” <simple_type_spec> “,”
<positive_int_const> “>”
 | “sequence” “<” <simple_type_spec> “>”

The second parameter in a sequence declaration indicates the maximum size of
sequence. If a positive integer constant is specified for the maximum size, the seq
is termed a bounded sequence. Prior to passing a bounded sequence as a funct
argument (or as a field in a structure or union), the length of the sequence must b
in a language-mapping dependent manner. After receiving a sequence result from
operation invocation, the length of the returned sequence will have been set; this
may be obtained in a language-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded).
to passing such a sequence as a function argument (or as a field in a structure o
union), the length of the sequence, the maximum size of the sequence, and the a
of a buffer to hold the sequence must be set in a language-mapping dependent m
After receiving such a sequence result from an operation invocation, the length o
returned sequence will have been set; this value may be obtained in a language-
mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type.
example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of lon
Note that for nested sequence declarations, white space must be used to separa
two “>” tokens ending the declaration so they are not parsed as a single “>>” tok

3.10.3.2 Strings

OMG IDL defines the string type string consisting of all possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any ty
prior to passing a string as a function argument (or as a field in a structure or un
the length of the string must be set in a language-mapping dependent manner. T
syntax is:

<string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

The argument to the string declaration is the maximum size of the string. If a pos
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special
functions or standard library functions for string manipulation. A separate string ty
may permit substantial optimization in the handling of strings compared to what ca
done with sequences of general types.
3-38 CORBA V2.3 Type Declaration June 1999

3

 null.
har
ed

nt
mber
ways

the
at
to

ed as

ay

type
r.
3.10.3.3 Wstrings

The wstring data type represents a sequence of wchar, except the wide character
The type wstring is similar to that of type string, except that its element type is wc
instead of char. The actual length of a wstring is set at run-time and, if the bound
form is used, must be less than or equal to the bound.

The syntax for defining a wstring is:

<wide_string_type> ::= "wstring" "<" <positive_int_const> ">"
| "wstring"

3.10.3.4 Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significa
digits. The scale factor is a non-negative integer less than or equal to the total nu
of digits (note that constants with effectively negative scale, such as 10000, are al
permitted).

The fixed data type will be mapped to the native fixed point capability of a
programming language, if available. If there is not a native fixed point type, then
IDL mapping for that language will provide a fixed point data type. Applications th
use the IDL fixed point type across multiple programming languages must take in
account differences between the languages in handling rounding, overflow, and
arithmetic precision.

3.10.4 Complex Declarator

3.10.4.1 Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes
for each dimension.

The syntax for arrays is:

<array_declarator> ::=<identifier> <fixed_array_size> +

<fixed_array_size> ::=“[” <positive_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is pass
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an arr
index as a parameter may yield incorrect results.

3.10.5 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque
whose representation is specified by the language mapping for that object adapte

The syntax is:
CORBA V2.3 Type Declaration June 1999 3-39

3

ilar

 the

there
er
 of a

at

n

r
of
n
rs to
r to

may
<type_dcl> ::= “native” <simple_declarator>

<simple_declarator> ::= <identifier>

This declaration defines a new type with the specified name. A native type is sim
to an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how
native type is mapped into that programming language.

A native type may be used to define operation parameters and results. However,
is no requirement that values of the type be permitted in remote invocations, eith
directly or as a component of a constructed type. Any attempt to transmit a value
native type in a remote invocation may raise the MARSHAL standard exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in th
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {

Object activate_object(in Servant x);
};

};

the IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++
and the activate_object operation would map to the following C++ member functio
signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ type HypotheticalObjectAdapter::Servant
would be provided as part of the C++ mapping for the HypotheticalObjectAdapter
module.

Note – The native type declaration is provided specifically for use in object adapte
interfaces, which require parameters whose values are concrete representations
object implementation instances. It is strongly recommended that it not be used i
service or application interfaces. The native type declaration allows object adapte
define new primitive types without requiring changes to the OMG IDL language o
OMG IDL compiler.

3.11 Exception Declaration

Exception declarations permit the declaration of struct-like data structures which
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

<except_dcl> ::= “exception” <identifier> “{“ <member>* “}”
3-40 CORBA V2.3 Exception Declaration June 1999

3

he
hich

e
d, no

re

tax

tion
.

 be

it is

d as
 in

t
text
3-43.

Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified by the <member>
in its declaration). If an exception is returned as the outcome to a request, then t
value of the exception identifier is accessible to the programmer for determining w
particular exception was raised.

If an exception is declared with members, a programmer will be able to access th
values of those members when an exception is raised. If no members are specifie
additional information is accessible when an exception is raised.

