

 Time Service Specification 14
 to

e
14.14 Introduction

14.14.1 Time Service Requirements

The requirements explicitly stated in the RFP ask for a service that enables the user
obtain current time together with an error estimate associated with it.

Additionally, the RFP suggests that the service also provide the following facilities:

• Ascertain the order in which “events” occurred.

• Generate time-based events based on timers and alarms.

• Compute the interval between two events.

Although the RFP mentions specification of a synchronization mechanism, the submitters
deemed it inappropriate to specify a single such mechanism as discussed in Section 14.1.3,
Source of Time.

14.14.2 Representation of Time

Time is represented many ways in programs. For example the X/Open DCE Time Service
[1] defines three binary representations of absolute time, while the UNIX SVID defines a
different representation of time. Other systems use time represented in myriads of
different ways. It is not a goal of the service defined in this submission to deal with all
these different representations of time or to propose a new unifying representation of time.

To satisfy the set of requirements that are addressed, we have chosen to use only th
Universal Time Coordinated (UTC) representation from the X/Open DCE Time Service.
Global clock synchronization time sources, such as the UTC signals broadcast by the
WWV radio station of the National Bureau of Standards, deliver time, which is relatively
easy to handle in this representation. UTC time is defined as follows.
 CORBAservices: Common Object Services Specification 14-35

14

eter.

 the

s.

e

me
 it

lly.
Time units 100 nanoseconds (10 -7 seconds)

Base time 15 October 1582 00:00:00.

Approximate range AD 30,000

UTC time in this service specification always refers to time in Greenwich Time Zone. The
corresponding binary representations of relative time is the same one as for absolute time,
and hence with similar characteristics:

Time units 100 nanoseconds (10 -7 seconds)

Approximate range +/- 30,000 years

In order to ease implementation on existing systems, migration from them and
interoperation with them, care has been taken to ensure that the representation of time
used interoperates with X/Open DCE Time Service [1], and that the operation for getting
current time is easy to implement on X/Open DCE Time Service, NTP [2] (and for that
matter any other reasonable distributed time synchronization algorithm that one might
come up with, e.g. ones presented in [3]) with appropriate values for inaccuracies.

14.14.3 Source of Time

The services defined in this chapter depend on the availability of an underlying Time
Service that obtains and synchronizes time as required to provide a reasonable
approximation of the current time to these services. The following assumptions are made
about the underlying time synchronization service:

• The Time Service is able to return current time with an associated error param

• Within reasonable interpretation of the terms, the Time Service is available and
reliable. The time provided by the underlying service can be trusted to be within
inaccuracy window provided by the underlying system.

• The time returned by the Time Service is from a monotonically increasing serie

Additionally, if the underlying Time Service meets the criteria to be followed for secur
time presented in Appendix A, Implementation Guidelines, then the Time Service object
is able to provide trusted time.

No additional assumptions are made about how the underlying service obtains the ti
that it delivers to this service. For example it could utilize a range of techniques whether
be using a Cesium clock attached to each node or some hardware/software time
synchronization method. It is assumed that the underlying service may fail occasiona
This is accounted for by providing an appropriate exception as part of the interface. The
availability and accuracy of trusted time depends on what is provided by the underlying
Time Service.
14-36 CORBAservices: Common Object Services Specification

14

cts

14.14.4 General Object Model

The general architectural pattern used is that a service object manages objects of a specific
category as shown in Figure 14-1.

Figure 14-1 General Object Model for Service

The service interface provides operations for creating the objects that the service manages
and, if appropriate, also provides operations for getting rid of them.

The Time Service object consists of two services, and hence defines two service
interfaces:

• Time Service manages Universal Time Objects (UTOs) and Time Interval Obje
(TIOs), and is represented by the TimeService interface.

• Timer Event Service manages Timer Event Handler objects, and is represented by
the TimerEventService interface.

The underlying facility that delivers time is associated with the UniversalTime and
SecureUniversalTime operation of the TimeService interface as described in
Section 14.2, Basic Time Service.

Service

Service Interface

Instances managed by

Instance
Interface

Object

the Service Object
Time Service: v1.0 Introduction November 1996 14-37

14

 in

the

e

 in

e.

ime

ons

14.14.5 Conformance Points

There are two conformance points for this service.

• Basic Time Service. This service consists of all data types and interfaces defined
the TimeBase and CosTime modules in Section 14.2, Basic Time Service. It
provides operations for getting time and manipulating time. A complete
implementation of the TimeBase and the CosTime modules is necessary and
sufficient to conform to the Time Service object standard. An implementation of
CosTime module in which the universal_time operation always raises the
TimeUnavailable exception is not acceptable for satisfying this conformanc
point.

• Timer Event Service. This service consists of all data types and interfaces defined
the CosTimerEvent module in Section 14.3, Timer Event Service. It provides
operations for managing time-triggered event handlers and the events that they
handle. A complete implementation of this module is necessary to conform to the
optional Timer Event Service component of the Time Service object. Since the
CosTimerEvent module depends on the CosTime module, it is not possible to
conform just to the Timer Event Service without conforming to Basic Time Servic
To claim conformance to Timer Event Service, both Timer Event Service and Time
Service must be provided.

