

 Security Service Specification 15
uch

in

d
15.1 Introduction to Security

15.1.1 Why Security?

Enterprises are increasingly dependent on their information systems to support their
business activities. Compromise of these systems either in terms of loss or inaccuracy
of information or competitors gaining access to it can be extremely costly to the
enterprise.

Security breaches, which compromise information systems, are becoming more
frequent and varied. These may often be due to accidental misuse of the system, s
as users accidentally gaining unauthorized access to information. Commercial as well
as government systems may also be subject to malicious attacks (for example, to ga
access to sensitive information).

Distributed systems are more vulnerable to security breaches than the more traditional
systems, as there are more places where the system can be attacked. Therefore,
security is needed in CORBA systems, which takes account of their inherent
distributed nature.

15.1.2 What Is Security?

Security protects an information system from unauthorized attempts to access
information or interfere with its operation. It is concerned with:

• Confidentiality . Information is disclosed only to users authorized to access it.

• Integrity . Information is modified only by users who have the right to do so, an
only in authorized ways. It is transferred only between intended users and in
intended ways.

• Accountability . Users are accountable for their security-relevant actions. A
particular case of this is non-repudiation, where responsibility for an action cannot
be denied.
CORBAservices: Common Object Services Specification 15-1

15

ain

ing

ot
• Availability . Use of the system cannot be maliciously denied to authorized users.

[Availability is often the responsibility of other OMA components such as archive/
restore services, or of underlying network or operating systems services. Therefore,
this specification does not respond to all availability requirements.]

Security is enforced using security functionality as described below. In addition, there
are constraints on how the system is constructed, for example, to ensure adequate
separation of objects so that they don't interfere with each other and separation of
users’ duties so that the damage an individual user can do is limited.

Security is pervasive, affecting many components of a system, including some that are
not directly security related. Also, specialist components, such as an authentication
service, provide services that are specific to security.

The assets of an enterprise need to be protected against perceived threats. The amount
of protection the enterprise is prepared to pay for depends on the value of the assets,
and the threats that need to be countered. The security policy needed to protect against
these threats may also depend on the environment and how vulnerable the assets are in
this environment. This document specifies a security architecture which can support a
variety of security policies to meet different needs.

15.1.3 Threats in a Distributed Object System

The CORBA security specification is designed to allow implementations to provide
protection against the following:

• An authorized user of the system gaining access to information that should be
hidden from him.

• A user masquerading as someone else, and so obtaining access to whatever that user
is authorized to do, so that actions are being attributed to the wrong person.
In a distributed system, a user may delegate his rights to other objects, so they can
act on his behalf. This adds the threat of rights being delegated too widely, ag
causing a threat of unauthorized access.

• Security controls being bypassed.

• Eavesdropping on a communication line, so gaining access to confidential data.

• Tampering with communication between objects - modifying, inserting and delet
items.

• Lack of accountability due, for example, to inadequate identification of users.

Note that some of this protection is dependent on the CORBA security implementation
being constructed in the right way according to assurance criteria (as specified in
Appendix E, Guidelines for a Trustworthy System), and using security mechanisms
with the right characteristics. Conformance to the CORBA security interfaces is n
enough to ensure that this protection is provided, just as conformance to the
transactional interfaces (for example) is not enough to guarantee transactional
semantics.
15-2 CORBAservices: Common Object Services Specification

15

For
e

 of
This specification does not attempt to counter all threats to a distributed system.
example, it does not include facilities to counter breaches caused by analyzing th
traffic between machines.

More information about security threats and countermeasures is given in Appendix E,
Guidelines for a Trustworthy System.

15.1.4 Summary of Key Security Features

The security functionality defined by this specification comprises:

• Identification and authentication of principals (human users and objects which
need to operate under their own rights) to verify they are who they claim to be.

• Authorization and access control - deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the principal
(such as role, groups, security clearance) and the control attributes of the target
object (stating which principals, or principals with which attributes) can access it.

• Security auditing to make users accountable for their security related actions. It is
normally the human user who should be accountable. Auditing mechanisms should
be able to identify the user correctly, even after a chain of calls through many
objects.

• Security of communication between objects, which is often over insecure lower
layer communications. This requires trust to be established between the client and
target, which may require authentication of clients to targets and authentication
of targets to clients. It also requires integrity protection and (optionally)
confidentiality protection of messages in transit between objects.

• Non-repudiation provides irrefutable evidence of actions such as proof of origin
data to the recipient, or proof of receipt of data to the sender to protect against
subsequent attempts to falsely deny the receiving or sending of the data.

• Administration of security information (for example, security policy) is also
needed.

This visible security functionality uses other security functionality such as
cryptography, which is used in support of many of the other functions but is not
visible outside the Security services. No direct use of cryptography by application
objects is proposed in this specification, nor are any cryptographic interfaces defined.

15.1.5 Goals

The security architecture and facilities described in this document were designed with
the following goals in mind. Not all implementations conforming to th is specification
will meet all these goals.
Security Service: v1.0 November 1996 15-3

15

have

t

r

Simplicity

The model should be simple to understand and administer. This means it should
few concepts and few objects.

Consistency

It should be possible to provide consistent security across the distributed object system
and associated legacy systems. This includes:

• Support of consistent policies for determining who should be able to access wha
sort of information within a security domain that includes heterogeneous systems.

• Fitting with existing permission mechanisms.

• Fitting with existing environments, for example, the ability to provide end-to-end
security even when using communication services, which are inherently insecure.

• Fitting with existing logons (so extra logons are not needed) and with existing use
databases (to reduce the user administration burden).

Scalability

It should be possible to provide security for a range of systems from small, local
systems to large intra- and interenterprise ones. For larger systems, it should be
possible to:

• Base access controls on the privilege attributes of users such as roles or groups
(rather than individual identities) to reduce administrative costs.

• Have a number of security domains, which enforce different security policy details
but support interworking between them subject to policy. (This specification
includes architecture, but not interfaces for such interdomain working.)

• Manage the distribution of cryptographic keys across large networks securely and
without undue administrative overheads.

Usability for End Users

Security should be available as transparently as possible, based on sensible,
configurable defaults.

Users should need to log on to the distributed system only once to access object
systems and other IT services.
15-4 CORBAservices: Common Object Services Specification

15

ingle

rity
f

Usability of Administrators

The model should be simple to understand and administer and should provide a s
system image. It should not be necessary for an administrator to specify controls for
individual objects or individual users of an object (except where security policy
demands this).

The system should provide good flexibility and fine granularity.

Usability for Implementors

Application developers must not need to be aware of security for their applications to
be protected. However, a developer who understands security should be able to protect
application specific actions.

Flexibility of Security Policy

The security policy required varies from enterprise to enterprise, so choices of secu
features should be allowed. An enterprise should need to pay only for the level o
protection it requires, reducing the level (and therefore costs) for less sensitive
information or when the system is less vulnerable to threats. The enterprise should be
able to balance the costs of providing security, including the resources required to
implement, administer and run the system, against the perceived potential losses
incurred as the result of security breaches.

Particular types of flexibility required include:

• Choice of access control policy. The interfaces defined here allows for a choice of
mechanisms, ACLs using a range of privilege attributes such as identities, roles,
groups, or labels. Details are hidden except from some administrative functions and
security aware applications that want to choose their own mechanisms.

• Choice of audit policy. The event types which are to be audited is configurable.
This makes it pssible to control the size of the audit trail, and therefore the
resources required to store and manage it.

• Support for security functionality profiles as defined either in national or
international government criteria such as TCSEC (the US Trusted Computer
Evaluation Security Criteria) and ITSEC (the European Information Technology
Security Evaluation Criteria), or by more commercial groups such as X/Open, is
required.

Independence of Security Technology

The CORBA security model should be security technology neutral. For example,
interfaces specified for security of client-target object invocations should hide the
security mechanisms used from both the application objects and ORB (except for some
security administrative functions). It should be possible to use either symmetric or
asymmetric key technology.
Security Service: v1.0 November 1996 15-5

15

.

y
It should be possible to implement CORBA security on a wide variety of existing
systems, reusing the security mechanisms and protocols native to those systems. For
example, the system should not require introduction of new cryptosystems, access
control repositories or user registries. If the system is installed in an environment that
also includes a procedural security regime, the composite system should not require
dual administration of the user or authorization policy information.

Application Portability

An application object should not need to be aware of security, so it can be ported to
environments that enforce different security policies and use different security
mechanisms. If an object enforces security itself, interfaces to Security services should
hide the particular security mechanisms used, for example, for authentication. The
application security policy (for example, to control access to its own functions and
state) should be consistent with the system security policy; for example, use should be
made of the same attributes for access control. Portability of applications enforcing
their own security depends on such attributes being available.

Interoperability

The security architecture should allow interoperability between objects including:

• Providing consistent security across a heterogeneous system where different
vendors may supply different ORBs.

• Interoperating between secure systems and those without security.

• Interoperating between domains of a distributed system where different domains
may support different security policies, for example, different access control
attributes.

• Interoperating across systems that support different security technology.

This specification includes an architecture that covers all of these, at least in outline,
but does not give specific interfaces and protocols for the last two. Interoperability
between domains is expected to have limited functionality in initial implementations,
and interoperability between security mechanisms is not expected to be supported

Performance

Security should not impose an unacceptable performance overhead, particularly for
normal commercial levels of security, although a greater performance overhead ma
occur as higher levels of security are implemented.

Object Orientation

The specification should be object-oriented:

• The security interfaces should be purely object-oriented.
15-6 CORBAservices: Common Object Services Specification

15

n be
n for

ired

ssed,
uated
• The model should use encapsulation to promote system integrity and to hide the
complexity of security mechanisms under simple interfaces.

• The model should allow polymorphic implementations of its objects based on
different underlying mechanisms.

Specific Security Goals

In addition to the security requirements listed above, there are more specific
requirements that need to be met in some systems, so the architecture must take into
account:

• Regulatory requirements. The security model must conform to national
government regulations on the use of security mechanisms (cryptography, for
example). There are several types of controls, for example, controls on what ca
exported and controls on deployment and use such as limitations on encryptio
confidentiality. Details vary between countries; examples of requirements to satisfy
a number of these are:

• Allowing use of different cryptographic algorithms.

• Keeping the amount of information encrypted for confidentiality to a minimum.

• Using identities for auditing which are anonymous, except to the auditor.

• Evaluation criteria for assurance. The security functionality and architecture must
allow implementations to conform to standard security evaluation criteria such as
TCSEC or ITSEC for security functionality and assurance (which gives the requ
level of confidence in the correctness and effectiveness of the security
functionality). It should allow assurance and security functionality classes or
profiles up to about the E3/B2 level. However, the specification also allows systems
with lower levels of security, where other requirements such as performance are
more important.

Security Architecture Goals

The security architecture should confine key security functionality to a trusted core,
which enforces the essential part of the security policy such as:

• Ensuring that object invocations are protected as required by the security policy.

• Requiring access control and auditing to be performed on object invocation.

• Preventing (groups of) application objects from interfering with each other or
gaining unauthorized access to each other’s state.

It must be possible to implement this trusted computing base so it cannot be bypa
and kept small to reduce the amount of code which needs to be trusted and eval
in more secure systems. This trusted core is distributed, so it must be possible for
different domains to have different levels of trust.
Security Service: v1.0 November 1996 15-7

15

n

ters

 in

ns
It should also be possible to construct systems where particular Security services can
be replaced by ones using different security mechanisms, or supporting different
security policies without changing the application objects or ORB when using them
(unless these objects have chosen to do this in a mechanism or policy-specific way).

The security architecture should be compatible with standard distributed security
frameworks such as those of POSIX and X/Open.

15.2 Introduction to the Specification

This document specifies how to provide security in stand-alone and distributed
CORBA-compliant systems. Introducing Object Security services does not in itself
provide security in an object environment; security is pervasive, so introducing it has
implications on the Object Request Broker and on most Object services, Common
Facilities and object implementations.

This document defines the core security facilities and interfaces required to ensure a
reasonable level of security of a CORBA-compliant system as a whole. It includes all
the security facilities required in the OS RFP3 and associated OMG White Paper o
Security, except where it is felt that this would be too big a step at this stage
(particularly when relevant standards are not in place). The specification includes:

• A security model and architecture which describe the security concepts and
framework, the security objects needed to implement them, and how this coun
security threats.

• The security facilities available to applications. This includes security provided
automatically by the system, protecting all applications, even those unaware of
security. The security facilities can also be used by security-aware applications
through OMG IDL interfaces defined in this specification.

• The security facilities and interfaces available for performing essential security
administration.

• The security facilities and interfaces available to ORB implementors, to be used
the production of secure ORBs.

• A description of how Security services affect the CORBA 2 ORB interoperability
protocols.

Items not included in this specification are:

• Support for interoperability between ORBs using different security mechanisms,
though interoperability of different ORBs using the same security mechanism is
supported.

• Audit analysis tools, though an audit service that both the system and applicatio
can use to record events is included.
15-8 CORBAservices: Common Object Services Specification

15

nd

r

 to
• Management interfaces other than essential security policy management interfaces,
as management services have been identified as a Common Facility. The security
policy management interfaces were viewed as a necessary feature of this
specification as it is not possible to deploy a secure system without defining and
managing its policy.

• Interfaces to allow applications to access cryptographic functions for use, for
example, in protecting their stored data. These interfaces are not provided for two
reasons: first, cryptography is generally a low-level primitive, used by Security
Service implementors but not needed by the majority of application developers; a
second, providing a cryptographic interface would require addressing a variety of
difficult regulatory and import/export issues.

• Specific security policy profiles.

The security model and architecture specified is extensible, to allow addition of furthe
security facilities later. Additional security facilities could be designed as ORB
extensions, Security Object services, or Common Facilities, as appropriate.

15.2.1 Conformance to CORBA Security

Conformance to CORBA security covers:

• Main security functionality . There are two possible levels:

• Level 1: This provides a first level of security for applications which are unaware
of security and for those having limited requirements to enforce their own
security in terms of access controls and auditing.

• Level 2: This provides more security facilities, and allows applications to control
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

• Security Functionality Options. These are functions expected to be required in
several ORBs, so are worth including in th is specification, but are not generally
required enough to form part of one of the main security functionality levels
specified above. There is only one such option in the specification.

• Non-repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

This specification is designed to allow security policies to be replaced. The
additional policies must also conform to this specification. This includes, for
example, new Access Policies.

• Security Replaceability. This specifies if and how the ORB fits with different
Security services. There are two possibilities:

• ORB Services replaceability: The ORB uses interceptor interfaces to call on
object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conforming
this does not include any significant security specific code, as that is in the
interceptors.
Security Service: v1.0 November 1996 15-9

15

ll

ed

rd
n

e

nly
• Security Service replaceability: The ORB may or may not use interceptors, but a
calls on Security services are made via the replaceability interfaces specified in
Section 15.7, Implementor’s Security Interfaces. These interfaces are positioned
so that the Security services do not need to understand how the ORB works (for
example, how the required policy objects are located), so they can be replac
independently of that knowledge.

If the ORB does not conform to one of these replaceability options, the standa
security policies defined in this specification cannot be replaced by others, nor ca
the implementation of the Security services. For example, it would not be possibl
to replace the standard access policy by a label-based policy if one of the
replaceability options is not supported. Note that some replaceability of the security
mechanism used for security associations may still be provided if the
implementation uses some standard generic interface for Security services such as
GSS-API.

An ORB that supports one or both of these replaceability options may be Security
Ready (i.e., supports no security functionality itself, but ready to have security
added) or may support security functionality Level 1 or Level 2.

• Secure Interoperability. Possibilities are:

• Secure Interoperability - Standard: An ORB conforming to standard secure
interoperability can generate and use security information in the IOR and can
send and receive secure requests to/from other ORBs using the GIOP/IIOP
protocol with the security (SECIOP) enhancements defined in Section 15.8,
Security and Interoperability, if they both use the same underlying security
technology.

• Standard plus DCE-CIOP Option: An ORB conforming to standard plus DCE-
CIOP secure interoperability supports all functionality required by standard
secure interoperability, and also provides secure interoperability (using the DCE
Security services) between ORBs using the DCE-CIOP protocol.

If the ORB does not conform to one of these, it does not use the GIOP security
enhancements, so will interoperate securely only in an environment-specific way.

The conformance statement required for a CORBA conformant security
implementation is defined in Appendix F, Conformance Statement. This includes a
table which can be ticked to show what the ORB conforms to.

15.2.2 Specification Structure

Normative and Non-normative Material

This specification contains normative and non-normative (explanatory) material. O
Sections 15.5 through 5.8 and Appendices A, B, D, and F are normative.
15-10 CORBAservices: Common Object Services Specification

15

d

e
Section Summaries

Section 15.1 and its subsections, which is an introduction to security, explains why
security is needed in distributed object systems, and enumerates the security
requirements for secure distributed object systems.

Section 15.2 and its subsections provide an introduction to and overview of the
specification.

Section 15.3 and its subsections describe the security reference model, which
provides the overall framework for CORBA security.

Section 15.4 and its subsections describe the security architecture, which underlies
this specification. This introduces different users’ views of security and gives an
outline of how secure CORBA-compliant systems are constructed. It also presents high
level models of the objects involved for different views, and describes how they are
used.

Section 15.5 and its subsections specify the security facilities and interfaces available
to application developers. Most functions can be implemented transparently to
application, though interfaces and additional functionality are available to security-
aware applications.

Section 15.6 and its subsections specify the administrator’s facilities and interfaces.
Only essential administration functions are defined by this specification; other
administrative capabilities are expected to be developed outside the Object Services
Program.

Section 15.7 and its subsections specify the Implementors interfaces used to build
secure CORBA systems. This section specifies the IDL interfaces of the security
objects available to ORB implementors, and describes the relationship and
dependencies of these objects on the ORB core and also on external Security services,
where these are used.

Section 15.8 and its subsections specify the architecture for interoperability in a
secure, distributed object system. It also specifies how security affects the CORBA 2
GIOP/IIOP and DCE ESIOP interoperability protocols.

Appendix A, Consolidated OMG IDL, contains the complete OMG IDL
specification, including the module structure, of the interfaces defined in th is
document, except for those that are CORBA core extensions and defined in Appendix
B, Summary of CORBA 2 Core Changes.

Appendix B, Summary of CORBA 2 Core Changes, describes the changes require
to the CORBA 2 core for security.

Appendix C, Relationship to Other Services, describes the relationship of the
Security services to other object services and to the common facilities.

Appendix D, Conformance Details, describes in more detail what conformance to th
security functionality conformance levels and the security implementation
conformance points requires.
Security Service: v1.0 November 1996 15-11

15

t

ation

licies.

may

 are,

.

