Transaction Service Specification 10

This chapter provides the followirigformationabout the Trasaction Service:

A description of the service, which explains the functional, design, and
performance requirements that are satisfied by this specification.

* An overview of the Transaction Service that introduces the concepts used
throughout this chapter.

A description of the Transaction Service’s architecture and a detailed definition of
the Transaction Service, including definitions of its interfaces and operations.

* A user’s view of the Transaction Service as seen by the applicatioraprogr,
including client and object implementor.

» An implementor’s view of the Transaction Service, which witerest
Transaction Service and ORBoviders.

This chapter also contains an appenthiat explains the relationship between the
Transaction Service and TP standards, and an appendix that contains transaction terms.

10.1 Service Description

The concept of transactions is an important programming paradigm for simplifying the
construction of reliablandavailable applications, especially those that require
concurrent access to shared data. The transaction comagtst deplyed in

commercial operational applications where it was used to protect data in centralized
databases. More recently, the transactioncept has been extended to the broader
context of distributed computation. Today it is widely accepted that transactions are the
key to constructing reliable distributed applications.

The Transaction Service described in this specification brings the transaction
paradigm, essential to developirgiable distributed applicatits, and the object
paradigm, key to produetity and quality in application development, together to
address the business problems of commercial transaction processing.

CORBAservices: Common Object Services Specification 10-1

10

10-2

10.1.1 Overview of Transactions

The Transaction Service supports the concept of a transaction. A transaction is a unit
of work that has théollowing (ACID) charaaristics:

® A transaction isatomic; if interrupted by failure, all effects are undone (rolled
back).

® A transaction producesnsistentresults; the effects of a transact preserve
invariant properties.

® A transaction igsolated its intermediate states are nadible to other transactions.
Transactions appear to executeiaby, even if they are performed concurrently.

® A transaction iglurable; the effects of a completed transaction are persistent; they
are never lost (except in a catastropfaiidure).

A transaction can beerninated in two ways: the trgaction is either committed or

rolled back. When a transactioné®mmited, all changes made by the associated
requests are made permanent. When a transaction is rolled back, all changes made by
the associated requests are undone.

The Transaction Service defines interfaces that alioultiple, distributedobjects to
cooperate to provide atomicity. These interfaces enable the objects toceithrait all
changes together or to rollbaek changes together, even in the presence of
(noncatastrophic) failure. No requirements are placed on the objects other than those
defined by the Transaction Service interfaces.

Transaction semantiasan be defined agart ofany object that provides ACID
properties. Examples are OODBMS, and persistent objects. The value of a separate
transaction service is that it allows:

® Transactions to include multiple, separately dedinACID objects.

® The possibility of transactions which include objeatsl resourceBom the non-
object world.

10.1.2 Transactional Applications

The Transaction Service provides transaction synchronization across the elements of a
distributed client/server application.

A transaction can involveultiple obgcts performingnultiple requestsThe scope of

a transaction is defined by a transaction context that is shared by the participating
objects. The Transaction Service places no constraints on the number of objects
involved, the topology of the application or the wayihich the application is
distributed across a netnk.

In a typical scenario, a cliefitst begins a transaction (by issuing a request to an
object defined by the Transaction Service), which establishes a transaction context
associated with the client thread. The client then issues requests. These requests are
implicitly associated with the client’s transaction; trehare the client’s transaction
context. Eventually, the client decidesend the trasaction (by issuing another

CORBAservices: Common Object Services Specification

10

request). If there were no failures, the changes produced as a consequence of the
client's requests would then be committetherwise, the changes would be rolled
back.

In this scenario, the transaction context is transmittgaicitly to the objects, without
direct client intervention-See ®ction 104.1. The Tansaction Service also supports
scenarios where the client directly controls the propagation of the transaction context.
For example, a client can pass the transaction context to an object as an explicit
parameter in a request. An implementation of the Transaction Service lmghhe
client’s ability to explicitlypropagate the transaction context, in order to guarantee
transaction integrit{See 10.4.1, Suection "Direct Context Management: Exjl
Propagation™).

The Transaction Service does not require that all requests be performed within the
scope of a transaction. A request issued outside the scope of a transaction has no
associated transaction context. It is up to each object to determine its behaemor w
invoked outside the scope of a transaction; an object that requires a transaction context
can raise a standard exqation.

10.1.3 Definitions

Applications supported by the Transaction Service consist of the followirtgeent
» Transactional Client (TC)
» Transactional Object&rO)
* Recoverable Objects
» Transactional Servers
* Recoverable Servers

Transaction Service/1.0 Service Description March 1995 10-3

10

The followingfigure shows asimple application which includes these basic elements.

Distributed
Client/Sever Application

| Transactional Recoverable i
! Server Server '
: Transactional '
Client i
i Resource I
Transactiona| .
! Operation A !
e Participates i
transaction completion

begin or not involved in registers resource in
end transaction completion, transaction completion,
transaction may force rollback may force rollback

\i Y

transaction

Transaction Service context

Transactional Client

A transactional client is an arbitrary program that camkewperations of many
transactional objects in a single transaction.

The program that begins a transaction is called the transaction originator

Transactional Object

We use the terrtransactional objecto refer to an object whose behavior is affected
by being invoked within the scope of a transaction. A transactional object typically
contains or indirectly refers toepsistent data thatan bemodified by requests.

The Transaction Service does metuire that all requestsve transactional behavior,
even whenssued within the scope of a transaction. An object can choose to not
support transactional behavior, or to support transactional behavior for some requests
but not others.

10-4 CORBAservices: Common Object Services Specification

10

We use the termontransactional objedb refer to an object none of whose operations
are affected by being invoked within the scope of a transaction.

If an object does not support transactional behavior for a request, then the changes
produced by the request might not survive a faiand the changes will not be undone
if the transaction associated with the request is rddlack.

An object can also choose to support transactional behavior for some requests but not
others. This choice can be exercised by both the client and the server of the request.

The Transaction Service pmits an interface tdvave both transactionahd

nontransactional implementations. No IDL extensions are introduced to specify
whether or not an operation has transactional behavior. Transactional behavior can be a
quality of service that differs in different implementations.

Transactional objects are used to implement two types of application servers:
» Transactional Server
* Recoverable Server

Recoverable Objects and Resource Objects

To implementtansactional behavior, an object must participate in certain protocols
defined by the Transaction Service. These protocols are used to ensale that
participants in the transaction agree on the outcome (commutlback) and to
recover from failures.

To be more precise, an object is required to participate in these protocols only if it
directly manages datahese state is subject to change within a transaction. An object
whose data is affected lmpmmitting or rolling kack a transaction isalled a

recoverable object.

A recoverable object is by definition a transactional objectvéler, arobject can be
transactional but not recoverable by implementiagstateusing some other
(recoverable) object. A client is concerned only that an object is tramsactoclient
cannottell whether a transactional object is oni® a recoverable object.

A recoverable object must participate in the Transaction Service protocols. It does so
by registering an object called a resource with the Transaction Sefhiee.

Transaction Service drives tlitemmit protocol by issuing requests to the resources
registered for a transaction.

A recoverable object typically involvétself in atransaction because it is required to
retain in stable storage certain informatiorciatical times in itsprocessing. When a
recoverable object restarts after a failure, it participates in a recovery protseal on
the contents (or lack of contents) of its stable storage.

A transaction can be used to coordinate non-duradtigities which do not require
permanent changes to storage.

Transaction Service/1.0 Service Description March 1995 10-5

10

10-6

Transactional Server

A transactional server is a collection of one or nmabjects whose behavior is affected
by the transaction, but which have no recoverable states of their own. Instead, it
implements transactional changes using other recoverable objects. A transactional
server does not participate in the completion of the transaction, but it can force the
transaction to be rolletdack.

Recoverable Server
A recoverable server is a collection of objects, at leastof which is recoverable.

A recoverable server participates in the protocols by registeriegor moreResource
objectswith the Transaction Servic&he Transaction Service drives tltemmit
protocol by issuing requests to the resources registered for a transaction.

10.1.4 Transaction Service Functionality

The Transaction Service provides operations to:
» Control the scope and duration of a saantion
 Allow multiple objects to be involved in a single, atomic transaction
» Allow objects to associate changes in their internal state with a transaction
» Coordinate the completion of transactions

Transaction Models

The Transaction Service supports twistributed transaction models: flat transactions
and nestedransactions. Ammplementation of the Transaction Service is not required
to support nested transactions.

Flat Transactions

The Transaction Serviagefines support for a flat transaction modeie deinition of
the function provided, and treommitment protocolsised, is modeled on the X/Open
DTP transaction model definitioh.

A flat transaction is considered to be a top-level transaction—see the next
section—thatannot have a child transaction.

1. Sedistributed Transaction Processing: The XA Specificatid®pen Document C193. X/Open
Company Ltd., ReadingJ.K., ISBN1-85912-057-1.

CORBAservices: Common Object Services Specification

10

Nestedlransactions

The Transaction Service also defines a nested transaction model. Nested transactions
provide for a finer granularity of recovery th#lat transactions. The effect of failures

that require rollback can Hamited so that unaffected parts of the transactieednnot
rollback.

Nested transactions allow an application to create a transaction that is embedded in an
existing transactionThe existing transaction is called tparentof the subtransaction;
the subtransaction is calledchild of the parent transaction.

Multiple subtransactionsan be embedded in the same paremistation. The children
of one parent are callegiblings

Subtransactions can be embedded in other subtransactions to any level of nesting. The
ancestorsof a transaction are the parent of the subtransaction and (recursively) the
parents of itancestorsThe descendant®f a transaction are the children of the
transactionand (recursively) the children @6 descendants.

A top-level transaction isne with no parent. A top-level transaction aaidof its
descendants are calledransaction family

A subtransaction isimilar to a top-level transaction in that theanges made on
behalf of a subtransaction are either catted intheir entirety or rolled back.
However, when aubtransaction is committed, thhanges remain contingeapon
commitment of all of the transaction’s ancestors.

Subtransactions are strictly nested. A transaat@mmotcommit unless all of its
children have completed. When a transaction is rolled back, all of its children are
rolled back.

Obijects that participate in transactions must support isolation of transadtrans.
concept ofisolation applies to subtransactions as well as to top level transactions.
When a transaction has mple children, the children appear to other transactions to
execute seriallyeven if they are performed concurrently.

Subtransactions can be used to isolate failures. If an operation performed within a
subtransaction fails, only the subtransaction is ratlack. The parent traactionhas

the opportunity to correct or compensate for the prokdachcompletéts operaibn.
Subtransactions can also be used to perform suboperations of a transaction in parallel,
without the risk of inconsistent results.

Transaction Termination

A transaction igerminated byissuing a request to commit or rollback the trarisact
Typically, a transaction is terminated by the client that originated the transaction—the
transaction originator. @ne implementations of the Transaction Service may allow
transactions to be terminated by Transaction Service clients other than the one which
created the transaction.

Transaction Service/1.0 Service Description March 1995 10-7

10

10-8

Any participant in a transaction can force the transaction to be rolled back (eventually).
If a transaction is rolled back, all participants ratllk their changes. Typically, a
participant may request the rollback of the current transactioneafteuntering a

failure. It is implementation-specific whether the Transaction Service itself monitors
the participants in a transaction for failures or inactivity.

Transaction Integrity

Some implementations of the Transaction Service impose constraints on the use of the
Transaction Service interfaces in order to guarantee integrity equivalent to that
provided by the interfaces which support the X/Open DTPRs&ation model. This is

called checkedtransaction behavior.

For example, allowing a transaction to aaihbefore all computations acting on
behalf of the transactiohave completed can lead to a loss of diatagrity. Checked
implementations of the Transaction Service will prevent premanmanmitment of a
transaction.

Other implementations of the Transaction Service may rely completely on the
application to provide transaction integrity. This is called¢heckedransaction
behavior.

Transaction Context

As part of the environment of each BRware thread, the ORB maintains a
transaction contexfThe transaction context associated with a thread is either null
(indicating that the thread has no associated transaction) or it refers to a specific
transaction. It is permitted for multiple threads to be associated with the same
transaction at the same time, in the same execution environment or in multiple
execution environments.

Thetransaction context can baplicitly transmitted to transactional objects as part of
a transactional operation invocatidrhe Trarsaction Service also allows programmers
to pass a transaction context as aniekgdarameter of a request.

10.1.5 Principles of Function, Design, and Performance

The Transaction Service defined in this specificatialfills a number of functional,
design, and performanecequirements.

Functional Requirements

The Transaction Service defined in this specification addressef®liibaing
functional requirements:

CORBAservices: Common Object Services Specification

10

Support for multiple transaction models The flat transaction model, which is widely
supported in the industry today, is a mandatory component o$pkisification. The
nested transaction model, which provides finer granularity isolatiorfaanilitates
object reuse in a transactional environment, is an optional component of this
specification.

Evolutionary Deployment. An important property of object technology is thieility

to “wrapper” existing programs (coarse grain objects)llimv these functions to serve

as building blocks for new business applications. This technique has been successfully
used to marry object-oriented end-user interfacits @ommercial business logic
implemented using classical procedural techniques.

It can similarly beused to encapsulate the large bodgxikting business software on
legacy environments and leverage that in buildiag/ business application$his will
allow customers to gradually deploy object technology into their existing
environments, without having to reimplement all existing business functions.

Model Interoperability. Customers desire the capability to add object
implementations to existing procedural applications and to augment object
implementations with code that uses the procedural paradigm. To do so in a transaction
environment requires that a single transaction be shared by both theaolject
procedural code. This includes tfadlowing:
A single transaction which includes ORB amoh-ORBapplications and
resources.
* Interoperability between the object temttion service model and the X/Open
Distributed Transaction Processing (DTP) model.

» Access to existing (non-object) programs and resource managers by objects.

» Access to objects by existing prograarsd resource managers.

» Coordination by a single transaction service of the activities of both object and
non-object resource managers.

» The network case: A single transactiastributedbetween an object and non-
object system, each of which higs own Transaction Service.

The Transaction Service accommodates this requirement for implementations where
interoperability with X/Open DTP-compliant transactional applications is necessary.

Network Interoperability . Customers require the ability to interoperaédween
systems offered bynultiple vendors:
» Single transaction service, single ORB - It must be possible for a single
transaction service to interoperate with itself using a single ORB.
» Multiple transactiorservices, single ORB - It must be possible for one transaction
service to interoperate with a cooperating transaction service using a single ORB.
 Single transaction service, multiple ORBs - It must be possible for a single
transaction service to interoperate with itself using different ORBs
« Multiple transaction services, multiple ORBs - It must be possiblerer
transaction service to interoperate witlk@perating transaction service using
different ORBs.

Transaction Service/1.0 Service Description March 1995 10-9

10

The Transaction Service specifies all required interacti@mt&een cooperating
Transaction Service implementations necessasupport a single ORB. The
Transaction Service depends on ORB interoperability (as defined by the CORBA
specification) to provide cooperating Transaction Services across different ORBs.
Requirements are identified in Sectih@.5.2.

Flexible transaction propagation control Both clientand object implementations
can control transaction propagat:

A client controls whether or not its transaction is propagated with an operation.

« A client can invoke operations on objects with sactional behavioand objects
without transactionabehavior within the execution of a single transaction.

* An object can specify transactional behaviorifsrinterfaces.

The Transaction Service supports batipiicit (system-mnanaged) propagation and
explicit (application-managed) propagationithMmplicit propagation, transactional
behavior is not specified in the operation’s signature. Witlieit propagation,
applications define their own mechanisms for sharing a common transaction.

Support for TP Monitors. Customers need object technology to buildgiuin-critical
applications. These applications are deployed on commercial transaction processing
systems where a TP Monitor provides botficgfnt scheduling and the sharing of
resources by a large number of users. It must be possible to implement the Transaction
Service in a TP monitor environment. This includes:

» The ability to execute multiple transactions concurrently.

* The ability to execute clientservers, and transaction services in separate
processes.

The Transaction Service is usable in a TP Monitor environment.

Design Requirements
The Transaction Service supports the following design requirements:

Exploitation of OO Technology This specificatiorpermits a wide variety of ORB

and Transaction Servidgemplementationsand uses objects to enable ORB-based,
secure implementations. The Transaction Service provides the programmeasyith

to use interfaces that hide some of the complexity inherent in general-use
specifications. Meaningful user applications can be constructed using interfaces that
are as simple or simpler than their procedural equivalents.

Low Implementation Cost. The Tansaction Service specification considers cost from
the perspective of three users of the service - clients, ORB implemandor,
Transaction Service providers.
 For clients, it allows allows a range of implementations which are compliant with
the proposed architecturblany ORBimplementations will exist in client
workstations which have no requirement to understand transactions within
themselves, but will find it highly desirable to interoperate with server platforms
that implement transactions.

10-10 CORBAservices: Common Object Services Specification

10

» The specification provides for mmal impact to the ORB. Where feasible,
function is assiged to an object servicenplementation to permthe ORB to
continue to provide high performance object acegssntransactions are not
used.

 Since this Transaction Service will bapported byexisting (procedural)
transaction managers, the specification allows implementations that reuse existing
procedural Transaction Manager implementations.

Portability . The Transaction Service specification provides for portability of
applications. It alsaefines an interfacbetween the ORB and the Transaction Service
that enables individual Transaction Service implementations to be prateden
individual ORBimplemenations.

Avoidance of OMG IDL interface variants. The Transaction Service allowsimgle
interface to be supported by both santional and non-transactional implementagio
This approach avoids a potential “combin&tbexplosion” of interface variants that
differ only in their transactional characteristics. For example, the existing Object
Service interfaces can support transactional behavior without change.

Support for both single-threadedand multi-threaded implementations. The
Transaction Service defines a flexible model that supports a variety of programming
styles. For example, a client with antive transactiogan make requests for the same
transaction on multiple threads. Similarly, an objeat support multiple transactions

in parallel by using multipl¢hreads.

A wide spectrum of implemenation choices The Transaction Service allows
implementations to choose the degree of checking provided to guarantee legal behavior
of its users. This permits both robust implementatish&h provide strong assurances

for transaction integritygnd lightweightmplemenations where such checks are not
warranted.