A set of standard exceptions is defined corresponding to standard run-time errors
which may occur during the execution of a request. These standard exceptions a
documented in Section 3.17, “Standard Exceptions,” on page 3-51.

3.12 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syn
is:

<op_dcl> ::= [<op_attribute>] <op_type_spec> <identifier>
<parameter_dcls> [<raises_expr>]
[<context_expr>]

<op_type_spec> ::= <param_type_spec>
| “void”

An operation declaration consists of:

• An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Opera
attributes are described in Section 3.12.1, “Operation Attribute,” on page 3-42

• The type of the operation’s return result; the type may be any type which can
defined in OMG IDL. Operations that do not return a result must specify the void
type.

• An identifier that names the operation in the scope of the interface in which
defined.

• A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in Section 3.12.2, “Parameter
Declarations,” on page 3-42.

• An optional raises expression which indicates which exceptions may be raise
a result of an invocation of this operation. Raises expressions are described
Section 3.12.3, “Raises Expressions,” on page 3-43.

• An optional context expression which indicates which elements of the reques
context may be consulted by the method that implements the operation. Con
expressions are described in Section 3.12.4, “Context Expressions,” on page

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.
CORBA V2.3 Operation Declaration June 1999 3-41

3

e is

rt

;

n
urns

tax:

the

n

lt and
3.12.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribut
optional. The syntax for its specification is as follows:

<op_attribute>::=“oneway”

When a client invokes an operation with the oneway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effo
implies that the operation will be invoked at most once. An operation with the oneway
attribute must not contain any output parameters and must specify a void return type.
An operation defined with the oneway attribute may not include a raises expression
invocation of such an operation, however, may raise a standard exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if a
exception is raised; the semantics are exactly-once if the operation invocation ret
successfully.

3.12.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syn

<parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> } ∗ “)”
| “(” “)”

<param_dcl> ::= <param_attribute> <param_type_spec>
<simple_declarator>

<param_attribute> ::= “in”
| “out”
| “inout”

<param_type_spec> ::= <base_type_spec>
| <string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which
parameter is to be passed. The directional attributes are:

• in - the parameter is passed from client to server.

• out - the parameter is passed from server to client.

• inout - the parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such a
action is undefined.

If an exception is raised as a result of an invocation, the values of the return resu
any out and inout parameters are undefined.
3-42 CORBA V2.3 Operation Declaration June 1999

3

the
ws:

n

t be
string.
.

ed as
 of
lue of
3.12.3 Raises Expressions

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation. The syntax for its specification is as follows:

<raises_expr>::=“raises” “(” <scoped_name> { “,” <scoped_name> } ∗ “)”

The <scoped_name> s in the raises expression must be previously defined
exceptions.

In addition to any operation-specific exceptions specified in the raises expression,
there are a standard set of exceptions that may be signalled by the ORB. These
standard exceptions are described in Section 3.17, “Standard Exceptions,” on
page 3-51. However, standard exceptions may not be listed in a raises expression.

The absence of a raises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard exceptions.

3.12.4 Context Expressions

A context expression specifies which elements of the client’s context may affect
performance of a request by the object. The syntax for its specification is as follo

<context_expr>::=“context” “(” <string_literal> { “,” <string_literal> } ∗ “)”

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’s context available to the object implementation whe
the request is delivered. The ORB and/or object is free to use information in this
request context during request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Each string_literal is an arbitrarily long sequence of alphabetic, digit, period (“.”),
underscore (“_”), and asterisk (“*”) characters. The first character of the string mus
an alphabetic character. An asterisk may only be used as the last character of the
Some implementations may use the period character to partition the name space

The mechanism by which a client associates values with the context identifiers is
described in the Dynamic Invocation Interface chapter.

3.13 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defin
part of an interface. An attribute definition is logically equivalent to declaring a pair
accessor functions; one to retrieve the value of the attribute and one to set the va
the attribute.

The syntax for attribute declaration is:
CORBA V2.3 Attribute Declaration June 1999 3-43

3

3-7:

 name

n

.,
<attr_dcl> ::= [“readonly”] “attribute” <param_type_spec>
<simple_declarator>
{ “,” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {

float x, y;
};

attribute float radius;
attribute material_t material;
readonly attribute position_t position;

• • •
};

The attribute declarations are equivalent to the following pseudo-specification
fragment, assuming that one of the leading ‘_’s is removed by application of the
Escaped Identifier rule described in Section 3.2.3.1, “Escaped Identifiers,” on page

• • •
float __get_radius ();
void _ _set_radius (in float r);
material_t _ _get_material ();
void _ _set_material (in material_t m);
position_t _ _get_position ();
• • •

The actual accessor function names are language-mapping specific. The attribute
is subject to OMG IDL’s name scoping rules; the accessor function names are
guaranteed not to collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of standard exceptions.