Appendix E, Guidelines for a Trustworthy System, provides guidelines for
implementation of a trustworthy system, which provides protection against the security
threats in a distributed object system with the required assurance of its correctness and
effectiveness.

Appendix F, Conformance Statement, describes the conformance statement, which
must accompany a secure CORBA implementation and what th is implementation mus
contain.

Appendix G, Facilities Not in This Specification, outlines security facilities that have
not been included in this specification, but left for another phase of security
specifications.

Appendix H, Interoperability Guidelines, includes guidelines for defining security
mechanism tags in interoperable object references, and examples of the use of the
secure inter-ORB protocol SECIOP.

Appendix I, Glossary.

Proof of Concept

With the exception of Audit, Non-repudiation services, and the revised IIOP protocol
extensions for security, all the facilities in this specification have been prototyped by at
least one of the submitting companies.

The Non-repudiation Service interfaces are based upon the draft IETF Non-repudi
functionality as defined in the IDUP-GSS-API proposal.

15.3 Security Reference Model

This section describes a security reference model that provides the overall framework
for CORBA security. The purpose of the reference model is to show the flexibility for
defining many different security policies that can be used to achieve the appropriate
level of functionality and assurance. As such, the security reference model functions as
a guide to the security architecture.

15.3.1 Definition of a Security Reference Model

A reference model describes how and where a secure system enforces security po
Security policies define:

• Under what conditions active entities (such as clients acting on behalf of users)
access objects.

• What authentication of users and other principals is required to prove who they
what they can do, and whether they can delegate their rights. (A principal is a
human user or system entity that is registered in and is authentic to the system.)

• The security of communications between objects, including the trust required
between them and the quality of protection of the data in transit between them
15-12 CORBAservices: Common Object Services Specification

15

 but
• What accountability of which security-relevant activities is needed.

Figure 15-1 depicts the model for CORBA secure object systems. All object
invocations are mediated by appropriate security to enforce policies such as access
controls. These functions should be tamper-proof, always be invoked when required by
security policy, and function correctly.

Figure 15-1 A Security model for object systems

Many application objects are unaware of the security policy and how it is enforced.
The user can be authenticated prior to calling the application client and then security is
subsequently enforced automatically during object invocations. Some applications will
need to control or influence what policy is enforced by the system on their behalf,
will not do the enforcement themselves. Some applications will need to enforce their
own security, for example, to control access to their own data or audit their own
security-relevant activities.

The ORB cannot be completely unaware of security as this would result in insecure
systems. The ORB is assumed to at least handle requests correctly without violating
security policy, and to call Security services as required by security policy.

A security model normally defines a specific set of security policies. Because the
Object Management Architecture (OMA) must support a wide variety of different
security policies to meet the needs of many commercial markets, a single instance of a
security model is not appropriate for the OMA. Instead, a security reference model is
defined that provides a framework for building many different kinds of policies. The
security reference model is a meta-policy because it is intended to encompass all
possible security policies supported by the OMA.

The meta-policy defines the abstract interfaces that are provided by the security
architecture defined in this document. The model enumerates the security functions
that are defined as well as the information available. In this manner, the meta-policy

ORB

request request

Client
Target
Object

user

Security Implementation
enforcing security policies
Security Service: v1.0 November 1996 15-13

15

ither

al

n
bove.

l

lege
provides guidance on the permitted flexibility of the policy definition. The remaining
sections describe the elements of the meta-model. The description is kept deliberately
general at this point.

15.3.2 Principals and Their Security Attributes

An active entity must establish its rights to access objects in the system. It must e
be a principal, or a client acting on behalf of a principal.

A principal is a human user or system entity that is registered in and authentic to the
system. Initiating principals are the ones that initiate activities. An initiating princip
may be authenticated in a number of ways, the most common of which for human
users is a password. For systems entities, the authentication information such as its
long-term key, needs to be associated with the object.

An initiating principal has at least one, and possibly several identities (represented in
the system by attributes), which may be used as a means of:

• Making the principal accountable for its actions.

• Obtaining access to protected objects (though other privilege attributes of a
principal may also be required for access control).

• Identifying the originator of a message.

• Identifying who to charge for use of the system.

There may be several forms of identity used for different purposes. For example, the
audit identity may need to be anonymous to all but the audit administrator, but the
access identity may need to be understood so it can be specified as an entry in a
access control list. The same value of the identity can be used for several of the a

The principal may also have privilege attributes which can be used to decide what it
can access. A variety of privilege attributes may be available depending on access
policies (see Access Policies under Section 15.3.4). The privilege attributes, which a
principal is permitted to take, are known by the system. At any one time, the principal
may be using only a subset of these permitted attributes, either chosen by the principa
(or an application running on its behalf), or by using a default set specified for the
principal. There may be limits on the duration for which these privilege attributes are
valid and may be controls on where and when they can be used.

Security attributes may be acquired in three ways:

• Some attributes may be available, without authentication, to any principal. This
specification defines one such attribute, called Public.

• Some attributes are acquired through authentication; identity attributes and privi
attributes are in this category.

• Some attributes are acquired through delegation from other principals.
15-14 CORBAservices: Common Object Services Specification

15

get
When a user or other principal is authenticated, it normally supplies:

• Its security name.

• The authentication information needed by the particular authentication method
used.

• Requested privilege attributes (though the principal may change these later).

A principal’s security attributes are maintained in secure CORBA systems in a
credential as shown in Figure 15-2.

Figure 15-2 Credential containing security attributes

15.3.3 Secure Object Invocations

Most actions in the system are initiated by principals (or system entities acting on their
behalf). For example, after the user logs onto the system, the client invokes a tar
object via an ORB as shown in Figure 15-3.

Figure 15-3 Target Object via ORB

Credential - containing security attributes

unauthenticated
attributes
- Public

authenticated attributes

identity
attributes

privilege
attributes

ORB

request request

client-side security on invocations
security association, access control

message protection, audit

target-side security on invocations
security association, access control

message protection, audit

Client
Target
Object
Security Service: v1.0 November 1996 15-15

15

licy.

ch

ion.

 on

t,

t, a
ation

strict

r
ality
What security functionality is needed on object invocation depends on security po
It may include:

• Establishing a security association between the client and target object so that ea
has the required trust that the other is who it claims to be. In many implementations,
associations will normally persist for many interactions, not just a single invocat
(Within some environments, the trust may be achieved by local means, without use
of authentication and cryptography.)

• Deciding whether this client (acting for this principal) can perform this operation
this object according to the access control policy, as described in Section 15.3.4,
Access Control Module.

• Auditing this invocation if required, as described in Section 15.3.5, Auditing.

• Protecting the request and response from modification or eavesdropping in transi
according to the specified quality of protection.

For all these actions, security functions may be needed at the client and target object
sides of the invocation. For example, protecting a request may require integrity sealing
of the message before sending it, and checking the seal at the target.

The association is asymmetric. If the target object invokes operations on the clien
new association is formed. It is possible for a client to have more than one associ
with the same target object. The application is unaware of security associations; it sees
only requests and responses.

A secure system can also invoke objects in an insecure system. In this case, it will not
be possible to establish trust between the systems, and the client system may re
the requests passed to the target.

Establishing Security Associations

The client and target object establish a secure association by:

• Establishing trust in one another’s’ identities, which may involve the target
authenticating the client’s security attributes and/or the client’s authenticating the
target’s security name.

• Making the client’s credentials (including its security attributes) available to the
target object.

• Establishing the security context which will be used when protecting requests and
responses in transit between client and target object.

The way of establishing a security association between client and object depends on
the security policies governing both the client and target object, whether they are in the
same domain, and the underlying security mechanism, for example, the type of
authentication and key distribution used.

The security policies define the choice of security association options such as whethe
one-way or mutual authentication is wanted between client and target, and the qu
of protection of data in transit between them.
15-16 CORBAservices: Common Object Services Specification

15

e

he

d.
The security policy is enforced using underlying security mechanisms. This model
allows a range of such mechanisms for security associations. For example, the
mechanism may use symmetric (secret) key technology, asymmetric (public) key
technology, or a combination of these. The Key Distribution services, Certification
Authorities and other underlying Security services, which may be used, are not visibl
in the model.

Message Protection

Requests and responses can be protected for:

• Integrity. This prevents undetected, unauthorized modification of messages and may
detect whether messages are received in the correct order and if any messages have
been added or removed.

• Confidentiality. This ensures that the messages have not been read in transit.

A security association may in some environments be able to provide integrity and
confidentiality protection through mechanisms inherent in the environment, and so
avoid having to use encryption.

The security policy specifies the strength of integrity and confidentiality protection
needed. Achieving this integrity protection may require sealing the message and
including sequence numbers. Confidentiality protection may require encrypting it.

This security reference model allows a choice of cryptographic algorithms for
providing this protection.

Performing a request on a remote object using an ORB and associated services, such as
TP, might cause a message to be constructed to send to the target as shown in t
following diagram. At the target, this process is reversed, and results in the ORB
invoking the operation on the target passing it the parameters sent by the client. The
reply returned follows a similar path.

Message protection could be provided at different points in the message handling
functionality of an ORB, which would affect how much of the message is protecte
Security Service: v1.0 November 1996 15-17

15

ay
Figure 15-4 Message protection

Messages are protected according to the quality of protection required which may be
for integrity, but may also be for confidentiality. Both integrity and confidentiality
protection are applied to the same part of the message. The request and response m
be protected differently.

The CORBA security model can protect messages even when there is no security in the
underlying communications software. In this case, the message protected by CORBA
security includes the target id, operation and parameters, and also any service
information included in the message.

In some systems, protection may be provided below the ORB message layer (for
example, using the secure sockets layer or even more physical means). In this case, an
ORB that knows such security is available will not need to provide its own message
protection.

Client

operation (parameters)
on target object reference

ORB/OA
parameters

operation parameterstarget id

operation parameters

operation parameterstarget id
service

info

operation parameterstarget id
service

info
host

address

always protected if
any message protection is done

always protected, so parameters can
be used only in specified operation

protected, so operation is on right object
(means message must be back in clear
before being routed to target object)

Target
Object

parameters

operation

service info (e.g. GIOP service contexts)
added by services such as TP.
Service info should be protected.

the host address cannot be encrypted
as this would prevent routing to the
correct port

message header and protected message
15-18 CORBAservices: Common Object Services Specification

15

e

t

Note that as messages will normally be integrity protected, this will limit the type of
interoperability bridge that can be used. Any bridge that changes the protected part of
the message after it has been integrity (or confidentiality) protected will cause the
security check at the target to fail unless a suitable security gateway is used to
reprotect the message.

15.3.4 Access Control Model

The model depicted in Figure 15-5 provides a simple framework for many different
access control security policies. This framework consists of two layers: an object
invocation access policy, which is enforced automatically on object invocation, and an
application access policy, which the application itself enforces.

The object invocation access policy governs whether th is client, acting on behalf of th
current principal, can invoke the requested operation on this target object. This policy
is enforced by the ORB and the Security services it uses, for all applications, whether
they are aware of security or not.

The application object access policy is enforced within the client and/or the objec
implementation. The policy can be concerned with controlling access to its internal
functions and data, or applying further controls on object invocation.

All instantiations of the security reference model place at least some trust in the ORB
to enforce the access policy. Even in architectures where the access control mediation
occurs solely within the client and target objects, the ORB is still required to validate
the request parameters and ensure message delivery as described above.

Figure 15-5 Access control model

ORB

request
request

client application
access decisions

target application
access decisions

client-side invocation access decisions target-side invocation access decisions

Client
Target
Object
Security Service: v1.0 November 1996 15-19

15

is.

, and

The access control model shows the client invoking an operation as specified in the
request, and also shows application access decisions, which can be independent of th

Object Invocation Access Policy

A client may invoke an operation on the target object as specified in the request only if
this is allowed by the object invocation access policy. This is enforced by Access
Decision Functions.

Client side access decision functions define the conditions that allow the client to
invoke the specified operation on the target object. Target side access decision
functions define the conditions that allow the object to accept the invocation. One or
both of these may not exist. Some systems may support target side controls only
even then, only use them for some of the objects.

The access policy for object invocation is built into these access decision functions,
which just provide a yes/no answer when asked to check if access is allowed. A range
of access policies can be supported as described in the Access Policies section.

The access decision function used on object invocation to decide whether access is
allowed bases its decision on:

• The current privilege attributes of the principal (see Section 15.3.2, Principles and
Their Security Attributes). Note that these can include capabilities.

• Any controls on these attributes, for example, the time for which they are valid.

• The operation to be performed.

• The control attributes of the target object (see the Access Policies section).

The first three of these functions are available as part of the environment of the object
invocation.

The control attributes for the target object are associated with the object when it is
created (though may be changed later, if security policy permits).

Application Access Policy

Applications may also enforce access policies. An application access policy may
control who can invoke the application, extending the object invocation access policy
enforced by the ORB, and taking into account other items such as the value of the
parameters, or the data being accessed. As for standard object invocation access
controls, there may be client and target object access decision functions.

An application object may also control access to finer-grained functions and data
encapsulated within it, which are not separate objects.

In either case, the application will need its own access decision function to enforce the
required access control rules.
15-20 CORBAservices: Common Object Services Specification

15

and

d

nd

he
Access Policies

The general access control model described here can be used to support a wide range
of access policies including Access Control List schemes, label-based schemes,
capability schemes. This section describes the overall authorization model used for all
types of access control.

The authorization model is based on the use of access decision functions, which decide
whether an operation or function can be performed by applying access control rules
using:

• Privilege attributes of the initiator (called initiator Access Control Information or
ACI in ISO/IEC 10181-3).

• Control attributes of the target (sometimes known as the target ACI).

• Other relevant information about the action such as the operation and data, an
about the context, such as the time.

Figure 15-6 Authorization model

The privilege and control attributes are the main variables used to control access, a
so this section focuses on these.

Privi lege Attributes

A principal can have a variety of privilege attributes used for access control such as:

• The principal’s access identity.

• Roles, which are often related to the user’s job functions.

• Groups, which normally reflect organizational affiliations. A group could reflect t
organizational hierarchy, for example, the department to which the user belongs, or
a cross-organizational group, which has a common interest.

• Security clearance.

• Capabilities, which identify the target objects (or groups of objects), and their
operations on which the principal is allowed.

• Other privileges that an enterprise defines as being useful for controlling access.

yes/no

access allowed? Access decision function

enforcing
access control rules

Initiator

privilege attributes

Target

control attributes

Action and
context info
Security Service: v1.0 November 1996 15-21

15

ns
based
y.

an

.

nt

ss of

In an object system, which may be large, using individual identities for access control
may be difficult if many sets of control attributes need to be changed when a user joi
or leaves the organization or changes his job. Where possible, controls should be
on some grouping construct (such as a role or organizational group) for scalabilit

The security reference model does not dictate the particular privilege attributes, that
any compliant secure system must support; however, this specification does define a
standard, extensible set of privilege attribute types.

Note: in this specification, privilege is often used as shorthand for privilege attribute.

Control Attributes

Control attributes are associated with the target. Examples are:

• Access control lists, which identify permitted users by name or other privilege
attributes, or

• Information used in label-based schemes, such as the classification of an object,
which identifies (according to rules) the security clearance of principals allowed to
perform particular operations on it.

An object system may have many objects, each of which may have many operations,
so it may not be practical to associate control attributes with each operation on each
object. This would impose too large an overhead on the administration of the system,
and the amount of storage needed to hold the information.

Control attributes are therefore expected to be shared by categories of objects,
particularly objects of the same type in the same security policy domain. However,
they could be associated with an individual object.

Rights

Control attributes may be associated with a set of operations on an object, rather th
each individual operation. Therefore, a user with specified privileges may have rights
to invoke a specific set of operations.

It is possible to define what rights give access to what operations.

Access Policies Supported by This Specification

The model allows a range of access policies using control attributes, which can group
subjects (using privileges), objects (using domains), and operations (using rights)

This specification defines a particular access policy type and associated manageme
interface as part of security functionality Level 2. This is defined in
DomainAccessPolicy Interface under Section 15.6.4, Access Policies.

Regardless of the access control policy management interface used (i.e. regardle
whether the particular Level 2 access policy interfaces or other interfaces not defined
in th is specification are used), all access decisions on object invocation are made via a
standard access decision interface, so the access control policy can be changed either
15-22 CORBAservices: Common Object Services Specification

15

d

ds.
by administrative action on, or substitution of, the objects that define the policy an
implement the access decision. However, different management interfaces will
ordinarily be required for management of different types of control attributes.

15.3.5 Auditing

Security auditing assists in the detection of actual or attempted security violations.
This is achieved by recording details of security relevant events in the system.
(Depending on implementation, recording an audit event may involve writing event
information to a log, generating an alert or alarm, or some other action.) Audit policies
specify which events should be audited under what circumstances.

There are two categories of audit policies: system audit policies, which control what
events are recorded as the result of relevant system activities, and application audit
policies, which control which events are audited by applications.

System events, which should be auditable, include events such as authentication of
principals, changing privileges, success or failure of object invocation, and the
administration of security policies. These system events may occur in the ORB or in
security or other services, and these components generate the required audit recor

Application events may be security relevant, and therefore may need auditing
depending on the application. For example, an application that handles money transfers
might audit who transferred how much money to whom.

Events can be categorized by event family (e.g. system, financial application service),
and event type within that family. For example, there are defined event types for
system events.
Security Service: v1.0 November 1996 15-23

15

t

ed
Figure 15-7 Auditing model

Potentially a very large number of events could be recorded; audit policies are used to
restrict what types of events to audit under which circumstances. System audit policies
are enforced automatically for all applications, even security unaware ones.

The invocation audit policy is enforced at a point in the ORB where the target objec
and operation for the request are known, and the reply status is known. The model
supports audit policies where the decision on whether to audit an event can be based
on the event type (such as method invocation complete, access control check done,
security association made), the success or failure of this event (failures only may be
audited), the object and the operation being invoked, the audit id of principal on whose
behalf the invocation is being done, and even the time of day.

This specification defines a particular invocation audit policy type and associated
management interfaces as part of functionality Level 2. This allows decisions on
whether to audit an invocation to depend on the object type, operation, event type, and
success or failure of this.

The specification also defines a particular audit policy type for application auditing,
which allows decisions on whether to audit the event to be based on the event type and
its success or failure.

Events can either be recorded on audit trails for later analysis or, if they are deemed to
be serious, alarms can be sent to an administrator. Application audit trails may be
separate from system ones. This specification includes how audit records are generat

ORB

request request

client application
audit

target application
audit

security association,
invocation access control etc

security association,
invocation access controls etc

Client
Target
Object

Audit Audit
15-24 CORBAservices: Common Object Services Specification

15

l,

 on

d
and then written to audit channels, but not how these records are filt ered later, how
audit trails and channels are kept secure, and how the records can be collected and
analyzed.