Performance Requirements

The Transaction Service is expected to be implemented on a wide range of hardware
and softwarelatforms ranging from desktop computers to massively parallel servers
and in networks ranging in size from a single LAN to worldwide networksn@et

this wide range of requirements, consideration must be given to algorithms which
scale,efficient commungations, and the number and size of accesses to permanent
storage. Much of this isnplementaibn, and therefore not visible to the user of the
service. Nevertheless, the expected performance of the Transaction Service was
compared to its procedural equivalent, the X/Open DTP model in the folleawass:

» The number of network messages required.
» The number of disk accesses required.
» The amount of data logged.

The objective of the specificatiowas to achieve pay with the XOpen model for
equivalent function, where technically feasible.

Transaction Service/1.0 Service Description March 1995 10-11

10

10.2 Service Architecture

10-12

Figure 10-1 illustrates the major componeants! interfaces defined by the Transaction
Service. The transaction originator is an arbitrary program that begins a transaction.
The recoverable server implements an object with recoverable state that is invoked
within the scope of the transaction, either directly by the transaction originator or
indirectly thraugh one omore transactional objects.

The transaction originator creates a transaction uskactory, a Control is returned
that provides access tolarminatorand aCoordinator The transaction originator uses
the Terminatorto commit orrollback the transaction. Th@oordinatoris made
available to recoverable servers, either explicitlynoplicitly (by implicitly
propagating a transaction context with a request). A recoverable segigers a
Resourcewvith the Coordinator TheResourcamplements the two-phasmmmit
protocol which is driven by the Transaction Service. A recoverable server can also
register a specialized resourcalled aSubtransactionAwareResourtetrack the
completion of subtransactions. Resourceuses &RecoveryCoordinatoin certain
failure cases to determine the outcome of the transaction and to coordinate the
recovery process with the Transaction Service.

To simplify coding, most pplications use th€urrent pseudo object, which provides
access to an implicit petead transaction context.

10.2.1 Typical Usage

A typical transaction originator uses tBairrent object to begin a transaction, which
becomes associated with the transaction originator’s thread.

(transmitted with request)

transaction

transaction originator context recoverable server

Factory A
Control Control
C Terminator Coordinator
e Resourc Current RecoveryCoordinator

SubtransactionAwareResource

Transaction Service

transaction
context

transaction
context

(associated with thread) (associated with thread)

Figure 10-1 This figure illustrates the major components and interfaces of the Transaction

CORBAservices: Common Object Services Specification

10

The trarsaction originator then issues requests. Some of these requests involve
transactional object&hen a request is issued to a transactional object, the transaction
context associated with the invoking thread is automatically propagated to the thread
executing the method of the target object. No explicit operation parameter or context
declaration is required to transmit the transaction context. Propagation of the
transaction context caextend tomultiple levels if a transactional object issues a
request to a transactional object.

Using theCurrentobject, the transactional object can unilateradly back the
transaction andan inquire about the current state of the transaction. Usingutrent
object, the transactional object also can obta@oardinatorfor the current
transaction. Using th€oordinator a transactional object can determine the
relationship between two transactionsjrigplement isolatioramong multiple
transactions.

Some transactional objects are also recoverable objects. A recoverable object has
persistent data that must be managed as part of the transaction. A recoverable object
uses theCoordinatorto register &Resourceobject as a participant in the transaction.

The resourceepresents the recoverable object’s participation in the transaction; each
resource ismplicitly associated with a single transaction. T®eordinator uses the
resource to perform the two-phasemmit protocol on the recoverable object’s data.

After the computations;volved in the transaction have been completed, the
transaction originator uses theeudo object to request that the changesobamitted.
The Transaction Service camits the transactionsing a two-phase canit protocol
wherein a series of requests are issued to the registered resources.

10.2.2 Transaction Context

The trarsaction context associated with a thread is either null (indicating that the
thread has no associated transaction) or it refers to a specific transaction. It is
permitted for multiple threads to be associated with the same transaction at the same
time.

When a thread in an object server is used by an object adapter to perform a request on
a transactional object, the object adapmétidlizes the transaction context associated

with that thread by effectively copying the transaction context of the thread that issued
the request. An implementation of the Transaction Serviceressict the capabilities

of the new transaction context. For example, an implementation of the Transaction
Service might not permit the object server thread to regquesmitment of the

transaction.

The object adapter is not requireditatialize the transa@in context of every request
handler. It is required to initialize the transaction context only if the interface
supported by the target object is derifeaim the TransactionalObjecinterface.
Otherwise, thénitial transactioncontext of the thread is undefined.

When a thread retrieves the response to a deferred synchronous request, an exception
may be raised if the thread is no longer associated with the transaction that it was
associated with when the deferred synchronous requessssued. (See 10.2.5,

subsection “WrongTransactionBEstion” for a more precise definition.)

Transaction Servicex1.0 Service Architecture March 1995 10-13

10

10-14

When nested transactions are used, the transaction context remembers the stack of
nested transactions started within a particular execution environment (e.g., process) so
that when a subtransaction ends, the transaction context of the thread is restored to the
context in effect when the subtransaction was begun. When the context is transferred
between execution environments, the received context refers only to one particular
transaction, not a stack of transactions.

10.2.3 Context Management

The Transaction Service supports management and propagation of transaction context
using objects provided by the Transaction Serditsngthisapproach, the transaction
originator issues a request tdi@nsactionFactoryto begin a new top-level

transaction. The factory returnsCantrol object specific to the new transaction that
allows an application to terminate the transaction or to become a participant in the
transaction(by registering a resource). An application can propagate a transaction
context by passing the Control as an &iptequest parameter.

The Contol does not directly support management of the transaction. Instead, it
supports operations that return two other objeci&rminatorand aCoordinator The
Terminator is used to commit or rollback the transaction. The Coordinaisedsto
enable transactional objects to participate in the transaction. Theszbjects can be
propagated indepemdtly, allowing finer granularity control over propagation.

An implementation of the Transaction Service may restrict the ability for some or all of
these objects to be transmitted toused in other execution environments, to enable it
to guarantee transaction integrity.

An application can also use the pseudo objeetrationsget_control , suspend , and
resume to obtain or change the inipit transaction context associated with its thread.

When nested transactions are used, a Control can include a stack of nested transactions
begun in the same execution environment. When a Control is transferred between
execution environments, the received Control refers onbntoparticular trasaction,

not a stack of transactions.

CORBAservices: Common Object Services Specification

10

10.2.4 Datatypes

The CosTransactions module defines the following datatypes:

enum Status {
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction

b

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

10.2.5 Exceptions

StandardExceptions

The CosTransactions module defines the following standard exceptions:

exception TransactionRequired {};
exception TransactionRolledBack {};
exception InvalidTransaction {};

These exceptions are standaradeptions, meaning thany reqeest can raise one of
these exceptions even though the exception is notrfarsd not be) declared in the
operation signature.

TransactionRequred Standard Excefion

Any operation can raise tleansactionRequired exception to indicate that the
request carried a null transaction context, but an active transaction is required.

TransactionRolledBack Standard Exception

Any operation can raise theansactionRolledBack exception to indicate that the
transaction associated with the request has alreedy tolled back or marked to
rollback;thus, the requested operation eitheuld not be performed or was not
performed because further computation on behalf of the transactod Wefruitless.

Transaction Servicex1.0 Service Architecture March 1995 10-15

10

InvalidTransaction Standard Exception

Any operation can raise thevalidTransaction exception to indicate that the
request carried an invalid transaction context. For example, this exception could be
raised if an error occurred when tryingregister a resource.

HeuristicExceptions

A heuristic decision is a unilateral decision made by one or more participants in a
transaction to commit or rolfitk updates withoutrit obtaining theonsensus
outcome determined by the Transaction Serviceuri$tic decisions are normally made
only in unusual circumstances, suchcasnmunication failures, that prevent normal
processing. When beuristic decision is taken, there is a risk that the decision will
differ from the consensus outcontesulting in a loss of data integrity.

The CosTransactions module defines the following exceptions for reporting
incorrect heuristic decisions or the possibility of incorrect heuristic decisions:

exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};

HeuristicRollback Exception

The commit operation on a resource raises #earisticRollback exception to
report that a heuristic decision was made and that all relevant updates have been rolled
back.

HeuristicCommit Exception

Therollback operation on a resource raises HearisticCommit exception to
report that a heuristic decisiomas made and that all relevant updates have been
committed.

HeuristicMixed Exception

A request raises theeuristicMixed exception to report that a heuristic decisieas
made and that some relevant updates have ¢mamitted and othensave been rolled
back.

HeuristicHazard Exception

A request raises thigeuristicHazard exception to report that a heuristic decision
may have been made, the disposition of all relevant updates is not known, and for
those updates whose disposition is known, eittlelnave beercommitted or all have
been rolled back. (In other words, tHeuristicMixed exception takes priority over
the HeuristicHazard exception.)

10-16 CORBAservices: Common Object Services Specification

10

WrongTransaction Exception

The Co3ransactions module defines an exception that can be raised by the ORB
when returning the response to a deferred synchronous request:

exception WrongTransaction {};

This exception can be raised only if the requedndicitly associated with a
transaction (the current transaction at the time the request was issued).

The get_response operation (defined on tHRequestnterface) may raise the
WrongTransaction exception if the transaction associated with the request is not the
same as the transaction associated with the thread invgdingsponse

The get_next_response operation (defined on th@rb interface) may raise the
WrongTransaction exception if the thread invokinget_next_response has a non-
null current transaction that is different than the one associated with the request.

Other Exceptions

The CosTransactions modudefines the following additional exceptions:

exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};

exception NotPrepared {};

exception NoTransaction {};

exception InvalidControl {};

exception Unavailable {};

These exceptions are described below along with the operations that raise them.

10.3 Transactiorbervice Interfaces

Theinterfaces defined by the Transaction Serviggide in theCosTransactions
module. (OMG IDL for theCosTransactions module isshown in 10.6.) The
interfaces for the Transaction Service are as follows:

» Current

» TransactionFactory

» Terminator

» Coordinator

* Recovery Coordinator

* Resource

e Subtransaction Aware Resource
» Transactional Object

Transaction Servicex1.0 Tansaction Service Interfaces March 1995 10-17

10

10-18

No operations are defined in these interfaces for destroying objects. No application
actionsare required to destroy objects that support the Transaction Service because the
Transaction Service destroys its own objects when they are no longer needed.

10.3.1 Current Interface

The Curreninterface defines operations that allow a client of the Transaction Service
to explicitly manage the association between threads and transactions. The Current
interface also defines operations that simplify the use of the Transaction Service for
most applicatios. These operations can be used to begin and end transactions and to
obtain informatiorabout the current transaction.

The Currentnterface is designed to be supported by a pseudo object whose behavior
depends upon and may alter thensaction context associated with the invoking
thread.

interface Current {
void begin()
raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)
raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard
);
void rollback()
raises(NoTransaction);
void rollback_only()
raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);

Control get_control();

Control suspend();

void resume(in Control which)
raises(InvalidControl);

begin

A new tansaction is created. The transaction context of the client thread is modified so
that the thread is associated with the newdaation. If the client thread is currently
associated with a transaction, the new transaction is a subtransaction of that
transaction. Otbrwise, the new transaction is a top-level transaction.

The SubtransactionsUnavailable exception is raised if the client thread already
has an associated transaction and the Transaction Service implementation does not
support nested transactions.

CORBAservices: Common Object Services Specification

10

commit

If there is no transaction associated with the client threadJdmeansaction
exception is raised. If the client thread does not lpgrenission to commithe
transaction, the standard exceptie@_PERMISSIONS raised. (Theommit operation
may be restricted to the transaction originator in some implementations.)

Otherwise, the transaction associated with the client threaaripleted.The efect of
this request is equivalent to performing thenmit operation on the corresponding
Terminator object (see Sectio.B.4); see Section 10.3.4 and Section 10.2.5 for a
description of the exceptions that may be raised.

The client threadransaction context is modified as falle: If the transactionvas
begun by a thread (invokingegin) in the same execution environment, then the
thread’s transaction context is restored to its state prior tbetfie request.
Otherwise, the thread’s transaction contexddsto null.

rollback

If there is no transaction associated with the client threadJdMeansaction

exception is raised. If the client thread does not tperenission to rollback the
transaction, the standard exceptio@_PERMISSIONS raised. (Theollback

operation may beestricted to the transaction originator in some implementations;
however, theollback_only operation, described below, is available to all
transaction participants.)

Otherwise, the transacti@ssociated with the client thread is rolled back. The effect of
this request is equivalent to performing thback operation on the corresponding
terminator object (see Sectio.8.4).

The client threadransaction context is modified as falle: If the transactionvas
begun by a thread (invokingegin) in the same execution environment, then the
thread’s transaction context is restored to its state prior tbetfie request.
Otherwise, the thread’s transaction contexgasto null.

rollback_only

If there is no transaction associated with the client threadydMeansaction

exception is raised. Otherwise, the transaction associated with the client thread is
modified so that the only possible outcome isdliback the transaction. The effect of
this request is equivalent to performing thitback only operation on the
corresponding Coordinator object (seection 103.5).

get_status

If there is no transaction associated with the client threadstétesNoTransaction

value is returned. Otherwise, this operation returns the status of the transaction
associated with the client thread. The effect of this request is equivalent to performing
theget status operation on the corresponding Coordinator object (see Section
10.3.5).

Transaction Servicex1.0 Tansaction Service Interfaces March 1995 10-19

10

10-20

get_transaction_name

If there is no transaction associated with the client thread, an atmjpty isreturned.
Otherwise this operation returns a printald&ing describing the transaction. The
returned string is intended to suppdebugging. Theffect of this request is
equivalent to performing thget_transaction_name operation on the corresponding
coordinator object (see Section 10.3.5).

set_timeout

This operation modifies a state variable associated with the target object that affects
the time-out period associated with top-level transactions created by subsequent
invocations of thevegin operation. If the parameter has a nonzero vajuben top-

level transactions created by subsequent invocatiohsgdf will be subject to being
rolled back if they do not complete befonesecondsafter their creation. If the
parameter is zero, then no application specified time-out is established.

get_control

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, a Control object is returned that represents thadtian context
currently associated with the client thread. This object can be given testime

operation to reestablish this context in the same thread or a different thread. The scope
within which this object is valid is implementation dependent; at a minimum, it must
be usable by the client thread. This operation is not dependent on the state of the
transaction; in particular, does not raise théransactionRolledBack exception.

suspend

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, an object is returned that represents the transaction context
currently associated with the client thread. This object can be given testime

operation to reestablish this context in the same thread or a different thread. The scope
within which this object is valid is implementation dependent; at a minimum, it must
be usable by the client thread. In addition, the client thread becomes associated with no
transaction. This operation is ndépendent on the state of the transaction; in

particular, itdoes not raise th®&ransactionRolledBack exception.

resume

If the parameter is a null object reference, the client thread becomes associated with no
transaction. Otarwise, if the parameter is valid in the current execution environment,
the client thread becomes associated with that transaction (in placg pfevious
transaction). Otherwise, tHevalidControl exception is raised. See Section 10.3.3

for a discussion ofestrictions on the scope of a Control. This operatiamts

dependent on thgtate ofthe transaction; in particular, it does not raise the
TransactionRolledBack exception.

CORBAservices: Common Object Services Specification

10

10.3.2 TransactionFactory Interface

The TransactionFactoryinterface is provided to allow the transaction originator to
begin a transaction. This interface defines a single operatieste , which creates a
new top-level transaction.

interface TransactionFactory {
Control create(in unsigned long time_out);

kh

create

A new top-level transaction is created and a Control object is returned. The Control
object can be used to manage or to control participation in the nesa¢tam. An
implementation of the Transaction Service magtrict the ability for the Control

object to be transmitted to or used in other execution environmentsyiairaum, it

can be used by the client thread.

If the parameter has a nonzero vahjghen the new transaction will be subject to
being rolled back if it does not complete befarseconds have elapsed. If the
parameter is zero, then no application specified time-out is established.

10.3.3 Control Interface

The Contol interface allows a program to explicitly manage or propagate a transaction
context. An object supporting the Control interfacamsglicitly associated with one
specific transaction.

interface Control {
Terminator get_terminator()
raises(Unavailable);
Coordinator get_coordinator()
raises(Unavailable);

The Control interface defines two operationgst_terminator and

get_coordinator . Theget_terminator operation returns a Terminator object,

which supports perations to end the transaction. Tge¢ coordinator operation
returns a Coordinator object, which supponpe@tions needed by resources to
participate in the transaction. The two objects support operations that are typically
performed by different parties. Providing two objects allows each set of operations to
be made available only to the parties that require those operations.

A Control object for a new transaction is obtained using:teste operation defined
by the TransactionFactoryinterface or thecreate_subtransaction operation
defined by the Coordinator interface. It is possible to obtain a Control object for the

Transaction Servicex1.0 Tansaction Service Interfaces March 1995 10-21

10

10-22

current transaction (associated with a thread) usingdteontrol or suspend
operations defined by tHeurrentinterface (see &tion 103.1). (These two ogrations
return a null object reference if there is no current transaction.)

An implementation of the Transaction Service magtrict the ability for the Control
object to be transmitted to or used in other execution environmentsiatraum, it
can be used within a single thread.

get_terminator

An object is returned that supports flerminatorinterface. The object can be used to
rollbback or comrmit the transaction associated with the Control. Thevailable
exception may be raised if the Control cannot provide the requested object. An
implementation of the Transaction Service magtrict the ability for the Terminator
object to be transmitted to or used in other execution environmentsjiairaum, it
can be used within the client thread.

get_coordinator

An object is returned that supports the Coordinator interfihe olgct can be used to
register resources for the transaction associated with the Cartteolnavailable
exception may be raised if the Control cannot provide the requested object. An
implementation of the Transaction Service magtrict the ability for the @ordinator
object to be transmitted to or used in other execution environmentsjiairaum, it
can be used within the client thread.