14.15 Basic Time Service

All data structures pertaining to the basic Time Service, Universal Time Object, and T
Interval Object are defined in the TimeBase module so that other services can make use of
these data structures without requiring the interface definitions. The interface definiti
and associated enums and exceptions are encapsulated in the CosTime module.

14.15.1 Object Model

The object model of this service is depicted in Figure 14-2. The Time Service object
manages Universal Time Objects (UTOs) and Time Interval Objects (TIOs). It does so by
providing methods for creating UTOs and TIOs. Each UTO represents a time, and each
TIO represents a time interval, and reference to each can be freely passed around, subject
to the caveats discussed in Appendix A, Implementation Guidelines.
14-38 CORBAservices: Common Object Services Specification

14

num
sic

 by

ption
Figure 14-2 Object Model for Time Service

14.15.2 Data Types

A number of types and interfaces are defined and used by this service. All definitions of
data structures are placed in the TimeBase module. All interfaces, and associated e
and exception declarations are placed in the CosTime module. This separation of ba
data type definitions from interface related definitions allows other services to use the time
data types without explicitly incorporating the interfaces, while allowing clients of those
services to use the interfaces provided by the Time Service to manipulate the data used
those services.

The declarations shown next assume that the unsigned 64-bit integer type ulonglong
has been defined by the adoption of the RFP on Type Extension [4]. Pending the ado
of that RFP, one can use the interim definition as shown, with the caveat that this is not
going to be interoperable with the OMG IDL defined long long type in all cases. The
type declarations used by this service are shown next.

Time Service

TimeService interface

UTO interface

universal_time

new_universal_time

absolute _time
compare_time

secure_universal_time

interval
time
inaccuracy
tdf
utc_time

UTO

TIO

UTO

TIO

TIO interface
spans
time
overlap
time_interval

uto_from_utc
new_interval
Time Service: v1.0 Basic Time Service November 1996 14-39

14

eger.
n of

is

 of
 is 15

s.
module TimeBase {

// interim definition of type ulonglong pending the
// adoption of the type extension RFP.
struct ulonglong{

unsigned long low;
unsigned long high;

};
typedef ulonglong TimeT;
typedef TimeT InaccuracyT;
typedef short TdfT;
struct UtcT {

TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; // 2 octets

// total 16 octets.
};

struct IntervalT {
TimeT lower_bound;
TimeT upper_bound;

};

};

Type ulonglong

OMG IDL does not at present have a native type representing an unsigned 64-bit int
There is an RFP outstanding to define extended data types in OMG IDL. The adoptio
technology submitted against that RFP will provide a means for defining a native type
representing unsigned 64-bit integers in OMG IDL. Pending the adoption of that
technology, one can use this structure to represent unsigned 64-bit integers, with the
caveat that when a native type becomes available it may not be interoperable with th
declaration on all platforms. This definition is for the interim, and is meant to be removed
when the native unsigned 64-bit integer type becomes available in OMG IDL.

Type TimeT

TimeT represents a single time value, which is 64 bits in size, and holds the number
100 nanoseconds that have passed since the base time. For absolute time the base
October 1582 00:00.

Type InaccuracyT

InaccuracyT represents the value of inaccuracy in time in units of 100 nanosecond
As per the definition of the inaccuracy field in the X/Open DCE Time Service [1], 48 bits is
sufficient to hold this value. This is defined as a type separate from TimeT in anticipation
of a facility in OMG IDL [4] to specify subrange types, at which point this will be
declared as a 48-bit subrange of ulonglong . For now, it is defined as a 64-bit
ulonglong .
14-40 CORBAservices: Common Object Services Specification

14

of

arshal

f must
Type TdfT

TdfT is of size 16 bits short type and holds the time displacement factor in the form
seconds of displacement from the Greenwich Meridian. Displacements East of the
meridian are positive, while those to the West are negative.

Type UtcT

UtcT defines the structure of the time value that is used universally in this service. The
basic value of time is of type TimeT that is held in the time field. Whether a UtcT
structure is holding a relative or absolute time is determined by its history. There is no
explicit flag within the object holding that state information. The iacclo and inacchi
fields together hold a 48-bit estimate of inaccuracy in the time field. These two fields
together hold a value of type InaccuracyT packed into 48 bits. The tdf field holds
time zone information. Implementation must place the time displacement factor for the
local time zone in this field whenever they create a UTO.

The contents of this structure are intended to be opaque, but in order to be able to m
it correctly, at least the types of fields need to be identified.

Type IntervalT

This type holds a time interval represented as two TimeT values corresponding to the
lower and upper bound of the interval. An IntervalT structure containing a lower
bound greater than the upper bound is invalid. For the interval to be meaningful, the time
base used for the lower and upper bound must be the same, and the time base itsel
not be spanned by the interval.

module CosTime {
enum TimeComparison {

TCEqualTo,
TCLessThan,
TCGreaterThan,
TCIndeterminate

};

enum ComparisonType {
IntervalC,
MidC

};

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

};
};
Time Service: v1.0 Basic Time Service November 1996 14-41

14

.

ing

ects

Enum ComparisonType

ComparisonType defines the two types of time comparison that are supported.
IntervalC comparison does the comparison taking into account the error envelope
MidC comparison just compares the base times. A MidC comparison can never return
TCIndeterminate .

