14.14

Introdudion

Time Service Specification 14

14.14.1 Time Service Requirements

The requirements explicitly stated in the RFP ask for a service that enables the us
obtain current time together with an error estimate associated with it.

Additionally, the RFP sugges that the service also provide thddwing facilities:
® Ascertain the order in which “events” occurred.
® Generate time-based events based on timers and alarms.

® Compute the interval between two events.

Although the RFP entons specifiation of asynchronization meché&m, the submittel
deemed it inappropriate to specify a single such mesimeas discised in Section 14.1.
Source of Time.

14.14.2 Representation of Time

Time is represented many ways in programs. For exampk/@@en DCE ime Servie
[1] defines three binary representations of absolute time, while the BNIR defines &
different representation of time. Othgstems use time represented in myriads of
different ways. It is not a goal of the service defined in this ssiom to deal with all
these different representations of time or to propoeainifying representation of time

To satisfy the set of requirements that are addressed, we have chosen to use only
Universal Time Coordinated (UTC) representation fromxt@pen DCE Time Séce
Global clock synchronization time sources, sucthadJTC sjnals broadcast by the
WWYV radio station of the National Bureau of Standardsyeletime, which is relativel
easy to handle in this represergatiUTC time idefined as follows.

CORBAservices: Common Object Services Specification 14-35

14

14-36

Time units 100 nanoseconds (10 7 seconds)
Base time 15 October 1582 00:00:00.
Approximate range AD 30,000

UTC time in this service specification always refers to tim8reenwich Time Zone. Tt
corresponding binary representations of relative time is the saenas for absolute tim
and hence with similar characteristics:

Time units 100 nanoseconds (10 7 seconds)
Approximate range +/- 30,000 years

In order to ease implementation on existiggtems, migration from theand
interopeation with hem, care has been taken to ensure that the ratatise of time
used interoperates wiXVOpen DCE Time Servig&], and that the operation for gettin
current time is easy to implement ¥fOpen DCE Time Seéice, NTP[2] (and for that
matter any other reasonable distributed time synchatiohalgorithm that one might
come up with, e.g. ones presented in [3]) with appropriate values for inaccuracies.

14.14.3 Source of Time

The services defined in this chapter depend on théaailiy of anunderlying Time
Service that obtains and synchronizes time as required to provide a reasonable
approximation of the current time to these sssi The following gsumptions are mad
about the underlying time synchronization service:

® The Time Service is able to return current time with an associated error par:

® Within reasonable interpretation of the terms, the Time Service is avadladle
reliable. The time provided by the underlying service can be trusted to be witl
inaccuracy window provided by the underlying system.

® The time returned by the Time Service is from a monotonically increasing se

Additionally, if the underlying Time Service meets the criteria to be followed for se
time presented in Appendix A, pfementéion Guidelines, then the Time Service obje
is able to provide trusted time.

No additional assumptions are made about how the underlying service obtains the
that it delivers to this servicEor example it could utilize a range of techniques whett
be using a Cesium clock attached to each node or some hardware/software time
synchronization method. It is assumed that the underlying service may fail occasic
This is accounted for by providing an appropriate exception as part of thecetdrfee
availability and accuracy of trusted time depends on what is provided by theyimgle
Time Service.

CORBAservices: Common Object Services Specification

14

14.14.4 General Object Model

The gaeral architectural pattern used is that a sewfigect manages objects of a spec
category as shown in Figure 14-1.

Instances managed by
the Service Object

»
- N
Instance - N

Interface ~

‘ Service
‘ > Object

Service Interface

Figure 14-1 General Object Model for Service

Theservice interface provides operations farating the objects that the servinanage:
and, if appropriate, also provides operations for getting rid of them.

The Time Servicebject consists of two services, and hence definesawice
interfaces:

®* Time Service manages Universal Time Objects (UTOs) and Time Interval Ol
(T10s), and is represented by thiene Servicanterface.

* Timer Event Service manages Tinterent Handler objects, and is represented
the TimerEventServicéterface.

The underlying facility that disders time is associated with thimiversalTime and
SecureUniversalTime operation of th@imeServicenterface as described in
Section 14.2, Basic Time Service.

Time Servicevl.0 Introduction November 1996 14-37

14

14.14.5 Conformance Points

There are two conformance points for this service.

® Basic Time ServiceTlhis service consists of all data types and interfaces defin
the TimeBase and CosTime modules in Section 14.2, Basic Time Service. It
provides operations fagetting time and manipulating time. A complete
implementabn of the TimeBase and the CosTime modules is necessary and
sufficient to conform to the Time Service object standard. An implementation

CosTime module in which theniversal_time operationalways raises the
TimeUnavailable exception is not acceptable for satisfying this conformai
point.

* Timer Event ServiceThis service consists of all data types and interfaces defir
the CosTimerEvent module in Section.34Timer EventService. It provides
operations for managingne-triggered event handlers and the events that the
handle. A completémplementation of thisnodule is necessary to conform to tt
optional Timer Event Service compent of the ime Service object. Since the
CosTimerEvent module depends on the CosTime module, it is not possible t
conform just tathe Timer Event Service without conforming to Basic Time Sen
To claim conformance to Timdtvent Service, bothier Event Srvice and Time
Service must berovided.