10.3.4 Terminator Interface

The Terminatorinterfacesupports operations mmmit or rolllack a transaction.
Typically, these operations are used by the transaction originator.

interface Terminator {
void commit(in boolean report_heuristics)
raises(
HeuristicMixed,
HeuristicHazard
)i
void rollback();

An implementation of the Transaction Service magtrict the scope in kich a
Terminator can be used; atdnimum, itcan be used ithin asingle thread.

CORBAservices: Common Object Services Specification

10

commit

If the transaction has not been marked rollback carg all of theparticipants in the
transaction agree to commit, the transaction is commétteldthe operation terinates
normally. Otherwise, the transactionislled back (as described below) and the
TransactionRolledBack standard exception is raised.

If the report_heuristics parameter is true, the Transaction Service will report
inconsistent or possibly inconsistent outcomes usingthgsticMixed and
HeuristicHazard exceptions (defined above in Section 10.2.5). A Transaction
Service implementation may optionally use the Event Service to report heuristic
decisions.

The commit operation may rollback the transaction if there are subtransactions of the
transaction thabave not themselves beeommitted or rollecback or if there are

existing or potential activities associated with the transaction that have not completed.
The nature anéxtent of such error checkingiimplementation-depndent.

When a top-level transaction is committed, all changes to transactional objects made in
the scope of this transaction are made permanentiaitde to other transactions or
clients. When a subtransaction is auitied,the changes are made visible to other
related transactions as appropriate to the degree laticsoenforced by the resources.

rollback
The trarsaction is rollecback.

When a transaction is rolled baa| changes to transactional objects made in the
scope of this transaction (including changes made by descendant transactions) are
rolled back. All resources locked by the transaction are made available to other
transactions as appropriate to the degree of isolation enforced by the resources.

Transaction Servicex1.0 Tansaction Service Interfaces March 1995 10-23

10

10.3.5 Coordinator Interface

The Coordinatorinterface provides operations that are usegdngicipants in a
transaction. Tiese participants are typically either recoverable objects or agents of
recoverable objects, such as subordir@erdinators. Each object supporting the
Coordinator interface is implicithassociated with a single transaction.

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator ftc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();

Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);

An implementation of the Transaction Service magtrict the scope in lich a
Coordinator can be used; at a minimum, it can be used within a single thread.

get_status

This operation returns the status of the transaction associated with the target object.

get_parent_status

If the transaction associated with the target object is a top-level transaction, then this
operation is equivalent to thyet_status operation. Otherwise, this operation returns
the status of the parent of the transaction associated with the target object.

10-24 CORBAservices: Common Object Services Specification

10

get_top_level_status

This operation returns the status of the top-level ancestor of the transaction associated
with the target object. If the transaction is a top-level transaction, then this operation is
equivalent to theyet_status operation.

IS_same_transaction

This operation returns true #nd only if the target object and the parameter object both
refer to the same transaction.

IS_ancestor_transaction

This operation returns true @nd only if the transaction associated with the target
object is an ancestor of the transaction associated with the parameter object. A
transaction T1 is an ancestor of a transaction T2 if and only if T1 is the same as T2 or
T1 is an ancestor of the parent of T2.

is_descendant_transaction

This operation returns true @nd only if the transaction associated with the target
object is a descendant of the transaction associated with the parameter object. A
transaction T1 is a deendant of a transaction T2 if and only if T2 is an ancestor of T1
(see above).

is_related_transaction

This operation returns true d@nd only if the transaction associated with the target
object is related to the transaction associated with the parameter object. A transaction
T1 is related to a transaction T2 if and only if there exists a transaction T3 such that T3
is an ancestor of T1 and T3 is an ancestor of T2.

is_top_level transaction

This operation returns true @nd only if the transaction associated with the target
object is a top-level transaction. A transaction is a top-level transaction if it has no
parent.

hash_transaction

This operation returns a hash code for the transaction associated with the target object.
Each tragactionhas a single hash code. Hash cddegransactions should be
uniformly distributed.

Transaction Servicex1.0 Tansaction Service Interfaces March 1995 10-25

10

10-26

hash_top_level tran

This operation returns the hash code for the top-level ancestor of the transaction
associated with the target object. This operation is equivalent to the
hash_transaction operation wen the transaction associated with the target object
is a top-level transaction.

register_resource

This operation registers the specified resource as a participant in the transaction
associated with the target object. When the transactimrrisnated the resource will
receive requests to commit or rollback the updates performed as part of the transaction.
These requests are described in the description of the Resource infEnkace.

Inactive exception is raised if the transaction has already been prepared. The
standard exceptiofransactionRolledBack may be raised if the transaction has

been markedollback only.

If the resource is a subtransaction aware resource (it supports the
SubtransactionAwareResource interface) and th&ansaction associated with the
target object is a subtransaction, then this operation registers the specified resource
with the subtransaction and indirectly with the top-level transaction when the
subtransaction’s ancestors have completed. Otherwise, the resoregestsred as a
participant in the current transaction. If the current transaction is a subtransaction, the
resource will not receive prepare @ymmit requests until the top-levahcestor

terminates.

This operation returns a RecoveryCoordinalat ttan be used by this resource during
recovery.

register_subtran_aware

This operation registers the specified subtransaction aware resource such that it will be
notified when the subtransactitvas cormitted orrolled back. These requests are
described in the description of tis&btransactionAwareResource interface.

Note that this operation registers the specified resource only with the subtransaction.
This operation can not be used to register the resource as a participant in the
transaction.

The NotSubtransaction exception is raised if the current transaction is not a
subtransaction. Thimactive exception is raised if the subtransaction (or any
ancestor) has already been terminafdte standard exaption

TransactionRolledBack may be raised if the subtransaction (or any ancestor) has
been markedollback only.

rollback_only

The trarsaction associated with the target object is modified so that the only possible
outcome is to rollback the transaction. Tihactive exception is raised if the
transactiorhas already been prepared.

CORBAservices: Common Object Services Specification

10

get_transaction_name

This operation returns a printable string describing the transaction associated with the
target objectThe returnedstring isintended to support debugging.

create_subtransaction

A new subtransaction is created whose parent is the transaction associated with the
target objectThe Inactive exception is raised if the target transacti@s already

been prepared. An implementation of the Transaction Service is not required to support
nested transactions. If nested transactions are not supported, the exception
SubtransactionsUnavailable is raised.

The create_subtransaction operation returns a Control objeethich enables the
subtransaction to bternminated and allows recoverable objects to participate in the
subtransaction. An implementation of the Transaction Service may restrabithg

for the Control object to be transmitted to or used in other execution environments.

10.3.6 Recovery Coordinator Interface

A recoverable object usesRecoveryCoordinatoto drive the recovery process in
certain situationsEach object supporting thHieecoveryCoordinatointerface is
implicitly associated with a singlesource registration requestJaking the
register_resource operation)and may be used only blgdt resource.

interface RecoveryCoordinator {
Status replay_completion(in Resource r)
raises(NotPrepared);

replay_completion

This operation can be invoked at any time after thecasalresource has been
prepared. The resourceust be passed as the parameter. Performing this operation
provides a hint to the Coordinator that ttuenmit or rollback operationshave not

been performed on the resource. This hint may be required in daitame casesThe
NotPrepared exception is raised if the resource has not been prepared. This operation
returns the current status of the transaction.

10.3.7 Resource Interface

The Transaction Service uses a two-phase mdamentprotocol to complete a top-
level transaction with each registered resource. Résourcanterface defines the
operations invoked by the transaction service on each resowtcte djectsupporting

Transaction Servicex1.0 Tansaction Service Interfaces March 1995 10-27

10

10-28

theResourcenterface issimplicitly associated with a single top-level transaction. Note
that in the case of failure, a resource should be prepared receive duplicate requests for
thecommit orrolback operation and to respond consistently.

interface Resource {
Vote prepare();
void rollback()
raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard
);
void commit()
raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard
);
void commit_one_phase()
raises(
HeuristicRollback,
HeuristicMixed,
HeuristicHazard
);
void forget();

prepare

This operation is invoked to begin the two-phasenmit protaol on the resource. The
resource can respond in several ways, represented botheaesult.

If no persistent data associated with the resource has been modified by the transaction,
the resource can retukioteReadOnly . After receiving this response, the Transaction
Service is not required to perform any additional operations on this resource.
Furthermore, the resource can forget all knowledge of the transaction.

If the resource is able to write (or has already written) all the data needethioit
the transaction to stable storage, as well as an indication that it has prepared the
transaction, itan returnvoteCommit . After receiving this reponse, the Traaction
Service is required to eventually perform eitherdbimit or therollback operation
on this object. To support recovery, the resource should stoRett@veryCoordinator
object reference in stable storage.

The resource can retuxMoteRollback under any circumstances, including not having
any knowledge about the transaction (whisiyht hagpenafter a crash). If this
response is returned, the transaction musbbed back. Furthermore, the Transaction
Service is not required to perform any additional operations on this resource. After
returning this response, the resource can faatjdknowledge of the transaction.

CORBAservices: Common Object Services Specification

10

rollback

If necessary, the resource shouddlback allchanges made gmart of the transaction.
If the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described étt®n 102.5) are used to report
heuristic decisions related to the resource. If a heuristic outcome exception is raised,
the resource must remember this outcome untifdlyet operation is performed so
that it can return the same outcome in aaiback is performed again. Otherwise,

the resource can immediately forgat knowledge of the transaction.

commit

If necessary, the resource shoalimmit allchanges made as part of the transaction. If
the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described étt®n 102.5) are used to report
heuristic decisions related to the resource. If a heuristic outcome exception is raised,
the resource must remember this outcome untifdlyet operation is performed so
that it can return the same outcome in casemit is performed again. Otherwise, the
resource can immediately forget klowledge of the transaction.

The NotPrepared exception is raised if theommit operation is performed without
first performing theprepare operation.

commit_one_phase

If possible, the resource should aoihall changes made as part of the transaction. If
it cannot, it should raise theransactionRolledBack standard exception.

forget

This operation is performed only if the resource raised a heuristic outcome exception
torollback or commit . The resource can forget &howledge of the trasaction.

10.3.8 Subtransaction Aware Resource Interface

Recoverablmbjects that implement nested transaction behavior may support a
specialization of th&Resourcanterface called th&ubtransactionAwaResource
interface. A recoverable object canmetified of the completion of a subtransaction by
registering a specialized resource object that offerStidransactionAwareResource
interface with the Transaction Service. This registration is done by using the
register or theregister_subtran_aware operation of the current Coordinator
object. A recoverable object generally usesrtiyister ~ operation to register a
resource that will participate in the completion of the top-level transaatidrthe
register_subtran_aware operation to be notified of the completion of a
subtransaction.

Transaction Servicex1.0 Tansaction Service Interfaces March 1995 10-29

10

Certain recoverable objects may want a finer control over the registration in the
completion of a subtransaction. These recoverable objects will usegiter

operation to ensure participation in the completion of the top-level transaction and they
will use theregister_subtran_aware operation to be notified of the completion of

a particular subtransaction. For example, a recoverable object can use the
register_subtran_aware operation to establish a “camnitted withrespect to”
relationship between traactions; that is, the recoverable object wants to foened

when a particular subtransaction is committed and then perform certain operations on
the transactions that depend that transaction’s completion. This technique could be
used to implement lock freritance, for example.

The Transaction Service uses tBabtransactionAwareResouragerface on each
resource object registered with a subtransaction. Each object supporting this interface
is implicitly associated with a single subtransaction.

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

commit_subtransaction

This operation is invoked only if the resource has been registered with a subtransaction
and the subtransaction has been committed. The resource object is provided with a
Coordinator that represents the parent transaction. This operation may raise a standard
exception such abransactionRolledBack

Note that the results of a committed subtransaction are relative to the completion of its
ancestor transactions, that is, these results can lmearitlany ancestor transaction
rolls back.

rollback _subtransaction

This operation is invoked only if the resource has been registered with a subtransaction
and nofiies the resource that the subtransaction has roled.b

10.3.9 TransactionalObject Interface

The TransactionalObjecinterface isused by an object to indicate that it is

transactional. By supporting ti@ansacticnalObjectinterface, an object indicates that

it wants the transaction context associated with the client thread to be propagated on
requests to the object. If an object does not supportréresactionalObjecinterface,

the ORB is not required to propagate the transaction context on requests to the object.

interface TransactionalObject {

b

10-30 CORBAservices: Common Object Services Specification

10

The TransactionalObjecinterface defines no operations. It is simply a marker.

10.4 The Users View

The audience for thisection is object and client implementors; it describes application
use of the Transaction Service functions.

10.4.1 Application Programminlylodels

A client application program may use direct or indirect context management to manage
a transaction.

With indirect context management, an application uses a psdyjelct called

Current , provided by the Transaction Service, to atse the transaction context

with the application thread of control. In direct context management, an application
manipulates the Control object and the other objects associated with the transaction.

An object may require transactions to be either explicitlimgolicitly propagated on
its operatims.

Implicit propagationmeans that requests are implicitly asated with the client’s
transaction; theghare the @ént’s transactiorontext. It is transmittedriplicitly to the
objects, without direct client interventiommplicit propagation depends on indirect
context management, since it propagates the transaction context associated with the
Current pseudo objedExplicit propagationmeanghat an applicatiopropagates a
transaction context by passing objects defined by the Transaction Serviceieis expl
parameters.

An object that supporisnplicit propagation would not typically expect to receive any
Transaction Service object as an explicit parameter.

A client may use one or boferms ofcontext management, and may communicate
with objects that use either method of transaction propagation.

This results in four ways in which client applications may communicate with
transactional objects.hEy are describeblelow.

Direct Context Management: Explicit Propagation

Theclient application directly accesses the Control object, and the other objects which
describe the state of the transaction. To propagate the transaction to an object, the
client must include the appropriate Transaction Service object as an explicit parameter
of an operation.

Indirect Context Management: Implicit Propagation

The client application uses operations on €harent pseudolgect to creatand
control its transactiondVhen it issues requests on tsactional objects, the
transaction context associated with the current threadpKcitly propagated to the
object.

Transaction Servicex1.0 ThéJsers View March 1995 10-31

10

10-32

Indirect Context Management: Explicit Propagation

For an impicit model application taise exptit propagation, it can get access to the
Control using theyet_control operation on th&€urrent pseudo bject. It can then

use a TramactionService object as an explicit parameter to a transactional object. This
is explicit propagation.

Direct Context Management: Implicit Propagation

A client that accesses the Transaction Service objects directly can ussuthe
pseudo object operation to set theplicit transaction context associated with its
thread. This allows the client to invoke operations of an object that requiipisit
propagation of the transaction context.

10.4.2 Interfaces

Table 10-1Use of Transaction Service functionality

Function

Context management

Used by Direct Indirect®

Create aransaction

Tansaction Factory::create begin,set_timeout

originator Control::get_terminator
Control::get_coordinator

Terminate a transaction rdhsactiororiginator—mplicit Terminator::commit commit

All—explicit Terminator::rollback rollback
Rollback a transaction Server Terminator::rollback_only rollback_only
Control propagation Server Declaration of method parameter TransactionalObject
of transaction to aesver interface
Control by client All Request parmeters get_control
of transaction suspend
propagation resume
to a server

Become a participant
in a transaction

Recoverale Server Coordinator:: register_resource Not applicable

Miscellaneous

All Coordinator:get_status
Coordinator::get_transaction_name
Coordinator::is_same_transaction
Coordinator::hash_transaction

get_status
get_transaction_name
Not applicable

Not applicable

1.All Indirect context management operations are orCtinent pseudo-object interface

Note —For clarity, subtransaion operations are nshown.

10.4.3 Checked Transaction Behavior

Some Transaction Service implementations will enforce checked behavior for the
transactions they support, to provide an extra level of transaction intddriy.
purpose of the checks is to ensure that all transactional requests made by the
application have completed their processing before the transactiomisitted. A

CORBAservices: Common Object Services Specification

10

checked Tragaction Service guarantees thammit will not succeed unless all
transactional objects involved ihe transactiolnave completed the processingtlodir
transactional requests.

There are many possible implementations of checking in a Transaction Service. One
provides equivalent function to that provided by the request/respatesgrocess
communication models defined by X/Open.

The X/Open Transaction Service modekbgcking is particularly important because it
is widely implemented. It describes the transaction integrity guarantees provided by
many existing transaction systems. These transastistems will provide the same
level of transaction integrity for object-based applications by providing a Transaction
Service interface that implements the X/Open checks.

10.4.4 X/Open Checked Transactions

In X/Open, completion of the processing of a request means that the object has
completed execution of its method and replied to the request.

The level oftransaction integrity provided by a Transaction Service implementing the
X/Open model of checking provides equivalent functionhiat provided by the

XATMI and TxRPCinterfaces defined by X/Open for transactional applications.
X/Open DTP Trasaction Managers are examples of transaction management functions
that implement checked transaction behavior.

This implementation of checked behavior dependswpiicit transaction prpagation.

When mplicit propagation is used, the objects involved in a transaction at any given
time may be represented as a tree, the request tree for the transaction. The beginner of
the transaction is the root of the tree. Requests add nodes to the tree, replies remove
the replying noddrom the tree Synchronous requests, or the checks described below

for deferred synchronous requests, ensure that the tree collapses to aclediefore

commit is issued.

If a transaction uses explicit propagation, the Transaction Service cannotwkrichv
objects are or will be involved in the transaction; that is, a request tree cannot be
constructed or assured. Therefore, the use of explicit gedjoan is not permitted by a
Transaction Service implementation that enforces X/Ogigle-checked behavior.

Applications that use synchronous requests ierthli exhibit checked behavior. For
applications that use deferrsginchronous requests, in a transaction where iahtsl|
and djects are in the domain of aextking Transaction Service, the Transaction

Service can enforce this property by applying a reply clamckacommit cteck.

The Transaction Servigaust also apply a resume check to ensure that the transaction
is only resumed by application programs in the correct part of the request tree.