Attributes are inherited. An attribute name cannot be redefined to be a different type.
See Section 3.14, “CORBA Module,” on page 3-44 for more information on
redefinition constraints and the handling of ambiguity.

3.14 CORBA Module

Names defined by the CORBA specification are in a module named CORBA. In a
OMG IDL specification, however, OMG IDL keywords such as Object must not be
preceded by a “CORBA:: ” prefix. Other interface names such as TypeCode are not
OMG IDL keywords, so they must be referred to by their fully scoped names (e.g
CORBA::TypeCode) within an OMG IDL specification.

For example in:
3-44 CORBA V2.3 CORBA Module June 1999

3

es are

he

is

t
n of

s.
#include <orb.idl>
module M {

typedef CORBA::Object myObjRef; // Error: keyword Object scoped
typedef TypeCode myTypeCode; // Error: TypeCode undefined
typedef CORBA::TypeCode TypeCode;// OK

};

The file orb.idl contains the IDL definitions for the CORBA module. The file orb.idl
must be included in IDL files that use names defined in the CORBA module.

The version of CORBA specified in this release of the specification is version <x.y> ,
and this is reflected in the IDL for the CORBA module by including the following
pragma version (see Section 10.6.5.3, “The Version Pragma,” on page 10-45):

#pragma version CORBA <x.y>

as the first line immediately following the very first CORBA module introduction line,
which in effect associates that version number with the CORBA entry in the IR. The
version number in that version pragma line must be changed whenever any chang
made to any remotely accessible parts of the CORBA module in an officially released
OMG standard.

3.15 Names and Scoping

OMG IDL identifiers are case insensitive; that is, two identifiers that differ only in t
case of their characters are considered redefinitions of one another. However, all
references to a definition must use the same case as the defining occurrence. Th
allows natural mappings to case-sensitive languages. So for example:

module M {
typedef long Long; // Error: Long clashes with keyword long
typedef long TheThing;
interface I {

typedef long MyLong;
myLong op1(// Error: inconsistent capitalization

in TheThing thething; // Error: TheThing clashes with thething
);

};
};

3.15.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by firs
resolving the qualifier <scoped-name> to a scope S, and then locating the definitio
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosing scope
CORBA V2.3 Names and Scoping June 1999 3-45

3

ed in

he
ty
d

f

e of

nt
n
 other
ted.

t,

es
lly the
ts
o the

s.

ple:
When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiers in the qualified name by the rule describ
the previous paragraph.

Every OMG IDL definition in a file has a global name within that file. The global
name for a definition is constructed as follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of t
current root is initially empty (“”) and the name of the current scope is initially emp
(“”). Whenever a module keyword is encountered, the string “::” and the associate
identifier are appended to the name of the current root; upon detection of the
termination of the module , the trailing “::” and identifier are deleted from the name o
the current root. Whenever an interface , struct , union , or exception keyword is
encountered, the string “::” and the associated identifier are appended to the nam
the current scope; upon detection of the termination of the interface , struct , union ,
or exception , the trailing “::” and identifier are deleted from the name of the curre
scope. Additionally, a new, unnamed, scope is entered when the parameters of a
operation declaration are processed; this allows the parameter names to duplicate
identifiers; when parameter processing has completed, the unnamed scope is exi

The global name of an OMG IDL definition is the concatenation of the current roo
the current scope, a “::”, and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute
ScopedName in the Interface Repository. (See Section 10.5.1, “Supporting Type
Definitions,” on page 10-10).

Inheritance produces shadow copies of the inherited identifiers; that is, it introduc
names into the derived interface, but these names are considered to be semantica
same as the original definition. Two shadow copies of the same original (as resul
from the diamond shape in Figure 3-1 on page 3-21) introduce a single name int
derived interface and don’t conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifier
Consider the following example:

interface A {
exception E {

long L;
};
void f() raises(E);

};

interface B: A {
void g() raises(E);

};

In this example, the exception is known by the global names ::A::E and ::B::E .