15.3.6 Delegation

In an object system, a client calls on an object to perform an operation, but this object
will often not complete the operation itself, so will call on other objects to do so. This
will usually result in a chain of calls on other objects as shown in Figure 15-8.

Figure 15-8 Delegation model

This complicates the access model described in Section 15.3.4, Access Control Mode
as access decisions may need to be made at each point in the chain. Different
authorization schemes require different access control information to be made
available to check which objects in the chain can invoke which further operations
other objects.

In privilege delegation, the initiating principal’s access control information (i.e. its
security attributes) may be delegated to further objects in the chain to give the
recipient the rights to act on its behalf under specified circumstances.

Another authorization scheme is reference restriction where the rights to use an
object under specified circumstances are passed as part of the object reference to the
recipient. Reference restriction is not included in th is specification, though describe
as a potential future security facility in Appendix G, Facilities Not in This
Specification.

Target
Object

Target
Object

Target
Object

Client
Client

Target

Client

Target

Client

Target
Security Service: v1.0 November 1996 15-25

15

ject

b

gated

The
te
to

erify
The following terms are used in describing delegation options.

• Initiator : the first client in a call chain.

• Final target: the final recipient in a call chain.

• Intermediate: an object in a call chain that is neither the initiator nor the final
target.

• Immediate invoker: an object or client from which an object receives a call.

Privilege Delegation

In many cases, objects perform operations on behalf of the initiator of a chain of ob
invocations. In such cases, the initiator needs to delegate some or all of its privilege
attributes to the intermediate objects which will act on its behalf.

Some intermediates in a chain may act on their own behalf (even if they have received
delegated credentials) and perform operations on other objects using their own
privileges. Such intermediates must be (or represent) principals so that they can otain
their own privileges to be transmitted to objects they invoke.

Some intermediates may need to use their own privileges at some times, and dele
privileges at other times.

A target may wish to restrict which of its operations an invoker can perform. This
restriction may be based on the identity or other privilege attributes of the initiator.
target may also want to verify that the request comes from an authorized intermedia
(or even check the whole chain of intermediates). In these cases, it must be possible
distinguish the privileges of the initiator and those of each intermediate.

Some restrictions may or may not be placed by the initiator about the set of objects
which may be involved in a delegation chain.

When no restrictions are placed and only the initiator's privileges are being used, this
case is called impersonation.

When restrictions are placed, additional information is used so that objects can v
whether or not their characteristics (e.g. their name or a part of their name) satisfy the
restrictions. In order to allow clients or initiating objects to specify th is additional
information, objects can be (securely) associated with these characteristics (e.g. their
name).
15-26 CORBAservices: Common Object Services Specification

15

ne

Overview of Delegation Schemes

There are potentially a large number of delegation models. They can all be captured
using the following sentence.

An intermediate invoking a target object may perform:

When delegating privileges through a chain of objects, the caller does not know which
objects will be used in completing the request, and therefore cannot easily restrict
privileges to particular methods on objects. It generally relies on the target’s control
attributes to do this.

A privilege delegation scheme may provide any of the other controls, though no o
scheme is likely to provide all of them.

Facilities Potentially Available

Different facilities are available to intermediates (or clients) before initiating object
invocations and to intermediate or target objects accepting an invocation.

Controls Used Before Initiating Object Invocations

A client or intermediate can specify restrictions on the use of the access control
information provided to another intermediate or to a target object. Interfaces may allow
support of the following facilities.

• Control of privileges delegated. An initiator (or an intermediate) can restrict which
of its own privileges are delegated.

1. one method on one object

2. several methods on one
object

3. any method on a. one object
b. some object(s)
c. any object

(target restrictions)
(no target restrictions)

 using (no privileges
(a subset of the initiator’s privileges
(both the initiator’s and its own privileges
(received privileges and its own privileges

(simple delegation)
(composite delegation)
(combined or traced
delegation, depending on
whether privileges are
combined or concatenated)

 during some validity period (part of time constraints)

 for a specified number of invocations (part of time constraints)
Security Service: v1.0 November 1996 15-27

15

e

et
dress

.

 the
• Control of target restrictions. An initiator (or an intermediate) can restrict where
individual privileges can be used. This restriction may apply to particular objects, or
some grouping of objects. It may restrict the target objects, which may use som
privileges for access control, and the intermediates, which can also delegate them.

Control of privileges used. As previously described, there are several options for
deciding which privileges an intermediate object may use when invoking another
object. Note that delegated privileges are not actually delegated to a single target
object; they are available to any object running under the same identity as the targ
object in the target object’s address space (since any objects in the target’s ad
space may retrieve the inbound Credentials and any object sharing the target’s
identity may successfully become the caller’s delegate).

The specified interfaces allow the following.

• no delegation: the client permits the intermediate to use its privileges for access
control decisions, but does not permit them to be delegated, so the intermediate
object cannot use these privileges when invoking the next object in the chain

Figure 15-9 No delegation

• simple delegation: the client permits the intermediate to assume its privileges,
both using them for access control decisions and delegating them to other others.
The target object receives only the client's privileges, and does not know who
intermediate is (when used without target restrictions, this is known as
impersonation).

Figure 15-10Simple delegation

Client
Intermediate

Object
Target
Object

client credentials intermediate credentials

Client
Intermediate

Object
Target
Object

client credentials client credentials
15-28 CORBAservices: Common Object Services Specification

15

uish

e of

they
• composite delegation: the client permits the intermediate object to use its
credentials and delegate them. Both the client privileges and the immediate
invoker’s privileges are passed to the target, so that both the client privileges and
the privileges from the immediate source of the invocation can be individually
checked.

Figure 15-11Composi te delegation

• combined privileges delegation: the client permits the intermediate object to use
its privileges. The intermediate converts these privileges into credentials and
combines them with its own credentials. In that case, the target cannot disting
which privileges come from which principal.

Figure 15-12Combined privileges delegation

• traced delegation: the client permits the intermediate object to use its privileges
and delegate them. However, at each intermediate object in the chain, the
intermediate's privileges are added to privileges propagated to provide a trac
the delegates in the chain.

Figure 15-13Traced delegation

A client application may not see the difference between the last three options, it
may just see them all as some form of “composite” delegation. However, the target
object can obtain the credentials of intermediates and the initiator separately if
have been transmitted separately.

• Control of time restrictions. Time periods can be applied to restrict the duration of
the delegation. In some implementations, the number of invocations may also be
controllable.

Client
Intermediate

Object
Target
Object

client credentials client & intermediate’s
credentials

Client
Intermediate

Object
Target
Object

client
credentials

client & intermediate’s privileges
in single credentials

Client
Target
Object

client credentials chain of credentials

intermediate
objects
Security Service: v1.0 November 1996 15-29

15

nly
re

he

one

f
Facilities Used on Accepting Object Invocations

An intermediate or a target object should be able to:

• Extract received privileges and use them in local access control decisions.
Often only the privileges of the initiator are relevant. When this is not the case, o
the privileges of the immediate invoker may be relevant. In some cases, both a
relevant. Finally, the most complex authorization scheme may require the full
tracing of the initiator and all the intermediates involved in a call chain.
In addition, some targets may need to obtain the miscellaneous security attributes
(such as audit identity, charging identity) and the associated target restrictions and
time constraints.

• Extract credentials (when permitted) for use when making the next call as a
delegate.

• Build (when permitted) new credentials from the received access control
information with changed (normally reduced) privileges and/or different target
restrictions or time constraints.

Specifying Delegation Options

The administrator may specify which delegation option should be used by default
when an object acts as an intermediate. For example, he may specify whether a
particular intermediate object normally delegates the initiating principal's privileges or
uses its own, or both if needed. Also, the Access policy used at the target could permit
or deny access based on more than one of the privileges it received (e.g. the initiator's
and the intermediate's). This allows many applications to be unaware of the delegation
options in use, as many of the controls for delegation are done automatically by t
ORB when the intermediate invokes the next object in the chain.

However, a security-aware intermediate object may itself specify what delegation it
wants. For example, it may choose to use the original principal's privileges when
invoking some objects and its own when invoking others.

Technology Support for Delegation Options

Different security technologies support different delegation models. Currently, no
security technology supports all the options described above.

In Security Functionality Level 1, all delegation is done automatically in the ORB
according to delegation policy, so the objects in the chain cannot change the mode o
delegation used, or restrict privileges passed and where or when they are used.

Of the options on which credentials are passed, only no delegation and impersonation
(simple delegation without any target restrictions) need to be supported.
15-30 CORBAservices: Common Object Services Specification

15

d,

t

h

In Security Functionality Level 2, applications may use any of the interfaces specifie
but may get a NotSupported exception returned. Note that these interfaces do not allow
the application to set controls such as target restrictions. Appendix G, Facilities Not in
This Specification, includes potential future advanced delegation facilities, which
include such controls.

15.3.7 Non-repudiation

Non-repudiation services provide facilities to make users and other principals
accountable for their actions. Irrefutable evidence about a claimed event or action is
generated and can be checked to provide proof of the action. It can also be stored in
order to resolve later disputes about the occurrence or the nonoccurrence of the even
or action.

The non-repudiation services specified here are under the control of the applications
rather than used automatically on object invocation, so are only available to
applications aware of this service.

Depending on the non-repudiation policy in effect, one or more pieces of evidence may
be required to prove that some kind of event or action has taken place. The number and
the characteristics of each depends upon that non-repudiation policy. As an example,
evidence containing a timestamp from a trusted authority may be required to validate
evidence.

There are many types of non-repudiation evidence, depending on the characteristics of
the event or action. In order to distinguish between them, the types are defined and are
part of the evidence. Conceptually, evidence may thus be seen as being composed of
the following components:

• The non-repudiation policy (or policies) applicable to the evidence,

• The type of action or event,

• The parameters related to the type of action or event.

A date and time are also part of the evidence. This shows when an action or event took
place and allows recovery from some situations such as the compromise of a key.

The evidence includes some proof of the origin of data, so a recipient can check were
it came from. It also allows the integrity of the data to be verified.

Facilities included here allow an application to deal with evidence of a variety of types
of actions or events. Two common types of non-repudiation evidence are the evidence
of proof of creation of a message and proof of receipt of a message.

Non-repudiation of Creation protects against an originator's false denial of having
created a message. It is achieved at the originator by constructing and generating
evidence of Proof of Creation using non-repudiation services. This evidence may be
sent to a recipient to verify who created the message, and can be stored and then made
available for subsequent evidence retrieval.
Security Service: v1.0 November 1996 15-31

15

on-

 of

he

.
Non-repudiation of Receipt protects against a recipient's false denial of having
received a message (without necessarily seeing its content). It is achieved at the
recipient by constructing and generating evidence of Proof of Receipt using the n
repudiation services. This is shown in Figure 15-14.

Figure 15-14Proof of receipt

One or more Trusted Third Parties need to be involved, depending on the choice
mechanism or policy.

Non-repudiation services may include:

• Facilities to generate evidence of an action and verify that evidence later.

• A delivery authority which delivers the evidence (often with the message) from t
originator to the recipient. Such a delivery authority may generate proof of origin
(to protect against a sender's false denial of sending a message or its content) and
proof of delivery (to protect against a recipient's false denial of having received a
message or its content). Non-repudiation of Origin and Delivery are defined in ISO
7498-2.

• An evidence storage and retrieval facility used when a dispute arises. An
adjudicator service may be required to settle the dispute, using the stored evidence

Figure 15-15Non-repudiation services

Originator Recipient

evidence ofcreation
(plus message)

evidence of receipt

Object
A

Object
B

Non-Repudiation Services

Evidence
Generation

and
Veri fication

Evidence
Storage

and
Retrieval

Del ivery
Authori ty

Adjudicator

Service Req/Rsp

Service Req/Rsp

Dispute/Judgement
15-32 CORBAservices: Common Object Services Specification

15

 be

 to be
The non-repudiation services illustrated in Figure 15-15 are based on the ISO non-
repudiation model; as the shaded box in the diagram indicates, this specification
supports only Evidence Generation and Verification, which provides:

• Generation of evidence of an action.

• Verification of evidence of an action.

• Generation of a request for evidence related to a message sent to a recipient.

• Receipt of a request for evidence related to a message received.

• Analysis of details of evidence of an action.

• Collection of the evidence required for long term storage. In th is case, more
complete evidence may be needed.

The Non-repudiation Service allows an application to deal with a variety of types of
evidence, not just the non-repudiation of creation and receipt previously described.

No Non-repudiation Evidence Delivery Authority is defined by this specification; it is
anticipated that vendors will want to customize these authorities (which are responsible
for delivering messages and related non-repudiation evidence securely in accordance
with specific non-repudiation policies) to meet specialized market requirements. Also,
no evidence storage and retrieval services are specified, as other object services can
used for th is.

Note that th is specification does not provide evidence that a request on an objectwas
successfully carried out; it does not require use of non-repudiation within the ORB.

15.3.8 Domains

A domain (as specified in the ORB Interoperability Architecture) is a distinct scope,
within which certain common characteristics are exhibited and common rules
observed. There are several types of domain relevant to security:

• Security policy domain. The scope over which a security policy is enforced. There
may be subdomains for different aspects of this policy.

• Security environment domain. The scope over which the enforcement of a policy
may be achieved by some means local to that environment, so does not need
enforced within the object system. For example, messages will often not need
cryptographic protection to achieve the required integrity when being transferred
between objects in the same machine.

• Security technology domain. Where common security mechanisms are used to
enforce the policies.

These can be independent of the ORB technology domains.
Security Service: v1.0 November 1996 15-33

15

Security Policy Domains

A security policy domain is a set of objects to which a security policy applies for a
set of security related activities and is administered by a security authority. (Note that
this is often just called a security domain.) The objects are the domain members. The
policy represents the rules and criteria that constrain activities of the objects to make
the domain secure. Security policies concern access control, authentication, secure
object invocation, delegation and accountability. An access control policy applies to
the security policies themselves, controlling who may administer security-relevant
policy information.

Figure 15-16Security policy domains

Security policy domains provide leverage for dealing with the problem of scale in
security policy management (by allowing application of policy at a domain granularity
rather than at an individual object instance granularity).

Security policy domains permit application of security policy information to security-
unaware objects without requiring changes to their interfaces (by associating the
security policy management interfaces with the domain rather than with the objects to
which policy is applied).

Domains provide a mechanism for delimiting the scope of administrators’ authorities.

Policy Domain Hierarchies

A security authority must be identifiable and responsible for defining the policies to be
applied to the domain, but may delegate that responsibility to a number of
subauthorities, forming subdomains where the subordinate authorities’ policies are
applied.

Subdomains may reflect organizational subdivisions or the division of responsibility
for different aspects of security. Typically, organization-related domains will form the
higher-level superstructure, with the separation of different aspects of security forming
a lower-level structure.

Securi ty Authority

securi ty
policy

management
15-34 CORBAservices: Common Object Services Specification

15

For example, there could be:

• An enterprise domain, which sets the security policy across the enterprise.

• Subdomains for different departments, each consistent with the enterprise policy but
each specifying more specific security policies appropriate to that department.

With each department, authority may be further devolved:

• Authority for auditing could be the preserve of an audit administrator.

• Control of access to a set of objects could be the responsibility of a specific
administrator for those objects.

This supports what is recognized as good security practice (it separates administrators’
duties) while reflecting established organizational structures.

Figure 15-17Policy domain hierarchies

Federated Policy Domains

As well as being structured into superior/subordinate relationships, security policy
domains may also be federated. In a federation, each domain retains most of its
authority while agreeing to afford the other limited rights. The federation agreement
records:

• The rights given to both sides, such as the kind of access allowed.

• The trust each has in the other.

It includes an agreement as to how policy differences are handled, for example, the
mapping of roles in one domain to roles in the other.

Figure 15-18Federated policy domains

System- and Application-Enforced Policies

In a CORBA system, the “system” security policy is enforced by the distributed ORB
and the Security services it uses and the underlying operating systems that support it.
This is the only policy that applies to objects unaware of security.
Security Service: v1.0 November 1996 15-35

15

is
The application security policy is enforced by application objects, which have their
own security requirements. For example, they may want to control access to their own
functions and data at a finer granularity than the system security policy provides.

Figure 15-19System- and application-enforced policies

Overlapping Policy Domains

Not all policies have the same scope. For example, an object may belong to one
domain for access control and a different domain for auditing.

Figure 15-20Overlapping pol icy domains

In some cases, there may even be overlapping policies of the same type (however, th
specification does not require implementations to support overlapping policy domains
of the same type).

Security Environment Domains

Security policy domains specify the scope over which a policy applies. Security
environment domains are the scope over which the enforcement of the policies may be
achieved by means local to the environment. The environment supporting the object
system may provide the required security, and the objects within a specific
environment domain may trust each other in certain ways. Environment domains are
by definition implementation-specific, as different implementations run in different
types of environments, which may have different security characteristics.

Environment domains are not visible to applications or Security services.

In an object system, the cost of using the security mechanisms to enforce security at
the individual object level in all environments would often be prohibitive and
unnecessary. For example:

system security policy domain

application security
policy domain

audit domain

access control
domain
15-36 CORBAservices: Common Object Services Specification

15

ute

are

,

 and
• Preventing objects from interfering with each other might require them to exec
in separate system processes or virtual machines (assuming the generation
procedure could not ensure this protection) but, in most object systems, th is would
be considered an unacceptable overhead, if applied to each object.

• Authenticating every object individually could also impose too large an overhead,
particularly where:

• There is a large object population.

• There is high connectivity, and therefore a large number of secure associations.

• The object population is volatile, requiring objects to be frequently introduced to
the Security services.

This cost can be reduced by identifying security environment domains where
enforcement of one or more policies is not needed, as the environment provides
adequate protection. Two types of environment domains are considered:

• Message protection domains. These are domains where integrity and/or
confidentiality is available by some specific means, for example, an underlying
secure transport service is used. An ORB, which knows such protection exists, can
exploit it, rather than provide its own message protection

• Identity domains. Objects in an identity domain can share the same identity.
Objects in the same identity domain and

• when invoking each other, do not need authentication to establish who they
communicating with.

• are equally trusted by others to handle credentials received from a client. For
example, if a client is prepared to delegate its rights to one object in the domain
it is prepared to delegate the same rights to all of them. If any object in the
identity domain invokes a further object, that target object is prepared to trust the
calling object based on the identity of its identity domain.

Note that neither of these affect what access controls apply to the object (except in that
if trust is required and is not established with this domain, then access will be denied).

Security Technology Domains

These are domains that use the same security technology for enforcing the security
policy. For example:

• The same methods are available for principal authentication and the same
Authentication services are used.