Transaction Servicex1.0 ThéJsers View March 1995 10-33

10

Reply Check

Before allowing an object to reply to a transactional request, a check is made to ensure
that the object has received replies to all its deferredtspnous requests that
propagated the transaction in the original request. If this condition is not met, an
exception is raised and the transaction is markewl#smck-only, that is, it cannot be
successfully committed.

A Transaction Service may check that a reply is issuédimthe context of the
transaction associated with the request.

Commit Gieck
Before allowing comit to proceed, a check is made to ensiina:

1. The commit request for the transaction is being issued from the esagoetion
environment that created the transaction.

2. The client issuing commiftas received replies to all the deferred synchronous
requests it made that caused the propagation of the transaction.

Resume Check

Before allowing a client or object to associate ademion context with its tead of
control, a check is made to ensure that this transaction context was previously
associated with the execution environment of the thread. This would be true if the
thread either created the transaction or received it in a transactional operation.

10.4.5 Implementing a Transactional Client: Heuristic Completions

Commit takes the booleanaport_heuristics input. If thereport_heuristics

argument idalse , thecommit operation can complete as soon as the Coordinator
has made its decision tmmmit or rolltack the transactionlhe application is not
required to wait for the Coordinator to complete the commit protocol by informing all
the participants of the outcome of the transaction. This can signific@olice the
elapsedime for the comit operation, especially where participa®¢source objects

are located on remote network nodes. lde@r, no heuristic conditions can be reported
to the application in this case.

Using thereport_heuristics option guarantees that thenmit operation will not
complete until the Coordinator has completeddbmmitprotocol with all Resource
objects involved in the transaction. This guarantees that the application will be
informed of any non-atomic outcomes of the transaction viadthesticMixed or
HeuristicHazard exceptions, but increases the application-perceived elapsed time
for the commitoperation.

10-34 CORBAservices: Common Object Services Specification

10

10.4.6 Implementing a Recoveralderver

A Recoverale Server includes at leaste trarsactional objecand one resource
object. The responsilties of each of these objects are explained in fihiwing
sectians.

Transactional Object

The responsibilities of the transactional object are to implement the transactional
object’s operations, and to register a Resource object with the Coordinator so
commitment of the Bcoverable Server’s resources, including any necessary recovery,
can be completed.

The Resourcebject identifies the involvement of the Recoverable Server in a
particular transaction. This means a Resource object may only be registered in one
transaction at a time. A different resource object must be registered for each
transaction in which a recoverable server is concurrently involved.

A transactional object may receive multiple requests within the scope of a single
transaction. It onlyneeds to registdts involvement in the transactiamce. The
is_same_transaction operation allows the transactional object to determine if the
transaction associated with the request is one in which the transactional object is
already registered.

The hash_transaction operations allow the transactional object to reduce the

number of transaction comparisons it has to make. All Coordinators for the same
transaction return the sameadh code. Th&_same_transaction operation need

only be done on Coordinators which have the same hash code as the Coordinator of the
current request.

Resource Object

The responsibilities of &Resource object are fmarticipate in the completion of the
transaction, to update theeBoverable Server’s resources in accordance with the
transaction outcomend ensuréermination of the transaction, including across
failures. The protocols that the Resource object miedibw are described in 8ction
10.5.1.

Reliable Servers

A Reliable Server is a special case of a Recoverable Server. A Reliable Server can use
the same interface asRecoverable Server to ensure application integrityofijects

that do not have recoverable state. In the case of a Reliable Server, the transactional
object canregister a Resource object that repligsteReadOnly to prepare if its
integrity constraints are satisfied (e.g. all debits have a corresponding credit), or replies
VoteRollback if there is a problem. This approach allows the server to apply

integrity constraints which apply to the transaction as a whole, rather than to individual
requests to the server.

Transaction Servicex1.0 ThéJsers View March 1995 10-35

10

10-36

10.4.7 Application Portability

This section considers application fadnility across the broadesinge of Transaction
Service implementations.

Flat Transactions

There is one optional fiction of the TransactioBervice, support for nested
transactions. For an application to be portable across all implementations of the
Transaction Service, it should be designed to usélah&ansaction modelThe
Transaction Service specification treats flat transactions as top-level nested
transactions.

X/Open Cheked Transactions

Transaction Service implementations maplementchecked or unchecked behavior.
Thetransaction integrity checks implemented by a Transa&@mice need not be the
same as those defined by X€n. However, many eting transaction management
systemshave implemented the X/Open model of interproecesamunication, and will
implement a checked Transaction Service that provides the same guarantee of
transaction integrity.

Applications written to conform to the transaction integrity constraints op¢Owill
be portable across all implementations of an X/Ogleecked Transaction Service, as
well as all Transaction Service implementations which support unchecked behavior.

10.4.8 Distributed Transactions

The Transaction Service can lmeplemented bynultiple compnents located across a
network. The different components can be based on the same or on different
implementations of the Transaction Service.

A single transactiocan involve clientand objects supported by more than one
instance of the Transaction Service. The number of Transaction Semgieaces
involved in the transaction is not visible to the applicatmplementor.There is no
change in the function provided.

10.4.9 Applications Using Both ChHexd and Unchecked Services

A single transactioan include objects supported by both checked and unchecked
Transaction Servicamplemenations. Checketransactiorbehavior cannot bepplied
to the transaction as a whole.

It is possible to provide usefdlmited forms of checked behavior for those subsets of
the transaction’s resources in the domain of a checkedsdcton Service.

CORBAservices: Common Object Services Specification

10

First, a transactional or recoverable objedipge resources are managed by a checked
Transaction Service, may be accessed by unchecked clients. The checked Transaction
Service can ensure, loggistering itself in the transaction, that the transaction will not
commit before all the integrity constraints associated with the requesbbare

satisfied.

Second, an application whose resources are managed by a checked Transaction Service
may act as a client of uncheckeljects,and preservés checked semantics.

10.4.10 Examples

Note —All the examples are written in pseudade based on C++. In particular they do
not include implicit parameteuch as th®rb::Environment , which should appear
in all requests. Also, they do nbandle the exceptions that might be returned with
each request.

A Transaction Originator: Indiect andmplicit

In the code fragments below, a tsaction originator uses indirect context management
andimplicit transactionpropagationtxn_crt is a pseudo lgject supporting the

Current interface; the client uses the begin operation to start the transaction which
becomesmplicitly associatedwvith the originator's thread of capt:

txn_crt.begin();
// should test the exceptions that might be raised

I/ the client issues requests, some of which involve
/I transactional objects;
BankAccountl->makeDeposit(deposit);

The programcommit s the transaction associated with the client thread. The
report_heuristics argument is set ttalse so no report will be made by the
Transaction Service about possible heuristic decisions.

txn_crt.commit(false);

Transaction Servicex1.0 ThéJsers View March 1995 10-37

10

10-38

Transaction Originator: Diect andExplicit

In the following example, a transaction originator uses direct context managamdent
explicit transaction propagation. The client uses a factory objgorting the
CosTransactions:: TransactionFactorinterface to create a new transactard uses the
returned Control object to retrieve the Terminator and Coordinator objects.

CosTransactions::Control c;
CosTransactions::Terminator t;
CosTransactions::Coordinator co;

¢ = TFactory->create(0);
t = c->get_terminator();

The client issues requestsme of which involve transactional objects, in this case
explicit propagation of the context is used. The Control object reference is passed as an
explicit parameter of the request; it is declaiedthe OMG IDL of the interface.

transactional_object->do_operation(arg, c);

The trarsaction originator uses the Terminator object to commit the transaction; the
report_heuristics argument is set ttalse : so no report will be made by the
Transaction Service about possible heuristic decisions.

t->commit(false);

CORBAservices: Common Object Services Specification

10

Example of a Recoverable Server

BankAccountl is an object with internal resources. It inherits from both the
TransactionalObjectand theResourcdnterfaces:

interface BankAccountl:

CosTransactions:: TransactionalObject,CosTransactions::Resource

{

void makeDeposit (in float amt);
3

class BankAccountl

{

public:

void makeDeposit(float amt);

Upon entering, the context of the transactiomiplicitly associated with the object's

thread. The pseudo object supporting Garentinterface is used to retrieve the
Coordinatorobject associated with the transaction.

void makeDeposit (float amt)

{

CosTransactions::Control c;
CosTransactions::Coordinator co;

¢ = txn_crt.get_control();
co = c->get_coordinator();

Before registering the resource the object should check whether it has already been

registered for the same transaction. This is done usingatihe transaction and
is_same_transaction operations.

Note that this object registers itself as a resource. This imposessthietion that the

object may only be involved in one transaction at a time.

Transaction Servicex1.0 ThéJsers View March 1995 10-39

10

If more parallelism is required, separate resource objects should be registered for
involvement in the same transaction.

RecoveryCoordinator r;
r = co->register_resource (this);

/I performs some transactional activity locally
balance = balance +f;
num_transactions++;

/I end of transactional operation

h

Example of a Transactional Object

A BankAccount2is an object with external resources that inherits from the
TransactionalObjednterface:

interface BankAccount2: CosTransactions::TransactionalObject

{

void makeDeposit(in float amt);
3

class BankAccount2

{

public:

void makeDeposit(float amt);

Upon entering, the context of the transactiomiplicitly associated with the object's
thread. ThenakeDeposit operation performs some transactional requests on external,
recoverable servers. The objenisl andres2 are recoverable objects. The current
transaction context isnplicitly propagated to these objects.

void makeDeposit(float amt)

{
balance = res1->get_balance(amt);
balance = balance + amt;
resl->set_balance(balance);

res2->increment_num_transactions();
}// end of transactional operation

10-40 CORBAservices: Common Object Services Specification

10

10.4.11 Model Interoperability

The Transaction Service supports interoperabitistween Tragaction Service

applications usingniplicit context propagatioand procedural applications using the
X/Open DTP model. A single transaction management component may act as both the
Transaction Service and an X/Open Transaction Manager.

Interoperability is provided in two ways:
* Importing transactions from the Xfi@n domain to the Transaction Service
domain.
» Exporting transactions from the Transaction Service domain to thpex/O
domain.

Importing Transactions

X/Open gplicationscan access traactional objects. This means that an existing
application, written to use peninterfaces, can be extended to invoke transactional
operations. This causes the X/Open transaction to be imported into the domain of the
Transaction Service. The X/Open apption may be a client or a server.

Existing Application) New Application (Objects)
X/Open Transactional Transactional
Client Originator Object
i ORB |
X " “iransactional operation] '
\ L
Transaction Transaction
Manager Service

Figure 10-2 X/Open client

Transaction Servicex1.0 ThéJsers View March 1995 10-41

10

Existing Application New Application (Objects)
X/Open X/Open Transactional Transactional
client Server Originator Object
A I I N DR
5 ORB |
" transactional operation |
v '
Transaction Transaction
Manager Service

Figure 10-3 X/Open server

Exporting Transactions

Transactional objects can use X/Opgmmmunication@nd resource manager
interfaces, and include the resources managed by these componetrenisaation
managed by the Transaction Service. This causes the Transa@tidgreSransaction to
be exported into the domain of the X/Open transaction manager.

Figure 10-4 Example

New Application (Objects)

X/Open
Resource
Manager
Transactional Transactional
Client Object A X/Open
_—————p server
CM API
N S Y IR : A
1 | ORB | propagation ,
B fransactional operation
, v v
Transaction Transaction
Service Manager

10-42 CORBAservices: Common Object Services Specification

10

Programming Rules

Model interoperability results in application programs that use botlpetiGnd
Transaction Service interfaces.

A transaction originator may use the X/Open ifXerface or the Transaction Service
interfaces to create and neinate a transaction. Ontyne style may be used in one
originator.

A single application may inherit a transaction with an application request either by
using the X/Open server interfaces, or by being a transactional object.

Within a single transaction, an application program can be a client of botmeKX/O
resource manager interfaces and transactidnialcbinterfaces.

An X/Open client or server may invoke operations ofis$ectional objects. How the
X/Open transaction is associated with the Bertion Services transaction context is
implementation-dependent.

A transactional object with a Current pseudo object that associates a transaction
context with a thread of control, can call X/Open Resource Managers. How requests to
the X/Open Resource managers become associatiedn& transaction context of the
Current pseudo object is implementation-dependent.

10.4.12 FailureModels

The Transaction Service providesomic outcomes for transactions in fhresence of
application, system or communication failures. This section describes the behavior of
application entities when failurexcur. The protocols used to achieve this behavior
are described in Section 10.5.1.

From the viewpoint of each user object role, two types of failure areargtes failure
affecting the object itself (local failurend afailure external to the object (external
failure), such as failure of another objectfailure in the communication with that
object.

Transaction Originator

Local Failure

A failure of a Transaction originator prior to the originator issuing commitaailise

the transaction to belled back. A failure of the originataafter issuing comit and
before the outcome is reported may result in either commitment or rollback of the
transaction dpending on timing; in this case completion of the transaction takes place
without regard to the failure of the originator.

External Failure

Any external failure affecting the transaction prior to the originator isstomgmit
will cause the tragaction to be rolled back; the standard exception
TransactionRolledBack will be raised in the originator when it issues commit.

Transaction Servicex1.0 ThéJsers View March 1995 10-43

10

A failure after commit and before the outcome has been reported will mean that the
client may not be informed of the transaction outcodepending on the nature of the
failure, and the use of theport_heuristics option ofcommit . For example, the
transaction outcome will not be reported to the client if communicégébween the
client and the Coordinator fails.

A client may useyet_status on the Coordinator to determine the transaction
outcome. However, this is notliable because thetatusNoTransaction is
ambiguous: it could mean that the transactionrodted and has been forgotten, or
that the transaction rolled back and has been forgotten.

If an originator needs to know the transaction outcome, including in the case of
externalfailures,then either the originatorisnplementation must include aeRource
object so that it will participate in the two-phase commit procedure (and any recovery),
or the originator and Coordinator must be located in the same failure domain (for
example, the same execution environment).

Transactional Server

Local Failure

If the Transactional Server fails then optioohkcks by a Transaction Service
implementation may cause the transaction to be rolled back; without such checks,
whether the transaction rolls back depends on whethaothenit decision has already
been made (this would be the case where an unchecked client imkest before
receiving all replies from servers).

External Failure

Any external failure affecting the transaction during the execution of a Transactional
Server will cause the transaction to be rolled backhif occurs while the

transactional object’s method is executitig failure has no effect on the execution of
this method. The method magrninate normally, returning the reply to its client.
Eventually theTransactionRolledBack exception will be returned to a client

issuing commit.

Recoverable Server

Behavior of a recoverable server when failures occur is determined by the two phase
commit protocobetween the Coordinator and the recoverable serResource

object. This protocol, including the local and external failure models and the required
behavior of the Resource, is described in Secti®oh.1.

10.5 The Implementors’ View

10-44

This section contains three major categories of information.

CORBAservices: Common Object Services Specification

10

1. Section 10.5.1 defines in modetail the protocols of the Transaction Service for
ensuring atomicity of transactionsyen in the presence of failure.

This section iswot a formal part of the specification butpsovided to assist in
building valid implementations of the specification. These protocols affect
implementations oRecoverable Servers atlte Transaction Service.

2. Section 10.5.2 providemdditional information for implementors of ORBsd
Transaction Services in those areas where cooperation between the two is necessary
to realize the Transaction Service function.

The following aspects of ORB and Transaction Service implementation ageedov
* transaction propagation.
* interoperation between different transaction seringglementations.

* ORB changes necessary to support poitgtolf transaction service
implementations.

3. Section 10.5.3 describes howiarplementaibn achieves interoperation between
the Transaction Service and procedural transaction managers.

10.5.1 Transaction Service Protocols

The Transaction Service requires that certain protocols be followed to implement the
atomicity property.These protocols affect the implementation of recoverable servers,
(recoverable objects that register for participation intéh@phasecommit process)

and the Coordinators that are created by a transaction factory. Thesesietifies
ensure the execution of the two-phasenmitprotocol and include maintaining state
information in stable storage, so that transacticarsbe completed in case of failures.

General Principles

The frst Coordinator created for a specific transaction is responsible for driving the
two-phasecommit protocol. In the literature, this is referred to asrtiod Transaction
Coordinatoror simply root Coordinator. Any Coordinator that is subssly created

for an existing transaction (for example, as the result of interposition) becomes a
subordinate in the process. Such a Coordinateefesred to as aubordinate

Transaction Coordinatoor simply subordinate Coordinatand by registering as a
Resource becomes ansaction participant. Recoverable serversanays

transaction participant¥he root Coordinator itintes the two-phase commit protocol;
participantsrespond to the operations that implement the protocol. The specification is
based on the following rules for comtmentand recovery:

1. The protocol defined by this specification is a{fphasecommit with presumed
abort.

This permits efficient implementations to be ieadl since the root Coordinator
does not need to log anything before doenmit decisiorand theparticipants (i.e.
Resource objects) do not need to log anything before they prepare.

Transaction Service/1.0 Thémplementors’ View March 1995 10-45

10

10-46

2. Resource objects—including subordinate Coordinators—do not stamitoent
by themselves, but wait farepare to be invoked.

3. Prepare is issued at most once to edghsource.

4. Participants must remember heuristic decisions until the Coordinator or some
management application instructs thenfoiget that decision.

5. A Coordinator knows which Resource objectsragistered in a transaction and so
is aware of Resources that have completednaidme nt.

In general, the Coordinator must remember this information if a transaction
commits in order to ensupoper completion of the transaction. Resources can be
forgotten early if they do not vote timmmit the transaction.

6. A participant Bould be able to request the outcome of a transaction at any time,
including after failureccurring subsequent tts Resource object being prepared.

7. Participants should be able to report the completion of the transaction (including
any heuristic condition).

The recording oinformation relating to the transaction which is required for vecp
is described as if it were a log file for clarity of descriptionjraplementabn may
use any suitable persistent storage mechanism.

Normal Transaction Completion

Transaction completion can occur in two ways; as part of the normal execution of the
Current::commit or Terminator::commit operations or independent of these
operations if a failure should occur before normal execution can complete. This section
describes the normal (rfailure) case. “Failures and Recovery” on page 10-52
describes the failure cases.