Ambiguity can arise in specifications due to the nested naming scopes. For exam
3-46 CORBA V2.3 Names and Scoping June 1999

3

s
s.

ced
ide a

ive of

tely
 of
its
e
 the
h

nd

ot be
interface A {
typedef string<128> string_t;

};

interface B {
typedef string<256> string_t;

};

interface C: A, B {
attribute string_t Title; // Error: Ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK

};

The declaration of attribute Title in interface C is ambiguous, since the compiler doe
not know which string_t is desired. Ambiguous declarations yield compilation error

3.15.2 Scoping Rules and Name Resolution

Contents of an entire OMG IDL file, together with the contents of any files referen
by #include statements, forms a naming scope. Definitions that do not appear ins
scope are part of the global scope. There is only a single global scope, irrespect
the number of source files that form a specification.

The following kinds of definitions form scopes:

• module

• interface

• valuetype

• struct

• union

• operation

• exception

The scope for module, interface, valuetype, struct and exception begins immedia
following its opening '{' and ends immediately preceding its closing '}'. The scope
an operation begins immediately following its '(' and ends immediately preceding
closing ')'. The scope of an union begins immediately following the '(' following th
keyword switch , and ends immediately preceding its closing '}'. The appearance of
declaration of any of these kinds in any scope, subject to semantic validity of suc
declaration, opens a nested scope associated with that declaration.

An identifier can only be defined once in a scope. However, identifiers can be
redefined in nested scopes. An identifier declaring a module is considered to be
defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration with the same identifier within the same scope reopens the module a
hence its scope, allowing additional definitions to be added to it.

The name of an interface, value type, struct, union, exception or a module may n
redefined within the immediate scope of the interface, value type, struct, union,
exception, or the module. For example:
CORBA V2.3 Names and Scoping June 1999 3-47

3

at

 of the

reated
module M {
typedef short M; // Error: M is the name of the module

 // in the scope of which the typedef is.
interface I {

void i (in short j); // Error: i clashes with the interface name I
};

};

An identifier from a surrounding scope is introduced into a scope if it is used in th
scope. An identifier is not introduced into a scope by merely being visible in that
scope. The use of a scoped name introduces the identifier of the outermost scope
scoped name. For example in:

module M {
module Inner1 {

typedef string S1;
};

module Inner2 {
typedef string inner1; // OK

};
}

The declaration of Inner2::inner1 is OK because the identifier Inner1 , while visible
in module Inner2 , has not been introduced into module Inner2 by actual use of it. On
the other hand, if module Inner2 were:

module Inner2{
typedef Inner1::S1 S2; // Inner1 introduced
typedef string inner1; // Error
typedef string S1; // OK

};

The definition of inner1 is now an error because the identifier Inner1 referring to the
module Inner1 has been introduced in the scope of module Inner2 in the first line of
the module declaration. Also, the declaration of S1 in the last line is OK since the
identifier S1 was not introduced into the scope by the use of Inner1::S1 in the first
line.

Enumeration value names are introduced into the enclosing scope and then are t
like any other declaration in that scope. For example:
3-48 CORBA V2.3 Names and Scoping June 1999

3

. In
e

nto
interface A {
enum E { E1, E2, E3 }; // line 1

enum BadE { E3, E4, E5 }; // Error: E3 is already introduced
// into the A scope in line 1 above

};

interface C {
enum AnotherE { E1, E2, E3 };

};

interface D : C, A {
union U switch (E) {

case A::E1 : boolean b;// OK.
case E2 : long l; // Error: E2 is ambiguous (notwithstanding

// the switch type specification!!)
};

};

Type names defined in a scope are available for immediate use within that scope
particular, see Section 3.10.2, “Constructed Types,” on page 3-35 on cycles in typ
definitions.

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes, while taking i
consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; // line l1
interface B {

typedef string ArgType; // line l3
ArgType opb(in AType i); // line l2

};
};

module N {
typedef char ArgType; // line l4
interface Y : M::B {

void opy(in ArgType i); // line l5
};

};

The following scopes are searched for the declaration of ArgType used on line l5 :

1. Scope of N::Y before the use of ArgType .

2. Scope of N::Y ’s base interface M::B . (inherited scope)

3. Scope of module N before the definition of N::Y.

4. Global scope before the definition of N.
CORBA V2.3 Names and Scoping June 1999 3-49

3

 Use
s well
e
type.
M::B::ArgType is found in step 2 in line l3 , and that is the definition that is used in
line l5 , hence ArgType in line l5 is string . It should be noted that ArgType is not
char in line l5 . Now if line l3 were removed from the definition of interface M::B
then ArgType on line l5 would be char from line l4 which is found in step 3 .

Following analogous search steps for the types used in the operation M::B::opb on
line l2 , the type of AType used on line l2 is long from the typedef in line l1 and the
return type ArgType is string from line l3.