Enum TimeComparison

TimeComparison defines the possible values that can be returned as a result of
comparing two UTOs. The values are self-explanatory. In an IntervalC comparison,
TCIndeterminate value is returned if the error envelopes around the two times be
compared overlap. For this purpose the error envelope is assumed to be symmetrically
placed around the base time covering time-inaccuracy to time+inaccuracy. For
IntervalC comparison, two UTOs are deemed to contain the same time only if the
Time attribute of the two objects are equal and the Inaccuracy attributes of both the obj
are zero.

Enum OverlapType

OverlapType specifies the type of overlap between two time intervals. Figure 14-3
depicts the meaning of the four values of this enum. When interval A wholly contains
interval B, then it is an OTContainer of interval B and the overlap interval is the same
as the interval B. When interval B wholly contains interval A, then interval A is
OTContained in interval B and the overlap region is the same as interval A. When
neither interval is wholly contained in the other but they overlap, then the OTOverlap
case applies and the overlap region is the length of interval that overlaps. Finally, when the
two intervals do not overlap, the OTNoOverlap case applies.

Figure 14-3 Illustration of Interval Overlap

14.15.3 Exceptions

This service returns standard CORBA exceptions where specified in addition to the
service-specific exception described in this section.

module CosTime {
exception TimeUnavailable {};

}

Interval A

Interval B
OTContainerOTContained OTOverlap OTNoOverlap
14-42 CORBAservices: Common Object Services Specification

14

o

ps

ld be

g a

TimeUnavailable

This exception is raised when the underlying trusted time service fails, or is unable t
provide time that meets the required security assurance.

14.15.4 Universal Time Object (UTO)

The UTO provides various operations on basic time. These include the following grou
of operations:

• Construction of a UTO from piece parts, and extraction of piece parts from a UTO
(as read only attributes).

• Comparison of time.

• Conversion from relative to absolute time, and conversion to an interval.

Of these, the first operation is required for completeness, since in its absence it wou
difficult to provide a time input to the timer event handler, for example. The second
operation is required by the RFP, and the third is required for completeness and usability.

module CosTime {
interface TIO; // forward declaration
interface UTO {

readonly attribute TimeBase::TimeT time;
readonly attribute TimeBase::InaccuracyT inaccuracy;
readonly attribute TimeBase::TdfT tdf;
readonly attribute TimeBase::UtcT utc_time;

UTO absolute_time();

TimeComparison compare_time(
in ComparisonType comparison_type,
in UTO uto

);

TIO time_to_interval(
in UTO uto

);

TIO interval();
};

};

The UTO interface corresponds to an object that contains utc time, and is the means for
manipulating the time contained in the object. This interface has operations for gettin
UtcT type data structure containing the current value of time in the object, as well as
operations for getting the values of individual fields of utc time, getting absolute time
from relative time, and comparing and doing bounds operations on UTOs. The UTO
interface does not provide any operation for modifying the time in the object. It is intended
that UTOs are immutable.
Time Service: v1.0 Basic Time Service November 1996 14-43

14

e

Readonly attribute time

This is the time attribute of a UTO represented as a value of type TimeT.

Readonly attribute inaccuracy

This is the inaccuracy attribute of a UTO represented as a value of type InaccuracyT .

Readonly attribute tdf

This is the time displacement factor attribute tdf of a UTO represented as a value of typ
TdfT .

Readonly attribute utc_time

This attribute returns a properly populated UtcT structure with data corresponding to the
contents of the UTO.

Operation absolute_time

This attribute returns a UTO containing the absolute time corresponding to the relative
time in object. Absolute time = current time + time in the object. Raises
CORBA::DATA_CONVERSION exception if the attempt to obtain absolute time causes
an overflow.

Operation compare_time

Compares the time contained in the object with the time given in the input parameteruto
using the comparison type specified in the in parameter comparison_type , and
returns the result. See the description of TimeComparison in Section 14.2.2, Data
Types, for an explanation of the result. See the explanation of ComparisonType in
Section 14.2.2 for an explanation of comparison types. Note that the time in the object is
always used as the first parameter in the comparison. The time in the utc parameter is
used as the second parameter in the comparison.

Operation time_to_interval

Returns a TIO representing the time interval between the time in the object and the time in
the UTO passed in the parameter uto . The interval returned is the interval between the
midpoints of the two UTOs and the inaccuracies in the UTOs are not taken into
consideration. The result is meaningless if the time base used by the two UTOs are
different.
14-44 CORBAservices: Common Object Services Specification

14

time
e

ise
Operation interval

Returns a TIO representing the error interval around the time value in the UTO as a
interval. TIO.upper_bound = UTO.time+UTO.inaccuracy. TIO.lower_bound = UTO.tim
- UTO.inaccuracy.

14.15.5 Time Interval Object (TIO)

The TIO represents a time interval and contains operations relevant to time intervals.

module CosTime {
interface TIO {

readonly attribute TimeBase::IntervalT time_interval;

OverlapType spans (
in UTO time,
out TIO overlap

);
OverlapType overlaps (

in TIO interval,
out TIO overlap

);

UTO time ();
}

}

Readonly attribute time_interval

This attribute returns an IntervalT structure with the values of its fields filled in with
the corresponding values from the TIO.