• Data in transit is protected in the same way, using common key distribution
technology with identical algorithms.

• The same types of access control are used. For example, a particular domain may
provide discretionary access control using ACLs using the same type of identity
privilege attributes.

• The same audit services are used to collect audit records in a consistent way.
Security Service: v1.0 November 1996 15-37

15

on.

A particular security technology is normally used to authenticate principals and to
form security associations between client and object and handle message protecti
(Different technologies may be able to use the same privilege attributes, for example,
the same access id and also the same audit id.) An important part of this is the security
technology used for key distribution. There are two main types of security technology
used for key distribution, both of which are available in commercial products:

• Symmetric key technology where a shared key is established using a trusted Key
Distribution Service.

• Asymmetric (or “public”) key technology where the client uses the public key of
the target (certified by a Certification Authority), while the target uses a related
private key.

Public key technology is also the most convenient technology upon which to
implement non-repudiation, which has led to its use in several electronic mail
products.

The CORBA security interfaces specified here are security mechanism neutral, so can
be implemented using a wide variety of security mechanisms and protocols.

Domains and Interoperability

Interoperability between objects depends on whether they are in the same:

• Security technology domain

• ORB technology domain

• Security policy domains

• Naming and other domains

The level of security interoperability fully defined in this first CORBA security
specification is limited, though it includes an architecture that allows further
interoperability to be added.

The following diagram shows a framework of domains and is used to discuss the
interoperability goals of this specification.
15-38 CORBAservices: Common Object Services Specification

15

curity

ol

rity

Figure 15-21Framework of domains

Interoperating between Security Technology Domains

Sending a message across the boundary between two different security technology
domains is only possible if:

• The communication between the objects does not need to be protected, so se
is not used between them, or

• A security technology gateway has been provided, which allows messages to pass
between the two security technology domains. A gateway could be as simple as a
physically secure link between the domains and an agreement between the
administrators of the two domains to turn off security on messages sent over the
link. On the other hand, it could be a very complicated affair including a protoc
translation service with complicated key management logic, for example.

It is not a goal of this specification to define interoperability across Security
Technology Domains, and hence to specify explicit support for security technology
gateways. This is mainly because the technology is immature and appropriate common
technology cannot yet be identified. However, where the security technology in the
domains can support more than one security mechanism, this specification allows an
appropriate matching mechanism to be identified and used.

Interoperating between ORB Technology Domains

If different ORB implementations are in the same security technology domain, they
should be able to interoperate via a CORBA 2 interoperability bridge. (This
specification extends the CORBA 2 interoperability specification to detail how secu
fits in it.) However, there may still be restrictions on interoperability when:

Security Technology
 Domain 2

Security
Technology

Gateway

Security Technology Domain 1

CORBA 2
interoperability

bridge

ORB
Technology
Domain B

ORB
Technology
Domain A
Security Service: v1.0 November 1996 15-39

15

ain.

by a

ut

g

ains.

rity

n
• The objects are in different security policy domains, and the security attributes
controlling policy in one domain are not understood or trusted in the other dom
As previously described, crossing a security policy boundary can be handled by a
security policy federation agreement. This can be enforced in either domain or
gateway.

• The ORBs are in different naming or other domains, and messages would normally
be modified by bridges outside the trusted code of either ORB environment.
Security protection prevents tampering with the messages (and therefore any
changes to object references in them). In general, crossing of such domains witho
using a Security Technology gateway is not possible if policy requires even
integrity protection of messages.

15.3.9 Security Management and Administration

Security administration is concerned with managing the various types of domains and
the objects within them.

Managing Security Policy Domains

For security policy domains, the following is required:

• Managing the domains themselves - creating, deleting them including controllin
where they fit in the domain structure.

• Managing the members of the domain, including moving objects between dom

• Managing the policies associated with the domains - setting details of the secu
policies as well as specifying which policies apply to which domains.

This specification focuses on management of the security policies. However, managing
policy domains and their members in general are expected to be part of the
Management Common Facilities and also affected by the Collections Service, so only
an outline specification is given here.

This specification includes a framework for administering of security policies, and
details of how to administer particular types of policy. For example, it includes
interfaces to specify the default quality of protection for messages in this domain, the
policy for delegating credentials, and the events to be audited.

General administration of all access control policies is not detailed, as the way of
administering access control policies is dependent on the type of policy. For example,
different administration is needed for ACL-based policies and label-based policies.
However, the administration of the standard DomainAccessPolicy is defined.

Access policies may use rights to group operations for access control. Administratio
of the mapping of rights to operations is included in this specification. Such mapping
of rights to operations is used by the standard DomainAccessPolicy, and can also be
used by other access policies.
15-40 CORBAservices: Common Object Services Specification

15

 to a

s of
one

e for

d
t.)
Interfaces for federation agreements allowing interaction with peer domains is left
later security specification.

Managing Security Environment Domains

For environment domains, an administrator may have to specify the characteristic
the environment and which objects are members of the domain. This will often be d
in an environment-specific way, so no management interfaces for it are specified here.

Managing Security Technology Domains

For security technology domains, administration may include:

• Setting up and maintaining the underlying Security services required in the domain.

• Setting up and maintaining trust between domains in line with the agreements
between their management.

• Administering entities in the way required by this security technology. Entities to be
administered include principals, which have identities, long-term keys, and
optionally privileged attributes.

Such administration is often security technology specific. Also, it may be done outside
the object system, as it is a goal of this specification to allow common security
technology to be used, and even allow a single user logon to object, as well as other
applications. This specification does not include such security technology specific
administration.

15.3.10 Implementing the Model

This reference model is sufficiently general to cover a very wide variety of security
policies and application domains to allow conformant implementations to be provided
to meet a wide variety of commercial and government secure systems in terms of both
security functionality and assurance. (Any implementation of this model will need to
identify the particular security policies it supports.)

The model also allows different ways of putting together the trusted core of a secure
object system to address different requirements. There are a number of implementation
choices on how to ensure that the security enforcement cannot be bypassed. This
enforcement could be performed by hardware, the underlying operating system, the
ORB core, or ORB services. Appendix E, Guidelines for a Trustworthy System,
describes some of these options. (It is important when instantiating this architectur
a particular ORB product, or set of Security services supporting one or more ORBs, to
identify what portions of the model must be trusted for what. This should be include
in a conformance statement as described in Appendix F, Conformance Statemen
Security Service: v1.0 November 1996 15-41

15

es

A

e

15.4 Security Architecture

This section explains how the security model is implemented. It describes the complete
architecture as needed to support all conformance levels described in Section 15.2.1,
Conformance to CORBA Security. Not all of these levels are mandatory for all
implementors to support.

This section starts by reviewing the different views that different users have of security
in CORBA-compliant systems, as the security architecture must cater to these.

The structural model for security in CORBA-compliant systems is described. This
includes some expansion of the ORB service concept introduced into CORBA 2 to
support interoperability between ORBS.

The security object models for the three major views (application development,
administration, and object system implementors) are then described.

15.4.1 Different Users’ View of the Security Model

The security model can be viewed from the following users’ perspectives:

• Enterprise management

• The end user

• The application developer

• Administration of an operational system

• The object system implementors

Enterprise Management View

Enterprise management are responsible for business assets including IT systems;
therefore they have ultimate responsibility for protecting the information in the system.
The enterprise view of security is therefore mainly about protecting its assets against
perceived threats at an affordable cost. This requires assessing the risks to the assets
and the cost of countermeasures against them as described in Appendix E, Guidelin
for a Trustworthy System. It will require setting a security policy for protecting the
system, which the security administrators can implement and maintain.

Not all parts of an enterprise require the same type of protection of their assets.
Enterprise management may identify different domains where different security
policies should apply. Managers will need to agree how much they trust each other and
what access they will provide to their assets. For example, when a user in domain
accesses objects in domain B, what rights should he have? One enterprise may also
interwork with domains in other enterprises.

Enterprise management therefore knows about the structure of the organization and th
security policies needed in different parts of it. Security policy options supported by
the model include:
15-42 CORBAservices: Common Object Services Specification

15

roles

e
 him
jects

m

• A choice of access control policies. For example, controls can be based on job
(or other attributes) and use ACL, capabilities, or label-based access controls.

• Different levels of auditing so choosing which events to be logged can be flexibly
chosen to meet the enterprise needs.

• Different levels of protection of information communicated between objects in a
distributed system. For example, integrity only or integrity plus confidentiality.

The enterprise manager is not a direct user of the CORBA security system.

End User View

The human user is an individual who is normally authenticated to the system to prove
who he or she is.

The user may take on different job roles which allow use of different functions and
data, thereby allowing access to different objects in the system. A user may also
belong to one or more groups (within and across organizations) which again imply
rights to access objects. A user may also have other privileges such as a security
clearance that permits access to secret documents, or an authorization level that allows
the user to authorize purchases of a given amount.

The user is modeled in the system as an initiating principal who can have privilege
attributes such as roles and groups and others privileges valid to this organization.

The user invokes objects to perform business functions on his behalf, and his privileg
attributes are used to decide what he can access. His audit identity is used to make
individually accountable throughout the system. He has no idea of what further ob
are required to perform the business function.

The user view is described further in the security model in Section 15.3, Security
Reference Model.

Application Developer View

The application developer is responsible for the business objects in the system: the
applications. His main concern is the business functions to be performed.

Many application developers can be unaware of the security in the system, though their
applications are protected by it. So much of the security in the system is hidden fro
the applications. ORB security services are called automatically on object invocation,
and both protect the conversation between objects and control who can access them.

Some application objects need to enforce some security themselves. For example, an
application might want to control access based on the value of the data and the time as
well as the principal who initiated the operation. Also, an application may want to
audit particular security relevant activities.
Security Service: v1.0 November 1996 15-43

15

tect

e

t

es,

ject

r
The model includes a range of security facilities available for those applications that
want to use them. For example:

• The quality of protection for object invocations can be specified and used to pro
all communication with a particular target or just selected invocations.

• Audit can also be used independently of other security facilities and does not
require the application to understand other security issues.

• Other functions, such as user authentication or handling privilege attributes for
access control generally require more security understanding and operations on th
objects, which represent the user in the system. However, this is still done via
generic security interfaces, which hide the particular security technology used.

One special type of application developer is also catered for. The “application” tha
provides the user interface (user sponsor or logon client) needs an authentication
interface capable of fitting with a range of authentication devices. However, the model
also allows authentication to be done before calling the object system.

The application view is described in Section 15.5, Application Developer’s Interfaces.

Administrator’s View

Administrators, like any other users, know about their job roles and other privileg
and expect these to control what they can do. In many systems, there will be a number
of different administrators, each responsible for administering only part of the system.
This may be partly to reduce the load on individual administrators, but partly for
security reasons, for example to reduce the damage any one person can do.

Administrators and administrative applications see more of the system than other users
or normal application developers. For example, the application developers see
individual objects whereas the administrator knows how these are grouped, for
example, in policy domains.

In an operational system, administrators will be responsible for creating and
maintaining the domains, specifying who should be members of the domain, its
location, etc. They will also be responsible for administering the security policies that
apply to objects in these domains.

An administrator may also be responsible for security attributes associated with
initiating principals such as human users, though this may be done outside the ob
system. This would include administration of privilege attributes about users, but
might also include other controls. For example, they might constrain the extent to
which the user’s rights can be delegated.

The model does not include explicit management interfaces for managing domains o
security attributes of initiating principals, though it does describe the resultant
information. It is expected that the CORBA Common Facilities will, in the future,
include management facilities that can manage security, as well as other objects, in an
OMA-compliant system. Note that the security facilities described here are also
applicable to management. For example, management information needs to be
15-44 CORBAservices: Common Object Services Specification

15

eed

ld be
 the

of

.
protected from unauthorized access and protected for integrity in transit, and
significant management actions, particularly those changing security information, n
to be audited.

The administrator’s view is further described in Section 15.6, Administrator’s
Interfaces.

Object System Implementor’s View

Secure object system developers must put together:

• An ORB.

• Other Object Services and/or Common Facilities.

• The security services these require to provide the security features.

The system must be constructed in such a way as to make it secure.

The ORB implementor in a secure object system uses ORB Security services during
object invocation, as defined in Section 15.4.2, Structural Model. In addition,
protection boundaries are required to prevent interference between objects and will
need controlling by the ORB and associated Object Adapter and ORB services.

Object Service and Common Facilities developers may need to be security aware if
they have particular security requirements (for example, functions whose use shou
limited or audited). However, like any application objects, most should depend on
ORB and associated services to provide security of object invocations.

The Security services implementor has to provide ORB Security services (for security
of object invocations) and other security services to support applications’ view of
security as previously defined. The ORB Security services implementor shares some
application visible security objects such as a principal’s credentials, and also sees the
security objects used in making security associations. The Security services should use
the Security Policy and other security objects defined in this model to decide what
security to provide.

While these security objects may provide all the security required themselves, they will
often call on external security services, so that consistent security can be provided for
both object and other systems. The Security services defined in this specification are
designed to allow for convenient implementation using generic APIs for accessing
external security services so it is easier to link with a range of such services. Use
such external security services may imply use of existing, nonobject databases for
users, certificates, etc. Such databases may be managed outside the object system

The Implementor’s view is specified in Section 15.7, Implementor’s Security
Interfaces. The implications of constructing the system securely to meet threats are
described in Appendix E, Guidelines for a Trustworthy System.
Security Service: v1.0 November 1996 15-45

15

15.4.2 Structural Model

The architecture described in th is section sets the major concepts on which the
subsequent specifications are based.

The structural model has four major levels used during object invocation:

• Application-level components, which may or may not be aware of security;

• Components implementing the Security services, independently of any specific
underlying security technology. (This specification allows the use of an isolating
interface between this level and the security technology, allowing different security
technologies to be accommodated within the architecture.) These components are:

• The ORB core and the ORB services it uses.

• Security services.

• Policy objects used by these to enforce the Security Policy.

• Components implementing specific security technology;

• Basic protection and communication, generally provided by a combination of
hardware and operating system mechanisms.

Figure 15-22Structural model

Figure 15-22 illustrates the major levels and components of the structural model,
indicating the relationships between them. The basic path of a client invocation of an
operation on a target object is shown.

request request

ORB
Services

ORB
Services

Client
Target
Object

security technology

Basic Protection & Communications

ORB Core

Security
and other
Services
15-46 CORBAservices: Common Object Services Specification

15

t

nt to

Application Components

Many application components are unaware of security and rely on the ORB to call the
required security services during object invocation. However, some applications
enforce their own security and therefore call on security services directly (see The
Model as Seen by Applications, under Section 15.4.5, Security Object Models). As in
the Object Management Architecture, the client may, or may not, be an object.

ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB tha
provides the basic representation of objects and the communication of requests.” The
ORB Core therefore supports the minimum functionality necessary to enable a clie
invoke an operation on a target object, with (some of) the distribution transparencies
required by the CORBA architecture.

An object request may be generated within an implicit context, which affects the way
in which it is handled by the ORB, though not the way in which a client makes the
request. The implicit context may include elements such as transaction identifiers,
recovery data and, in particular, security context. All of these are associated with
elements of functionality, termed ORB Services, additional to that of the ORB Core
but, from the application view, logically present in the ORB.

Figure 15-23ORB services

Selection of ORB Services

The ORB Services used to handle an object request are determined by:

• The security policies that apply to the client and target object because of the
domains to which they belong, for example the access policies, default quality of
protection;

• Other static properties of the client and target object such as the security
mechanisms and protocols supported;

Client
Target
Object

ORB Core

ORB
Services

ORB
Services

Logical Object Request
Security Service: v1.0 November 1996 15-47

15

o use

ay

ect

e
• Dynamic attributes, associated with a particular thread of activity or invocation; for
example, whether a request has integrity or confidentiality requirements, or is
transactional.

A client's ORB determines which ORB Services to use at the client when invoking
operations on a target object. The target’s ORB determines which ORB Services t
at the target. If one ORB does not support the full set of services required, then either
the interaction cannot proceed or it can only do so with reduced facilities, which m
be agreed to by a process of negotiation between ORBs.

Bindings and Object References at the Client

The Security Architecture builds upon the CORBA 2 Interoperability Architecture in
considering the selection of ORB Services as part of the process of establishing a
binding between a client and a target object.

The ORB determines how to establish the binding using the policies, static properties,
and dynamic properties associated with the client and target. At the client, an obj
reference defines those policies and static properties of the target object that affect how
the client's ORB establishes a binding to the object, for example, the quality of
protection needed. Subsequently there may be a need to modify or extend details of th
binding for a particular invocation (e.g. when a request is required to be transactional).

Associated with each binding is information specific to the particular usage by the
client of the object reference. A binding is uniquely associated with:

• The object reference of the target object.

• Elements of client context, for this binding, associated with particular ORB or
Object Services (e.g. access policy domain, security context).

A binding is distinct from the target object to which it is made, though uniquely
associated with it. The state associated with a binding is accessible via operations on
the target object reference on the client side (which are completely disjointed from its
application level operations), and via a "Current" object at the target side.
15-48 CORBAservices: Common Object Services Specification

15

et

Figure 15-24Object reference

If a client requires to establish several distinct, independent bindings to the same targ
object, then it can make a copy of an existing object reference. Any binding
established via the new reference is distinct from bindings used with the old reference.

Security Services

In a secure object system, the ORB Services called will include ORB Security Services
for secure invocation and access control.

ORB Security Services and applications may call on Object Security Services for
authentication, access control, audit, non-repudiation, and secure invocations. These
security services form the Security Replaceability Conformance option.

These object security services may in turn call on external security services to
implement security technology.

Security Policies and Domain Objects

A security policy domain is the set of objects to which common security policies apply
as described in Security Policy Domains, under Section 15.3.8, Domains. The domain
itself is not an object. However, there is a policy domain manager for each security
policy domain. This domain manager is used when finding and managing the policies
that apply to the domain. The ORB and security services use these to enforce the
security policies relevant to object invocation.

Cl ient
Target
Object

ORB Core

ORB
Services

ORB
Services

Binding Binding

Object Reference

Request

target obj ref

Current
Security Service: v1.0 November 1996 15-49

15

ay
s

in
On object creation, the ORB implicitly associates the object with one or more Security
Policy domains as described in Administrative Model, under Section 15.4.5, Security
Object Models. An implementation may allow objects to be moved between domains
later.

There may be several security policies associated with a domain, with a policy object
for each. There is at most one policy of each type associated with each policy domain.
(See Administrative Model, under Section 15.4.5, for a list of policy types.) These
policy objects are shared between objects in the domain, rather than being associated
with individual objects. (If an object needs to have an individual policy, then there
must be a domain manager for it.)