14.15 Basic Time Service

14-38

All data structures pertaining to the basic Time Service, Universal Time Object, an
IntervalObject are defined in the TimeBase module so that o#ineices can make use
these data structures without requiring the interface definitions. The interface defir
and associated enums and exceptions are aragisin theCosTime module.

14.15.1 Object Model

The object model of this service is depicted in Figure 14-2. The Time Service obje
manages Universal Time ObjectsT{Os) and Time Interval Olgés (T10s). It does so k
providing methods for eating UTOs and TIO&ach UTO represents a time, and ea
TIO represents a timaterval, and reference taeh can beréelypassed around, subje
to the caveats discussed in Appendix Apliementabn Guidelines.

CORBAservices: Common Object Services Specification

14

iy
TIO interface
spans A
| |

- time

~ overlap
—’7> N time_interval | /
AN
UTO interface - AN | /

absolute _time ~ N
compare_time ~
interval N
time

inaccuracy

tdf

utc_time | Time Service
‘ >

TimeService interface
universal_time
secure_uniersal_time
new_universal_time
uto_from_utc
new_interval

Figure 14-2 Object Model for Time Service

14.15.2 Data Types

A number of types andtierfaces are defined and used by this service.&flihdions of

data structures are placed in the TimeBase module. All interfaces, and associatec
and exception declarations are placed in the CosTime module. This separation of
data type definitionsom interface related defimiins allows otheservices to use the tin
data types without explicitly incorporating the interfaces, while allowiiggts of hose
services to use the interfaces pdmd by the Time Service to manipulate the data us
those services.

The dedhrationsshown next asene that the unsigned 4t integer ype ulonglong

has been defined by the adoption of the RFP on Type Extension [4]. Pending the ¢
of that RFP, one can use the interiminibn as shown, with the caveat thfaits is not
going to be interoperable with the OMG IDL defdlong long type in all cases. Th
type dedhrations used by this service atown next.

Time Servicevl.0 Basic Time Service November 1996 14-39

14

14-40

module TimeBase {

/I interim definition of type ulonglong pending the
/I adoption of the type extension RFP.
struct ulonglong{

unsigned long low;
unsigned long high;
3
typedef ulonglong TimeT;
typedef TimeT InaccuracyT,;
typedef short TdfT;
struct UtcT {
TimeT time; /I 8 octets
unsigned long inacclo; I/l 4 octets
unsigned short inacchi; /I 2 octets
TdfT tdf; /I 2 octets
// total 16 octets.
3
struct IntervalT {
TimeT lower_bound;
TimeT upper_bound;
b
I3
Type ulonglong

OMG IDL does not at present have a native type representing an unsigned 64-bit
There is an RFP outstanding to define extended data types in OMG IDL. The ado
technology submitted aigest that RFP will provide a means for défig a native type
representing unsigned 64-bit integer©iMG IDL. Pending the adoption of that
technology, one can use this structure to represent unsigned 64-bit integers, with |
caveat that when a native type becomes available it may not be interoperable with
declarabn on all platorms. This definition is for the interinand is meant to be remov
when the native unsigned 64-bit integer type becomes available in OMG IDL.

Type TimeT

TimeT represents a single time value, which is 64 bits in size, and holds the numl
100 nanoseconds that have passed since the base time. For absolute time the ba
October 1582 00:00.

Type Inaccuacy T

InaccuracyT represents the value of inaccuracy in time in units of 100 nanosect
As per the deition of the inaccuracy field in th¢/Open DCE Tim8ervicd1], 48 bits is
sufficient to hold this value. This is defined as a type separateliroail in anticipation
of a facility in OMG IDL [4] to specify subrange types, at which point this will be
declared as a 48-bit subrangeutdnglong . For now, it is defined as a 64-bit
ulonglong

CORBAservices: Common Object Services Specification

14

Type TdfT

TdfT is of size 16 bits short type and holds the time displacement factor in the for
seconds of displacement from the Greenwichitiamn. Displacements East of the
meridian are positive, while those to the West are negative.

Type UtcT

UtcT defines the structure of the time value that is used universally in thisesdrhe
basic value of time is of typEimeT that is held in the time field. WhethelacT
structure is holding a relative or absolute time iedweihed by its rstory. There is no
explicit flag within the object holding thatate informatin. Theiacclo andinacchi
fields together hold a 48-bit estimate of inaccuracy in the time field. These two fiel
together hold a value of typeaccuracyT packed into 48 bits. Thelf field holds
time zone information. Impleméation must place the time displacement factor for tl
local time zone in this field whenever they create a UTO.

The contents of this structure are intended to be opaque, but in order to be able tc
it correctly, at least theg/pes of fields need to be identified.

Type InervalT

This type holds a time interval representethasTimeT values corresponding to the
lower and upper bound of th&éwal. AnintervalT structure containing lawer
bound geater than thapper bound is invalid. For theterval to be meaningful, the tin
base used for the lower and upper bound must be the same, and the time base it
not be spanned by the interval.

module CosTime {
enum TimeComparison {
TCEqualTo,
TCLessThan,
TCGreaterThan,
TClIndeterminate

h

enum ComparisonType {
IntervalC,
MidC

h

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

Time Servicevl.0 Basic Time Service November 1996 14-41

14

14-42

Enum ComparisonType

ComparisonType defines the two types of time comparison that are supported.
IntervalC comparison does the comparison taking into account the error envelc
MidC comparison just compares the baseeimAMidC comparison can never return
TClIndeterminate

Enum TimeComparison

TimeComparison defines the possible values that can be returned as a result of
comparingwo UTOs. The values aself-explanatory. In amtervalC comparison,
TClIndeterminate value is returned if the error envelopes around the two times
compared overlap. For this purpose the error envelope is assumed/torbetiscally
placed around the base time covering time-inaccuracy to time+inaccuracy. For
IntervalC comparson, two UTOs are deemed to contain the same time only if tf
Time attribute of théwo objects are equal and the Inaccuracy attributes of both the c
are zero.