Coordinator Role

The root Coordinator implements tHellowing protocol:

* When the client asks tmommit the transaction, and no prior attempt to roll back
the transaction has been made, the Coordinator issupsettaee request to all
registered Resources.

« If all registered Resources repipteReadOnly , then the root Coordinator
replies to the client that the transaction committed (asgythat the client can
still bereached).

e There is no requirement for the Coordinator to log in this case.

* If any registered Resource repligsteRollback or cannot be reached then the
Coordinator will decide to rollback and will so inform those registered Resources
which already replie&/oteCommit.

CORBAservices: Common Object Services Specification

10

Once aVoteRoallback reply is received, a Coordinator need not selgare to
the remaining ResourceRollback will be subsequently sent to Resources that
repliedVoteCommit . If the report_heuristics parameter was specified on
commit , the client will be informed of the rollback outcoméen any leuristic
reports have beecollected(and logged if required).

» Once at least one registered ResourcerbpliedVoteCommit and all others
have repliedvoteCommit or VoteReadOnly , a root Coordinator may decide to
commit the transaction.

» Before issuingcommit operations on those registered Resource objects which
repliedVoteCommit , the Coordinator must ensure that dwenmit decisiorand
the list of registered &ources—those that repligdteCommit —is stored in
stable storage.

« If the Coordinator receivegoteCommit or VoteReadOnly responses from each
registered Resource, it issues thenmit request to eactegistered Resource that
responded/oteCommit .

* The root Coordinator issudsrget to a Resource after it receives a heuristic
exception.

» This responsibility is not affected by failure of the Coordinator. When receiving

commit replies containing heuristic informationCaordinator constructs a

composite for the transaction.

After having received all commit operation replies, a root Coordinator forgets the

transaction after having logged its heuristic status if heuristics repavisg

requested by the originator.

The root Coordinator can now trigger the sending of the reply to thenitom
operation if heuristic reporting is required. If no heuristic outcomes were recorded,
the Coordinator can be destroyed.

One Phase&€ommit

If a Coordinator has only a single registefRelsource, it can perform the
commit_one_phase operation on the Resource instead of perforrpiegare and
thencommit orrollback . If a failure occurs, the Coordinator will not be informed of
the transaction outcome.

Subtransactions

When completing a subtransaction, the subtransaction coordmastrnotify any
registered subtransaction aware resources of the subtransactionist cwmollback
status using theommit_subtransaction or rollback_subtransaction

operations of the&ubtransactionAwareResource interface.

A transaction servicenplemenation determines how it chooses tepend when a
resource responds tommit_subtransaction with a system exception. The service
may choose to rollback the subtransaction or it may ignore thepéinalcondition.

The SubtransactionAwareResource operations are used to notify the resources of a
subtransaction when the subtransaction mitmin the case where thesource needs

to keep track of the camit status of itsancestors. Thegre not used to direct the

Transaction Service/1.0 Thémplementors’ View March 1995 10-47

10

10-48

resources to comit or rollback anystate.The operations afhe Resourcenterface are
used tocommit or rollback subtransaction resources registered using the
register_resource operation of theCoordinatorinterface.

When the subtransaction is conitted and afer all of the registered
SubtransactionAwareResources have beemotified of the commitment, the
subtransaction registers any resources registered wgjister_resource with its
parentCoordinatoror it may register a subordinate coordinator to relay future
requests to the resources.

From the application programmer point of view, the same rules that apply to the
completion of top-level transactions also apply to subtransactions. The
report_heuristics parameter orommit is ignored since heuristics are not
produced when subtraactions are committed.

Recoverable Server Role

A recoverable server includes at least one recoverable object and one Resource object.
The recoverable ob¢t has state that demonstrates at least the atomicity property. The
Resource objedmplements the two-phase carit protocol as a participant. The
responsibilities of each of these objects is descriletob

Top-Level Registration

A recoverable object registers a Resource object with the Coordinator so commitment
of the transaction including any necessary recovery can be completed.

A recoverable object uses tlsesame_transaction operation to determinehether
it is already registered in this transaction. It can alsohask_transaction to
reduce the number of comparisons - tteBes onthe definition of the
hash_transaction operation to return the same value for all Coordinators in the
same transaction.

Once registered, a recoverable server assumes the responsibilities of a transaction
participant.

Subtransaction Registrgon

A Recoverdle Server registers for subtransaction completion only if it needs to take
specific actions at the time a subtransaction commits. An example woulcchantge
ownership of locks acquired by this subtransaction to its parent.

A recoverable object uses tlsesame_transaction operation to determinehether
it is already registered in this subtransaction. It can alshasbe transaction to
reduce the number of comparisons.

CORBAservices: Common Object Services Specification

10

Top-Level Conpletion

Resource objectsnplement a recoverable object’s involvement in transaction
completion. To do so, they must follow theostphasecommitprotocolinitiated by
their Coordinatoland maintain certain elementstbgir state in stable storage. The
responsibilities of &esource object with regard tgparticular transactiodepend on
how it will vote:

1. ReturningvoteCommit to prepare

Before a Resource object repligsteCommit to a prepare operation, it must
implement the following:

®* make persistent the recoverable state ofeit®verable object.

The method by which this is accomplished is implementat&pendent. If a
recoverable object has only transistdte, itheed not be made persistent.

® ensure that its object reference is recorded in stable storage to allow it to participate
in recovery in the event of failure.

How object references are made persistamt then regeneratediexf a failure is

outside the scope of this specification. The Persistent Object Service or some other
mechanism may be used. How persistent Resowjeets get restarted after a

failure isalso outside the scope of this specification.

* record theRecoveryCordinator object reference so that it daitiate recovery of
the transaction later if necessary.

®* the Resource then waits for the Coordinator to invakemit or rollback

®* A Resource with deuristic outcome must not discard that information until it
receives dorget from its Coordinator or some administratie@mponent.
2. ReturningvoteRollback to prepare

A Resource whichiepliesVoteRollback has no requirement to log. Once having
replied, the Resource can return recoverable Resources to their prior state and forget
the transaction.

3. ReturningvoteReadOnly to prepare

A Resource whichiepliesVoteReadOnly has no requirement to log. Once having
replied, the Resource caelease its Bsources and forget the transaction.

Subtransaction Completion

The role of the SubtransactionAwareResourceultransaction completion are defined
by the SubtransactionAwareResource itself. The Coordinator only requires that it
respond tacommit_subtransaction or rollback_subtransaction

All resources need to be notifiechen a trasaction commits or rollsdck. But some
Resources need tow whensubtransactions commit so ththey can update local
data structures and to track the completion status of ancebbhar&esource may have

Transaction Service/1.0 Thémplementors’ View March 1995 10-49

10

rules that are specific to ancestry and must perform some work as all or some ancestors
complete. The nested semantics and effort required bRelseurce object is defined
by the object and not the Transactioerfce.

Once the resource has been told to prepare, the resource's obligations are exactly the
same as a top-level resource.

For example, in the Concurrency Control Service, a resource in a nested transaction
might want to know when thsubtransaction commitsecause another subtransaction
may be waiting for a lock held by that subtransaction. Once that subtransaction
commits, others may be granted the lock. There is no requirement toloukke
ownership persistent until a prepare message is received.

For the RrsistentObject Service, it is important to keep separate update information
associated with a subtransaction. When that subtransactiomits, the Persistent
Object Service may need to reorganizeinformation(such as undinformation) in

case the parent subtransaction chooses to rollback. AgainetkisteniObject Srvice
resource need not make updates permanent until a prepare mesesagedd. At that
point, it has the same responsibilities as a top-level resource.

Subordinate Coordinator Role

An implementation of the Transaction Service may irdegpsubordinate Coordinators

to optimize the commit tree for completing the transaction. Such Coordirstbas e

as transaction participants to their superiors and as Coordinators to their Resources or
inferior Coordinators.

Registration

A subordinate Coordinator registers a Resource itsteuperior Coordinator e
registered, a subordinate Coordinator assumes the responsibilities of a transaction
participantandimplements the behavior of a recoverable server.

Subtransaction Registréon
If any of the resources registered with the subordinate coordinator support the

SubtransactionAwareResource interface, the subordinate coordinator must register
a SubtransactionAwareResource with its parent coordinator. Hny of the
resources registered with the subordinate usingetfister_resource operation,

the subordinate must retgs aResource with its superior. If both types of resources
were registered with the subordinate, the subordinate only needgister a
SubtransactionAwareResource with its superior.

Top-level Completion

A subordinate Coordinator implements the completion behavior of a recoverable
server.

Subtransaction Completion

A subordinate Coordinator implements the subtransaction completion behavior of a
recoverable server.

10-50 CORBAservices: Common Object Services Specification

10

Subordinate Coordinator

A subordinate Coordinator does not make ¢bmmit decisiorbut simply relays the
decision of its superior (mich may also be a subordinate CoordinatorfRésources
registered with it. A subordinate Coordinator acts as a recoverable server as described
previously, in terms of saving its state in stable storage. A subordinate Coordinator (or
indeed any Resource) may log temmitdecision once it iknown (as an

optimization) but this is not essential.

® A subordinate Coordinator issues titepare operation to its registered Resources
when it receives arepare request from its superior.

The subordinate Coordinator must record the prepstaeé, the reference of its
superior RecoveryCoordinatand its list of Resources that resgedVoteCommit
in stable storage before responding to prepare.

® |If all registeredResources replyoteReadOnly , then the subordinate Coordinator
repliesVoteReadOnly to its superior.

There is no requirement for the subordinate Coordinator to log in this case; the
subordinate Coordinator takes no further part in the transaction and can be
destroyed.

* |f any registered ResouraepliesVoteRollback or cannot be reached then the
subordinate Coordinator will decide ttollback and will sanform those registered
Resources which already repligdteCommit.

Once avoteRollback reply is received, the subordinate Coordinator need not send
prepare to the remaining Reources.The subordinate Coordinator will reply
VoteRollback to its superior.

® Once at least oneegisteredResource has repliegbteCommit and all others have
repliedvVoteCommit or VoteReadOnly , a subordinate Coordinator may decide to
reply VoteCommit.

* A subordinate Coordinator issues tleenmit operation to its registered Resources
which repliedvoteCommit when it receives aommit request from its superior.

If any Resource reports a hesiit outcome, theubordinate Coordinator reports a
heuristic outcome to its superidrhe specific outcome reportedegphends on the
other heuristic outcomes reced. The subordinate Coordinator should record the
heuristic outcome in stable storage.

® After having received adlommit replies, a subordinate Coordinator latgs
heuristic status (iny).

®* The subordinate Coordinator issuesoanmit reply to its superior Coordinator.

If no heuristic reportvas sent the Coordinator is destroyed.

®* A subordinate Coordinator performs tholback operation on its registered
Resources when it receivesdiback request from its superior.

If any Resource reports a hesiit outcome, theubordinate Coordinator records
the appropriate heuristic outcome in stable stoegtreports this outcome i
superior.

Transaction Service/1.0 Thémplementors’ View March 1995 10-51

10

® |f a subordinate Coordinator receivesanmit_one_phase request, and it has a
single registered Resource, it can simply performctinemit_one_phase request
on its Resource.

If it has multiple regstered Resources, it behaves like a Sop&oordinator,
issuingprepare to each Resource ttetermine the outcome, before issuing
commit orrollbback requests.

®* A subordinate Coordinator performs tloeget operation on those registered
Resources that reported a heuristic outcome when it recefuggia request from

its superior.
Subtransactions
A subordinate Coordinator for a subtransaction retaysmit_subtransaction and
rollback_subtransaction requests to angubtransactionAwareResources

registered with it. In addition, it performs the same roles as a topdabekdinate
coordinator when the top-level transactmmmits. It must relaprepare and
commit requests to each of the resources that registered with it using the
register_resource operation.

Failures and Recovery

The previous desgriions dealt with the protocols associated with the Transaction
Service when #ransaction completes withofailure. Toensureatomicity and

durability in the presence of failure, the transaction service defines additional protocols
to ensure that transactions, once begun, always complete.

Failure Processing

The unit offailure is termed the failure domaitt may consist of the Coordinator and
some local Resources registered with it, or the Coordinator and the Resources may
each be irits own failure domain.

Local Failure

Any failure inthe transaction during the execution of a Coordinator prior to the
commit decisiorbeing made will cause the trsaction to be rolledack.

A Coordinator is restarted only if it has logged the outrdecision.

« If the Coordinator only contains heuristic information, nothing is done.

« If the transaction is marked rollback_only, a Coordinator can Befishck to
its Resources and inferior Coordinators.

« If the transaction outcome ommit, the @ordinator sendsommit to prepared
registered Resources and the regular commitpertedure istarted.

« If any registered Resources exist but can not be reached then the Coordinator
must try again later.

If any registered objects no longer exist then this means that they completed
commitment before the Coordinatf@iled and have no heistic information.

10-52 CORBAservices: Common Object Services Specification

10

« If a subordinate Coordinator is prepared, then it must contact its superior
Coordinator to determine the transaction outcome.

« If the superior Coordinator exists but cannot be red¢ckhen the subordinate
must retry recovery later.

« If the superior Coordinator no longer exists then the outcome of the transaction
can be presumed to be rollback.

The subordinate will iform its registered Bsources.

External Failure

Any failure inthe transaction during the execution of a Coordinator prior to the
commit decisiorbeing made will cause the tsarction to be rolledack.

Transaction Completion after Failure

In general, the approach is to continue the completion protocols at the point where the
failure occurred. That means that the Coordinator will usually have thensbpity

for sending the comit decision to its registered Resources. Certain failure conditions
will require that the Resource initiate the recovery procedure—recall that the Resource
might also be a subordinate Coordinator. These are described in more detail below.

Resources

A Resource represents somelection of recoverable data associated with a
transaction. Isupports theResource interface described in Sectid®.3.7. When
recovering from failure afteits changes have been prepared, a Resource uses the
replay_completion operation on the RecoveryCoordinator to determine the outcome
of the transaction and continue completion.

Heuristic Reporting

If the Coordinator does not complete the two-pham@mit in a timely manner, a
subordinate (i.e. a Resource or a subordinate Coordinator) in tisadti@m may elect

to commit or rollbackhe Resources registered with it in a prepared transaction (take a
heuristic decisiopn When the Coordinator eventually sends the outcome, the outcome
may differ from that heuristic decision. The result is referred t@easisticMixed

or HeuristicHazard. The result is reported by the root Coordinator to the client only
when thereport_heuristics option on commit is selected. In these circumstances,
the participant (subordinate) and the Coordinator must obey a set of rules that define
what they report.

Coordinator Role

A root Coordinator thatails prior tologging thecommit decisioncan unilaterally

rollback the transaction. If its Resources have also rolled back because they were not
prepared, the transaction is returned to its prior state of consistency. Resoyrces

are prepared, they are requiredrigiate therecovery process defined below.

® A root Coordinator that has@mmitted outcome will continue the completion
protocol by sendingommit .

Transaction Service/1.0 Thémplementors’ View March 1995 10-53

10

10-54

* A root Coordinator that hasralled back outcome will continue the completion
protocol by sendingollback

Subtransactions

Subtransactions are not durable, so there is no completion after faiawevelr, once
the top-level coordinator issues prepare, a subtransaction subordinate coordinator has
the same responsitties of atop-level subordinate coordinator.

Recoverable Server role

The Transaction Service imposes certain requirements on the recoverable objects
participating in a transaction h€se requirements include an obligationmdtain

certain information at certain times in stable storage (storage not likely to be damaged
as the result of failure). When a recoverable object restarts after a failure, it
participates in a recovery protocol based on the contents (or lack of contents) of its
stable storage.

Once havingepliedVoteCommit , the Resource remains responsible for discovering
the outcome of the transaction, i.e. whethecdmmit or rolltack. If the Resource
subseqgently makes a heuristic decision, thiges not change its responstigl to
discover the outcome.

If No Heuristic Decision is Made

A Resource that is prepared is responsible for initiating recovetgell so by issuing
replay_completion to the Recovery@ordinator. The reply tells the Resource the
outcome of the transaction. The Coordinatan continue the completion protocol
allowing the Resource teither commit orollback. The Resource can resend
replay_completion if the completion protocol is not contiad.

« If the Resource having replietbteCommit initiates recovenand receives
StExcep::INV_OBJREF or StExcep:UNKNOWN , it will know that the
Coordinator no longer exists and therefore the outcome was to rollback
(presumed abort)

* If the Resource having repliathteCommit initiates recovenand receives
StExcep::COMM_FAILURE , it will know only that the Coordinator may or may
not exist.

« In this case the Resource retains responsibilityriidiating recovery again at a
later time
» When a HeuristiDecision is Made
» Before acting on a heuristic decision, it must record the decision in stable storage.

« If the heuristic decision turns out to be consistent with the outcome, then all is
well and the trasactioncan be completed and the histic decision can be
forgotten.

« If the heuristic decision turns out to be wrong, the heuristic damage is recorded in
stable storage and one of theuristic outcome exceptions
(HeuristicCommit,HeuristicRollback,HeuristicMixed, or
HeuristicHazard) is returned whemompletion continues.

CORBAservices: Common Object Services Specification

10

The heuristic outcome details must be retained persistently unftekeurce is
instructed to forget. Aus in this case the Resource remains persistent until the
forget is received.

Subordinate Coordinator Role

The behavior of a subordinate Coordinator after lariof its superior Coordinator is
implementation-dependent, however it does follow the following protocols:
» Since itappears as a Resource to its superior Coordinator, the protocol defined for
recoverable servers applies to subordinate Coordinators.

 Since it is also a subordinate Coordinator for its own registeestRces, it is
permitted tosend duplicateommit , rollbback , andforget requests to its
registered Resources.

* It is required to (eventually) perform eithe@mmit orrollback on any
Resource to which it has received/eteCommit response t@repare .

« It?is required to (eventually) perform theget operation on any Resource that
reported a heuristic outcome.