Figure 15-25Domain objects

Where an object is a member of more than one domain, for example, there is a
hierarchy of domains, the object is governed by all policies of its enclosing domains.
The domain manager can find the enclosing domain’s manager to see what policies it
enforces.

The reference model allows an object to be a member of multiple domains, which m
overlap for the same type of policy (for example, be subject to overlapping acces
policies). This would require conflicts among policies defined by the multiple
overlapping domains to be resolved. The specification does not include explicit support
for such overlapping domains and, therefore, the use of policy composition rules
required to resolve conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

• The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects may
also be used by applications, which enforce their own security policies.

The caller asks for the policy of a particular type (e.g. the delegation policy), and
then uses the policy object returned to enforce the policy (as described in the
subsections The Model as Seen by Applications, and The Model as Seen by the
Objects, under Section 15.4.5, Security Object Models). The caller finding a policy
and then enforcing it does not see the domain manager objects and the doma
structure.

domain
manager

policy
object

enclosing
domain managers
15-50 CORBAservices: Common Object Services Specification

15

e

tive

n it

d to

Bs
ing

S-API

ing

lish

of
• The administrative interfaces used to set security policies (e.g. specifying which
events to audit or who can access objects of a specified type in this domain). Th
administrator sees and navigates the domain structure, so is aware of the scope of
what he is administering. (Administrative interfaces are described in Administra
Model, under Section 15.4.5.)

Applications will often not be aware of security at all, but will still be subject to
security policy, as the ORB will enforce the policies for them. Security policy is
enforced automatically by the ORB both when an object invokes another and whe
creates another object.

An application that knows about security can also override certain default security
policy details. For example, a client can override the default quality of protection of
messages to increase protection for particular messages. (Application interfaces are
described in The Model as Seen by Applications, under Section 15.4.5.)

Note that th is specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them, moving objects between them,
changing the domain structure and adding, changing and removing policies applie
the domains. Such interfaces are expected to be the province of other object services
and facilities such as Management Facilities and/or Collection Service in the future.

15.4.3 Security Technology

The object security services previously described insulate the applications and OR
from the security technology used. Security technology may be provided by exist
security components. These do not have domain managers or objects. Security
technology could be provided by the operating system. However, distributed,
heterogeneous environments are increasingly being used, and for these, security
technology is provided by a set of distributed security services. This architecture
identifies a separate layer containing those components which actually implement the
security services. It is envisaged that various technologies may be used to provide
these and, furthermore, that a (set of) generic security interface(s) such as the GS
will be used to insulate the implementations of the security services from detailed
knowledge of the underlying mechanisms. The range of services (and correspond
APIs) includes:

• The means of creating and handling the security information required to estab
security associations, including keys.

• Message protection services providing confidentiality and integrity.

The use of standard, generic APIs for interactions with external security services not
only allows interchangeability of security mechanisms, but also enables exploitation
existing, proven implementations of such mechanisms.
Security Service: v1.0 November 1996 15-51

15

ent

n

nd

t
15.4.4 Basic Protection and Communications

Environment Domains

As described in Security Environment Domains, under Section 15.3.8, Domains, the
way security policies are enforced can depend on the security of the environment in
which the objects run. It may be possible to relax or even dispense with some security
checks in the object system on interactions between objects in the same environm
domain. For example, in a message protection domain where secure transport or lower
layer communications is provided, encryption is not needed at the ORB level. In a
identity domain, objects may share a security identity and so dispense with
authenticating each other. Environment domains are implementation concepts; they do
not have domain managers.

Environment domains can be exploited to optimize performance and resource usage.

Component Protection

The maintenance of integrity and confidentiality in a secure object system depends on
proper segregation of the objects, which may include the segregation of security
services from other components. At the lowest level of this architecture, Protection
Domains, supported by a combination of hardware and software, provide a means of
protecting application components from each other, as well as protecting the
components that support security services. Protection Domains can be provided by
various techniques, including physical, temporal, and logical separation.

The Security Architecture identifies various security services, which mediate
interactions between application level components: clients and target objects. The
Security Object Models show how these mechanisms can themselves be modeled a
implemented in terms of additional objects. However, security services can only be
effective if there is some means of ensuring that they are always invoked as required
by security policies: it must be possible to guarantee, to any required level of
assurance, that applications cannot bypass them. Moreover, security services
themselves, like other components, must be subject to security policies.

The general approach is to establish protection boundaries around groups of one or
more components which are said to belong to a protection domain. Components
belonging to a protection domain are assumed to trust each other, and interactions
between them need not be mediated by security services, whereas interactions across
boundaries may be subject to controls. In addition, it is necessary to provide a means
of establishing a trust relationship between components, allowing them to interac
across protection boundaries, in a controlled way, mediated by security services.
15-52 CORBAservices: Common Object Services Specification

15

art

,

).
Figure 15-26Control led relationship

In this architecture, the trusted components supporting security services are
encapsulated by objects, as described in The Model as Seen by the Objects
Implementing Security, under Section 15.4.5, Security Object Models. Clearly, objects
that encapsulate sensitive security information must be protected to ensure that they
can only be accessed in an appropriate way.

Figure 15-27Object encapsulation

Protection boundaries and the controlled relationships that cross those boundaries must
inevitably be supported by functionality more fundamental than that of the Security
Object Models, and invariably requires a combination of hardware and operating
system mechanisms. Whichever way it is provided, th is functionality constitutes p
of the Trusted Computing Base.

Protection boundaries may be created by physical separation, interprocess boundaries,
or within process access control mechanisms (e.g. multilevel “onionskin” hardware-
supported access control). Less rigorous protection may be acceptable in some
circumstances, and in such cases protection boundaries can be provided, for example
by using appropriate compilation tools to conceal protected interfaces and data.

The architecture is defined in a modular way so that, where necessary, it is possible for
implementations to create protection boundaries between:

• Application components, which do not trust each other;

• Components supporting security services and other components;

• Components supporting security services and each other.

In addition, controlled communication across protection boundaries may be required.
In such cases, it must be possible to constrain components with in a protection
boundary to interact with components outside the protection boundary only via
controlled communications paths (it must not be possible to use alternative paths
Such communication may take many forms, ranging from explicit message passing to
implicit sharing of memory.

Protection
Domain A

Protection
Domain B

Controlled
Relationship

Protection
Domain A

Protection
Domain B

Security
Services
Security Service: v1.0 November 1996 15-53

15

s

RB
15.4.5 Security Object Models

This section describes the objects required to provide security in a secure CORBA
system from three viewpoints:

• The model as seen by applications.

• The model as seen by administrators and administrative applications.

• The model as seen by the objects implementing the secure object system.

For each viewpoint, the model describes the objects and the relationships between
them, and outlines the operations they support. A summary of all objects is also given.

The Model as Seen by Applications

Many applications in a secure CORBA system are unaware of security, and therefore
do not call on the security interfaces. This subsection is therefore mainly relevant to
those applications that are aware of and utilize security. Facilities available to such
applications are:

• Finding what security features this implementation supports.

• Establishing a principal’s credentials for using the system. Authenticating the
principal may be necessary.

• Selecting various security attributes (particularly privileges) to affect later
invocations and access decisions.

• Making a secure invocation.

• Handling security at a target object and at intermediates in a chain of objects,
including use of credentials for application control of access and delegation.

• Auditing application activities.

• Non-repudiation facility -- generation and verification of evidence so that action
cannot be repudiated.

• Finding the security policies that apply to this object.

Finding Security Features

An application can find out what security features are supported by this secure object
implementation. It does this by calling on the ORB to
get_service_information . Information returned includes the security
functionality level and options supported and the version of the security specification
to which it conforms. It also includes security mechanisms supported (though the O
Security Services, rather than applications, needs this).

Establishing Credentials

If the principal has already been authenticated outside the object system, then
Credentials can be obtained from Current (see later).
15-54 CORBAservices: Common Object Services Specification

15

im to

ser
If the principal has not been authenticated, but is only going to use public services
which do not require presentation of authenticated privileges, a Credentials object may
be created without any authenticated principal information.

If the principal has not been authenticated, but is going to use services that need h
be, then authentication is needed as shown in Figure 15-28.

Figure 15-28Authentication

User sponsor

The user sponsor is the code that calls the CORBA Security interfaces for user
authentication. It need not be an object, and no interface to it is defined. It is described
here so that the process of Credentials acquisition may be understood.

The user provides identity and authentication data (such as a password) to the u
sponsor, and this calls on the Principal Authenticator object, which authenticates the
principal (in this case, the user) and obtains Credentials for it containing authenticated
identity and privileges.

The user sponsor represents the entry point for the user into the secure system. It may
have been activated, and have authenticated the user, before any client application is
loaded. This allows unmodified, security-unaware client applications to have
Credentials established transparently, prior to making invocations.

There is no concept of a target object sponsor.

Principal authenticator

The Principal Authenticator object is the application-visible object responsible for the
creation of Credentials for a given principal. This is achieved in one of two ways. If
the principal is to be authenticated within the object system, the user sponsor invokes
the authenticate operation on the Principal Authenticator (and
continue_authentication if needed for multiexchange authentication
dialogues).

request

User
Sponsor

create

user

Client

Principal
Authentication

Credentials Current

ORB

A
ut

h
en

tic
at

e

Security Service: v1.0 November 1996 15-55

15

d

’s

Credentials

A Credentials object holds the security attributes of a principal. These security
attributes include its authenticated (or unauthenticated) identities and privileges and
information for establishing security associations. It provides operations to obtain an
set security attributes of the principal it represents.

There may be credentials for more than one principal, for example, the initiating
principal who requested some action and the principal for the current active object.
Credentials are used on invocations and for non-repudiation.

There is an is_valid operation to check if the credentials are valid and a refresh
operation to refresh the credentials if possible.

Current

The Current object represents the current execution context (thread of activity) at both
client and target objects. In a secure environment, the Current object supports the
SecureCurrent interface, which gives access to security information. Current retains a
reference to the Credentials associated with the execution environment. Object
invocations use Credentials in Current. If a user sponsor is used, it should set the user
credentials as the default credentials for subsequent invocations in Current. This may
also be done as the result of initializing the ORB when the user has been authenticated
outside the object system. This allows a security-unaware application to utilize the
credentials without having to perform any explicit operation on them.

At target and intermediate objects, other Credentials are available via Current.

Handling Mult iple Credentials

An application object may use different Credentials with different security
characteristics for different activities.

Figure 15-29Multiple credentials

copy Credentials Current

Object
(client or

target)

Credentials

C
op

y

O
bj

 R
ef

 (
n

e
w

)

set_credentials (invocation credentials)
15-56 CORBAservices: Common Object Services Specification

15

The Credentials::copy operation can be used to make a copy of the Credentials
object and get the object reference for the copy. The new Credentials object (i.e. the
copy) can then be modified as necessary, using its interface, before it is used.

When all required changes have been made, the set_credentials operation can be
used on the Current object to specify a different Credentials object as the default for
subsequent invocations.

At any stage, a client or target object can find the default credentials for subsequent
invocations by calling get_credentials on Current, asking for the invocation
credentials.

Selecting Security Attributes

A client may require different security for different purposes, for example, to enforce a
least privilege policy and so specify that limited privileges should be used when
calling particular objects, or collections of objects, and restrict the scope to which
these privileges are propagated. A client may also want to protect conversations with
different targets differently.

There are two ways of changing security attributes for a principal:

• Setting attributes on the credentials for that principal. If attributes are set on the
credentials, these apply to subsequent object invocations using those credentials. It
can therefore apply to invocations of many target objects.

• Setting attributes on the target object reference (meaning on the binding as
described in ORB Services, under Section 15.4.2, Structural Model). Attributes set
here apply to subsequent invocations, which this client makes using this reference.

In both cases, the change applies immediately to further object invocations associated
with these credentials or this object reference.

Figure 15-30Changing security attributes

Client Credentials
set_privileges

set_security_features

override_default_QOP

override_default_credentials

Target
Object Ref
Security Service: v1.0 November 1996 15-57

15

the
ay

d in

e
A wider range of attributes can be set on the credentials than on a specific object
reference. Operations available include:

• set_privileges to set privileges in the credentials. The system will reject an
attempt to set privileges if the calling principal is not entitled to one or more of
requested privileges. There may be additional restrictions on which privileges m
be claimed if the caller is an intermediate in a delegated call chain attempting to set
privileges on delegated Credentials.

• set_security_features to set such features as the quality of protection of
messages (and the credentials to use for future invocations when at an intermediate
object).

Setting any of these attributes may result in a new security association being needed
between this client and target.

Note: This specification does not contain an operation to restrict when and where these
privileges can be used in target objects or delegated, though this may be specifie
the future (see Section G.9, Target Control of Message Protection).

A client may want to use different privileges or controls when invoking different
targets. It can do this by using override_default_credentials specifying the
credentials to be used with that target. A client may want to specify that a particular
quality of protection applies only to selected invocations of a target object. For
example, it may want confidentiality of selected messages. The client can do this by
using override_default_QOP , specifying a QOP on the target object reference
and then resetting this QOP when confidentiality is no longer required.

From the application’s point of view, the override_default operations are normal
invocations. However, they are actually operations upon the reference to the target
object rather than the target object itself.

Equivalent get_ operations are also provided to permit an application to determine
the security specific options currently requested, for example get_attributes
(privileges, and other attributes such as audit id) and get_security_features on
credentials objects and get_active_credentials and
get_security_features on target objects.

Making a Secure Invocation

A secure invocation is made in the same way as any other object invocation, but th
actual invocation is mediated by the ORB Security Services, invisibly to the
application, which enforce the security requirements, both in terms of policy and
application preference. The following diagram shows an application making the
invocation, and the ORB Security Services utilizing the security information in
Current, and hence the Credentials there.
15-58 CORBAservices: Common Object Services Specification

15

es

e

Figure 15-31Making a secure invocation

Note: For any given invocation, it is target and client security policy that determin
which (if any) ORB Security Services mediate that invocation. If the policy for a given
invocation requires no security, then no services will be used. Similarly, if only access
control is required, then only the ORB Security Service responsible for the provision
of access control will be invoked.

Security at the Target

At the target, as at the client, the Current object is the representative of the local
execution context within which the target object’s code is executing. The Current
object can be used by the target object, or by ORB and Object Service code in th
target object’s execution context, to obtain security information about an incoming
security association and the principal on whose behalf the invocation was made.

request
request

Client
Target
Object

ORB
Security
Services

ORB
Security
Services

ORB Core

Current

target obj ref
Security Service: v1.0 November 1996 15-59

15

on

n

t, as
Figure 15-32Target object security

A security-aware target application may obtain information about the attributes of the
principal responsible for the request by invoking the get_attributes operation on
Current. The target normally uses get_attributes to obtain the privilege
attributes it needs to make its own access decisions.

The get_attributes operation can also be used at the client and can be used
any Credentials object, not just on Current. When called on Current, it always gets the
incoming credentials from the client at the target object, and from the user at the client
machine.

Intermediate Objects in a Chain of Objects

When a client calls a target object to perform some operation, this target object ofte
calls another object to perform some function, which calls another object and so on.
Each intermediate object in such a chain acts first as a target, and then as a clien
shown in Figure 15-33.

request

Target
Object

CredentialsCurrent

get_attributes

application
access decisions
15-60 CORBAservices: Common Object Services Specification

15

urity
s
Figure 15-33Security-unaware intermediate object

For a security-unaware intermediate object, Current retains a reference to the sec
context established with the incoming client. When this intermediate object invoke
another target, either the delegated credentials from the client or the credentials for the
intermediate object’s principal (or both) become the current ones for the invocation.
The security policy for this intermediate object governs which credentials to use, and
the ORB Security Services enforce the policy, passing the required credentials to the
target, subject to any delegation constraints. The intermediate object’s principal will be
authenticated, if needed, by the ORB Security Services.

A security-aware intermediate object can:

• Use the privileges of any delegated credentials for access control.

• Decide which credentials to use when invoking further targets.

• Restrict the privileges available via these credentials to further clients (where
security technology permits).

requestrequest

Intermediate Object
(acts as target, then client)

Current

Credentials
(delegated

and/or object’s
own)

incoming

to next target
Security Service: v1.0 November 1996 15-61

15

d

Figure 15-34Security-aware intermediate object

After a chain of object calls, the target can call get_attributes on Current as
previously described. Note that this call always obtains the privilege and other
attributes associated with the first of the received credentials.

The target can use the received_credentials attribute on Current to get the
incoming credentials. This may be a list of one or more credential objects depending
on the authentication and delegation technology used. If more than one credential is
returned, the first credential is that of the initiator. Other credentials are of
intermediates in the chain. After composite delegation (see Section 15.3.6,
Delegation), the credentials are of the initiator and immediate invoker. After trace
delegation, credentials for all intermediates in the chain will be present (as well as the
initiator). If a target object receives a request which includes credentials for more than
one principal, it may choose which privileges to use for access control and which
credentials to delegate, subject to policy.

An intermediate object may wish to make a copy of the incoming credentials, modify
and then delegate them, though not all implementations will support this modification.
In this case, it must acquire a reference to the incoming credentials (using the
received_credentials attribute), and then use set_privileges to modify
them. Finally it uses a call to set_credentials to make the received credentials
the default ones for subsequent invocations. When the received_credentials
are passed to set_credentials , logic under the Current interface determines that a
delegation operation is required and does what is necessary transparently.

If the intermediate object wishes to change the association security defaults (for
example, the quality of protection) for subsequent invocations, it can do so by using
the Current interfaces (e.g. override_default_qop).

requestrequest

Intermediate Object
(acts as target, then client)

Current

set_credentials

incoming

to next target

get_credentials

authenticate

received
credentials

own
credentials

invocation
credentials
15-62 CORBAservices: Common Object Services Specification

15

s

s.

s

 it is
The intermediate object may be a principal and wish to use its own identity and some
specific privileges in further invocations, rather than delegating the ones received. In
this case, it can call authenticate to obtain the appropriate credential, and then call
set_privileges to establish the appropriate rights. After doing this, it can use
set_credentials to establish its credential as the default for future invocations.

If the intermediate does not have its own individual credential object (for example, as
it does not have an individual security name) but instead shares credentials with other
objects, it can call current::get_credentials (specifying own credentials) to
get a copy of the credentials (which will have been set up automatically). It can then
copy and set_privileges , etc. on these, as appropriate for the objects it intend
invoking.

If it wants to use composite delegation with a modified version of its own credentials,
it should call Current::set_credentials (specifying its own credentials) and
the required delegation mode before making the invocation. Note that this will not
modify the credentials shared with other objects.

Security Mechanisms

Applications are normally aware of the security mechanism used to secure invocation
The secure object system is aware of the mechanisms available to both client and
target object and can choose an acceptable mechanism. However, some security-
sophisticated applications may need to know about, or even control the choice of
mechanisms using get_security_mechanism and
override_default_mechanism .