Enum OverlapType

OverlapType specifies the type of overlap between two timeriatis. Figurel4-3
depicts the meaning of the four values of this enum. When interval A wholly conta
interval B, then it is a@TContainer of intewval B and the overlap interval is the sa
as the interval B. When interval B wholly containgeival A, then interval A is
OTContained in interval B and the overlap region is the same asvaitér. When
neither interval is wholly contained in the other but they overlap, thedTi@verlap
case applies and the overlap region is the length of interval thaaipsefinallywhenthe
two intervals do not overlap, tli@TNoOverlap case applies.

Interval A | [| | \ —

Interval B —t — 1 1 1 i
OTContaner OT Contained OTOverlap OTNo@wap

Figure 14-3 lllustration of Interval Overlap

14.15.3 Exceptions

This service returns standard CORBRceptions where specified in addition to the
service-specific exception described in this section.

module CosTime {
exception TimeUnavailable {};

}

CORBAservices: Common Object Services Specification

14

TimeUnavailable

This exception is raised when the underlying trusted time service fails, or is unabl
provide time that meets the required security assurance.

14.15.4 Universal Time Object (UTO)

The UTO povides various operations on basic time. These include the following g
of operations:

® Construction of a UTO from piece partsd extraction of piece parts from a UT
(as read onhattributes).

® Comparison of time.

® Conversion from relative to absolute time, and conversion totarval.

Of these, the first operation is required for completeness, since in its absence it w
difficult to provide a time input to the timer event handier,exanple. Thesecond
operation is required biyre RFP, and theitid is required for complehess and usabilit

module CosTime {

interface TIO; /[forward declaration

interface UTO {
readonly attribute TimeBase:TimeT time;
readonly attribute TimeBase::InaccuracyT inaccuracy;
readonly attribute TimeBase:TdfT tdf;
readonly attribute TimeBase:UtcT utc_time;

UTO absolute_time();

TimeComparison compare_time(

in ComparisonType comparison_type,
in uTo uto

);

TIO time_to_interval(
in uTo uto

);

TIO interval();

TheUTO interface corresponds to an object that contaiostime, and is the means f
manipulating the time contained in the object. This interface has operations for ge
UtcT type data structure containing the current value of time in the object, as well
operations for getting the values of individual fieldsitef time, getting absolute time
from relative timeand comparingand doing bounds opsgtions on UTOs. Th&TO
interfacedoes not provide any operation faodifying the time in the object. It is intend
that UTOs are immutable.

Time Servicevl.0 Basic Time Service November 1996 14-43

14

14-44

Readonly attribute time

This is the time attribute of a UTO represented as a value offiypeT .

Readonly attribute inaccuracy

This is the inaccuracy attribute of a UTO represented as a value ohagueiracyT

Readonly attribute tdf

This is the time displacement factor attribtate of a UTO represented as a value of t
TdfT .

Readonly attribute utc_time

This attribute returns a properly populatédT structure with data corresponding to
contents of the UTO.

Operation absolute_time

This attribute returns a UTO containing the absolute time corresponding to therel:
time in object. Absolute time = current time + time in the object. Raises
CORBA::DATA_CONVERSIOMxception if the a¢impt to obtain absolute time caust
an overflow.

Operation compare_time

Compares the time contained in the object with the time given in the input paratoel
using the comparison type specified in theparametecomparison_type , and
returns the resulBee the decription of TimeComparison in Section 14.2.2, Data
Types, for an explanation of the res@ee the explanation GomparisonType in
Section 14.2.2 for an explation of comparisotypes. Note that the time in the object
always used as the first pareter in the compaon. The time in thatc parameter is
used as the second parameter in the comparison.

Operation time_to_interval

Returns a TIO representing the time interval between the time abjbet and the time |
the UTO passed in the paramattsy . The interval returned is the interval between tt
midpoints of the two UTOs and the inacaies in the UTOs are not taken into
consideration. Theesult is meaningless if the time base used bwibdJTOs are
different.

CORBAservices: Common Object Services Specification

14

Operation interval

Returns a TIO representing the error interval around the time value in the UTO as
interval. TIO.upper_bound = UTO.time+UTO.inaccuracy. TIO.lower_bound = UTO
- UTO.inaccuracy.

14.15.5 Time Interval Object (TIO)
The TIO represents a timetérval and contains operations relevant to time intervals
module CosTime {
interface TIO {

readonly attribute TimeBase:IntervalT time_interval;

OverlapType spans (

in UTO time,
out TIO overlap
);
OverlapType overlaps (
in TIO interval,
out TIO overlap
);
UTO time ();

Readonly attribute time_interval

This attribute returns amtervalT structure with the values of its fields filled in wi
the corresponding values from the TIO.