Since subtragactions are nadurable, it has no responsibility in this area for failure
recovery.

10.5.2 ORB/TS Implementati@onsiderations

The Transaction Service and the ORB must cooperate to realize certain Transaction
Service function. This is discussed in greater detail irfdiewing sections.

Transaction Propagation

The trarsaction is represented to the application by the Control object. Within the
Transaction Service, amplicit context is maintained for all threads associated with a
transaction. Althagh there is some commanformation, the implicittontext is not

the same as the Control object defined in this specification aidtisct from the

ORB Context defined in CORBA 1.2. Itis thaplicit context that must be transferred
between execution environments to support transaction propagatio mplicat

context does not have an OMG IDL interface.

The objects using a particular Transaction Service implementation in a system form a
Transaction Service domain. Within the domain, the structure and meaning of the
implicit context informatiorcan be private to the implementation. When leaving the
domain, this information must be translated to a common form if it is todberstood

by the target Transaction Service domain, even across a single ORB (See Section
10.5.2).

2.or some “agent” acting on its behalf: for example a system management application.

Transaction Service/1.0 Thémplementors’ View March 1995 10-55

10

10-56

No OMG IDL declaration is required to cause propagation ofntpdicit context with

a request. The minimum amount of information that could serve as a implicit context is
the object reference of the Coordinator. However, an identifier (e.g. an X/Open XID) is
also required to allovefficient (local) execution ofhe is_same_transaction and
hash_transaction operations when interposition is done. Implementations may
choose to also include the Terminator objederence if they support the ability for
ending the transaction in other execution environments than the originator’s.
Transferring the implicit context requires interaction bextw the Transaction Service
and the ORB to add or extract timplicit context from ORBmessages. This

interaction is also used to implement the checkingtions described in

Section 10.4.4, “X/Open Checked Transactions,” on page 10-33.

When the Control object is passed as an operation argumenti{egpmpagation), no
special transfer mechanism is required.

Interposition

When a transaction is propagated, itl@licit context is exported and can be used by
the importing Transaction Service implementation to create a new Control object
which refers to a new (local) Coordinator. This techniduirposition allows a
surrogate to handle the functions of a Coordinator in the importing domain. These
Coordinators act as subordinate Coordinatédfeen interposition is performed, a
single transaction involves multiple Coordinators.

Interposition allows cooperatinfransaction Services to share the responsibility for
completing a transaction ardn be used to minimize the number of network messages
sent during the completion process. Interposition is required for a Transaction Service
implementation to implement the same_transaction andhash_transaction

operations as local method invocations, thus improving overall systems performance.

An interposed Coordinator registers aparticipant in the transaction with the
Coordinator identified in the implicit context of the received request. The relationships
between Coordinators in the transaction form a tree. The root Coordinator is
responsible for completing the transaction.

Many implementations of the Transaction Service will want to perform interposition
and thus create Control objects and subsequently Coordinator objects for each
execution environment participating in the transaction. To create a new (local) Control,
an importing Transaction Service uses tHerimation in the implicit contexand some

local factory. Interposition must be complete beforegéecontrol operation can
complete in the target object. An object adaptor is one possible place to implement
interpositon.

Subordinate Coordinator Registration

A subordinate Coordinator must register with its superior Coordinator to orchestrate
transaction completion for its localeRources. Theegister operation of the
Coordinator can be used to perform this function. The subordinate Coordinator can
either support the Resource iritere itself or provide anoth&esource object which

will support transaction completion. Some implementations of the Transaction Service
may wish to perform this function asg-product of invoking théirst operation on an

CORBAservices: Common Object Services Specification

10

object in anew domain as is done with the X/Open model. This requires that the
information necessary to perform registrationdoleled to the reply message of that
first operation.

TransactionService Interoperation

The Transaction Service can be implementediyltiple commnents adifferent
locations. The different components can be based on the same or different
implementations of the Transaction Service.sfaed inSection 10.1.5, “Principles of
Function, Design, and Performance,” on page 10-8, itreqairement thamultiple
Transaction Services interoperate across the same ORB and different ORBSs.
Transaction Service interoperation across different ORBs cannot be specified in the
absence of ORB interoperability.

Transaction Service interoperation across a single ORB is specified by defining the
data structures exported betweeffedent implementations of the Transacti®arvice.
These data structures are of two types:

1. Structures which are defined by the operations of the Transaction Serviteand
associated OMG IDL.

These structures are specified completely in Sectia®, 10ransaction Service
Interfaces,” on page 10-17.

2. Structures which are specific to the boundary between the ORB and the Transaction
Service.

This structure applies only when the imftl context is &ported to a different
Transaction Service domain.

When theimplicit context is propagatedith a request, the destination uses it to locate
the superior Coordinator. That Coordinator may be implemented by a foreign
Transaction Service. By registeringR&source with that Coordinator, the destination
arranges to receive two-phase commit requests from the (possibly foreign) Transaction
Service.

The Transaction Service pmits many configurations; no particular configuration is
mandated. Typicallygach prgram will be directly associated with a single Transaction
Service. However, when requests are transmligtdieen prgrams in different
Transaction Service domains, both Transaction Services must understand the shared
data structures to interoperate.

An interface between the ORB and the Transaction Service is defined that arranges for
theimplicit context to becarried on messages that represent method invocations on
Transactional Objects. This interface is described in Secidn2, “ORB/TS
Implementation Considerations,” on page 10-55.

Transaction Service/1.0 Thémplementors’ View March 1995 10-57

10

10-58

Structure of the Propgation Context
The Propagation Contexstructure is defined by the following OMG IDL:

module CosTSInteroperation { // PIDL

struct otid_t {
long formatlD; #format identifier. O is OSI TP */
long bequal_length;
sequence <octet> tid;

g

struct Transldentity {
CosTransactions::Coordinator coordinator;
CosTransactions::Terminator terminator;
otid_t otid;

g

struct PropagationContext {
unsigned long timeout;
Transldentity current;
sequence <Transldentity> parents;
any implementation_specific_data;

For the functions defined within the base section of fliepagation context, it is
necessary only to send itith requests. Implementations maged the vendor spéici
portion for additional functions (for example, to register an interposed Coordinator
with its superior) which may require the propagation context to be returned. Whether it
is returned or not, iBnplemenation specific.

otid_t

The oid_t structure is a more efficient OMG IDL version of th&OXen defined
transaction identifier.

Transldentity

A structure that defines information for a single transaction. It consists of a
coordinator , an optionaterminator , and arotid

coordinator
The Coordinatofor this transaction in the exporting Transaction Service domain.

terminator

The Teminator for this transaction in thexporting Transaction Service domain.
Transaction Services that do not allow termination by other than the originator will set
this field to a null referencedBJECT_NIL).

CORBAservices: Common Object Services Specification

10

otid
An identifier specific to the current transaction or subtransaction. This value is
intended to suppostfficient (local) execution ofhe is_same_transaction and

hash_transaction operations when the importing Transaction Service does
interpositon.

timeout

The tmeout value associated with the transaction in the releseantmeout
operation (or the default timeout).

<Tranddentity> parents

A sequence ofransldentity structures representing the parent(s) of the current
transactionThe ordering of the sequenstarts at the parent of the current transaction
and includes all azestors up to the top-level transaction. An implementationdbes

not support nested transactions would send an empty sequence. This allows a non-
nested transaction implementation to kmeten a ested transaction is being

imported. It also supports efficient ¢lal) execution of the Coordinator operations
which testparentage when the importing Teattion Service aks interposition.

implementation_specific_data

This information is exported from an implementation and is required to be passed back
with the rest of the context if the transactiomésimported into that implementation.

Appearance of the Propagation Context ineddsages

To specify how the propagation context appears in messages, it is regarded as an extra,
implicit argument which is effectively aed to the signatures of transactional

operations. The specification simply describes how the original operation signature is
transformed with the new argument.

A transactional ORB supporting the target object will receive a request with a
signature defined as:

result_type op(argl,.., argN);

but will actually receive, and must reply, as though the signatare:w

result_type op(
argi,..., argN,
inout CosTSlInteroperation::PropagationContext ctx);

Transaction Service/1.0 Thémplementors’ View March 1995 10-59

10

10-60

TransactionService Portability

This section describes the way in which the ORB and thes@cdion Service
cooperate to enable the transaction context to be passed and any X/Open-style
checking to be performed on transactional requests.

Because it is recognized that other object services and future extensions to the CORBA
specification may requirsimiar mechanisms (for example, the Security Service may
need to pass authentication information with requebkts)component is specified
separately from the main body of the Transaction Service to allow it to be revised or
replaced by a mechanism common to several services independently of any future
Transaction Service revisions.

To enable a single Traaction Service to work witultiple ORBs, it is necessary to
define a specific interface beden the ORB and the Trsaction Servicewhich
conforming ORBimplementaibns will provide, and demanding Transaction Service
implementations can rely oithe renainder of this section describes these intefa
There are two elements of the requireteifaces:

1. An additional ORB interface that allows the TransacBenvice to identify itself to
the ORB when present in order to be involved intthasmission of transactional
requests.

2. A collection of OTS operations (the OTS callbacks) that the OR&as/when a
transactional request is seartd received.

These interfaces are defined as pseudo-IDL to allow them imfdlemented as
procedurecalls.

Identification of the Transaction Service to the ORB

Prior to the first transactional request, the Transa@mrvice will identify itself to the
ORB withinits domain to establish the transaction callbacks tadeel for
transactional requests and replies. This is accomplished usirfiglitheing interface.

interface TSldentification { / PIDL
exception NotAvailable {};
exception Alreadyldentified {};

void identify_sender(in CosTSPortability::Sender sender)
raises (NotAvailable, Alreadyldentified);

void identify_receiver(in CosTSPortability::Receiver receiver)
raises (NotAvailable, Alreadyldentified);

The callback routines identified in this operation are always in the same addressing
domain as the ORB. On most machine architectures, thereuaigue set of callbacks
per address space. Since invocation is via a procedure call, inéepéaitlres cannot
occur.

CORBAservices: Common Object Services Specification

10

NotAvailable

The NotAvailable ~ exception is raised if the ORB implementatidoes not support
the Cos TSPortability module.

Alreadyldentified

The Alreadyldentified exception is raised if thidentify_sender or
identify _receiver operationhad previously identified callbacks to the ORB for
this addressing domain.

identify _sender

The identify_sender operation provides the interface that defines the callbacks to
be invoked by the ORB when a teattional request is sent and its reply received.

identify_receiver

The identify_receiver operation provides the interface that defines the callbacks
to be invoked by the ORB whentrmnsactional request is receivadd its reply sent.

The Transaction Service must identifgelf to the ORB at least once per TS domain.
Sending and receivingansactional requests are separately identified. If the callback
interfaces are different for different processes within a TS domain, they are identified
to the ORB on a per process basis. Only one OTS implementation per addressing
domain can idntify itself to the ORB.

A Transaction Service implementation that only sends transactional request can
identify only the sender callbacks. A Transaction Service that only receives
transactional requestan icentify only the receivecallbacks.

The Transaction Service Qbbacks

The CosTSPortability module defines two interés. Both interfaces are defined
as PIDL. Thesender interface defines a pair of operations which are called by the
ORB sending the request before it is sent and after its reply is receiveckcdikier
interface defines a pair of operations which ealed by the ORB receiving the

Transaction Service/1.0 Thémplementors’ View March 1995 10-61

10

10-62

request when the request is received and before its reply is sent. Both interfaces use the
PropagationContext structure defined in Sectio®5.2, “ORB/TS inplementation
Considerations,” ompage 10-55.

module CosTSPortability { // PIDL
typedef long Reqld;

interface Sender {
void sending_request(in Reqld id,
out CosTSInteroperation::PropagationContext ctx);
void received_reply(in Reqld id,
in CosTSlInteroperation::PropagationContext ctx,
in CORBA::Environment env);

h

interface Receiver {
void received_request(in Reqld id,
in CosTSlInteroperation::PropagationContext ctx);
void sending_reply(in Reqld id,
out CosTSInteroperation::PropagationContext ctx);

Reqld

The Reqld is an uniquidentifier generated by the ORB which lasts for the duration of
the processing of the request atelassociated reply tallow the Trasaction Service
to correlate callback requests and replies.

Sender::sending_request

A request is about to be sent. The Transaction Service returns aatiopaontext to

be delivered to the Transaction Service at the server managing the target object. The

TransactionRequired standard exception is raised when invoked outside the scope

of a transaction.

Sender::received_reply

A reply has been received. The propagation context from the server is passed to the
Transaction Service along with the returned environment. The Transaction Service

examines th&nvironment to determine whether the requests successfully
performed. If theEnvironment indicates the requestas unsuccessful, the

TransactionRolledBack standard exception is raised.

Receiver::received_request

A request has been received. The propagation context defines the transaction making
the request.

CORBAservices: Common Object Services Specification

10

Receiver::sending_reply

A reply is about to be sent. A checking transaction sedétermines whether there

are outstanding deferred requests or subtransactions and raises a system exception
using the normal mechanisms. The exception data froroatiigack operatiomeeds to

be re-raised by the calling ORB.

Behavior of the Callback Interfaces
The following sections descrilibe protocols associated with the callback interfaces:

Requirements on the ORB

The ORBwill invoke the sender callbacks only when a transactional operation is
issued for an object in a different process. Objects within the same phoqrisitly
share the same transaction cont@kie receiver callbacks are invoked when the ORB
receives a transactional request from a different process.

The ORB must generate a requesnitfier for each outgoing request and be able to
associate the identifier with the rephhen it is returned. For deferred synchronous
invocations, this allows the Transaction Service to correlate the reply with the request
to implement checked behavior. The requesniiier is passed on sghronous
invocations to permit the same interface specification taseel.

The callbacks are invoked in line with the processing of requests and replies. This
means that the callbacks will be executed on the same thread that issued or processed
the actual request or reply. When the DIl is usedydbeved_reply callback must

be invoked on the same thread that will subsedjy process theesponse.

Requirements on th&ransaction Service

Within a single process, the transaction context is part of the thread specific state.
Multiple threadsexecuting on behalf of the same transaction will share the same
transaction context since a threzah only execute on behalf of a single transaction at

a time. Since the callffrks are defined as PIDL (procedggdls),they are invoked on

the client’s thread when sendiagd the server’s thread when receiving. This enables
the Transaction Service to locate the proper transaction context when sending
associate the received transaction context with the thread that will process the
transactionabperation. The callback interfaces may only raise standard exceptions and
may not make additional object invocations using the ORB.

10.5.3 Model Interoperability

The indirect contextnanagement programming model of the Transaction Service is
designed to be compatible with théOpen DTP standard, arichplementable by
existing Transaction Managers. In X/Open DTP, a current transaction is associated
with athread of contral Some X/Open Transaction Managers support a single thread
of control in aprocess others allow multiple threads of control per process.

Transaction Service/1.0 Thémplementors’ View March 1995 10-63

10

10-64

Model interoperability is possible because the Teation Service design is compatible
with the X/Open DTP model of a Transaction Manager. X/Open associabeg it
current transaction with each thread of control.

This means that a single transaction management service can provide the Transaction
and Transaction Manager interfaces of the Transaction Service, and also provide the
TX and XA interfaces of X/Open DTP. This is illustrated in Figure 10-5.

Figure 10-5 Model interoperability example

New Application (Objects) SQL Data Base

Transactional Transactional SQL SQL DB
) QObject EE— Resource
Client Manager

_______________________________________ A

ORB | propagation ,

| transactional operation ' XA
, v
Transaction Transaction
Service Manager

The trarsactional object making the SQL call, and the SR@source manager, are
both executing in the same thread of confftle trarsaction manager is able to
recognize the relationship between the transaction context of the object, and the
transaction associated with the SQL DB.

The Current and Coordinatarterfaces of the Transaction Serviogplementtwo-
phasecommit for the objects in the transaction. The Resource Manager will participate
in the two-phase comitmentprocess via the X/Open XA interface.

CORBAservices: Common Object Services Specification

10

10.6 The CosTransactioiModule

module CosTransactions {

/I DATATYPES

enum Status {
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction

h

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

h

/I Standard exceptions

exception TransactionRequired {};
exception TransactionRolledBack {};
exception InvalidTransaction {};

/I Heuristic exceptions
exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};

/I Exception from Orb operations
exception WrongTransaction {};

I/ Other transaction-specific exceptions
exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};

exception NotPrepared {};

exception NoTransaction {};

exception InvalidControl {};

exception Unavailable {};

/l Forward references for interfaces defined later in module
interface Control;

interface Terminator;

interface Coordinator;

interface Resource;

interface RecoveryCoordinator;

interface SubtransactionAwareResource;

interface TransactionFactory;

interface TransactionalObject;

interface Current;

Transaction Servicex1.0 Th€osTransactions Module March 1995

10-65

10

10-66

Il Current transaction pseudo object (PIDL)
interface Current {
void begin()
raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)
raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard
);
void rollback()
raises(NoTransaction);
void rollback_only()
raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);

Control get_control();

Control suspend();

void resume(in Control which)
raises(InvalidControl);

h

interface TransactionFactory {
Control create(in unsigned long time_out);

b

interface Control {
Terminator get_terminator()
raises(Unavailable);
Coordinator get_coordinator()
raises(Unavailable);

b

interface Terminator {
void commit(in boolean report_heuristics)
raises(
HeuristicMixed,
HeuristicHazard
);
void rollback();

CORBAservices: Common Object Services Specification

10

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();

Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);

h

interface RecoveryCoordinator {
Status replay_completion(in Resource r)
raises(NotPrepared);

Transaction Servicex1.0 Th€osTransactions Module March 1995

10-67

10

interface Resource {
Vote prepare();
void rollback()
raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard

);
void commit()
raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard
);
void commit_one_phase()
raises(
HeuristicRollback,
HeuristicMixed,
HeuristicHazard
);

void forget();
3

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

h

interface TransactionalObject {

kh

}; /I End of CosTransactions Module

10-68 CORBAservices: Common Object Services Specification

10

10.6.1 The CosTSInteroperation Module

module CosTSInteroperation { // PIDL

struct otid_tid {
long formatlD; #format identifier. O is OSI TP */
long bequal_length;
sequence <octet> tid;

g

struct Transldentity {
CosTransactions::Coordinator coordinator;
CosTransactions::Terminator terminator;
otid_t otid;

g

struct PropagationContext {
unsigned long timeout;
Transldentity current;
sequence <Transldentity> parents;
any implementation_specific_data;

10.6.2 The CosTSPortabilityiodule

module CosTSPortability {// PIDL
typedef long Reqld;

interface Sender {
void sending_request(in Reqld id,
out CosTSInteroperation::PropagationContext ctx);
void received_reply(in Reqld id,
in CosTSlInteroperation::PropagationContext ctx,
in CORBA::Environment env);

b

interface Receiver {
void received_request(in Reqld id,
in CosTSlInteroperation::PropagationContext ctx);
void sending_reply(in Reqld id,
out CosTSInteroperation::PropagationContext ctx);

Transaction Servicex1.0 Th€osTransactions Module March 1995 10-69

10

Appendix 10A Relationship afahsactionService to TP Standards

10-70

This appendix discusses thaationship and possible interactions with the following
related standards:

¢ X/Open TXinterface
® X/Open XA interface
® OSI TP protocol
* LU 6.2 protocol
* ODMG standard

A.1 Support of X/Open TX Interface

A.1.1 Requirements

The X/Open DTP mod&lis now widely known and implemented.