3.15.3 Special Scoping Rules for Type Names

Once a type has been defined anywhere within the scope of a module, interface or
valuetype, it may not be redefined except within the scope of a nested module or
interface. For example:

module M {
typedef long ArgType;
interface A {

typedef string ArgType; // OK, redefined in nested scope
struct S {

ArgType x; // x is a string
};

};
typedef double ArgType; // Error: redefinition in same scope

};

Once a type identifier has been used anywhere within the scope of an interface or
valuetype, it may not be redefined within the scope of that interface or valuetype.
of type names within nested scopes created by structs, unions, and exceptions, a
as within the unnamed scope created by an operation parameter list, are for thes
purposes considered to occur within the scope of the enclosing interface or value
For example:

module M {
typedef long ArgType;
const long I = 10;
typedef short Y;

interface A {
struct S {

ArgType x[I]; // x is a long[10], ArgType and I are used
long y; // Note: a new y is defined; the existing Y is not used

};
typedef string ArgType; // Error: ArgType redefined after use
enum I {I1, I2}; // Error: I redefined after use
typedef short Y; // OK because Y has not been used yet!

};
};

Note that redefinition of a type after use in a module is OK as in the example:
3-50 CORBA V2.3 Names and Scoping June 1999

3

hat

ation.

lared

tion
the

ilar
 due
ent
ses

the
typedef long ArgType;
module M {

struct S {
ArgType x; // x is a long

};
typedef string ArgType; // OK!
struct T {

ArgType y; // Ugly but OK, y is a string
};

};

3.16 Differences from C++

The OMG IDL grammar, while attempting to conform to the C++ syntax, is somew
more restrictive. The restrictions are as follows:

• A function return type is mandatory.

• A name must be supplied with each formal parameter to an operation declar

• A parameter list consisting of the single token void is not permitted as a synonym
for an empty parameter list.

• Tags are required for structures, discriminated unions, and enumerations.

• Integer types cannot be defined as simply int or unsigned; they must be dec
explicitly as short, long or long long .

• char cannot be qualified by signed or unsigned keywords.

3.17 Standard Exceptions

This section presents the standard exceptions defined for the ORB. These excep
identifiers may be returned as a result of any operation invocation, regardless of
interface specification. Standard exceptions may not be listed in raises expressions.

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumerating many sim
exceptions. For example, an operation invocation can fail at many different points
to the inability to allocate dynamic memory. Rather than enumerate several differ
exceptions corresponding to the different ways that memory allocation failure cau
the exception (during marshaling, unmarshaling, in the client, in the object
implementation, allocating network packets), a single exception corresponding to
dynamic memory allocation failure is defined.

Each standard exception includes a minor code to designate the subcategory of
exception.

Minor exception codes are of type unsigned long and consist of a 20-bit “Vendor
Minor Codeset ID”(VMCID), which occupies the high order 20 bits, and the minor
code which occupies the low order 12 bits.
CORBA V2.3 Differences from C++ June 1999 3-51

3

8 are
y

to the

ystem
ion
ay
Minor codes for the standard exceptions are prefaced by the VMCID assigned to OMG,
defined as the unsigned long constant CORBA::OMGVMCID , which has the VMCID
allocated to OMG occupying the high order 20 bits. The minor exception codes
associated with the standard exceptions that are found in Table 3-13 on page 3-5
or-ed with OMGVMCID to get the minor code value that is returned in the ex_bod
structure (see Section 3.17.1, “Standard Exception Definitions,” on page 3-52 and
Section 3.17.2, “Standard Minor Exception Codes,” on page 3-58).

Within a vendor assigned space, the assignment of values to minor codes is left
vendor. Vendors may request allocation of VMCIDs by sending email to tag-
request@omg.org.

The VMCID 0 and \xfffff are reserved for experimental use. The VMCID OMGVMCID
(Section 3.17.1, “Standard Exception Definitions,” on page 3-52) and 1 through \xf are
reserved for OMG use.

Each standard exception also includes a completion_status code which takes one of
the values {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}.
These have the following meanings:

3.17.1 Standard Exception Definitions

The standard exceptions are defined below. Clients must be prepared to handle s
exceptions that are not on this list, both because future versions of this specificat
may define additional standard exceptions, and because ORB implementations m
raise non-standard system exceptions.

module CORBA {
const unsigned long OMGVMCID = \x4f4d0000;

#define ex_body {unsigned long minor; completion_status completed;}
enum completion_status { COMPLETED_YES,

COMPLETED_NO,
COMPLETED_MAYBE};

enum exception_type { NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION};

exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; // an invalid parameter was

// passed
exception NO_MEMORY ex_body; // dynamic memory allocation

COMPLETED_YES The object implementation has completed processing prior to the exception being
raised.