Application Access Policies

Applications can enforce their own access policies. No standard application access
policy is defined, as different applications are likely to want different criteria for
deciding whether access is permitted. For example, an application may want to take
into account data values such as the amount of money involved in a funds transfer.

However, the application is recommended to use an access decision object similar to
the one used for the invocation access policy. This is to isolate the application from
details of the policy. Therefore, the application should decide if access is needed a
shown in Figure 15-35.

Figure 15-35access_allowed application

The application can specify the privileges of the initiating principal and a variety of
authorization data, which could include the function being performed, and the data
being performed on.

Application
Access

Decision
Object

access_allowed
Security Service: v1.0 November 1996 15-63

15

using

 in

th
dit

s
 in

ct to
me,

r.
An application access policy can be used to supplement the standard invocation access
policy with an application-defined policy. Such a policy might, for example, take into
account the parameters to the request. In this case, the authorization data passed to the
application-defined policy would be likely to include the request’s operation,
parameters, and target object.

The application access policy could be associated with the domain, and managed
the domain structure as for other policies (see Administrative Model, in Section
15.4.5). In th is case, the application obtains the Access Decision object as shown
Figure 15-36.

Figure 15-36get_policy appl ication

However, the application could choose to manage its access policy differently.

Auditing Application Activities

Applications can enforce their own audit policies, auditing their own activities. Audit
policies specify the selection criteria for deciding whether to audit events.

As for application access policies, application audit policies can be associated wi
domains and managed via the domain structure. No standard application level au
policy is specified, as different applications may want to use different selectors in
deciding which events to audit. Application events are generally not related to object
invocations. Applications can provide their own audit policies, which use different
criteria. The most common selectors for these audit policies to use are the event type
and its success or failure, the audit_id and the time. (Management of such policie
can generally be done using the interfaces for audit policy administration defined
Section 15.6.5, Audit Policies, by specifying new selectors, appropriate to the
application concerned.)

Whether or not the application uses an audit policy, it uses an Audit Channel obje
write the audit records. One Audit Channel object is created at ORB initialization ti
and this is used for all system auditing. Applications can use different audit channels.
The way an Audit Channel object handles the audit records is not visible to the calle
It may filter them, route them to appropriate audit trails, or cause event alarms.
Different Audit Channel objects may sent audit records to different audit trails.

Applications and system components both invoke the audit_write operation to
send audit records to the audit trail.

Application Current
get_policy (application access)
15-64 CORBAservices: Common Object Services Specification

15

t

ccess

s
Figure 15-37audit_write appl ication

If an application is using an audit policy administered via domains, it uses an Audit
Decision object (see the Access Decision object) to decide whether to audit an event. I
can find the appropriate Audit Decision object using the get_policy operation on
Current as follows.

Figure 15-38Audit decision object

The application invokes the audit_needed operation on the Audit Decision object,
passing the values the Audit Decision object requires to decide whether auditing is
needed. (This set of selectors could include, for example, the type of event, its su
or failure, the identity of the caller, the time, etc. See administration of audit policies in
Section 15.6.5, Audit Policies.) The Audit Decision object responds with whether an
audit record needs to be written to the audit channel or not.

An audit channel can also be associated with an audit policy object, so the application
can use an audit channel associated with the application (and these can link into the
system audit services). If so, the application uses the audit_channel attribute to
find the Audit Channel object to use. However, applications can create their own
channel objects.

Finding What Security Policies Apply

An application may want to find out what policies the system is enforcing on its
behalf. For example, it may want to know the default quality of protection to be used
by default for messages or for non-repudiation evidence.

To do this, it can call get_policy on Current, and then the appropriate get_
operation on the policy object obtained as defined in Section 15.6, Administrator’
Interfaces (if permitted).

Application
Audit

Channel

audit_write

Application
Audit

Decision
Object

audit_needed

Current

get_policy (application audit)

audit_channel
Security Service: v1.0 November 1996 15-65

15

ce

s

d

ined
Non-repudiation

The non-repudiation services in this specification provide generation of evidence of
actions and later verification of this evidence, to prove that the action has occurred.
There is often data associated with the action, so the service needs to provide eviden
of the data used, as well as the type of action.

These core facilities can be used to build a range of non-repudiation services. It i
envisioned that delivery services will be implemented to deliver this evidence to where
it is needed and evidence stores will be built for use by adjudicators. As different
services may have different requirements for these, interfaces for them are not include
in this specification.

Non-repudiation credentials and policies

Non-repudiation operations are performed on NRCredentials. As for any other
Credentials object, these hold the identity and attributes of a principal. However, in
this case, the attributes include whatever is needed for identifying the user for
generating and checking evidence. For example, it might include the principal’s key
(or provide access to it) as needed to sign the evidence.

NRCredentials are available via the Current object as for other Credentials objects, and
support the operations defined for credentials previously described. The credentials to
be used for non-repudiation can be specified using the set_credentials operation
on Current with a type of NRCredentials.

An application can set security attributes related to non-repudiation using a
set_NR_features operation on the NRCredentials object (see the
set_security_features operations on Credentials).

Figure 15-39set_NR_features operation

set_NR_features can be used to specify, for example, the quality of protection and
the mechanism to be used when generating evidence using these credentials.

By default, the features are those associated with the non-repudiation policy obta
by invoking get_policy specifying NRpolicy on Current. However, non-repudiation
policies may come from other sources. For example, the policy to be used when
generating evidence for a particular recipient may be supplied by that recipient.

There is a get_NR_features operation on NRCredentials equivalent to
set_NR_features .

Evidence generation and verification operations are also performed on NRCredentials
objects. These are described next.

Application NRCredentials
set_NR_features
15-66 CORBAservices: Common Object Services Specification

15

ls the

able.

rated

.

e

f

 the

,

side

ce.
Using non-repudiation services

An application can generate evidence associated with an action so that it cannot be
repudiated at a later date. All evidence and related information is carried in non-
repudiation tokens. (The details of these are mechanism specific.)

The application decides that it wishes to generate some proof of an action and cal
generate_token operation on an NRCredentials object.

Figure 15-40generate_token operation

This evidence is created in the form of a non-repudiation token rendered unforge
[Generation of the token uses the initiating principal’s security attributes in the
NRCredentials (normally a private key), for example, to sign the evidence.]

Depending on the underlying cryptographic techniques used, the evidence is gene
as:

• A secure envelope of data based on symmetric cryptographic algorithms requiring
what is termed to be a trusted third party as the evidence generating authority

• A digital signature of data based on asymmetric cryptographic algorithms which is
assured by public key certificates, issued by a Certification Authority.

Depending on the non-repudiation policy in effect for a specific application and th
legal environment, additional information (such as certificates or a counter digital
signature from a Time Stamping Authority) maybe required to complete the non-
repudiation information. A time reference is always provided with a non-repudiation
token. A Notary service may be required to provide assurance about the properties o
the data.

Complete evidence

Non-repudiation evidence may have to be verified long after it is generated. While
information necessary to verify the evidence (e.g. the public key of the signer of the
evidence, the public key of the trusted time service used to countersign the evidence
the details of the policy under which the evidence was generated, etc.) will ordinarily
be easily accessible at the time the evidence is generated, that information may be
difficult or impossible to assemble a long time afterward.

The CORBA Non-repudiation Service provides facilities for incorporating all
information necessary for the verification of a piece of non-repudiation evidence in
the evidence token itself. A token including both non-repudiation evidence and all
information necessary to verify that evidence is said to contain "complete" eviden

Application NRCredentials
generate_token

(e.g. proof of creation)
Security Service: v1.0 November 1996 15-67

15

d

ring

te
There may be policy-related limitations on the time periods during which complete
evidence may be formed. For example, Non-repudiation policy may permit addition of
the signer’s public key to the evidence only after expiration of the interval, during
which the signer may permissibly declare that key to have been compromised.
Similarly, the policy may require application of the Trusted Time Service
countersignature within a specified interval after application of the signer’s signature.

To facilitate the generation of complete evidence, the information returned from the
calls which verify evidence and request formation of complete evidence, includes two
indicators (complete_evidence_before and complete_evidence_after)
indicating the earliest time at which complete evidence may usefully be requested an
the latest time at which complete evidence can successfully be formed.

A call to verify_evidence before complete evidence can be formed may result in
a response declaring the evidence to be "conditionally valid." This means that the
evidence is not invalid at the current time, but a future event (e.g. the signer decla
his key compromised) might cause the evidence to be invalid when complete.

Figure 15-41 illustrates the policy considerations relating to generation of comple
evidence, and the sequence of actions involved in generating and using complete
evidence.
15-68 CORBAservices: Common Object Services Specification

15

Figure 15-41Non-repudiation service

(< >)

trusted time service

countersignature

window

user key repudiation window

Time

Non-Repudiation Service

event

data

evidence

token

evidence

token

with
trusted
timestamp

OK

complete_evidence_before complete_evidence_after

form_complete_evidence

form_
complete_
evidence

verify_
evidence

generate_
token

evidence

token

complete
Security Service: v1.0 November 1996 15-69

15

s is

tion.

n

oes
An application may receive a token and need to know what sort of token it is. Thi
done using get_token_details . When the token contains evidence,
get_token_details can be used to extract details such as the non-repudiation
policy, the evidence type, the originator’s name, and the date and time of genera
These details can be used to select the appropriate non-repudiation policy and other
features (using set_NR_features), as necessary for verifying the evidence. Whe
the token contains a request to send back evidence to one or more recipients, then if
appropriate, evidence can be generated.

An application verifies the evidence using the verify_evidence operation.

Figure 15-42verify_evidence operation

Verification of non-repudiation tokens uses information associated with the Non-
repudiation Policy applicable to the non-repudiation token and security information
about the recipient who is verifying the evidence (normally the public key from a
Certification Authority and a set of trust relationships between Certification
Authorities).

Using non-repudiation for receipt of messages

An application receiving a message with proof of origin may handle it as shown in
Figure 15-43.

Figure 15-43Proof of origin message

• The application receives the incoming message with a non-repudiation token that
has been generated by the originator.

• The application now wishes to know the type of token that it has received. It d
this by calling the get_token_details operation. The token may be:

• A request that evidence be sent back (such as an acknowledge of receipt)

Application NRCredentials
veri fy_evidence

incoming request
with message
plus evidence e.g.
proof of origin

Application
Object

NR
credentials

generate_evidence
e.g.proof of receipt

deliver message
and evidence
to originator e.g.
 proof of receipt

NR
credentials

get_token_details
& verify_evidence
e.g. proof of origin
15-70 CORBAservices: Common Object Services Specification

15

nce

rst

he

ins
• Evidence of an action (such as a proof of creation)

• Both evidence and a request for further evidence.

• The application’s next action depends on which of the three cases applies.

• In the first case, the application verifies that it is appropriate to generate the
requested evidence and, if so, generates that evidence using generate_token .

• In the second case, the application retrieves the data associated with the evide
if it is outside the token, and verifies the evidence using verify_evidence ,
presenting the token alone or the concatenation of the token and the data.

• In the last case, the application verifies the received evidence by first calling
verify_evidence , and then generating evidence if appropriate, as in the fi
case.

• If the application receives a token that contains valid evidence, and wishes to store
it for later use, it needs to make sure that it holds all the necessary information. It
may need to call form_complete_evidence in order to get the complete
evidence needed when this could not be provided using the verify operation.

• When the application has generated evidence as the result of a request from t
originator of the message, the application must send it to the various recipients as
indicated in the NR token received.

Using non-repudiation services for adjudication

Adjudication applications use the verify_evidence operation on the NR token,
which must contain complete evidence to settle disputes.

Administrative Model

The administrative model described here is concerned with administering security
policies.

• Administration of security environment domains and security technology doma
may be implementation specific, so it is not covered here. This means
administrating security technology specific objects is out of the scope of this
specification.

• Explicit management of nonsecurity aspects of domains is not covered.

Administrative activities covered here are:

• Creating objects in a secure environment subject to the security policies

• Finding the domain managers that apply to this object.

• Finding the policies for which these domain managers are responsible.

• Setting security policy details for these policy objects.

• Specifying which rights give access to which operations in support of access
policies.
Security Service: v1.0 November 1996 15-71

15

n

d
The model used here is not specific to security, though the specific policies described
are security policies.

Security Policies

Security policies may affect the security enforced:

• By applications. In general, enforcing policy within applications is an application
concern, so it is not covered by this specification. However, where the applicatio
uses underlying security services, it will be subject to their policies.

• By the ORB Security Services during object invocation (the main focus of this
specification).

• In other security object services, particularly authentication and audit.

• In any underlying security services. (In general, this is not covered by this
specification, as these security services are often security technology specific.)

This specification defines the following security policy types:

• Invocation access policy
The object that implements the access control policy for invocations of objects in
this domain.

• Invocation audit policy
This controls which types of events during object invocation are audited, and the
criteria controlling auditing of these events.

• Secure invocation policy
This specifies security policies associated with security associations and message
protection. For example, it specifies:

• Whether mutual trust between client and target is needed (i.e., mutual
authentication if the communications path between them is not trusted).

• Quality of protection of messages (integrity and confidentiality).

There may be separate invocation policies for applications acting as client and those
acting as target objects in th is domain. This applies to access, audit, and secure
invocation policies. There may also be separate policies for different types of objects
in the domain.

• Invocation delegation policy
This controls whether objects of the specified type in th is domain, when acting as
an intermediate in a chain, by default delegate the received credentials, use their
own credentials, or pass both.

• Application access policy
This policy type can be used by applications to control whether application
functions are permitted. Unlike invocation policies, it does not have to be manage
via the domain structure, but may be managed by the application itself.
15-72 CORBAservices: Common Object Services Specification

15

e is

. For

rsh

 to
 in
• Application audit policy
This policy type can be used by applications to control which types of application
events should be audited under what circumstances.

• Non-repudiation policy
Where non-repudiation is supported, a non-repudiation policy has the rules for
generation and verification of evidence.

• Construction policy
This controls whether a new domain is created when an object of a specific typ
created.

Domains at Object Creation

When a new object is created in a secure environment, the ORB implicitly associates
the object with the following elements forming its environment.

• One or more Security Policy Domains, defining all the policies to which the object
is subject.

• The Security Technology Domains, characterizing the particular variants of security
mechanisms available in the ORB.

• Particular Security Environment Domains where relevant.

The application code involved in an object’s creation does not need to be aware of
security to protect the objects it creates. Also, automatically making an object a
member of policy domains on creation ensures that mandatory controls of enclosing
domains are not bypassed.

The ORB will establish these associations when the creating object calls
CORBA::BOA::create or an equivalent. Some or all of these associations may
subsequently be explicitly referenced and modified by administrative or application
activity, which might be specifically security-related but could also occur as a side-
effect of some other activity, such as moving an object to another host machine.

Also, in some cases, when a new object is created, a new domain is also needed
example, in a banking system, there may be a domain for each bank branch, which
provides policies for bank accounts at that branch. Therefore when a bank branch is
created, a new domain is needed. As for a newly created object’s domain membeip,
if the application code creating the object is to be unaware of security, the domain
manager must be created transparently to the application. A construction policy
specifies whether new objects of this type in this domain require a new domain.

This construction policy is enforced at the same time as the domain membership, i.e.
by BOA::create or equivalent.

Other Domain and Policy Administration

Once an object has been created as a member of a policy domain, it may be moved
other domains using the appropriate domain management facilities (not specified
this document).
Security Service: v1.0 November 1996 15-73

15

ly

 one

ult
Once a domain manager has been created, new security policy objects can be
associated with it using the appropriate domain management facilities. These security
policy objects are administered as defined in this specification.

The following diagram shows the operations needed by an administrative application
to manage security policies.

Figure 15-44Managing securi ty policies

Finding Domain Managers

An application can make a call on an object reference to get_domain_managers .
This returns a list of the immediately enclosing domain managers for this object. If
these do not have the type of policy required, a call can be made to
get_domain_managers on one of these domain managers to find its immediate
enclosing domains.

Finding the Policies

Having found a domain manager, the administrative application can now find the
security policies associated with that domain by calling get_domain_policy on
the domain manager specifying the type of policy it wants (e.g. client secure
invocation policy, application audit policy). This returns the object needed to
administer the policy associated with this domain. Each policy object supports the
operations required to administer that policy.

Note: The policy object used for administering the policy may be the same as the
used for enforcing it, but need not be. For example, an AccessPolicy interface for
managing the policy may be supported by a different object from the one that supports
the AccessDecision interface used for deciding if access is allowed.

In this specification, no facilities are provided to specify the rules for combining
policies for overlapping domains, though some implementations may include defa
rules for this. (Definition of such rules is a potential candidate for future security
specifications. See Appendix G, Facilities Not in This Specification.)

set_policy_option

Application
Object

Policy
Object

get_domain_managers

Domain
Manager

get_domain_ policy (policy type)

get_domain_managers

Object
Reference
15-74 CORBAservices: Common Object Services Specification

15

ation
en

of

ain,
If the policy that applies to the domain manager’s own interface is required (rather
than the one for the objects in the domain), then get_policy (rather than
get_domain_policy) is used.

Setting Security Policy Details

Having found the required security policy object, the application uses its
administrative interfaces to set the policy.

The administrative interfaces depend on the type of policy. For example, the deleg
policy only requires a delegation mode to be set to specify delegation mode used wh
the object acts as an intermediate in a chain of object invocations, whereas an access
policy will need to specify who can access the objects.

Administrative interfaces are defined in Section 15.6, Administrator’s Interfaces, for
the standard policy types, which all ORBs supporting security functionality Level 2
support.

However, different administration may be needed if standard policies are replaced by
different policies. A supplier providing another policy may therefore have to specify its
administrative interfaces.

Specifying Use of Rights for Operation Access

The access policy is used to decide whether a user with specified privileges has
specified rights. A specific right may permit access to exactly one operation. More
often, the right permits access to a set of operations.

A RequiredRights object specifies which rights are required to use which operations of
an interface. The administrator can set_required_rights on this object.

The Model as Seen by the Objects Implementing Security

Security is provided for security-unaware applications by implementation level
security objects, which are not directly accessible to applications. These same
implementation objects are also used to support the application-visible security objects
and interfaces described in the subsections The Model as Seen by Applications, and
Administrative Model.

There are two places where security is provided for applications, which are unaware
security. These are:

• On object invocation when invocation time policies are automatically enforced.

• On object creation, when an object automatically becomes a member of a dom
and therefore subject to the domain’s policies.
Security Service: v1.0 November 1996 15-75

15

any
Implementor’s View of Secure Invocations

Figure 15-45 shows the implementation objects and services used to support secure
invocations.