Since the Transaction Service and the X/Open DTP models are interoperable, an
application using transactional objects could use the TX interface, the X/Open-defined
interface to delineate transactions, to interact with a Transaction MafHger.
Transaction Manager is the access point of the Transaction Service.)

A.1.2 TX Mappings

The correspondence betwettre TX interfaceprimitives andthe Transaction Service
operations (Current interface) are as follows:

Table 10-1TX mappings

TX interface Current interface

tx_open() no equivalent

tx_close() no equivalent

tx_begin() Current::begin()

tx_rollback() Current::rollback() or
Current::rollback_only()

tx_commit() Current::commit()

tx_set_commit_return() report_heuristics parameter of

Current::commit()

tx_set_transaction_control() no equivalent
(chained transactions not supported)

tx_set transaction_timeout() Current::set_timeout()

3.See “Distributed Transaction Processing: The XA Specificaxit®pen Document C193.” X/Open
Company Ltd., ReadingJ.K., ISBN1-85912-057-1.

CORBAservices: Common Object Services Specification

10

Table 10-1TX mappings

TX interface Current interface

tx_info() - XID Current::get_name() 1
tx_info() - COMMIT_RETURN no equivalent

tx_info() - TRANSACTION_TIME_OUT no equivalent

tx_info() - TRANSACTION_STATE Current::get_status()

1. A printable stng is output: noguaranteed to be th@D in all implementations.

tx_open

tx_open() provides a way to open, in a given execution environment, the Transaction
Manager and the set of Resource Managers that are linked to it. Such an operation does
not exist in the Transaction Service; such a processing mayfeitly executed

when the first operation of the TransactBarvice is executed in the execution
environment.

This processing is also related to a futlm#ialization Service.

tx_close

tx_close() provides a way to close, in a given execution environment, the
Transaction Manager and the setREsource Managers that are linkedtt®uch an
operation does not exist in the Transaction Service.

tx_begin

tx_begin() corresponds t@urrent::begin () or to Factory::create 0.
tx_rollback

tx_rollback() corresponds te@urrent:rollback(),

Current::rollback_only() or to Terminator::rollback() . In TX, when a
server callgx_rollback() , the transaction may belled back or set as rollback

only, in the Transaction Service

tx_commit and tx_set_commit_return

tx_commit() corresponds t@urrent::commit(. The Transaction Service
operations have a parameteport_heuristics , corresponding to the
commit_return parameter of TX.

tx_set_transaction_control

tx_set_transaction_control() is used, in TX, to switch between unchained and
chained mode; this function is not needed in the Transaction Service environment
because it does not support chained transactions.

Transaction Servicex1.0 Th€osTransactions Module March 1995 10-71

10

tx_set_transaction_timeout

tx_set_transaction_timeout() corresponds t@urrent::set_timeout().

tx_info

tx_info() returns information related to the current transaction. In the Transaction
Service:
« the XID (in effect) may beetrieved byCurrent::get_transaction_name() ;
« the transaction state may be retrievedQoyrent::get_status() ;
» the commit returrattribute is not needed becausés attribute isgiven in the
commit() operation;
* the timeoutattribute cannot be obtained.

A.2 Support of X/Open Resource Managers

A.2.1 Requirements

X/Open DTP-complianResource Managers ngbly called X/(pen Resource

Managers or RMs, are Resource Managers that can be involvedistributed

transaction by allowing their twephase comit protocol to be controlled via the

X/Open XA Interface. Many RDBMS supets currently offer (or intend to offer)
X/Open Resource Managers. Many OODBMS’ intend also to support the XA Interface
(some have alreadyplemented it).

The Transaction Service must therefore be able to interact wittpe@iGResource
Managers. This section willustrate how an X/Open Resce Manager may be used
by a Transaction Service-compliant system.

The architecture of Transaction Service, based on the same concepts as plea X/O
DTP Model, allows mapping of Transaction Service operations tdrand XA
interactions.

A.2.2 XA Mappings

This section gives an overall view of a possible mapping betweeprifditives
offered by an X/Open Resource Manafalled RM hereafter) and the interfaces of
the Transaction Service and theperations in the different phases of a $@etion and
during recovery.

10-72 CORBAservices: Common Object Services Specification

10

A.2.3 XID

The mappingsre summarized in the folling table:

Table 10-2XA mappings

X/Open Object Transaction Service
xa_start() Receiving Request

ax_reg() Current::resume

xa_end() Sending Reply

Current::suspend

ax_unreg() no equivalent
xa_prepare() Resource:.prepare

xa_commit() Resource::commit
xa_rollback() Resource::rollback

xa_recover() no equivalent
no equivalent RecoveryCoordinator::replay_completion()
xa_forget() Resource::forget()

In the X/Open DTP model all the interactions are made in the same X/Open thread of
control.

An XID is the Transaction ldeffiger. As defined by X/Open, this XID is the only
informationused by Resource Manaig to associate logged information to the
transaction, including objects’ before images, after images, locks, and transaction state.

The contents of an XID is dekd by X/Open as follows:

#define XIDDATASIZE 128 /* size in bytes */
#define MAXGTRIDSIZE 64

/* maximum size in bytes of gtrid */
#define MAXBQUALSIZE 64

/* maximum size in bytes of bqual */

struct xid_t {
long formatID;/* format identifier */
long gtrid_length;
f* value not to exceed 64 */
long bqual_length;
f* value not to exceed 64 */
char data [XIDDATASIZE];
3
typedef struct xid_t XID;

Figure J-1 X/Open XID

Transaction Servicex1.0 Th€osTransactions Module March 1995 10-73

10

10-74

The XID uniquely and unambiguousigentifies a distributed transaction (information
contained in the "gtrid" part of the XID) and a tsaction-brach, the work performed
by a node in the transaction tree (information contained itbgoal part of the XID).

To facilitate theuse ofdistributed transaction iheterogeneous environments, X/Open
has adopted the structure of the Transaction Identifier used in OSI TP but it is allowed
to use other Transaction Identifiers formats, which may be defined by the value of a
Format Identifier field contained in the XID structure. The OSI TP Transaction
Identifier contains iformationabout the irtiator of the transactioand the sperior in

the transaction tree; this informat may be used, during recovery, to contact these
entities and obtain the outcome of the transaction.

In the Transaction Service, tightly-coupled concurrency is assumed (a lock is held by a
transaction may be accessed by any participant of the same transaction) and the
transactiorbranch part of the XIDnustnot be given to RMs.

Interactions with an XA-compliant RM

Model

To model the relationship between the XA interface and the Transaction Service
operation, an X/Open Transaction Manager has beaatelled; this component is used
here as a way to describes the interactions and maypfemented in a different
manner.

Propagation of a Transaction to an RM

An RM may support two kinds of involvement interactions:

« Static registration, in which the Transaction Service involves the RM whenever it
is itself involved in a new transaction.

» Dynamic registration, in which the RM notifies the Transaction Service that it has
been requested to perform some work and request the XID of the current
transaction.

An RM gets involved in a transaction when it has to perform some new work for this
transaction. Thidhvappens in one of the following gétions:
* A request carrying a transaction context has just been received and the RM has to
perform work for the target object of this request;

« A method performing a request that is carrying a transaction context is resumed
(by a Current::resume() operation).

An object may receive several requests carrying a transaction context for the same
transaction. An RM may algeerform work for several objects in the same transaction.
Thus an RM may be involved sevetahes in the same transaction; the “resume” and
the “join” concepts of XA may be used to notify the RM of any multiple involvement.
When an RM has to get involved in a transactiomust obtain the corresponding

XID from the Transaction Service through an xa_stamtitnitive or by a return
parameter of an ax_reg@rimitive. This XID is transmitted tthe RM as a parameter

to xa_start() or ax_reg() and is used by the RM to relate any work performed or any
lock obtained to the transaction.

CORBAservices: Common Object Services Specification

10

If the Transaction Service is called by an ax_reg() while it is not aware of any
transaction, it returns a null XID to the RM. The RM is then free to start a local
transaction of its owrand no Transaction Service transaction will be accepted until the
RM issues an ax_unreg().

Refer to X/Open documents for more information about propagation of a transaction to
an RM.

First phase ofCommitment

When the fist phase of comitment is started, the Traaction Service issues an
xa_prepare() pmitive and procesds results to determine its decision.

Second Phase of Commitment

When the second phase afmmitment is startedhe Transaction Service issues an
xa_commit() primitiveand procesgts results to determine the heuristic situation.

One-phase commitment
When the Transaction Service wants to perform a one-gdasmitment, it issues an
xa_commit() primitiveand procesgs results to determine the heuristic situation.

In the XA interface, there is no specificimitive for ore-phase comitment: an RM
must consider ara_conmit() without preceding xa_prepare() as a request to perform
a one-phaseommitment.

Rollback

When arollback has to be performed, the Transaction Service issues an xa_rollback()
primitive andprocessts results to determine the heuristic situation.

Recovery

In the XA interface, the recovery of an RM is triggered by the Transaction Manager
which issues an xa_recover(); the RM then gives bdidkt af all XIDs thatare either
in the Readytate orhave been heuristically completed.

In the Transaction Service recovery is performed Resource that issues a
replay_completion operation to a transaction coordinator (see Subsection
"Transaction Completion after Failure" ire&ion 105.1).

Failure of an Operation

Any failure of an operation typically leads to a ralitk of the transaction, especially if
it is not possible to determine whether the operation has been performed or not.
However, inthe decided commit state, themmit operation must beetried until the
reply has been received (unlesseatistic hazardondition is detected).

Failure of an RM

Transaction Servicex1.0 Th€osTransactions Module March 1995 10-75

10

If an RM fails, the Transaction Service detecting the failure will issue an xa_recover().
The Transaction Service will then get a list of XIDs of transactions for which the RM
is in the readystateand transactions that have been ically completed.

The Transaction Service will then:

» Call xa_rollback() for all transactions that it knows to be neither in the prepared
state nor in the decidetbmmit state.

» Call xa_commit() for all transactions that itdws to be inthe decideccommit
state.

» Wait for the decisions commit or rollback for the other.
Failure of Transaction Service

Upon warm restart of the Transaction Service and retrieval of the states of transactions
needing recovery from stable storage, the Transaction ServicealVila recover() to

get the list of transactions forhich the RM needs recovery (see failure ofRiv,

here above).

A.3 Interoperation with Transéional Protocols

Transactional Protocols

A CORBA application may sometime®ed to interoperate with one or more
applications usingne of the de-facto standard teactional protocol: OSI TBnd

SNA LU 6.2. Inthis case, the Transaction Service must be able to import or export
transactions using one of these protocols.

Export is the ability to relate a transaction of the Transa@envice to a transaction
of a foreign transactional protocol. Importing means relating a Transaction Service
transaction to a transaction started on a remote applicatidrpropagated via the
foreign transactional protocol.

Since the model used by the TsactionService issimilar to the model of OSI TBnd
the X/Open DTP model, thiateractions with OSI TP are straiftrivard. Since OSI
TP is a compatible superset of SNA 8.2, a mapping to SNA&ommunications is
easily accomplished.

To interoperate, a mapping should be defined for theghase commit, rollback, and
recovery mechanismand for the trasaction identifiers.

Notice that neither OSI TP nor SNA LU 6.2 supports nested transactions.

A.3.1 OSI TP Interoperability

OSI TP [IS092] is the transactional protocol defined by 1SO. It leas Iselected by
X/Open to allow thelistribution of transactions by one of the communication
interfaces: remote proceducall®, client-server or peer-to-peer (CPI-C Level-2 API
[CIW93)).

10-76 CORBAservices: Common Object Services Specification

10

The Transaction Service supports only unchained transactions. The dsdogfies
using the Chained Traactions functional unit is possible only if restrictive rules are
defined. These rules are not described in doisument.

OSI TP Transaction Identfiers

In OSI TP, loosely-coupled transactions aopported and every node of the
transaction tree possesses a transattianch identifier which is congsed of the
transaction identifier (or atomic action identifier) antiranch identifier (the branch
identifier being null for the root node of the transaction tree). Both the transaction
identifier and the branch identifier contains an ABHeT{Application Entity Title) and
a suffix that make itinique within acertainscope.

The format of the standard X/Open XID is compatible with the OSidemntifiers, the

gtrid corresponding to the atomic action identifier and the bqual corresponding to the
branch ientifier.

Incoming OSI TPCommunicatons (Imported Transactins)

The Transaction Service is a subordinate in an OSI TP transaction tree and interacts
with its superior by regular PDUs as defined by the OSI TP protocol. The Transaction
Service stores internally the transaction identifier received on the OSI Tudalo

The Transaction Service maps the OSI d@mmitment, rollbackand recovery
procedures to the Transaction Servioenmitmentprocedure as follows:

The Transaction Service, upon reception of an OSI TP Prepare message, will
enter the first phase abmmitment pocedure.

When it enters the prepared state for the transaction, the Transaction Service will
trigger the sending of an OSI TP Ready messagis wuperior. (It may trigger a
Recover (Ready) message whenmalrcommunications ateroken with the
superior).

The Transaction Service, upon reception of an OSI TP Commit message, enters
the second phase of caritmentprocedure. (It may receive a Recover (Cadthm
whennormal communications at@oken with the superior.)

The Transactiorservice, upon reception of an OSI TP Rollback meséageay

be a Recover (Unknown) whermrmal communications are tkan with the

superior or any othewllback-initiating condition) will enter its rollback

procedure (unless mllback is already in progress).

The Transaction Service, upon reception of therlalttack reply, will trigger the
sending of a Rollback Response/domfmessage to its superior.

4. See “Distributed Transaction Processing: TRRPCSpecificationX/Open Document P305.” X/Open
Company Ltd., Readingl.K..

5. See “Distributed Transaction Processing: The XATMI Specificaé@pen Document P306.”
X/Open Company Ltd., Reading,K..

Transaction Servicex1.0 Th€osTransactions Module March 1995 10-77

10

Outgoing OSI TP Communications (ExgrtedTransactions)

The Transaction Service behaves as a superior in an OSI TP transaction tree and
interacts with its subordinates by regular PDUs as defined by the OSI TP protocol.

The Transaction Service will map the OSI TBmmitment proedure as follows:
e The Transaction Service, during the first phase ofmamentprocedure will
invoke an OSI TP Prepare message to all its subordinates.
» Uponreception of an OSI TP Ready message, the Transaction Service will
process this nesage as a successful reply to a prepare().

e The Transaction Service, upon entering the second phase ofrtireitment
procedure will send an OSI| TRo@mit messag€it may be a Rcover (Comiib)
whennormal communications atgoken with the subordinate) to all
subordinates.

» The Transactiorservice, upon reception of an OSI TP Rollback mes§ageay
be any other rollback-initiating condition) will enter its rollback procedure (unless
a rollback is already in progress).

» The Transaction Service, upon reception ofldst Rollback Response/Confirm
message from its subordinates, will process this message as a reply to a rollback()
operationand determine thheuristic situation.

A.3.2 SNA LU 6.2 Interoperability

SNA LU 6.2 ([SNA88a], [SNA88D]) is &ransactional protocol defined by IBM. It is
widely used for transaction distribution. The standard interface to access LU 6.2
communications is CPI-C (Common Programming Interface for Communications)
defined by IBM in the context of SAA [CPIC93] and currently being evolved by the
CPI-C Implementors' tkshop to become CPI-@vel 2, a modern interface usable
for LU 6.2 and OSI| TRommunication§CIW93].

LU 6.2 supports only chained trsactions but, at a given node, a transaction is started
only when resources have been involved intthasaction. LU6.2 can be usefbr a
portion of an “unchained” transaction tree if the BL2 conversations are ended after
each transaction by any notteat has both LU 6.2onversations and dialogues of an
unchained transaction.

LU 6.2Transaction Identifiers

SNA LU 6.2 also supports loosely-couplednsactionand uses a specifformat for
transaction identifiers: the Logical Unit ofdfk (LUWID) corresponds to the OSI
Transaction ldentifier. The WWID is composed of:

» The Fully QualifiedLogical Unit Name, which is composed of up to 17 bytes, is
unigue in an SNA network or a set of interconnected $i#works.

* An instance number which is unique at the LU that create the transaction.
» The sequence number that isiemented Wwenever the tragaction is committed.

10-78 CORBAservices: Common Object Services Specification

10

The Conversation @relator corresponds to the OSI TP Bramadntifier; it is a string

of 1 to 8 bytes which are unique within the context of the LU having established the
conversation and is meaningful when combined with the Fuliglifed LU Name of

this Logical Unit.