COMPLETED_NO The object implementation was never initiated prior to the exception being raised.

COMPLETED_MAYBE The status of implementation completion is indeterminate.
3-52 CORBA V2.3 Standard Exceptions June 1999

3

// failure
exception IMP_LIMIT ex_body; // violated implementation

// limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; // invalid object reference
exception NO_PERMISSION ex_body; // no permission for

// attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; // error marshaling

// param/result

exception INITIALIZE ex_body; // ORB initialization failure
exception NO_IMPLEMENT ex_body; // operation implementation

 // unavailable

exception BAD_TYPECODE ex_body; // bad typecode
exception BAD_OPERATION ex_body; // invalid operation
exception NO_RESOURCES ex_body; // insufficient resources

// for req.
exception NO_RESPONSE ex_body; // response to req. not yet

// available
exception PERSIST_STORE ex_body; // persistent storage failure
exception BAD_INV_ORDER ex_body; // routine invocations

// out of order
exception TRANSIENT ex_body; // transient failure - reissue

// request

exception FREE_MEM ex_body; // cannot free memory
exception INV_IDENT ex_body; // invalid identifier syntax
exception INV_FLAG ex_body; // invalid flag was specified
exception INTF_REPOS ex_body; // error accessing interface

// repository
exception BAD_CONTEXT ex_body; // error processing context

// object
exception OBJ_ADAPTER ex_body; // failure detected by object

// adapter

exception DATA_CONVERSION ex_body; // data conversion error
exception OBJECT_NOT_EXIST ex_body; // non-existent object,

// delete reference
exception TRANSACTION_REQUIRED

ex_body; // transaction required
exception TRANSACTION_ROLLEDBACK

ex_body; // transaction rolled
// back

exception INVALID_TRANSACTION
ex_body; // invalid transaction

exception INV_POLICY ex_body; // invalid policy
exception CODESET_INCOMPATIBLE

ex_body // incompatible code set

};
CORBA V2.3 Standard Exceptions June 1999 3-53

3

m
r

o the

RB
 (for

rrect

un
 hold
 the
or

,
been

ple,

tect
3.17.1.1 UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA
exception (such as an exception specific to the implementation's programming
language), or if an operation raises a user exception that does not appear in the
operation's raises expression. UNKNOWN is also raised if the server returns a syste
exception that is unknown to the client. (This can happen if the server uses a late
version of CORBA than the client and new system exceptions have been added t
later version.)

3.17.1.2 BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An O
may raise this exception if null values or null pointers are passed to an operation
language mappings where the concept of a null pointers or null values applies).
BAD_PARAM can also be raised as a result of client generating requests with inco
parameters using the DII.

3.17.1.3 NO_MEMORY

The ORB run time has run out of memory.

3.17.1.4 IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB r
time. For example, an ORB may reach the maximum number of references it can
simultaneously in an address space, the size of a parameter may have exceeded
allowed maximum, or an ORB may impose a maximum on the number of clients
servers that can run simultaneously.

3.17.1.5 COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress
after the request was sent by the client, but before the reply from the server has
returned to the client.

3.17.1.6 INV_OBJREF

This exception indicates that an object reference is internally malformed. For exam
the repository ID may have incorrect syntax or the addressing information may be
invalid. This exception is raised by ORB::string_to_object if the passed string does
not decode correctly.

An ORB may choose to detect calls via nil references (but is not obliged to do de
them). INV_OBJREF is used to indicate this.

3.17.1.7 NO_PERMISSION

An invocation failed because the caller has insufficient privileges.
3-54 CORBA V2.3 Standard Exceptions June 1999

3

s

eply
essage

ire

t has

ion

 an

ject

 time
3.17.1.8 INTERNAL

This exception indicates an internal failure in an ORB, for example, if an ORB ha
detected corruption of its internal data structures.

3.17.1.9 MARSHAL

A request or reply from the network is structurally invalid. This error typically
indicates a bug in either the client-side or server-side run time. For example, if a r
from the server indicates that the message contains 1000 bytes, but the actual m
is shorter or longer than 1000 bytes, the ORB raises this exception. MARSHAL can
also be caused by using the DII or DSI incorrectly, for example, if the type of the
actual parameters sent does not agree with IDL signature of an operation.

3.17.1.10 INITIALIZE

An ORB has encountered a failure during its initialization, such as failure to acqu
networking resources or detecting a configuration error.