Figure 15-45Securing invocations

ORB Security Services

ORB Security Services are interposed in the path between the client and target object
to handle the security of the object invocation. They may be interspersed with other
ORB services, though where message protection is used, this will be the last ORB
service at the client side, as the request cannot be changed after this.

The ORB services use the policy objects to find which policies to apply to the client
and target object, and hence the invocation. The ORB and ORB Services establish the
binding between client and target object as defined in ORB Services, under Section
15.4.2, Structural Model. The ORB Security Services call on the security services to
provide the required security.

Security Policy

The security policies associated with the client object are accessed by the ORB
Security Services using the get_policy operation on Current specifying the type of
policy required. (The client side services also have to check the binding to see if
policies have been overridden by the client using operations on the target object
reference.) At the target, get_policy is used on the object’s reference (at least in
the message level interceptors, as Current is not available at that stage).

ORB Core

request
request

Cl ient
Target
Object

target obj ref

Security
Services

Security
Services

ORB Securi ty
(and other)
Services

ORB Securi ty
(and other)
Services

Binding Binding

CurrentCurrent

Cl ient
Policies

Target
Policies
15-76 CORBAservices: Common Object Services Specification

15

es,

licy,

Figure 15-46get_pol icy operation

The policy may be associated with domain managers as described in the administration
view. However, information may be cached during environment setup or previous
object invocations, and the get_policy interface hides whether the policy
information has been obtained in advance or is searched for in response to this call.

Once the policy object has been obtained, the ORB Service uses it to enforce policy.
The operations used to enforce the policy depend on the type of policy. In some cas
such as secure invocation or delegation, the ORB Service invokes a get_ operation
specifying the particular policy options required (e.g. whether confidentiality is
required, and the delegation mode). It then uses this information to enforce the po
for example, pass the required policy options to the Vault to enforce.

Some policy objects may include rules, which enforce the policy. For example, an
access policy object supports an access_allowed operation which responds with a
yes or no.

ORB
Security
Service

Current
or target object

reference

Policy
Object

get_policy (type of policy)

get/check policy
Security Service: v1.0 November 1996 15-77

15

ct is
Specific ORB Security Services and Replaceable Security Services

The specific ORB Security Services and security services included in the CORBA
security object model are shown in Figure 15-47.

Figure 15-47ORB Security Services

Two ORB Security Services are shown:

• The access control service, which is responsible for checking if this operation is
permitted and enforcing the invocation audit policy for some event types.

• The secure invocation service. On the client’s initial use of this object, it may need
to establish a security association between client and target object. It also protects
the application requests and replies between client and target object.

The security services they use are discussed next.

Access policy

An access decision object is used to determine if this operation on this target obje
permitted. It is obtained by the ORB service using the get_policy operation
previously described. There may be different policies, and therefore different access
decision policy objects, at the client and target.

ORB Core

request request

create

O
R

B
 S

ec
u

rit
y

S
e

rv
ic

es

create

Cl ient
Target
Object

Security
Context

Vaul t

Vaul t

Target
Access

Decision

Cl ient
Access

Decision

Security
Context

S
e

cu
rit

y
S

er
vi

ce
s

Access
Control

Access
Control

Secure
Invocation

Secure
Invocation

per request

at bind time
to set up
security
association

per message
to protect
message

reply
15-78 CORBAservices: Common Object Services Specification

15

ntrol

cipal

es

future

urity

r
n an
The ORB service invokes the access_allowed operation on the Access Policy
object specifying the operation required, the principal credentials to be used for
deciding if this access is allowed, etc. This is independent of the type of access co
policy, which may be discretionary using ACLs or capabilities, mandatory labels
usage, etc.

The Access Decision object uses the access policy to decide what rights the prin
has. If the Access Policy object is separate from the Access Decision object, it invokes
get_effective_rights on the Access Policy object.

If the access policies use rights (rather than directly identifying that this operation is
permitted), the Access Decision object now invokes get_required_rights on the
RequiredRights object to find what rights are needed for this operation. It compar
these rights with the effective rights granted by the policy objects, and if required
rights have been granted, it grants access. This model could be extended in the
to handle overlapping access policy domains as described in Appendix G, Facilities
Not in This Specification.

Figure 15-48Access decision object

Vault

The Vault object is responsible for establishing the security association between client
and target. It is invoked by the Secure Invocation ORB Service at the client and at the
target (using init_security_context and accept_security_context).
The Vault creates the security context objects, which are used for any further sec
operations for this association.

Authentication of users (and some other principals) is done explicitly using the
authenticate operation described in The Model as Seen by Applications, under Section
15.4.5, Security Object Models. Authentication of an intermediate object in a chain (o
the principal representing the object) may be done automatically by the Vault whe
intermediate object invokes another object.

The Vault, like the security context objects it creates, is invisible to all applications.

Access
Policy

Access
Decision

Required
Rights

get_effective_rights get_required_rights

access_allowed
Security Service: v1.0 November 1996 15-79

15

t

urity
Security context

For each security association, a pair of Security Context objects (one associated with
the client, and one with the target) provide the security context information.
Establishing the security contexts may require several exchanges of messages
containing security information, for example, to handle mutual authentication or
negotiation of security mechanisms.

Security Context objects maintain the state of the association, such as the credentials
used, the target’s security name, and the session key. is_valid and refresh
operations are supported to check the validity of the context and refresh it if possible.

Security Contexts objects provide operations for protecting messages for integrity and
confidentiality such as protect_message , reclaim_message .

They also have received_credentials and
received_security_features attributes, which are made available via the
Current object.

A security context can persist for many interactions and may be shared when a clien
invokes several target objects in the same trusted identity domain. Although neither the
client nor target is aware of an “association,” it is an important optimizing concept for
the efficient provision of security services.

Relationship between implementation objects for associations

There is not always a one-for-one relationship between client-target object pairs and
security contexts. For example, if a client uses different privileges for different
invocations on that object, th is will result in separate security contexts. Also, a sec
context may be shared between this client’s calls on more than one target object. This
is normally the case if the target objects share a security name, as shown in Figure
15-49. Note that the Vault decides whether to use the same or a different security
context based on the target security name (which may be the name of an object or
trusted identity domain).
15-80 CORBAservices: Common Object Services Specification

15

Figure 15-49Target objects sharing security names

Implementor’s View of Secure Object Creation

When an object is created in a secure environment, it is associated with Security
Policy, Environment, and Technology domains as described Administrative Model, in
Section 15.4.5, Security Object Models.

The way it is associated with Environment and Technology domains is ORB
implementation-specific, and therefore not described here.

Client
Target
Object

T2

obj ref
for T1

obj ref
for T2

obj ref
for T3

Security
context for

C-T3
Security

context for
C-S1

Security
context for

C-T3
Security

context for
C-S1

Target
Object

T1

Target
Object

T3

Current Current Current

Objects sharing
security name S1

C-T3 messages

C-T2 messages

C-T1 messages
Security Service: v1.0 November 1996 15-81

15

 new

y

s
For policy domains, the construction policy of the application or factory creating the
object is used as shown in Figure 15-50.

Figure 15-50Object created by appl ication or factory

The application (which may be a generic factory) object calls BOA::create to
create the new object reference. The ORB obtains the construction policy associated
with the creating object.

The construction policy controls whether, in addition to creating the specified new
object, the ORB must also create a new domain for the newly created object. If a
domain is needed, the ORB creates both the requested object and a domain manager
object. A reference to this domain manager can be found by calling
get_domain_managers() on the newly created object’s reference.

While the management interface to the construction policy object is standardized, the
interface from the ORB to the policy object is assumed to be a private one, which ma
be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of the
enclosing domain.

The calling application, or an administrative application later, can change the domain
to which this object belongs, using the domain management interfaces.

Summary of Objects in the Model

The previous sections have described the various security-related objects, which are
available to applications, administrators, and implementors.

Figure 15-51 shows the relationship between the main objects visible in different views
for three types of security functionality.

application

construction
policy object

BOA::create

get_policy (construction policy)

ORB

application’s
own object
reference
15-82 CORBAservices: Common Object Services Specification

15

ry
,
ss is

• Authentication of principals and security associations (which includes
authentication between clients and targets) and message protection.

• Authorization and access control (i.e., the principal being authorized to have
privileges or capabilities and control of access to objects).

• Accountability -- auditing of security-related events and using non-repudiation to
generate and check evidence of actions.

Figure 15-51Relationship between main objects

Credentials are visible to the application after authentication, for setting or obtaining
privileges and capabilities, for access control, and are available to ORB service
implementors. Only the first of these usages is shown.

Policy objects have management interfaces to allow policies to be maintained. These
interfaces depend on the type of policy. For example, management of a mandato
access control policy using labels is different from management of an ACL. However
at run-time, an access policy object is used, which has a standard “check if acce
allowed” interface, whatever the access control policy used. The access policy object
has both management and run-time interfaces.

application
visible
objects

implementation
- ORB services

implementation
security objects

administration
objects

authentication and
security associations

authorisation and
access control

accountability

Principal
Authentication

Current

Credentials

secure invocation

Vault
Security
Context

Secure Invocation policies

Domain Manager

Access
policies

invocation
audit
policy

application
Access Decision

Access control

Appl’n
Audit
policy

Non-repudiation
credentials

delegation policy

Audit
channel

Audit
Decision

Audit
channel

Audit
Decision

Access
Decision
Security Service: v1.0 November 1996 15-83

15

s

 to

The diagram does not show:

• Environment objects, such as Current.

• Application objects (client, target object, target object reference at the client).

• The ORB core (though the security ORB services it calls are shown).

• The construction policy object.

15.5 Application Developer’s Interfaces

15.5.1 Introduction

This section defines the security interfaces used by the application developer who
implements the business logic of the application. For an overview of how these interface
are used, see the Security Model as seen by applications in Section 15.4, Security
Architecture.

Note that applications may be completely unaware of security, and therefore not need
use any of these interfaces. In general, applications may have different levels of security
awareness. For example:

• Applications unaware of security, so that an application object, which has not been
designed with security in mind, can participate in a secure object system and be
subject to its controls such as:

• Protection default quality of object invocations.

• Control of who can perform which operations on which objects.

• Auditing of object invocations.

• Applications performing security-relevant activities. An application may control
access and audit its functions and data at a finer granularity than at object
invocation.

• Applications wanting some control of the security of its requests on other objects,
for example, the level of integrity protection of the request in transit.

• Applications that are more sophisticated in how they want to control their
distributed operations, for example, control whether their credentials can be
delegated.

• Applications using more specialist security facilities such as non-repudiation.

Security operations use the standard CORBA exceptions. For example, any invocation
that fails because the security infrastructure does not permit it, will raise the standard
CORBA::NO_PERMISSION exception. A security operation that fails because the
feature requested is not supported in this implementation will raise a NO_IMPLEMENT
exception. No security-specific exceptions are specified.
15-84 CORBAservices: Common Object Services Specification

15

,

fore

ction

Security Functionality Conformance

Two security functionality levels are specified in this document, plus one optional facility.

Security Functionality Level 1

Security functionality Level 1 provides an entry level of security functionality that applies
to all applications running under a secure ORB, whether aware of security or not. This
includes security of invocations between client and target object, message protection
some delegation, access control, and audit.

The security functionality is in general specified by administering the security policies for
the objects, and is mainly transparent to applications.

Security functionality Level 1 includes interfaces for applications as follows:

• get_attributes allows an application to obtain the privileges and other
attributes of the principal on whose behalf it is operating. It can then use these to
control access to its own functions and data (see Section 15.5.4, Interfaces, and
Section 15.5.9, Use of Interfaces for Access Control).

Security Functionality Level 2

This security functionality level provides further security functionality such as more
delegation options.

It also allows an application aware of security to have more control of the enforcement of
this security. Most of the interfaces specified in this section are only available as part of
this functionality level. Note that although implementations must support all Level 2
interfaces in order to conform to Security Functionality Level 2, different implementations
of these interfaces may support different semantics; some implementations will there
be capable of enforcing a wider variety of policies than others.

Security Replaceability Ready (either option)

A security replaceability ready ORB provides no security functionality itself, but is
Security Ready (i.e. it makes well-formed calls to known security interfaces as defined in
Appendix D, Conformance Details) and supports the get_service_information
operation which allows an application to find out what security is supported (see
Section 15.5.2, Finding Security Features). It also supports the get_current
operation on the ORB to obtain the Current object for the execution context (see Se
B.3, Extension to the Use of Current).

Optional Functionality

The only specified optional facility specified here is non-repudiation. The interfaces for
this are specified in Section 15.5.11, Non-repudiation.

It is possible to add other security policies to this specification, for example, extra access
or delegation policies, but these are not part of this specification.
Security Service: v1.0 November 1996 15-85

15

ily
Introduction to the Interfaces

The interfaces specified here, as in other sections, are designed to allow a choice of
security policies and mechanisms. Where possible, they are based on international
standard interfaces. Several of the credentials interfaces are based on those of GSS-API.

Data Types

Many of the security data types used by applications are also used for implementation
interfaces. These are therefore defined in the security common data module.

Some data types, such as security attributes and audit events, have an extensible set of
values, so the user can add values as required to meet user-specific security policies. In
these cases, a family is identified, and then a set of types or values for this family. Fam
identifiers 0-7 are reserved for OMG-defined families, and therefore standard values.
More details of these families and associated data types are given in Appendix A,
Consolidated OMG IDL.

module CORBA {
// the following data structures are used to return what
// security is implemented by get_service_information

typedef unsigned short ServiceType;

const ServiceType Security = 1;
// other Service types to be defined

typedef unsigned long ServiceOption;

const ServiceOption SecurityLevel1 = 1;
const ServiceOption SecurityLevel2 = 2;
const ServiceOption NonRepudiation = 3;
const ServiceOption SecurityORBServiceReady = 4;
const ServiceOption SecurityServiceReady = 5;
const ServiceOption ReplaceORBServices = 6;
const ServiceOption ReplaceSecurityServices = 7;
const ServiceOption StandardSecureInteroperability = 8;
const ServiceOption DCESecureInteroperability = 9;

// Service details supported by the implementation

typedef unsigned long ServiceDetailType;

// security mech type(s) supported for secure associations

const ServiceDetailType SecurityMechanismType = 1;

// privilege types supported in standard access policy

const ServiceDetailType SecurityAttribute = 2;
15-86 CORBAservices: Common Object Services Specification

15

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;

 };

struct ServiceInformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

};

// Security Policy Types supported

enum PolicyType {
 SecClientInvocationAccess,

SecTargetInvocationAccess,
SecApplicationAccess,

 SecClientInvocationAudit,
SecTargetInvocationAudit,
SecApplicationAudit,

 SecDelegation,
 SecClientSecureInvocation,

SecTargetSecureInvocation,
SecNonRepudiation,
SecConstruction

};
};

 module Security {
typedef string SecurityName;
typedef sequence <octet> Opaque;

// extensible families for standard data types

struct ExtensibleFamily {
unsigned short family_definer;
unsigned short family;

};

// security association mechanism type

typedef string MechanismType;
struct SecurityMechandName {

MechanismType mech_type;
SecurityName security_name;

};

typedef sequence<MechanismType> MechanismTypeList;
typedef sequence<SecurityMechandName>SecurityMechandNameList;

// security attributes

typedef unsigned long SecurityAttributeType;
Security Service: v1.0 November 1996 15-87

15

// identity attributes; family = 0

const SecurityAttributeType AuditId = 1;
const SecurityAttributeType AccountingId = 2;
const SecurityAttributeType NonRepudiationId = 3;

// privilege attributes; family = 1

const SecurityAttributeType Public = 1;
const SecurityAttributeType AccessId = 2;
const SecurityAttributeType PrimaryGroupId = 3;
const SecurityAttributeType GroupId = 4;
const SecurityAttributeType Role = 5;
const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType Clearance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
ExtensibleFamily attribute_family;
SecurityAttributeType attribute_type;

};

typedef sequence<AttributeType>AttributeTypeList;

struct SecAttribute {
Attri buteType attribute_type;
Opaque defining_authority;

 Opaque value;
// the value of this attribute can be

 // interpreted only with knowledge of type
};

typedef sequence<SecAttribute> AttributeList;

// Authentication return status

enum AuthenticationStatus {
SecAuthSuccess,
SecAuthFailure,
SecAuthContinue,
SecAuthExpired

};

// Association return status
enum AssociationStatus {

SecAssocSuccess,
SecAssocFailure,
SecAssocContinue

};

// Authentication method
typedef unsigned long AuthenticationMethod;
15-88 CORBAservices: Common Object Services Specification

15

// Credential types which can be set as Current default

enum CredentialType {
SecInvocationCredentials,
SecOwnCredentials,
SecNRCredentials

};

// Declarations related to Rights
struct Right {

Extensible Family rights_family;
string right;

};

typedef sequence <Right> RightsList;

enum RightsCombinator {
SecAllRights,
SecAnyRight

};

// Delegation related
enum DelegationState {

SecInitiator,
SecDelegate

};

// pick up from TimeBase
typedef TimeBase::UtcT UtcT;
typedef TimeBase::IntervalT IntervalT;
typedef TimeBase::TimeT TimeT;

// Security features available on credentials.
enum SecurityFeature {

SecNoDelegation,
SecSimpleDelegation,
SecCompositeDelegation,
SecNoProtection,
SecIntegrity,
SecConfidentiality,
SecIntegrityAndConfidentiality,
SecDetectReplay,
SecDetectMisordering,
SecEstablishTrustInTarget

};

// Security feature-value
struct SecurityFeatureValue {

SecurityFeature feature;
boolean value;

};

typedef sequence<SecurityFeatureValue>SecurityFeatureValueList;
Security Service: v1.0 November 1996 15-89

15

// Quality of protection which can be specified
// for an object reference and used to protect messages
enum QOP {

SecQOPNoProtection,
SecQOPIntegrity,
SecQOPConfidentiality,
SecQOPIntegrityAndConfidentiality

};

// Association options which can be administered
// on secure invocation policy and used to
// initialize security context

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection= 1;
const AssociationOptions Integrity= 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;

// Flag to indicate whether association options being
// administered are the “required” or “supported” set

enum RequiresSupports {
SecRequires,
SecSupports

};

// Direction of communication for which
// secure invocation policy applies
enum CommunicationDirection {

SecDirectionBoth,
SecDirectionRequest,
SecDirectionReply

};

// AssociationOptions-Direction pair
struct OptionsDirectionPair {

AssociationOptions options;
CommunicationDirection direction;

};

typedef sequence<OptionsDirectionPair>OptionsDirectionPairList;

// Delegation mode which can be administered
enum DelegationMode {

SecDelModeNoDelegation, // i.e. use own credentials
SecDelModeSimpleDelegation, // delegate received credentials
SecDelModeCompositeDelegation // delegate both;

};
15-90 CORBAservices: Common Object Services Specification

15

// Association options supported by a given mech type

struct MechandOptions {
MechanismType mechanism_type;
AssociationOptions options_supported;

};

typedef sequence<MechandOptions>MechandOptionsList;

// Audit data structures

struct AuditEventType {
ExtensibleFamily event_family;
unsigned short event_type;

};

typedef sequence<AuditEventType>AuditEventTypeList;

typedef unsigned long SelectorType;

const SelectorType InterfaceRef = 1;
const SelectorType ObjectRef = 2;
const SelectorType Operation = 3;
const SelectorType Initiator = 4;
const SelectorType SuccessFailure = 5;
const SelectorType Time = 6;

// values defined for audit_needed and audit_write are:
// InterfaceRef: object reference
// ObjectRef: object reference
// Operation: op_name
// Initiator: Credentials
// SuccessFailure: boolean
// Time: utc time on audit_write; time picked up from
// environment in audit_needed if required

struct SelectorValue {
SelectorType selector;
any value;

};
typedef sequence<SelectorValue> SelectorValueList;

};

In the interface specifications in the rest of this section, data types defined above are
included without the qualifying Security:: for ease of readability. The full definitions are
included in Appendices A and B.
Security Service: v1.0 November 1996 15-91

15

.
15.5.2 Finding Security Features

Description of Facilities

An application can find out what security facilities this implementation supports, for
example, which security functionality level and options it supports. It can also find out
what security technology is used to provide this implementation.