Operation spans

This operation returns a value of typeerlapType depending on how thaterval in
the object and the time range represented by tlemeetUTOoverlap. See the definitic
of OverlapType in Section 14.2.2, Data Types. The interval in thedhig interval A
and the interval in the parametéTOis interval B. IfOverlapType is not
OTNoOverlap , then theout parameter overlap contains the overlap interval, othe
theout parameter contains the gap between the two intervals. The exception
CORBA::BAD_PARANME raised if the UTO passed in is invalid.

Operation overlaps

This operation returns a value of typeerlapType depending on how thaterval in
the object and interval in the paneterTIO overlap. See the definition of
OverlapType in Section 14.2.2, Data Types. Tihéerval in the object is interval and
the interval in the paramet&rO is interval B. IfOverlapType is notOTNoOverlap ,
then theout parameter overlap contains the overlap intesthlerwise theut

Time Servicevl.0 Basic Time Service November 1996 14-45

14

14-46

parameter contains the gap between the hiewals. The exeption
CORBA::BAD_PARANME raised if theT 1O passed in is invalid.

Operation time

Returns a UTO in which the inaccuracy interval is equal to the time interval in trenfl
time value is the midpoint of the interval.

14.15.6 Time Service

TheTimeServicaenterface provdes opeations for obtaining the current time, consting
a UTO with specified values for each attribute, andttoasng a TIO with specified
upper and lower bounds.

module CosTime {
interface TimeService {
UTO universal_time()
raises(TimeUnavailable
)
UTO secure_universal_time()
raises(TimeUnavailable

)
UTO new_universal_time(
in TimeBase:: TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase::TdfT tdf
)
UTO uto_from_utc(
in TimeBase::UtcT utc

)

TIO new_interval(
in TimeBase:: TimeT lower,
in TimeBase::TimeT upper

Operation universal_time

Theuniversal_time operation returns the current timed an estimate of inaccure
in aUTO. It raise§imeUnavailable exceptions to indicate failure of anderlying
time provider. The time returned in the UTO by this operation is not guaranteed to
secure or trusted. If any time is available at all, that time isneduoy this operation.

CORBAservices: Common Object Services Specification

14

Operation secure_universal_time

Thesecure_universal_time operation returns the current time in a UTO only
the time can be guaranteed to have been obtaineteedn order to make such a
guarantee, the underlying Time Service must meet the criteria to be followed for s
time, presented in Appendix A, Implementation @lines. If there iany uncedinty at
all about meeting any aspect of these criteria, then this operation must return the
TimeUnavailable excepton. Thus, time olined through this operation can alwa
be trusted.

Operation new_universal_time

Thenew_universal_time operation is used for constructingew UTO. The
parameterpassed in are the time of typeneT andinaccuracy of type
InaccuracyT . This is the only way to create a UTO with an taaoy time from its
components. This is expected to be used for building UTOs that can be passed as
various time arguments to the Timer Event Service, for exa@@&BA::BAD_PARAN
is raised in the case of an aftrange peameter value foinaccuracy

Operation uto_from_utc

Theuto_from_utc operation is used to create a UTO given a time itJta& form.
This has a singlasn parameter UTC, which contains a time together imiiccuracy
andtdf . The UTO returned is initialized with the valifesm the UTC parameterhis
operation is used to convert a UTC received over the wire into a UTO.

Operation new_interval

The new_interval operation is used to construatew TIO. The pameters are
lower andupper , both of typeTimeT, holding the lower and upper bounds of the
interval. If the value of theower parameter is greatdran the value of thepper
parameteriten aCORBA::BAD_PARAMxception is raised.

14.16 Timer Event Service

ThemoduleCosTinmerEvent encapsates all dataype andnterface definitions pexining
to the Timer Event Service.

14.16.1 Object Model

The TimerEventSe&ice object manages Timer Event Handlers represented by Time
Event Handler oleicts ashown in Figure 14-4. Each Timer Event Handler is immut:
associated with a specific event channel at the time ofiggam. The Timer Event
Handler can be passed around as any other object. It can be used to program the
content of the events that will be generated on the channel associatedMighuiser of :
Timer Event Handler is expected to notify the Timer Event Service when it liagher
use for the handler.

Time Service:vl1.0 Timer Event Service November 1996 14-47

14

14-48

Timer Events Timer Event Handler Objects
-«
™~
S ()
A
N w» \ |
N \

. .

Timer Event Handler ..
Interface ~

set _timer ~

cancel_timer

set data

status

time_set

- Timer Event Service

Timer Event Service Interface

register
unregister
event_time

Figure 14-4 Object Model of Timer Event Service

14.16.2 Usage

In a typical usage scenario of this seeyithe user must firstaate an evenhannel of the
“push” type (se€ ORBA Service: Event Service Speaifon[Chapter 4]). The user mu
then register this event channel as the sink for events generated by the timer even
that is returned by the registration operatibime user can then uttee timer event handls
object to set up timer events as desired. The semiibeause events to be phed througt
the event channel within a reasonable interval around the requested event time. T
implementor of the service will docmt what the expected interval is for their
implementabn. The data aesiated with the event includes a éistamp of the actual
event time with the error envelope including the requested event time.

14.16.3 Data Types

All declarations pertaining to this service is encapsulatédeiCosTimerEvent module.