3.17.1.11 NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (i
an IDL definition), no implementation for that operation exists. NO_IMPLEMENT
can, for example, be raised by an ORB if a client asks for an object's type definit
from the interface repository, but no interface repository is provided by the ORB.

3.17.1.12 BAD_TYPECODE

The ORB has encountered a malformed type code (for example, a type code with
invalid TCKind value).

3.17.1.13 BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the ob
does not support the operation that was invoked.

3.17.1.14 NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run
may have reached the maximum permissible number of open connections.

3.17.1.15 NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred
synchronous call, but the response for the request is not yet available.
CORBA V2.3 Standard Exceptions June 1999 3-55

3

ish a

. For
l

 not
r

. This
use

eap

ed
 IDL

est).

ther

sed
3.17.1.16 PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establ
database connection or corruption of a database.

3.17.1.17 BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order
example, it can be raised by an ORB if an application makes an ORB-related cal
without having correctly initialized the ORB first.

3.17.1.18 TRANSIENT

TRANSIENT indicates that the ORB attempted to reach an object and failed. It is
an indication that an object does not exist. Instead, it simply means that no furthe
determination of an object's status was possible because it could not be reached
exception is raised if an attempt to establish a connection fails, for example, beca
the server or the implementation repository is down.

3.17.1.19 FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of h
corruption or memory segments being locked.

3.17.1.20 INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be rais
if, for example, an identifier passed to the interface repository does not conform to
identifier syntax, or if an illegal operation name is used with the DII.

3.17.1.21 INV_FLAG

An invalid flag was passed to an operation (for example, when creating a DII requ

3.17.1.22 INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some o
failure relating to the interface repository is detected.

3.17.1.23 BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the pas
context does not contain the context values required by the operation.
3-56 CORBA V2.3 Standard Exceptions June 1999

3

ver
er a

rs.

 if

ed
 is
m

old
rn

ll

Thus,
ause

on
g to

ility
3.17.1.24 OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a ser
may have made an attempt to register itself with an implementation repository und
name that is already in use, or is unknown to the repository. OBJ_ADAPTER is also
raised by the POA to indicate problems with application-supplied servant manage

3.17.1.25 DATA_CONVERSION

This exception is raised if an ORB cannot convert the representation of data as
marshaled into its native representation or vice-versa. For example,
DATA_CONVERSION can be raised if wide character codeset conversion fails, or
an ORB cannot convert floating point values between different representations.

3.17.1.26 OBJECT_NOT_EXIST

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a delet
object was performed. It is an authoritative “hard” fault report. Anyone receiving it
allowed (even expected) to delete all copies of this object reference and to perfor
other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may h
(for example, proxy objects used in reference translation). The clients could in tu
purge any of their own data structures.

3.17.1.27 TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a nu
transaction context, but an active transaction is required.

3.17.1.28 TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction
associated with the request has already been rolled back or marked to roll back.
the requested operation either could not be performed or was not performed bec
further computation on behalf of the transaction would be fruitless.

3.17.1.29 INVALID_TRANSACTION

The INVALID_TRANSACTION indicates that the request carried an invalid transacti
context. For example, this exception could be raised if an error occurred when tryin
register a resource.

3.17.1.30 INV_POLICY

INV_POLICY is raised when an invocation cannot be made due to an incompatib
between Policy overrides that apply to the particular invocation.
CORBA V2.3 Standard Exceptions June 1999 3-57

3

een
on

igned
3.17.1.31 CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible betw
client and server native code sets. See Section 13.7.2.6, “Code Set Negotiation,”
page 13-34.

3.17.2 Standard Minor Exception Codes

The following table specifies standard minor exception codes that have been ass
for the standard exceptions. The actual value that is to be found in the minor field of
the ex_body structure is obtained by or-ing the values in this table with the
OMGVMCID constant. For example “Missing local value implementation” for the
exception NO_IMPLEMENT would be denoted by the minor value \x4f4d0001 .