Operation spans

This operation returns a value of type OverlapType depending on how the interval in
the object and the time range represented by the parameter UTO overlap. See the definition
of OverlapType in Section 14.2.2, Data Types. The interval in the object is interval A
and the interval in the parameter UTO is interval B. If OverlapType is not
OTNoOverlap , then the out parameter overlap contains the overlap interval, otherw
the out parameter contains the gap between the two intervals. The exception
CORBA::BAD_PARAM is raised if the UTO passed in is invalid.

Operation overlaps

This operation returns a value of type OverlapType depending on how the interval in
the object and interval in the parameter TIO overlap. See the definition of
OverlapType in Section 14.2.2, Data Types. The interval in the object is interval A and
the interval in the parameter TIO is interval B. If OverlapType is not OTNoOverlap ,
then the out parameter overlap contains the overlap interval, otherwise the out
Time Service: v1.0 Basic Time Service November 1996 14-45

14

parameter contains the gap between the two intervals. The exception
CORBA::BAD_PARAM is raised if the TIO passed in is invalid.

Operation time

Returns a UTO in which the inaccuracy interval is equal to the time interval in the ITOand
time value is the midpoint of the interval.

14.15.6 Time Service

The TimeService interface provides operations for obtaining the current time, constructing
a UTO with specified values for each attribute, and constructing a TIO with specified
upper and lower bounds.

module CosTime {
interface TimeService {

UTO universal_time()
raises(TimeUnavailable

);
UTO secure_universal_time()

raises(TimeUnavailable
);
UTO new_universal_time(

in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase::TdfT tdf

);
UTO uto_from_utc(

in TimeBase::UtcT utc
);
TIO new_interval(

in TimeBase::TimeT lower,
in TimeBase::TimeT upper

);
};

};

Operation universal_time

The universal_time operation returns the current time and an estimate of inaccuracy
in a UTO. It raises TimeUnavailable exceptions to indicate failure of an underlying
time provider. The time returned in the UTO by this operation is not guaranteed to be
secure or trusted. If any time is available at all, that time is returned by this operation.
14-46 CORBAservices: Common Object Services Specification

14

ure

e

ly

e and
Operation secure_universal_time

The secure_universal_time operation returns the current time in a UTO only if
the time can be guaranteed to have been obtained securely. In order to make such a
guarantee, the underlying Time Service must meet the criteria to be followed for sec
time, presented in Appendix A, Implementation Guidelines. If there is any uncertainty at
all about meeting any aspect of these criteria, then this operation must return the
TimeUnavailable exception. Thus, time obtained through this operation can always
be trusted.

Operation new_universal_time

The new_universal_time operation is used for constructing a new UTO. The
parameters passed in are the time of type TimeT and inaccuracy of type
InaccuracyT . This is the only way to create a UTO with an arbitrary time from its
components. This is expected to be used for building UTOs that can be passed as th
various time arguments to the Timer Event Service, for example. CORBA::BAD_PARAM
is raised in the case of an out-of-range parameter value for inaccuracy .

Operation uto_from_utc

The uto_from_utc operation is used to create a UTO given a time in the UtcT form.
This has a single in parameter UTC, which contains a time together with inaccuracy
and tdf . The UTO returned is initialized with the values from the UTC parameter. This
operation is used to convert a UTC received over the wire into a UTO.

Operation new_interval

The new_interval operation is used to construct a new TIO. The parameters are
lower and upper , both of type TimeT , holding the lower and upper bounds of the
interval. If the value of the lower parameter is greater than the value of the upper
parameter, then a CORBA::BAD_PARAM exception is raised.

14.16 Timer Event Service

The module CosTimerEvent encapsulates all data type and interface definitions pertaining
to the Timer Event Service.

14.16.1 Object Model

The TimerEventService object manages Timer Event Handlers represented by Timer
Event Handler objects as shown in Figure 14-4. Each Timer Event Handler is immutab
associated with a specific event channel at the time of its creation. The Timer Event
Handler can be passed around as any other object. It can be used to program the tim
content of the events that will be generated on the channel associated with it. The user of a
Timer Event Handler is expected to notify the Timer Event Service when it has no further
use for the handler.
Time Service: v1.0 Timer Event Service November 1996 14-47

14

andler

Figure 14-4 Object Model of Timer Event Service

14.16.2 Usage

In a typical usage scenario of this service, the user must first create an event channel of the
“push” type (see CORBA Service: Event Service Specification [Chapter 4]). The user must
then register this event channel as the sink for events generated by the timer event h
that is returned by the registration operation. The user can then use the timer event handler
object to set up timer events as desired. The service will cause events to be pushed through
the event channel within a reasonable interval around the requested event time. The
implementor of the service will document what the expected interval is for their
implementation. The data associated with the event includes a timestamp of the actual
event time with the error envelope including the requested event time.

14.16.3 Data Types

All declarations pertaining to this service is encapsulated in the CosTimerEvent module.