CORBAservices: Common Object Services Specification

14

module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic
h
enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger
k
struct TimerEventT{
TimeBase::UtcT utc;
any event_data;
k
b
Enum TimeType

TimeType is used to specify whether a timeTiERelative , TTAbsolute , or
TTPeriodic in operations for setting timer intervals for the event-triggering
mechanism. Th& TRelative value is used to specify that the time provideeliative
to current timeTTAbsolute is used to specify that the time provided is absolute,
TTPeriodic is used to specify that the time provided is a period (and hence a re
time) between successive event3 TPeriodic is used, then the same event contir
to be triggered repeatedly at the completion of the time interval gukaifitil the timer i
reset.

Enum EventStatus

EventStatus defines the state of EimerEventHandler object. The state
ESTimeSet means that the event has been set with a time in the future, and will |
triggered when that time arrivédsSTimeCleared means that the event is not set to
off, and the time wade&ared before the previously set triggering time arrived.
ESTriggered means that the event has already triggered and the appropriate de
been sent the event chanrieEFailedTrigger means that the event did trigger, b
data could not be delivered over the evarannel.

In case ofi TPeriodic events, the stati&STriggered never occurs. Upon
successful triggering of BT Periodic event, the status is setE&TimeSet .

Time Service:vl1.0 Timer Event Service November 1996 14-49

14

14-50

Type TmerEventT

This is the structure that is returned to the event requester by the time-driven ever
triggering mechanism. It has two fields. The first fieltt , contains the actual time at
which the event was triggered. This value is set in the time fialtcof The inaccuracy
fieldsinacclo andinacchi of utc are set to the difference between the request
event time and the actual event time.

The second fieldgvent_data , contains the data that the requester of the event h:
asked to be sent when the event was triggered.

14.16.4 Exceptions

Timer Event Service raises standard CORBA exceptions as speciidGnlDL for the
service. It does not have amgrgice-speific exceptions.

14.16.5 Timer Event Handler

Timer Event Handlers are created and managed by the Timer Event Service. A
TimerEventHandler object holds information about an event that is to be trigge!
a specific time and action that is to bketawhen the event is triggered. It provides
operations for settingesettingand canceling the timer event associated with it, as w
for changing the event data that is sent back as a paffiofeEventT structure on the
event channel upon the triggering of the event. The only thing that cannot be char
the event channel associated with that event handler. An attribute stated holds
the current status of the event handler.

module CosTimerEvent {
interface TimerEventHandler {

readonly attribute EventStatus status;

boolean time_set(
out CosTime:UTO uto

);

void set_timer(
in TimeType time_type,
in CosTime::UTO trigger_time

boolean cancel_timer();
void set_data(
inany event_data

Attribute status

status is a readonly attribute that reflects the current state of the
TimerEventHandler . See the défition ofEventStatus enumerator in Section
14.3.1, Object Model, for details.

CORBAservices: Common Object Services Specification

14

Operation time_set

ReturnsTRUEIf the time has been set for an event that is yet to be trigdeheGE
otherwise. In addition, it always returns the current value of the timer in the event |
as theout uto parameter.

Operation set_timer

Sets the triggering time for the event to the time specified byttheparametemnvhich
may containf TRelative , TTAbsolute orTTPeriodic time. Thetime_type
parameter spedéfs what type of time is contained in tht® parameter. The previous
trigger, if any, is canceled andhaw trigger is enabled Htie time specified #ibsolute
or at current time + time specifiedrélative . If arelative time value of zero is
specified (i.e. the time attribute ofc = OLL), then thedstrelative time that was
specified is reused. If nelative time was previously specifiedhen a
CORBA::BAD_PARAMXxception is raised. If periodic time is specified (timeype
== periodic), then the time ameter is intergted as aelative time and the time
trigger is set at the periodicity dedéid by the time (i.e. atirent time + time, current tin
+ 2 * time, etc.).

Operation cancel_timer

Cancels the trigger if one had been set and had not gone off yet. R&rlEs an even
is actually canced, FALSE otherwise.

Operation set_data

The data that will be passed back through the event channBinmeeEventT structure
for all future triggering of the event handler is se¢tent_data

14.16.6 Timer Event Service

The Timer Event Service provides oparas for registerin@nd unregitering events.

module CosTimerEvent {
interface TimerEventService {

TimerEventHandler register(
in CosEventComm::PushConsumer event_interface,
in any data

);

void unregister(

in TimerEventhandler timer_event_handler
);
CosTime::UTO event_time(

in TimerEventT timer_event
);

Time Service:vl1.0 Timer Event Service November 1996 14-51

14

14.17 Conformance

Operation register

Theregister operation registers the event handler specified bgdte and the
event_interface paramegrs. When the event handler is triggered, the data is
delivered using thpush operation (of th&@ushConsumenterface in Chapter £vent
Service Specification, Section 4.3, CosEventComm Module)fggekai the
event_interface parameterOnly thePush Models supported for timer event
delivery. Note that the event handler needs tprbeed with a triggering time using the
set_time operation of th@imerEventHandlemterface in order for an actual event
be triggered. At initiaiaton, the time in the handler is set to current time and its st
set toESTimeCleared , and no event is scheduled. RaiSERBA::NO_RESOURCE
exception if lack of resources causes it to fail tostegihe event handler.