Table 3-13 Minor Exception Codes

SYSTEM EXCEPTION MINOR CODE EXPLANATION

BAD_PARAM 1 Failure to register, unregister or lookup value
factory

2 RID already defined in IFR

3 Name already used in the context in IFR

4 Target is not a valid container

5 Name clash in inherited context

6 Incorrect type for abstract interface

MARSHAL 1 Unable to locate value factory

NO_IMPLEMENT 1 Missing local value implementation

2 Incompatible value implementation version

BAD_INV_ORDER 1 Dependency exists in IFR preventing
destruction of this object

2 Attempt to destroy indestructible objects in
IFR

3 Operation would deadlock

4 ORB has shutdown

OBJECT_NOT_EXIST 1 Attempt to pass an unactivated (unregistered)
value as an object reference
3-58 CORBA V2.3 Standard Exceptions June 1999

	OMG IDL Syntax and Semantics
	3.1 Overview
	3.2 Lexical Conventions
	3.2.1 Tokens
	3.2.2 Comments
	3.2.3 Identifiers
	3.2.3.1 Escaped Identifiers

	3.2.4 Keywords
	3.2.5 Literals
	3.2.5.1 Integer Literals
	3.2.5.2 Character Literals
	3.2.5.3 Floating-point Literals
	3.2.5.4 String Literals
	3.2.5.5 Fixed-Point Literals

	3.3 Preprocessing
	3.4 OMG IDL Grammar
	3.5 OMG IDL Specification
	3.6 Module Declaration
	3.7 Interface Declaration
	3.7.1 Interface Header
	3.7.2 Interface Inheritance Specification
	3.7.3 Interface Body
	3.7.4 Forward Declaration
	3.7.5 Interface Inheritance

	3.8 Value Declaration
	3.8.1 Regular Value Type
	3.8.1.1 Value Header
	3.8.1.2 Value Element
	3.8.1.3 Value Inheritance Specification
	3.8.1.4 State Members
	3.8.1.5 Initializers
	3.8.1.6 Value Type Example

	3.8.2 Boxed Value Type
	3.8.3 Abstract Value Type
	3.8.4 Value Forward Declaration
	3.8.5 Valuetype Inheritance

	3.9 Constant Declaration
	3.9.1 Syntax
	3.9.2 Semantics

	3.10 Type Declaration
	3.10.1 Basic Types
	3.10.1.1 Integer Types
	3.10.1.2 Floating-Point Types
	3.10.1.3 Char Type
	3.10.1.4 Wide Char Type
	3.10.1.5 Boolean Type
	3.10.1.6 Octet Type
	3.10.1.7 Any Type

	3.10.2 Constructed Types
	3.10.2.1 Structures
	3.10.2.2 Discriminated Unions
	3.10.2.3 Enumerations

	3.10.3 Template Types
	3.10.3.1 Sequences
	3.10.3.2 Strings
	3.10.3.3 Wstrings
	3.10.3.4 Fixed Type

	3.10.4 Complex Declarator
	3.10.4.1 Arrays

	3.10.5 Native Types

	3.11 Exception Declaration
	3.12 Operation Declaration
	3.12.1 Operation Attribute
	3.12.2 Parameter Declarations
	3.12.3 Raises Expressions
	3.12.4 Context Expressions

	3.13 Attribute Declaration
	3.14 CORBA Module
	3.15 Names and Scoping
	3.15.1 Qualified Names
	3.15.2 Scoping Rules and Name Resolution
	3.15.3 Special Scoping Rules for Type Names

	3.16 Differences from C++
	3.17 Standard Exceptions
	3.17.1 Standard Exception Definitions
	3.17.1.1 UNKNOWN
	3.17.1.2 BAD_PARAM
	3.17.1.3 NO_MEMORY
	3.17.1.4 IMP_LIMIT
	3.17.1.5 COMM_FAILURE
	3.17.1.6 INV_OBJREF
	3.17.1.7 NO_PERMISSION
	3.17.1.8 INTERNAL
	3.17.1.9 MARSHAL
	3.17.1.10 INITIALIZE
	3.17.1.11 NO_IMPLEMENT
	3.17.1.12 BAD_TYPECODE
	3.17.1.13 BAD_OPERATION
	3.17.1.14 NO_RESOURCES
	3.17.1.15 NO_RESPONSE
	3.17.1.16 PERSIST_STORE
	3.17.1.17 BAD_INV_ORDER
	3.17.1.18 TRANSIENT
	3.17.1.19 FREE_MEM
	3.17.1.20 INV_IDENT
	3.17.1.21 INV_FLAG
	3.17.1.22 INTF_REPOS
	3.17.1.23 BAD_CONTEXT
	3.17.1.24 OBJ_ADAPTER
	3.17.1.25 DATA_CONVERSION
	3.17.1.26 OBJECT_NOT_EXIST
	3.17.1.27 TRANSACTION_REQUIRED
	3.17.1.28 TRANSACTION_ROLLEDBACK
	3.17.1.29 INVALID_TRANSACTION
	3.17.1.30 INV_POLICY
	3.17.1.31 CODESET_INCOMPATIBLE

	3.17.2 Standard Minor Exception Codes