Timer Event Service

Timer Event Service Interface

Timer Event Handler Objects

Timer Event Handler

register
unregister

Interface
set_timer
cancel_timer
set_data
status
time_set

event_time

Timer Events
14-48 CORBAservices: Common Object Services Specification

14

d
ive
s

 has
module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic

};

enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger

};

struct TimerEventT{
TimeBase::UtcT utc;
any event_data;

};
};

Enum TimeType

TimeType is used to specify whether a time is TTRelative , TTAbsolute , or
TTPeriodic in operations for setting timer intervals for the event-triggering
mechanism. The TTRelative value is used to specify that the time provided is relative
to current time, TTAbsolute is used to specify that the time provided is absolute, an
TTPeriodic is used to specify that the time provided is a period (and hence a relat
time) between successive events. If TTPeriodic is used, then the same event continue
to be triggered repeatedly at the completion of the time interval specified, until the timer is
reset.

Enum EventStatus

EventStatus defines the state of a TimerEventHandler object. The state
ESTimeSet means that the event has been set with a time in the future, and will be
triggered when that time arrives. ESTimeCleared means that the event is not set to go
off, and the time was cleared before the previously set triggering time arrived.
ESTriggered means that the event has already triggered and the appropriate data
been sent the event channel. ESFailedTrigger means that the event did trigger, but
data could not be delivered over the event channel.

In case of TTPeriodic events, the status ESTriggered never occurs. Upon
successful triggering of a TTPeriodic event, the status is set to ESTimeSet .
Time Service: v1.0 Timer Event Service November 1996 14-49

14

 at

 as

d is
Type TimerEventT

This is the structure that is returned to the event requester by the time-driven event-
triggering mechanism. It has two fields. The first field, utc , contains the actual time at
which the event was triggered. This value is set in the time field of utc . The inaccuracy
fields inacclo and inacchi of utc are set to the difference between the requested
event time and the actual event time.

The second field, event_data , contains the data that the requester of the event had
asked to be sent when the event was triggered.

14.16.4 Exceptions

Timer Event Service raises standard CORBA exceptions as specified in OMG IDL for the
service. It does not have any service-specific exceptions.

14.16.5 Timer Event Handler

Timer Event Handlers are created and managed by the Timer Event Service. A
TimerEventHandler object holds information about an event that is to be triggered
a specific time and action that is to be taken when the event is triggered. It provides
operations for setting, resetting, and canceling the timer event associated with it, as well
for changing the event data that is sent back as a part of a TimeEventT structure on the
event channel upon the triggering of the event. The only thing that cannot be change
the event channel associated with that event handler. An attribute named status holds
the current status of the event handler.

module CosTimerEvent {
interface TimerEventHandler {

readonly attribute EventStatus status;
boolean time_set(

out CosTime::UTO uto
);
void set_timer(

in TimeType time_type,
in CosTime::UTO trigger_time

);
boolean cancel_timer();
void set_data(

in any event_data
);
};

};

Attribute status

status is a readonly attribute that reflects the current state of the
TimerEventHandler . See the definition of EventStatus enumerator in Section
14.3.1, Object Model, for details.
14-50 CORBAservices: Common Object Services Specification

14

ndler
Operation time_set

Returns TRUE if the time has been set for an event that is yet to be triggered, FALSE
otherwise. In addition, it always returns the current value of the timer in the event ha
as the out uto parameter.

Operation set_timer

Sets the triggering time for the event to the time specified by the uto parameter, which
may contain TTRelative , TTAbsolute or TTPeriodic time. The time_type
parameter specifies what type of time is contained in the uto parameter. The previous
trigger, if any, is canceled and a new trigger is enabled at the time specified if absolute ,
or at current time + time specified if relative . If a relative time value of zero is
specified (i.e. the time attribute of utc = 0LL), then the last relative time that was
specified is reused. If no relative time was previously specified, then a
CORBA::BAD_PARAM exception is raised. If a periodic time is specified (time_type
== periodic), then the time parameter is interpreted as a relative time and the time
trigger is set at the periodicity defined by the time (i.e. at current time + time, current time
+ 2 * time, etc.).

Operation cancel_timer

Cancels the trigger if one had been set and had not gone off yet. Returns TRUE if an event
is actually canceled, FALSE otherwise.

Operation set_data

The data that will be passed back through the event channel in a TimerEventT structure
for all future triggering of the event handler is set to event_data .

14.16.6 Timer Event Service

The Timer Event Service provides operations for registering and unregistering events.

module CosTimerEvent {
interface TimerEventService {

TimerEventHandler register(
in CosEventComm::PushConsumer event_interface,
in any data

);
void unregister(

in TimerEventhandler timer_event_handler
);
CosTime::UTO event_time(

in TimerEventT timer_event
);

};
};
Time Service: v1.0 Timer Event Service November 1996 14-51

14

 is

i

rity
Operation register

The register operation registers the event handler specified by the data and the
event_interface parameters. When the event handler is triggered, the data is
delivered using the push operation (of the PushConsumer interface in Chapter 4, Event
Service Specification, Section 4.3, CosEventComm Module) specified in the
event_interface parameter. Only the Push Model is supported for timer event
delivery. Note that the event handler needs to be primed with a triggering time using the
set_time operation of the TimerEventHandler interface in order for an actual event to
be triggered. At initialization, the time in the handler is set to current time and its state
set to ESTimeCleared , and no event is scheduled. Raises CORBA::NO_RESOURCE
exception if lack of resources causes it to fail to register the event handler.