Operation unregister

Theunregister operation otifiesthe service that thigmer_event_handler
will not be used any more and all resources associated with it can be destroyed.
Subsequent ainpts to use that object reference will r&@$@RBA::INV_OBJREF

Operation event_time

Theevent_time operation returns a UTO containing the time at which the event
contained in théimer_event structure was triggered.

Itis sufficient to provide just the Time Service (module TimeBsmECosTime) to clair
conformance with the Time Service object as described in Sd&itrb, Conformance
Points. To claim conformance with the Timer Event Service, both Time Serviceraar
Event Service (module CosTimerEvent) must be provided.

In order to conform to the Basic Time Service, the semantics of the
secure_universal_time operation must bersttly adhered to. In order to return
valid time from this operation, the vendor must providéaée menabout how theecurity
assurance criteria specified in Appendix Aplementabn Guidelines, are met in their
product. To conform to the object Time Service, in all other cases, i.e. when the s
assurance criteria are not satisfied,dbeure_universal_time operation must
raise theTimeUnavailable exception.

14-52 CORBAservices: Common Object Services Specification

14

Appendix A

Al

Introduction

Implementation Guidelines

This appendix contains advice toplemendrs. Appropriate documented handling of
criteria presented here is mandatory for conformance to the Basic Time Service
conformance point.

A.2 Ciriteriato Be Followed for Secure Time

The following criteria must be followed in order to assure that the time returned by
secure_universal_time operation is in fact securente. If these criteria are not
satisfactorily addressed in arRB, then it mustaturn theTimeUnavailable
exceptionupon invocation of theecure_universal_time operation of the
TimeServicénterface.

Administration of Time

Only administrators authorized by the system security policy may set thariar&pecify
the source of time for time synchreation purposs.

Protection of Operations and Mandatory Audits

The following types of operations must be protected against unauthorized iomocat
They must also be mandatorily audited:

® QOperations that set or reset the current time
® QOperations that designate a time source as authoritative

® QOperations that modify the accuracy of the time service or thertainty interval
of generated timestamps

Synchronization of Time

Synchronization of time must behsmitted over the network. This presents an
oppotunity for unauthorized tampering with time, which must be adequately guard
against. Time Service implementors must state how \tahees used for time
synchronization are protected while they are in transit over the network.

Time Service implementors mushatg whether or not their implementation is secure.
Implementors of secure time services must $tate their system is secured against
threats documented in Chapter 15,8&¢ Service Speci€aion. They must also
document how the issues mentioned in this section are addressed adequately.

Time Service:vl.0 Conformance November 1996 14-53

14

A.3 Proxies and Time Uerdainty

Caller

get time

14-54

The Time Skvice object returns a timest@, which contains both a tinaend an
associated uncertainty interv@hese values are considered valid at the instant they
returned by the Time Service object; however, if these values adelivered to thealler
immediately, they may nlonger be rehble bythe time the caller receives them.

In a CORBA system, the use of proxy objects can render time valueshblerély
introducing unpedictable and uncorrecteddaty between the time the time server ok
generates artiesamp and the time the taf’s time server mxy receives thermestamp
and returns it to the caller (see Figure 14-5 below).

Time=x;interval=3sec
(delivered at time x+y - y may lgreater than 3sec)

Time
Service
Proxy

Time=x;intervaE3sec
(delivered at time Xx)
) S

Figure 14-5 Time Service and Proxies
Implementors of the Time Service must prevent this problem froomidrg. Two
possible ways of preventing proxy latency are:

® Prohibit proxies of the time server object (i.e. require a Tdarvice
implementabn in every address space that will need to make Time Seraits.

®* Create a special time sery@oxy, which measures latency between the Time
Service object and the proxy, recalculates the time interval’s uncertainty, and
the interval value before returning the timestamp toctéer.

Other approaches probably exist; the two above are intended as examples only.

CORBAservices: Common Object Services Specification

14

Appendix B Consolidated OMG IDL

B.1

Introduction

B.2 Time Service

This appendix contains a summary of the OMG IDL defined in this document.

This section contains the OMG IDL d&tions pertaining to the Time Serviaghich is

encapsulated in the TimeBase and CosTime modules. The TimeBase mochilesdhe
basic data type dechktions that can be used by others without pulling in the Time Se
interfacesTheTime Servicénterface and associated enwansl exceptions are declarec
the CosTime module.

module TimeBase {

/l'interim definition of type ulonglong pending the
/[adoption of the type extension RFP.

struct ulonglong{
unsigned long low;

unsigned long

b

typedef ulonglong

typedef TimeT

typedef short

struct UtcT {
TimeT

unsigned long
unsigned short

TdfT

3

struct IntervalT {
TimeT
TimeT

|3

Time Service:v1.0

high;
TimeT,;
InaccuracyT;
TdfT;
time; /I 8 octets
inacclo; /I 4 octets
inacchi; /I 2 octets
tdf; /I 2 octets
lower_bound;

Conformance

/l total 16 octets.

upper_bound;

November 1996

14-55

14

14-56

module CosTime {

enum TimeComparison {
TCEqualTo,
TCLessThan,
TCGreaterThan,
TClIndeterminate

h

enum ComparisonType{
IntervalC,
MidC

3

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap
h

exception TimeUnavailable {};
interface TIO; /Il forward declaration

interface UTO {

readonly attribute TimeBase::TimeT time;
readonly attribute TimeBase::InaccuracyTinaccuracy;
readonly attribute TimeBase::TdfT tdf;
readonly attribute TimeBase::UtcT utc_time;