Incoming LU 6.2 Commurncations

The LU 6.2 two-phaseommit protocol is different from th@®SI TP protocol: the
system sending a Prepare message has to perform logging and is responsible for
recovery. LU 6.2 does also supptettures like last-agent aptization,read-only and
allows any node in the transaction tree to request commitment..

The Transaction Service is a subordinate in an LU 6.2 transaction tree and interacts
with its superior using SNA requests and responses as defined by the LU 6.2 protocol.
The Transaction Service internally stores the LUWID corresponding to the incoming
conversation.

The Transaction Service maps the LU @@mmitment, rollbackand recovery
procedures to the Transaction Servioenmitmentprocedure as follows:

» The Transaction Service, upon reception of an@.p) Prepare message will enter
the firstphase oftommitment proedure.

* The Transaction Servicepan entering the preparatiate for therainsaction, the
Transaction Service will trigger the sending dRaquesCommit message to is
superior.

e The Transaction Service, upon reception of an LU Gh@ittedmessage (it
may be a Compare Statesof@mitted) vhen normal communications are broken
with the superior) will enter the second phaseamhmitmentprocedure.

» The Transaction Service, upon leaving the decictmdmit state, will trigger the
sending of a Forget message to is superior (it may be a Resatrvormal
communications are broken with thepsuior).

Due to the two-phaseommit differerce, the Transaction Service will never send the
equivalent of the Recover(Ready) unless promptethbysuperior.

The las-agent and read-only features may also be supported by theactim

Service.

Outgoing LU6.2Communications

The Transaction Service has to log when the Prepare message is sent and, in case of
communication failure or restart tfe Transaction Service, a recovery is needed.

ODMG Standard

ODMG-93 is a standard defined by ODMG (Object Database Managesneup)
describing portable interface to access Object Database Management Systems
(ODBMS).

Transaction Servicex1.0 Th€osTransactions Module March 1995 10-79

10

Since it is likely that, in the future, many objects involved in transactions will be
handled by an ODBMShis standard has a stronglatiorship with the Transaction
Service.

A.4 ODMGModel

The ODMG model defines optional transactioasd supports the nestedrigaction
concept. The ODMG model does not cover the integration of ODBMS with an external
transaction service, allowing to involve other resougned communications in a
transaction. No t@-phase comit or recovery protocol is described.

A transaction object must be created. The transactional operations are:

» Begin (or start) to begin a transaction (or a subtransaction).

« Commit to request commitment of a transaction.

» Abort to rollback a transaction.

» Checkpoint tocommit the transactiobut keep the locks. This feature is not
supported by the current version of the Transaction Service.
abort_to_top_level to request rollback of a nested transafetinity. The
Transaction Service does not directly support this feature but does provide means
to perform this functionality by resuming the context of the top-level transaction
and then requesting roHgk.

If the transaction object is desteyy, the transaction i®lled back.

Integration of ODMG ODBMSswith the Transaction Service

Since ODMG-93 does not define any way to integrate an ODBMS in&xiating
transaction, the integration is difficult unless the ODBMf@gIsupport the XA
interface, in which case the section on XA-compliant RM is applicable.

In the future, it is anticipated that ODBMS wiithplement the TransactioBervice-
defined interfaces and be considered as a recoverable server.

A possibility is touse, at a root node, an ODBMS akaist resource and, after all
subordinates are prepared, to request a one-mltasmitment to the OBMS. If the
outcome for the ODBMS is commit, the transaction will be committed, if it is rollback,
the transaction will beolled back. The mechanism may work if it is possible to
determine, after a crash, whether the ODBMS mitted orrolled back; this may be
done at application level.

10-80 CORBAservices: Common Object Services Specification

10

Appendix 10B rénsactionService Glossary

2PC: SeeTwo-phase commit.
Abort : SeeRollback

Active : the state of a transactiorhen proessing is in progressndcompletionof the
transactiorhas not yet commenced.

Atomicity : a transaction property that ensures that if work is interrupted by failure, any
partially completed resultsill be undone. A trasaction vihose work comites is said
to commit. A transa@in whose work is completely undone is saidddback (abort).

Begin : An operation on the Transaction Service which establisheisitted boundary
of a transaction.

Commit : Commit has two definitions as follows:

a. An operation in th€urrent andTerminator interfaces that a program uses to
request that the current transactterminates normallyandthat the effects of
that transaction be made permanent.

b. An operation in th®esource interface which causes the effects a transaction to
be made permanent

Commit coordinator : In a two-phaseommit protocol, the program that collects the
vote from the participants.

Commit participan t: In a two-phaseommit protocol, the program that returns a vote
on the completion of a transaction.

Committed : the property of a transaction or a transactional object, when it has
successfully performed the commit protoc®ée alsan-doubt active abortedand
completed

Completion : the processing required (either bymmitor abort) to obtain the durable
outcome of a transaction.

Cooperation : an interface of the Transaction Service which allows it to track
transactional operations apdopagate trasaction context with other transaction
services in the current transaction. This is an optional interface that allows portability
of the Transaction Service.

Coordinator : a Coordinator object involves Resource objects in ssaetion when
they are registered. A coordinator is responsible for driving the two-puasmit
protocol. See als€ommit coordinatoland Commit participant

Consistency : aproperty of a transaction that ensures that the transaction’s actions,
taken as a group, do not violate any of the integrity constraints associttetthav

state of its associated objects. This requires that the application program is
implemented correctly: the Transaction Service provides the functionality to support
application data consistency.

Glossary The CosTransactions Module March 1995 10-81

10

10-82

Decided commit state : a root Transaction Coordinator enters the decided commit state
when it has written a log-commit record; a subordinate Transaction Coordinator or
Resource object is in the decided ewitnstate vihen it has received the comit

instructon from its superior; in the latter case, a log-commit record may be written but
this is not essential

Decided rollback state : a Transaction Coordinator or Resource object enters the
decided rollbaclstate when itlecides to rollback the transaction or has received a
signal to do so.

Direct context management: an application manipulates the Control object and the
other objects associated with the transaction. Seelrads@ct context management.

Durability : A transaction property that ensures the results of a successfully completed
transaction willnever be lost, except in the event of catastrophe. It is generally
implemented by a combination of persistent storage and a logging service that provides
a backup copy of permanent changes

Execution environment : an implementation-dependent factor that metednine the
outcome of certain operations on the Transaction Service. Typicalgx#dwtion
environment is the scope within which shastate is manaag.

Flat Transaction : A transaction that has no subtransactions—and that cannot have
subtransactions.

Forgotten "state" : this is notreally a transaction state at aledause there is no
memory of the transaction: it has either completed or rolled back and all records on
permanent storage have been deleted

Heuristic Commit or Abort : To unilaterally make the commit or abort decision about
in-doubttransactions when the coordinator fails or contact with the coordinator fails.

Indirect context management : an application uses th&urrent pseudo object,
provided by the Transaction Service, to associate the transaction context with the
application thread of control. See ald3@ect context rmnagement.

In-doubt : The state of a transaction if it is controlled by a transaction manager that can
not be contacted, so tlk®@mmit decision is in dabt. See alsactive committed
aborted

Interposition : adding a sequence of one or m&uborbinate coordinatorbetween a
Root coordinatorandits participant.

Isolation : A transaction property that allows concurrent execution, but the results will
be the same as if executisrasserialized. Isolation ensures that concurrently
executing transactions cannot observe inconsistencies in shared data.

Lock service : Called the Concurrency Control Service, itis an Object Service used by
Resources to coral access to shared objects by concurrently executing methods.

Log-ready record (and contents): for an intermediate Transaction Coordinator a log-
ready record contains idéfi¢ation of the (superior) Transaction Coordinatord of
Resource objects (including subordinate Transaction Coordinadgistered with the

CORBAservices: Common Object Services Specification

10

TC which replied VoteComit (ie it excludes registered objects whiaplied
VoteRead@ly); for a Resource object a log-ready record includes identification of the
Transaction Coordinator with which it is registered

Log-commit record (and contents): a log-commit record contains identification of all
registeredResource objects which replied Vom@mit

Log-heuristic record : this contains a record of a heuristic decision either
HeuristicConmit or HeuristicRollback

Log-damage record : this contains a record of heuristic damage ie where it is known
that a heuristic decision conflicted with the decided outcome (HeuristicMix) or where
there is a risk that a heuristic decision conflicted withdbeided outcome
(HeuristicHazard)

Log service: An object service used by resource managers for recording recovery
informationand bytransaction manager recording transaction state durably.

Nested transaction : A transaction that either has subtransaction or is a subtransaction
on some other transaction.

Participant : SeeCommit participant.

Persistent storage : generally speaking, a synonym fBtable storageln the context
of the OMA, the Persistent Object Service (POS) provides an object representation of
stable storage.

Prepared : The state that a transaction is in when phase one of a two-phase commit has
completed.

Presumed abort : An optimization ofthe two-phaseommit protocol that results in
more efficient performance as tR®ot coordinatordoes not need to log anything
before the commit decision and tRarticipants(i.e. Resourceobjects) do not need to
log anything before they prepare. So called becaugestart, if norecord of the
transaction igound, it is safe to assume the transaction aborted.

Propagation : A function of the transaction service that allows Tn@nsaction context
of a client to be associated with a transactional operation on a server object. The
Transaction Service supports bothpiicit and expkit propagation of transaction
context.

Recoverable Object : An object whose data is affected dymmitting or rollingback a
transaction.

Recoverable Server : An object that registers a Resource (netessarily itself) with a
Transaction Coordinator tparticipate in transaction completion.

Recovery Service : An object service used by resource managers for restorirggeatee
of objects to a prior state of consistency.

Resource : an object in the Transaction Service that is registered for involvement in
two-phasecommit—2PC. Corresponds to Resource Manager.

Glossary The CosTransactions Module March 1995 10-83

10

10-84

Resource Manager : An X/Open &rm for a component which manages ititegrity of
the state of a set of related resources.

Rollback :Rollback (also known a8bor) has two definition as follows

1. An operation in th€urrent andTerminator interfaces used to indicate that the
current transaction haerninated abnormally and its effects should be discarded.

2. An operation in th®esource interface which causes all state changes in the
transaction to beindone

Root coordinator: the firstcoordinatorin a sequence of ccordinators where there is
interposition The coordinator associated with ttiensaction originator

Security Service : An object service which provides identifications of users
(authentication), controls access to resources (authorizatind)provides auditing of
resource access.

Stable storage : storage not likely to be damaged as the result of faitlee.
Sub-coordinator : SeeSubordinate coordinator.

Subordinate coordinator : a coordinator subordinate to tR®mot coordinatorwhere
Interpositionexists. A subordinate coordinator appears as a Resource ohigsct to
superior. Alsoknown as &ub-coordinatar

Thread: The entity that is currently in control of the processor.

Thread Service : An object service, to be specified in the future, which enables
methods to be executed concurrently by the same process. Where two or more methods
can execute concurrently each method is associated with its own thread of execution.

TP monitor : A system component that accepts input work requests and associates
resources with the programs that apbn these requests to provide a rumet
environment for program execution

Transaction : A collection of operations on the physical and abstract application state.

Transactional client : an arbitrary program that can invokeeogtions of many
transactional objects in a single transaction. Netessarily th@ransaction originator.

Transaction Context : the transaction information associated with a specific thread.
SeePropagation

Transactional operation : An operation on an object that participates in the
propagation of the current transaction.

Transaction originator : an arbitrary program—typically, a transactional client, but not
necessarily an object—thhaégins a transaction.

Transaction Manager : A system component that implements the protocol engine for
2-phasecommit protocol.See alsdlransaction Service

CORBAservices: Common Object Services Specification

10

Transactional object : Strictly speaking, an object that offers at leas® transactional
operation, and thus requiring the ORB and the Transaction Service to propagate
Transaction Context—but usually used to refer to an object none of whose operations
are affected by being invoked within the scope of a transaction.

Transactional server: a collection of one or more objects whdmhavior is affected
by the transaction, but have no recoverable states of their own.

Transaction Service : An Object Service that implements the protocols required to
guarantee the ACID (@micity, Consistency, Isolation, and Durability) properties of
transactions. See aldoansaction Manager

Two-Phase commit : A transaction manager protocol for ensuring thathdinges to
recoverable resources occur atomicalhd furthermore, th&ailure of any resource to
complete will cause all other resourceutodo changes. Also callexPC.

Glossary The CosTransactions Module March 1995 10-85

10

10-86 CORBAservices: Common Object Services Specification

	Transaction Service Specification
	10.1 Service Description
	10.1.1 Overview of Transactions
	10.1.2 Transactional Applications
	10.1.3 Definitions
	Transactional Client
	Transactional Object
	Recoverable Objects and Resource Objects
	Transactional Server
	Recoverable Server

	10.1.4 Transaction Service Functionality
	Transaction Models
	Flat Transactions
	Nested Transactions

	Transaction Termination
	Transaction Integrity
	Transaction Context

	10.1.5 Principles of Function, Design, and Perform...
	Functional Requirements
	Design Requirements
	Performance Requirements

	10.2 Service Architecture
	10.2.1 Typical Usage
	10.2.2 Transaction Context
	10.2.3 Context Management
	10.2.4 Datatypes
	10.2.5 Exceptions
	Standard Exceptions
	TransactionRequired Standard Exception
	TransactionRolledBack Standard Exception
	InvalidTransaction Standard Exception

	Heuristic Exceptions
	HeuristicRollback Exception
	HeuristicCommit Exception
	HeuristicMixed Exception
	HeuristicHazard Exception

	WrongTransaction Exception
	Other Exceptions

	10.3 Transaction Service Interfaces
	10.3.1 Current Interface
	begin
	commit
	rollback
	rollback_only
	get_status
	get_transaction_name
	set_timeout
	get_control
	suspend
	resume

	10.3.2 TransactionFactory Interface
	create

	10.3.3 Control Interface
	get_terminator
	get_coordinator

	10.3.4 Terminator Interface
	commit
	rollback

	10.3.5 Coordinator Interface
	get_status
	get_parent_status
	get_top_level_status
	is_same_transaction
	is_ancestor_transaction
	is_descendant_transaction
	is_related_transaction
	is_top_level_transaction
	hash_transaction
	hash_top_level_tran
	register_resource
	register_subtran_aware
	rollback_only
	get_transaction_name
	create_subtransaction

	10.3.6 Recovery Coordinator Interface
	replay_completion

	10.3.7 Resource Interface
	prepare
	rollback
	commit
	commit_one_phase
	forget

	10.3.8 Subtransaction Aware Resource Interface
	commit_subtransaction
	rollback_subtransaction

	10.3.9 TransactionalObject Interface

	10.4 The User’s View
	10.4.1 Application Programming Models
	Direct Context Management: Explicit Propagation
	Indirect Context Management: Implicit Propagation
	Indirect Context Management: Explicit Propagation
	Direct Context Management: Implicit Propagation

	10.4.2 Interfaces
	10.4.3 Checked Transaction Behavior
	10.4.4 X/Open Checked Transactions
	Reply Check
	Commit Check
	Resume Check

	10.4.5 Implementing a Transactional Client: Heuris...
	10.4.6 Implementing a Recoverable Server
	Transactional Object
	Resource Object
	Reliable Servers

	10.4.7 Application Portability
	Flat Transactions
	X/Open Checked Transactions

	10.4.8 Distributed Transactions
	10.4.9 Applications Using Both Checked and Uncheck...
	10.4.10 Examples
	A Transaction Originator: Indirect and Implicit
	Transaction Originator: Direct and Explicit
	Example of a Recoverable Server
	Example of a Transactional Object

	10.4.11 Model Interoperability
	Importing Transactions
	Exporting Transactions
	Programming Rules

	10.4.12 Failure Models
	Transaction Originator
	Local Failure
	External Failure

	Transactional Server
	Local Failure
	External Failure

	Recoverable Server

	10.5 The Implementors’ View
	10.5.1 Transaction Service Protocols
	General Principles
	Normal Transaction Completion
	Coordinator Role
	One Phase Commit
	Subtransactions
	Recoverable Server Role
	Top-Level Registration
	Subtransaction Registration
	Top-Level Completion
	Subtransaction Completion
	Subordinate Coordinator Role
	Registration
	Subtransaction Registration
	Top-level Completion
	Subtransaction Completion
	Subordinate Coordinator
	Subtransactions

	Failures and Recovery
	Failure Processing
	Local Failure
	External Failure

	Transaction Completion after Failure
	Resources
	Heuristic Reporting
	Coordinator Role
	Subtransactions
	Recoverable Server role
	If No Heuristic Decision is Made
	Subordinate Coordinator Role

	10.5.2 ORB/TS Implementation Considerations
	Transaction Propagation
	Interposition
	Subordinate Coordinator Registration

	Transaction Service Interoperation
	Structure of the Propagation Context
	otid_t
	TransIdentity
	coordinator
	terminator
	otid
	timeout
	<TransIdentity> parents
	implementation_specific_data
	Appearance of the Propagation Context in Messages

	Transaction Service Portability
	Identification of the Transaction Service to the O...
	NotAvailable
	AlreadyIdentified
	identify_sender
	identify_receiver
	The Transaction Service Callbacks
	ReqId
	Sender::sending_request
	Sender::received_reply
	Receiver::received_request
	Receiver::sending_reply
	Behavior of the Callback Interfaces
	Requirements on the ORB
	Requirements on the Transaction Service

	10.5.3 Model Interoperability

	10.6 The CosTransactions Module
	10.6.1 The CosTSInteroperation Module
	10.6.2 The CosTSPortability Module
	Model
	Propagation of a Transaction to an RM
	First phase of Commitment
	Second Phase of Commitment
	One-phase commitment
	Rollback
	Recovery
	Transactional Protocols
	OSI TP Transaction Identifiers
	Incoming OSI TP Communications (Imported Transacti...
	Outgoing OSI TP Communications (Exported Transacti...
	LU 6.2 Transaction Identifiers
	Incoming LU 6.2 Communications
	Outgoing LU 6.2 Communications
	Integration of ODMG ODBMSs with the Transaction Se...