Operation unregister

The unregister operation notifies the service that the timer_event_handler
will not be used any more and all resources associated with it can be destroyed.
Subsequent attempts to use that object reference will raise CORBA::INV_OBJREF.

Operation event_time

The event_time operation returns a UTO containing the time at which the event
contained in the timer_event structure was triggered.

14.17 Conformance

It is sufficient to provide just the Time Service (module TimeBase and CosTime) to claim
conformance with the Time Service object as described in Section 14.1.5, Conformance
Points. To claim conformance with the Timer Event Service, both Time Service and Tmer
Event Service (module CosTimerEvent) must be provided.

In order to conform to the Basic Time Service, the semantics of the
secure_universal_time operation must be strictly adhered to. In order to return a
valid time from this operation, the vendor must provide a statement about how the security
assurance criteria specified in Appendix A, Implementation Guidelines, are met in their
product. To conform to the object Time Service, in all other cases, i.e. when the secu
assurance criteria are not satisfied, the secure_universal_time operation must
raise the TimeUnavailable exception.
14-52 CORBAservices: Common Object Services Specification

14

e

Appendix A Implementation Guidelines

 A.1 Introduction

This appendix contains advice to implementors. Appropriate documented handling of the
criteria presented here is mandatory for conformance to the Basic Time Service
conformance point.

 A.2 Criteria to Be Followed for Secure Time

The following criteria must be followed in order to assure that the time returned by th
secure_universal_time operation is in fact secure time. If these criteria are not
satisfactorily addressed in an ORB, then it must return the TimeUnavailable
exception upon invocation of the secure_universal_time operation of the
TimeService interface.

Administration of Time

Only administrators authorized by the system security policy may set the time and specify
the source of time for time synchronization purposes.

Protection of Operations and Mandatory Audits

The following types of operations must be protected against unauthorized invocation.
They must also be mandatorily audited:

• Operations that set or reset the current time

• Operations that designate a time source as authoritative

• Operations that modify the accuracy of the time service or the uncertainty interval
of generated timestamps

Synchronization of Time

Synchronization of time must be transmitted over the network. This presents an
opportunity for unauthorized tampering with time, which must be adequately guarded
against. Time Service implementors must state how time values used for time
synchronization are protected while they are in transit over the network.

Time Service implementors must state whether or not their implementation is secure.
Implementors of secure time services must state how their system is secured against
threats documented in Chapter 15, Security Service Specification. They must also
document how the issues mentioned in this section are addressed adequately.
Time Service: v1.0 Conformance November 1996 14-53

14

e

ct

justs
 A.3 Proxies and Time Uncertainty

The Time Service object returns a timestamp, which contains both a time and an
associated uncertainty interval. These values are considered valid at the instant they ar
returned by the Time Service object; however, if these values are not delivered to the caller
immediately, they may no longer be reliable by the time the caller receives them.

In a CORBA system, the use of proxy objects can render time values unreliable by
introducing unpredictable and uncorrected latency between the time the time server obje
generates a timestamp and the time the caller’s time server proxy receives the timestamp
and returns it to the caller (see Figure 14-5 below).

Figure 14-5 Time Service and Proxies

Implementors of the Time Service must prevent this problem from occurring. Two
possible ways of preventing proxy latency are:

• Prohibit proxies of the time server object (i.e. require a Time Service
implementation in every address space that will need to make Time Service calls).

• Create a special time server proxy, which measures latency between the Time
Service object and the proxy, recalculates the time interval’s uncertainty, and ad
the interval value before returning the timestamp to the caller.

Other approaches probably exist; the two above are intended as examples only.

Caller

Time
Service
Proxy

Time
Service

get time Time=x;interval=3sec
(delivered at time x)

Time=x;interval=3sec
(delivered at time x+y -- y may be greater than 3sec)
14-54 CORBAservices: Common Object Services Specification

14

ice

Appendix B Consolidated OMG IDL

 B.1 Introduction

This appendix contains a summary of the OMG IDL defined in this document.

 B.2 Time Service

This section contains the OMG IDL definitions pertaining to the Time Service, which is
encapsulated in the TimeBase and CosTime modules. The TimeBase module contains the
basic data type declarations that can be used by others without pulling in the Time Serv
interfaces. The Time Service interface and associated enums and exceptions are declared in
the CosTime module.

module TimeBase {
// interim definition of type ulonglong pending the
// adoption of the type extension RFP.

struct ulonglong{
unsigned long low;
unsigned long high;

};
typedef ulonglong TimeT;
typedef TimeT InaccuracyT;
typedef short TdfT;
struct UtcT {

TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; // 2 octets

// total 16 octets.
};

struct IntervalT {
TimeT lower_bound;
TimeT upper_bound;

};
};
Time Service: v1.0 Conformance November 1996 14-55

14

module CosTime {

enum TimeComparison {
TCEqualTo,
TCLessThan,
TCGreaterThan,
TCIndeterminate

};

enum ComparisonType{
IntervalC,
MidC

};