UTO absolute_time();
TimeComparison compare_time(

in ComparisonType comparison_type,
in uTo uto
)
TIO time_to_interval(
in uTo uto
);

TIO interval();
3

interface TIO {
readonly attribute TimeBase::IntervalT time_interval;
boolean spans (

in UTO time,
out TIO overlap
);
boolean overlaps (
in TIO interval,
out TIO overlap
);
UTO time ();

CORBAservices: Common Object Services Specification

14

interface TimeService {

B.3 Timer Event Service

This section contains all the OMG IDL d@tions pertaining to the Timer Event Servi

UTO universal_time()
raises(TimeUnavailable
);
UTO secure_universal_time()
raises(TimeUnavailable
);
UTO new_universal_time(
in TimeBase: TimeT
in TimeBase:InaccuracyT
in TimeBase:TdfT
);
UTO uto_from_utc(
in TimeBase:UtcT
);
TIO new_interval(
in TimeBase: TimeT
in TimeBase:: TimeT

time,
inaccuracy,
tdf

utc

lower,
upper

which are encapsated in the CosTimerEvent modulehis module depends on
TimeBase, CosTime, CosEventComm and CORBA.

module CosTimerEvent{
enum TimeType {

b

TTAbsolute,
TTRelative,
TTPeriodic

enum EventStatus {

h

ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger

struct TimerEventT {

Time Service:v1.0

TimeBase::UtcT
any

Conformance

utc;
event_data;

November 1996 14-57

14

interface TimerEventHandler {
readonly attribute EventStatus status;
boolean time_set(

out CosTime:UTO uto

)

void SetTimer(
in TimeType time_type,
in CosTime::UTO trigger_time

);
boolean cancel_timer();
void set_data(
in any event_data
)i
h

interface TimerEventService {
TimerEventHandler register(

in CosEventComm::PushConsumer event_interface,
in any data

)

void unregister(
in TimerEventHandler timer_event_handler

)
CosTime::UTO event_time(
in TimerEventT timer_event

)

14-58 CORBAservices: Common Object Services Specification

14

Appendix C Notefor Users

Cl

Introduction

This appendix contains notes covering the followingtenat
® Guarding against proxy-related inaccuraciesnmetcontained in UTO.

®* How to transmit time antime intervals across theetwork and recover the
corresponding UTO and TIO at the other end.

C.2 Proxies and Time

As explained in Appendix B, Consoltgal OMG IDL, ndiscriminateuse of remote
proxies to obtain value of current time can lead taioltg values of time in which the
inaccuracy is incorrect due to transmission yiel& onsequently, care should be takel
ensure that the local Time Service is used to obtain the value of current time.

C.3 Sending Time Aass the Mtwork

When passing small objetach as UTO and TIO from one location to another, one
should be aware that each time the passed object reference is used bipithe iec
causes an object invocation to take place across the network andesilyhieefficient.
Thepreferredwvay of dealing with this pllem is to pass smaibjects by value instead
by refeence. Ufortunately,due to various reasons, OMG IDL does not allow
specificaion of passing of object parameters by value. Consequently, the user has
explicitly take action to avoid this problem.

The nterfaces defined contain features that make #iptesfor theuser to explicitly sen
the value of time, and time interval across from one location to anothdreand t
reconstruct the apppoiate object at the receivirgnd. This is done dsllows:

®* The signature of the operation that passes time or time interval as a parame
across the network should specify thate is passed as the data type and not ¢
object reference. For arple, for passing universal time, a signature such as

void foo(in TimeBase::UtcT);
should be used instead of

void foo(in CosTime::UTO);

®* The invoker should use the data attribute of the UTO amthgarameter. In
pseudo-codesomethingsuch as the following should be done by the invoker:

CosTime:UTO uto = CosTime::universal_time();
foo(uto.data);

Time Service:vl.0 Conformance November 1996 14-59

14

14-60

* At the server end, the time data receicad be comerted to a UTO as follows:

foo(in TimeBase::UtcT utc) {
CosTime::UTO uto = CosTime::TimeService::uto_from_utc(utc);

3
It would be nice to say in thefinition of thefoo operation somethinguch as:
foo(in byvalue UTO uto);

and have theystemake care of doing esstgally what is described above. However, th
are difficult model-and paradigmalated $sues thateedresolution before such a cige
can be coherently proposed.

CORBAservices: Common Object Services Specification

14

Appendix D Extension Examples

D.1 Introduction

D.2 Object Model

The process of consittingthe contents of @imeBase::TimeT value can be quite
tedious, involving many 64-bit miplications and additions. The CORBA Facility for
Time Representation is going to provide user-friendly ways of cregitingT data and
displaying them. However, if one is planning to use only the Time Service, it will be
necessary to construct some rudimentary facility to BifteT things. This appendix
shows one way of doing this as an example of how to extend this service in usefu

Following the design pattern used in the rest of this serviceitiefi, the basic extensic
is to define &imel object corresponding to tAémeT structureand extend
TimeService to provide an operation foreatingsuch ohgcts. Thélimel object ha:
attributes corresponding to the user-friendly representation of tioeas year, month,
day, hour, minute, second, micegsnd, etc.