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

};

exception TimeUnavailable {};
interface TIO; // forward declaration

interface UTO {

readonly attribute TimeBase::TimeT time;
readonly attribute TimeBase::InaccuracyTinaccuracy;
readonly attribute TimeBase::TdfT tdf;
readonly attribute TimeBase::UtcT utc_time;
UTO absolute_time();
TimeComparison compare_time(

in ComparisonType comparison_type,
in UTO uto

);
TIO time_to_interval(

in UTO uto
);
TIO interval();

};

interface TIO {
readonly attribute TimeBase::IntervalT time_interval;
boolean spans (

in UTO time,
out TIO overlap

);
boolean overlaps (

in TIO interval,
out TIO overlap

);
UTO time ();

};
14-56 CORBAservices: Common Object Services Specification

14

,
interface TimeService {
UTO universal_time()

raises(TimeUnavailable
);
UTO secure_universal_time()

raises(TimeUnavailable
);
UTO new_universal_time(

in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase::TdfT tdf

);
UTO uto_from_utc(

in TimeBase::UtcT utc
);
TIO new_interval(

in TimeBase::TimeT lower,
in TimeBase::TimeT upper

);
};

};

 B.3 Timer Event Service

This section contains all the OMG IDL definitions pertaining to the Timer Event Service
which are encapsulated in the CosTimerEvent module. This module depends on
TimeBase, CosTime, CosEventComm and CORBA.

module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic

};

enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger

};

struct TimerEventT {
TimeBase::UtcT utc;
any event_data;

};
Time Service: v1.0 Conformance November 1996 14-57

14

 interface TimerEventHandler {
readonly attribute EventStatus status;
boolean time_set(

out CosTime::UTO uto
);
void SetTimer(

in TimeType time_type,
in CosTime::UTO trigger_time

);
 boolean cancel_timer();
 void set_data(

in any event_data
);
};

interface TimerEventService {
TimerEventHandler register(

in CosEventComm::PushConsumer event_interface,
in any data

);
void unregister(

in TimerEventHandler timer_event_handler
);
CosTime::UTO event_time(

in TimerEventT timer_event
);

};
};
14-58 CORBAservices: Common Object Services Specification

14

o

r
an
Appendix C Notes for Users

 C.1 Introduction

This appendix contains notes covering the following matters:

• Guarding against proxy-related inaccuracies in time contained in UTO.

• How to transmit time and time intervals across the network and recover the
corresponding UTO and TIO at the other end.

 C.2 Proxies and Time

As explained in Appendix B, Consolidated OMG IDL, indiscriminate use of remote
proxies to obtain value of current time can lead to obtaining values of time in which the
inaccuracy is incorrect due to transmission delays. Consequently, care should be taken t
ensure that the local Time Service is used to obtain the value of current time.

 C.3 Sending Time Across the Network

When passing small objects such as UTO and TIO from one location to another, one
should be aware that each time the passed object reference is used by the recipient it
causes an object invocation to take place across the network and is inherently inefficient.
The preferred way of dealing with this problem is to pass small objects by value instead of
by reference. Unfortunately, due to various reasons, OMG IDL does not allow
specification of passing of object parameters by value. Consequently, the user has to
explicitly take action to avoid this problem.

The interfaces defined contain features that make it possible for the user to explicitly send
the value of time, and time interval across from one location to another and then
reconstruct the appropriate object at the receiving end. This is done as follows:

• The signature of the operation that passes time or time interval as a paramete
across the network should specify that time is passed as the data type and not as
object reference. For example, for passing universal time, a signature such as

void foo(in TimeBase::UtcT);

should be used instead of

void foo(in CosTime::UTO);

• The invoker should use the data attribute of the UTO as the in parameter. In
pseudo-code, something such as the following should be done by the invoker:

CosTime::UTO uto = CosTime::universal_time();
foo(uto.data);
Time Service: v1.0 Conformance November 1996 14-59

14

e
• At the server end, the time data received can be converted to a UTO as follows:

foo(in TimeBase::UtcT utc) {
CosTime::UTO uto = CosTime::TimeService::uto_from_utc(utc);

.....

};

It would be nice to say in the definition of the foo operation something such as:

foo(in byvalue UTO uto);

and have the system take care of doing essentially what is described above. However, ther
are difficult model- and paradigm-related issues that need resolution before such a change
can be coherently proposed.
14-60 CORBAservices: Common Object Services Specification

14

ays.

s.
Appendix D Extension Examples

 D.1 Introduction

The process of constructing the contents of a TimeBase::TimeT value can be quite
tedious, involving many 64-bit multiplications and additions. The CORBA Facility for
Time Representation is going to provide user-friendly ways of creating TimeT data and
displaying them. However, if one is planning to use only the Time Service, it will be
necessary to construct some rudimentary facility to build TimeT things. This appendix
shows one way of doing this as an example of how to extend this service in useful w

 D.2 Object Model

Following the design pattern used in the rest of this service definition, the basic extension
is to define a TimeI object corresponding to the TimeT structure, and extend
TimeService to provide an operation for creating such objects. The TimeI object has
attributes corresponding to the user-friendly representation of time such as year, month,
day, hour, minute, second, microsecond, etc.

 D.3 Summary of Extensions

The additions are encapsulated in the FriendlyTime module. The changes are as follows:

• Data type declaration for components of time.

• Definition of the TimeI interface, consisting mostly of attributes.

• Definition of the FriendlyTime::TimeService interface derived from the
CosTime::TimeService interface, for adding the operation to create TimeI objects.

 D.4 Data Types

The data types are self-explanatory for the purposes of setting up this example. A
complete specification should state more specific properties of each of these data type

module FriendlyTime {
typedef unsigned short YearT; // must be > 1581
typedef unsigned short MonthT; // 1 - 12
typedef unsigned short DayT; // 1 - 31
typedef unsigned short HourT; // 0 - 24
typedef unsigned short MinuteT; // 0 - 59
typedef unsigned short SecondT; // 0 - 59
typedef unsigned short MicrosecondT;

}

 D.5 Exceptions

No exceptions are defined in this module.
Time Service: v1.0 Conformance November 1996 14-61

14

 to

 time
 D.6 Friendly Time Object

The time object provides a friendly interface to the various components usually used
represent time in normal human discourse. The set of attributes used in this example are by
no means exhaustive, and is used only for illustrative purposes.

module FriendlyTime {
interface TimeI {

attribute YearT year;
attribute MonthT month;
attribute DayT day;
attribute HourT hour;
attribute MinuteT minute;
attribute SecondT second;
attribute MicrosecondT microsecond;
attribute TimeBase::TimeT time;
void reset(); // set all attributes to zero

};
};

The TimeI object can be viewed as a representation conversion object. The general
technique for using it is to create one using the operation
CosFriendlyTime::TimeService::time introduced in Section D.7, Extended
Time Service. This creates a TimeI object with time set to zero in it. Then the _set
operation can be used to set the values of the various attributes. Finally, the attribute
can be used to get the corresponding TimeT value.

Conversely, one can set any TimeT value in the time attribute and then get the year,
month, etc. from the appropriate attributes.

The reset operation facilitates reuse of time objects.

 D.7 Extended Time Service

CosTime::TimeService is extended by derivation to provide an operation for
creating TimeI objects.

module FriendlyTime {
interface TimeService : CosTime::TimeService {

TimeI time();
};

};
14-62 CORBAservices: Common Object Services Specification

14

tive
n is

nt on
eneral

 D.8 Epilogue

The extension provided in this appendix makes the Time Service defined in the norma
part of the document more easily usable. This leads one to wonder why this extensio
not part of the main body of this submission. The reason is that there is no agreeme
what the most useful representative components of time are, and the feeling that in g
this should be dealt with at the Common Facilities level in general. We still felt that it
would be useful to illustrate how easy it is to extend the basic service to provide this ease-
of-use facility, thus this appendix.
Time Service: v1.0 Conformance November 1996 14-63

14

Appendix E References
• X/Open DCE Time Service, X/Open CAE Specification C310, November 1994.

• RFC 1119 Network Time Protocol, D. Mills, September 1989.

• Probabilistic Clock Synchronization, Flaviu Cristian, Distributed Computing (1989)
3: Pg. 146-158.

• OMG IDL type Extensions RFP, Andrew Watson Ed., OMG Doc. No. 95-1-35.

• CORBAServices: Common Object Service Specification, OMG Doc. No. 95-3-31,
March 31 1995 revision, Chapter 4, Event Service Specification, Section 4.2
Pg. 4-6.

• CORBAServices: Common Object Service Specification, OMG Doc. No. 96-10-1,
October 1996 revison, Chapter 15, Security Service Specification.
14-64 CORBAservices: Common Object Services Specification

	Time Service Specification
	14.14 Introduction
	14.14.1 Time Service Requirements
	14.14.2 Representation of Time
	14.14.3 Source of Time
	14.14.4 General Object Model
	14.14.5 Conformance Points

	14.15 Basic Time Service
	14.15.1 Object Model
	14.15.2 Data Types
	Type ulonglong
	Type TimeT
	Type InaccuracyT
	Type TdfT
	Type UtcT
	Type IntervalT
	Enum ComparisonType
	Enum TimeComparison
	Enum OverlapType

	14.15.3 Exceptions
	TimeUnavailable

	14.15.4 Universal Time Object (UTO)
	Readonly attribute time
	Readonly attribute inaccuracy
	Readonly attribute tdf
	Readonly attribute utc_time
	Operation absolute_time
	Operation compare_time
	Operation time_to_interval
	Operation interval

	14.15.5 Time Interval Object (TIO)
	Readonly attribute time_interval
	Operation spans
	Operation overlaps
	Operation time

	14.15.6 Time Service
	Operation universal_time
	Operation secure_universal_time
	Operation new_universal_time
	Operation uto_from_utc
	Operation new_interval

	14.16 Timer Event Service
	14.16.1 Object Model
	14.16.2 Usage
	14.16.3 Data Types
	Enum TimeType
	Enum EventStatus
	Type TimerEventT

	14.16.4 Exceptions
	14.16.5 Timer Event Handler
	Attribute status
	Operation time_set
	Operation set_timer
	Operation cancel_timer
	Operation set_data

	14.16.6 Timer Event Service
	Operation register
	Operation unregister
	Operation event_time

	14.17 Conformance
	Administration of Time
	Protection of Operations and Mandatory Audits
	Synchronization of Time