D.3 Summary of Hensions

D.4 Data Types

D.5 Exceptions

The additions are encapsulated in the FriendlyTime module. The changefo#iosvas
® Data type declaration for components of time.
® Definition of theTimelinterface, consisting mostly attributes.

® Definition of theFriendlyTime::TimeServicenterface derived from the
CosTime::Time&rvice interface, for adding the operation to cre@imel objects.

The data types are self-explanatory for the purposes of setting up this example. A
complete specificatioghould state more specific properties of each of these data t

module FriendlyTime {
typedef unsigned short YearT; // must be > 1581
typedef unsigned short MonthT; // 1 -12
typedef unsigned short DayT; //1-31
typedef unsigned short HourT; // 0 - 24
typedef unsigned short MinuteT; // 0 - 59
typedef unsigned short SecondT;// 0 - 59
typedef unsigned short MicrosecondT,;

No exceptions are defined in this module.

Time Service:vl.0 Conformance November 1996 14-61

14

D.6 Friendly Time Object

The time object provides a friendly interface to the various components usually us
representtime in normal human discouiidee set of attributes used in thisample are b
no means exhaustive, and is used only fositative puposes.

module FriendlyTime {
interface Timel {

attribute YearT year,
attribute MonthT month;
attribute DayT day;
attribute HourT hour;
attribute MinuteT minute;
attribute SecondT second;
attribute MicrosecondT microsecond,;
attribute TimeBase:: TimeT time;

void reset(); // set all attributes to zero

b

TheTimel object can be viewed as a repregagon conversion object. The general
technique for using it is to create one using theaijma
CosFriendlyTime::TimeService::time introduced in Section D.7, Extende
Time Service. This createsTamel object with time set to zero in it. Then theet
operation can be used to set the values of the various attributes. Finally, the attrib
can be used to get the correspondingeT value.

Conversely, one can set afiyneT value in the time attribute and then get the year,
month, etc. from the appropriate attributes.

Thereset operation facilitates reuse of time objects.

D.7 Extended Time Service

CosTime::TimeService is extended by deration toprovide an operation for
creatingTimel objects.

module FriendlyTime {
interface TimeService : CosTime:TimeService {
Timel time();

h

14-62 CORBAservices: Common Object Services Specification

14

D.8 Epilogue

The etension provided in this appendix makes the Time Service defined in the not
part of the document more easily usable. This leads one to wonder why this exten
not part of the main body of this submission. The reason is that there is no agreen
what the most useful representative components of time are, and the feeling that ir
this should be dealt with at the Common Facilities level in general. We still felt tha
would be usful to illustratehow easy it is to extend the basér\sce to provide this eas
of-use facility, thus thisppendix.

Time Service:vl.0 Conformance November 1996 14-63

14

Appendix E References
® X/Open DCE Time Service, Xfien CAE Pecification C30, November 1994,
® RFC 1119 Network ime Protocol, DMills, September 1989.

® Probabilistic Clock Synchronization, Flaviu Cristian, Digtitisd Computing (198¢
3: Pg. 146-158.

® OMG IDL type Extensions RFP, Andrew Watson Ed., ORGc. No. 95-1-35.

® CORBAServices: Common Obiject Service Specification, OM§g. No. 95-3-31,
March 31 1995 revisionChapter 4, Eent Service Specification, Sectidn?
Pg. 4-6.

® CORBAServices: Common Object Service Specification, OM§g. No. 96-10-1,
October 1996 revison, Chapter 15, Security Ser@ipecification.

14-64 CORBAservices: Common Object Services Specification

	Time Service Specification
	14.14 Introduction
	14.14.1 Time Service Requirements
	14.14.2 Representation of Time
	14.14.3 Source of Time
	14.14.4 General Object Model
	14.14.5 Conformance Points

	14.15 Basic Time Service
	14.15.1 Object Model
	14.15.2 Data Types
	Type ulonglong
	Type TimeT
	Type InaccuracyT
	Type TdfT
	Type UtcT
	Type IntervalT
	Enum ComparisonType
	Enum TimeComparison
	Enum OverlapType

	14.15.3 Exceptions
	TimeUnavailable

	14.15.4 Universal Time Object (UTO)
	Readonly attribute time
	Readonly attribute inaccuracy
	Readonly attribute tdf
	Readonly attribute utc_time
	Operation absolute_time
	Operation compare_time
	Operation time_to_interval
	Operation interval

	14.15.5 Time Interval Object (TIO)
	Readonly attribute time_interval
	Operation spans
	Operation overlaps
	Operation time

	14.15.6 Time Service
	Operation universal_time
	Operation secure_universal_time
	Operation new_universal_time
	Operation uto_from_utc
	Operation new_interval

	14.16 Timer Event Service
	14.16.1 Object Model
	14.16.2 Usage
	14.16.3 Data Types
	Enum TimeType
	Enum EventStatus
	Type TimerEventT

	14.16.4 Exceptions
	14.16.5 Timer Event Handler
	Attribute status
	Operation time_set
	Operation set_timer
	Operation cancel_timer
	Operation set_data

	14.16.6 Timer Event Service
	Operation register
	Operation unregister
	Operation event_time

	14.17 Conformance
	Administration of Time
	Protection of Operations and Mandatory Audits
	Synchronization of Time