The get_service_information operation defined here could be used for
information about other CORBA facilities and services, so is not specific to security,
though only security details are specified.

Interfaces

interface ORB {

boolean get_service_information (
 in ServiceType service_type,

out ServiceInformation service_information,
);

};

Parameters

service_type
Identifies the service for which the information is required.

service_information
The information pertaining to the service.

Return Value
Returns TRUE if the service is supported and, if so, the
service_information contains valid information. FALSE is returned
if the service is unsupported.

Portability Implications

Applications dependent on security facilities beyond those in security functionality
Level 1 may not be portable between different secure ORBs. This interface allows
applications to adapt to the security available.

15.5.3 Authentication of Principals

Description of Facilities

A principal must establish its credentials before it can invoke an object securely. For many
clients, there are default credentials, created when the user logs on. This may be
performed prior to using any object system client. These default credentials are
automatically used on object invocation without the client having to take specific action
Even if user authentication is executed within the object system, it should normally be
15-92 CORBAservices: Common Object Services Specification

15

s

or

r

g

It
done by a user sponsor/login client, which is separate from the business application client,
so that business applications can remain unaware of security.

In most cases, principals must be authenticated to establish their credentials. However,
some services accept requests from unauthenticated users. In this case, if the principal ha
no credentials at the time the request is made, unauthenticated credentials are created
automatically for it.

If the user (or other principal) requires authentication and has not been authenticated pri
to calling the object system, the (login) client must invoke the Principal Authenticator
object to authenticate, and optionally select attributes for, the principal for this session.
This creates the required Credentials object and makes it available as the default
credentials for this client. Its object reference is also returned so it can be used for other
operations on the Credentials. If the object system supports non-repudiation, the
credentials returned can be used for non-repudiation operations as specified in Section
15.5.11, Non-repudiation.

Authentication of principals may require more than one step, for example, when a
challenge/response or other multistep authentication method is used. In this case, the
authentication service will return information to the caller, which may be used in furthe
interactions with the user before continuing the authentication. So there are both
authenticate and continue authentication operations.

There is no need for an application to explicitly authenticate itself to act as an initiatin
principal prior to invoking other objects, as this will be performed automatically if needed.
However, it does need to be performed explicitly if the object wants to specify particular
attributes.

Interfaces

This section defines the “Authenticate” and “Continue Authentication” operations on the
Principal Authenticator object.

authenticate

This is called, for example, by a user sponsor to authenticate the principal and optionally
request privilege attributes that the principal requires during its session with the system.
creates a Credentials object including the required attributes.

AuthenticationStatus authenticate (
in AuthenticationMethod method,
in string security_name,
in Opaque auth_data,
in AttributeList privileges,
out Credentials creds,
out Opaque continuation_data,
out Opaque auth_specific_data

);
Security Service: v1.0 November 1996 15-93

15

en

s,

ized

pe of
Parameters

method The identifier of the authentication method used.
security_name The principal’s identification information (e.g. login name).
auth_data The principal’s authentication information such as password or long term

key.
privileges The privilege attributes requested.
creds Object reference of the newly created Credentials object. Not fully

initialized, therefore unusable unless return parameter is ‘Success.’
auth_specific_data

Information specific to the particular authentication service used.
continuation_data

If the return parameter from the authenticate operation is ‘Continue,’ th
this parameter contains challenge information for authentication
continuation.

Return Value

The return parameter is used to specify the result of the operation.

‘SecAuthSuccess’
Indicates that the object reference of the newly created initialized
credentials object is available in the creds parameter.

‘SecAuthFailure’
Indicates that authentication was in some way inconsistent or erroneou
and therefore credentials have not been created.

‘SecAuthContinue’
Indicates that the authentication procedure uses a challenge/response
mechanism. The creds contains the object reference of a partially initial
Credentials object. The continuation_data indicates details of the
challenge.

‘SecAuthExpired’
Indicates that the authentication data contained some information, the
validity of which had expired (e.g. expired password). Credentials have
therefore not been created.

continue_authentication

This continues the authentication process for authentication procedures that cannot
complete in a single operation. An example of this might be a challenge/response ty
authentication procedure.

AuthenticationStatus continue_authentication (
in Opaque response_data,
inout Credentials creds,
out Opaque continuation_data,
out Opaque auth_specific_data

);
15-94 CORBAservices: Common Object Services Specification

15

at

e

eous,

ng

Parameters

response_data
The response data to the challenge.

creds Reference of the partially initialized Credentials object. The Credentials
object is fully initialized only when return parameter is ‘Success.’ Note th
this parameter is described as inout, as the authentication procedure will
modify the state of the Credentials object.

continuation_data
If the return parameter from the continue_authentication
operation is ‘Continue,’ then this parameter contains challenge information
for authentication continuation.

auth_specific_data
Information specific to the particular authentication service used.

Return Value

The return parameter is used to specify the result of the operation.

‘SecAuthSuccess’
Indicates that the Credentials object whose reference was identified by th
creds parameter is now fully initialized.

‘SecAuthFailure’
Indicates that the response data was in some way inconsistent or erron
and that therefore credentials have not been created.

‘SecAuthContinue’
Indicates that the authentication procedure requires a further
challenge/response. The Credentials object whose reference was identified
in the creds parameter is still only partially initialized. The
continuation_data indicates details of the next challenge.

‘SecAuthExpired’
Indicates that the authentication data contained some information whose
validity had expired (e.g. expired password). A Credentials object has
therefore not been created.

Portability Implications

The authenticate and continue authentication operations allow different authentication
methods to be used. However, methods available are dependent on availability of
underlying authentication mechanisms. This specification does not dictate that particular
mechanisms should be used. However, use of some mechanisms, e.g. those involvi
hardware such as smart cards or finger print readers, may also require use of device-
specific objects so the client using such objects will not be portable to systems which do
not support such devices. It is therefore recommended that use of both the authenticate
operations described here and any device-specific ones be confined to a user sponsor or
login client, or that such authentication is done prior to calling the object system, where
the credentials resulting from this can be used in portable applications.
Security Service: v1.0 November 1996 15-95

15

ns
15.5.4 Credentials

Description of Facilities

A Credentials object represents a principal’s current credential information for the session
and therefore includes information such as that principal’s privilege attributes and
identities such as the audit id. (It also includes some security-sensitive data required when
this principal is involved in peer entity authentication. However, such data is not visible to
applications.)

An application may want to:

• Specify security invocation options to be used by default whenever these credentials
are used for object invocations.

• Modify the privilege and other attributes in the credentials, for example, specify a
new role or a capability. This can modify the current privileges in use, or the
application can make a copy of the Credentials object first, and then modify the
new copy.

• Inquire about the security attributes currently in the credentials, particularly the
privilege attributes.

• Check if the credentials are still valid or if they have timed out, and if so, refresh
them.

Credential objects are created as the result of:

• Authentication (see Section 15.5.3, Authentication of Principals).

• Copying an existing Credentials object.

• Asking for a Credentials object via Current (see Section 15.5.6, Security Operatio
on Current).

The way these credentials are made available for use in invocations is described in Section
15.4, Security Architecture, and defined in detail in Sections 15.5.5, Object Reference,
and Section 15.5.6, Security Operations on Current.

Credentials used for non-repudiation also support further facilities as described in Section
15.5.11, Non-repudiation.

Interfaces

All the following operations are part of the Credential interface.

copy

This operation creates a new Credentials object, which is an exact duplicate (a "deep
copy") of the Credentials object which is the target of the invocation. The return value is a
reference to the newly created copy of the original Credentials object.

Credentials copy ();
15-96 CORBAservices: Common Object Services Specification

15

ge

 one

that

n

Return Value

An object reference to a copy of the Credentials object, which was the target of the
call.

set_security_features

This associates a set of security features with a Credentials object and sets each feature to
be “on” or “off.” The security features affect how a secure association is set up, such as
what delegation mode to use, whether trust in the target is needed, and what messa
protection is required.

Some implementations may allow the security features to be set for communication in
direction only (i.e. for requests only, or replies only) via the direction parameter, but this
support is not required for compliant implementations. The request-only and reply-only
feature sets are treated as overrides to the “both” feature set. If an unsupported direction is
passed to set_security_features , the BAD_PARAM exception should be raised.

The value of a security feature set by this operation is used for invocations using this
Credentials object (if this does not contravene the ClientSecureInvocation policy for
feature or the target’s invocation policy). Once associated with the Credentials object, a
feature may be turned “on” or “off” again with an additional call to
set_security_feature .

void set_security_features (
in CommunicationDirection direction,
in SecurityFeatureValueList security_features

);

Parameters

direction The communication direction (i.e. both, request, or reply) to which the
security feature should be applied. Normally set to both.

security_features
A sequence of required feature-value pairs. They may indicate the
delegation mode or a secure association option such as a message protectio
requirement, or whether trust in the target is needed. To set the feature on,
set the boolean value to TRUE; a value of FALSE is used to turn off the
feature.

get_security_features

This returns the security features associated with the Credentials.

The direction parameter indicates which set of security features (i.e. those set for the
request direction, the reply direction, or both) should be returned. Conforming
implementations are not required to support the “request” and “reply” directions. If an
unsupported direction is passed to get_security_features , the
CORBA::BAD_PARAM exception should be raised.
Security Service: v1.0 November 1996 15-97

15

t

ch as

sted.
SecurityFeatureValueList get_security_features (
in CommunicationDirection direction

);

Parameters

direction The communication direction (i.e. both, request, or reply) for which the
security features should be retrieved. Normally set to both.

Return Value

A sequence of required feature-value pairs. A boolean value of TRUE indicates the
feature is on; a value of FALSE indicates the feature is off.

set_privileges

This is used to request a set of privilege attributes (such as role, groups), updating the state
of the supplied Credentials object. One of the attributes requested may be an attribute se
reference, which causes a set of attributes to be requested.

Note: This operation can only be used to set privilege attributes. Other attributes, su
the audit identity, are generated by the system and cannot be changed by the application.

boolean set_privileges(
in boolean force_commit,
in AttributeList requested_privileges,
out AttributeList actual_privileges

);

Parameters

force_commit If true, the attributes should be applied immediately. Otherwise, attribute
acquisition may be deferred to when required by the system.

requested_privileges
A set of (typed) privilege attribute values. One of these may be a role name,
which is an attribute set reference used to select a set of attributes. (A null
attribute set requests default attributes.) Attributes can include capabilities.

actual_privileges
The set of (typed) privileges actually obtained.

Return Value

true Indicates that attributes can be set, and that the actual_privileges
parameter contains the complete set or subset of those attributes reque
It is the responsibility of the application programmer to interrogate the
returned attributes to determine their suitability.

false Operation failed, Credentials were not modified.
15-98 CORBAservices: Common Object Services Specification

15

s. If
get_attributes

This is used to get privilege and other attributes from the Credentials. It can be used to:

• Get privilege attributes, including capabilities, for use in access control decision
the principal was not authenticated, only one privilege attribute is returned. This has
type Public and no meaningful value.

• Get other attributes such as audit or charging identities if available. (If the principal
is not authenticated, none of these are returned.)

Note: This operation is also available on the Current pseudo-object.

AttributeList get_attributes (
in Attri buteTypeList attributes

);

Parameters

attributes The set of security attributes (privilege attributes and identities) whose
values are desired. If this list is empty, all attributes are returned.

Return Value

The requested set of attributes reflecting the state of the Credentials.

is_valid

Credentials objects may have limited lifetimes. This operation is used to check if the
Credentials are still valid.

boolean is_valid (
out UtcT expiry_time

);

Parameters

expiry_time The time that the Credentials expire.

refresh

This allows the application to update expired Credentials.

boolean refresh ();

Return Value

False The Credentials could not be refreshed.
Security Service: v1.0 November 1996 15-99

15

n

 on

s

.

Portability Implications

The authenticate and set privilege operations allow particular privilege
attributes to be specified. The attributes supported by different systems may vary
according to security policies supported. It is recommended that use of these interfaces be
limited, so business application objects are not exposed to particular policy details (uless
they need to be, as they are enforcing compatible security policies directly).

15.5.5 Object Reference

Description of Facilities

If the client application is unaware of security (for example, was written to use an ORB
without security), the ORB services will enforce the relevant security policies
transparently to applications. As described elsewhere, the security enforced is specified
by:

• The security policy set at the client by administrative action.

• The credentials used by the client.

• The security policy for the target object. Relevant security information about this is
made available to the client in the target’s object reference.

These policies include association options, any controls on whether this client can perform
this operation on this target, and the quality of protection of messages.

The only visibility of security to most applications is that some operations will now fail
because they would breach security controls.

An application client unaware of security can communicate with a security aware one and
vice versa.

A client application aware of security can also specify what security policy options it
wants to apply when communicating with this target object by performing operations
the target object’s reference. The following operations are available.

• override_default_credentials specifies a Credentials object to be used when
calling this target object. For example, the client may want to make different
privileges available to different targets, so choose Credentials with the required
privileges.

• override_default_QOP specifies that a particular quality of protection is required
for future messages it sends using this object reference.

• get_active_credentials returns the active credentials to be used for invocations via
this target object reference.

• get_security_features returns the quality of protection and other security feature
which will apply to invocations via this object reference.

• get_policy is used to find the security policy of the specified type for this object
15-100 CORBAservices: Common Object Services Specification

15

.

s

t had
• get_security_mechanisms returns the security association mechanisms available.

• override_default_mechanism allows a different mechanism to be requested.

• get_security_names returns the security name(s) for the target.

Note: The application states its minimum security requirements. A higher level of
security may still be enforced as this may be required by security policy.

Although these operations quote the target object reference, the scope of the effect of the
operation is the use of that reference itself, and not the object that it represents.

A target object can influence the security policy for incoming invocations by setting
security policies using the administrative interfaces in Section 15.6, Administrator’s
Interfaces. This will affect the security information exported as part of its object reference

Interfaces

In ORBs providing security, the Object interfaces includes the security-related interfaces
defined in this section. The availability and functionality of specific operations will vary
depending on the level of security provided by the ORB. OMG IDL values for defined
security levels are described in Appendix A, Consolidated OMG IDL.

override_default_credentials

This specifies a Credentials object to be used for future invocations that this client make
on this target object. The client can choose any Credentials object available to it. For
example, it may want to enforce a least privilege policy, so use Credentials with only those
privileges required by that target object.

If needed, override_default_credentials should be used before making any
invocation on this object, as it will generally result in a new security association needing
to be established with the target object.

void override_default_credentials (
in Credentials creds

);

Parameters

creds The object reference of the Credentials object, which is to become the
default.

override_default_QOP

The client application requests the quality of protection to use for messages when
invoking the target object, consistent with its controlling security policy. Note that a
request for a particular quality of protection may be overridden by Security Policy. For
example, Security Policy may insist that all messages be confidential even if the clien
not asked for this. (The invoker can determine this by calling
get_security_features and reading the value actually set for it.)
Security Service: v1.0 November 1996 15-101

15

s
It is possible to use this operation to change the QOP (e.g. confidentiality), for a particular
message or sequence of messages, and then call override_default_QOP again to
revert to a different set of options. Changing QOP will not in general require the
establishment of a different security association.

This operation does not allow QOP to be overridden for a single direction of
communication (i.e. request or reply). If that feature is required, use
set_security_features on an override Credentials object.

void override_default_QOP (
in QOP qop

);

Parameters

qop Required quality of protection of messages.

get_security_features

This is used by the client to find its net security requirements for invoking a particular
target object, as successfully requested thus far. Note that although the operation quote
the target object reference, the scope of the effect of the operation is the use of that
reference itself, and not the object it represents.

The direction parameter indicates which set of security features (i.e. those set for the
request direction, the reply direction, or both) should be returned. Conforming
implementations are not required to support the “request” and “reply” directions. If an
unsupported direction is passed to get_security_features , the
CORBA::BAD_PARAM exception should be raised.

SecurityFeatureValueList get_security_features (
in CommunicationDirection direction

);

Parameters

direction The communication direction (i.e., both, request, or reply) for which the
security features should be retrieved. Normally set to both.

Return Value

The sequence of feature-value pairs currently requested on this object reference. A
boolean value of TRUE indicates the feature is on; otherwise FALSE.

get_active_credentials

This operation returns a reference to the credentials that will be used when invoking
operations using this object reference.

Credentials get_active_credentials ();
15-102 CORBAservices: Common Object Services Specification

15

s

y be

cure

sms

 will
n
ct
get_policy

This gets the security policy object of the specified type, which applies to this object. Thi
operation is also available on Current and is generally used there to get the policies for the
current object.

get_policy is used on object references during administration. For example, it ma
used to get the policy for a domain.

CORBA::Policy get_policy (
in CORBA::PolicyType policy_type

);

Parameters

policy_type The type of policy to be obtained.

Return Value

policy A policy object that can be used to obtain the policy object.

get_security_mechanisms

Applications do not normally need to be aware of the security mechanisms used for
security of the invocation between client and target. The client environment knows
what mechanisms it supports, and the target object reference exported from a se
system specifies what mechanisms the target supports. So the client’s ORB can
normally choose the mechanism to use. Even if it cannot, negotiation of mechani
may be supported without the application seeing it.

Applications can call get_security_mechanisms() to determine the set of
mechanisms supported by both the client and the target.

MechanismTypeList get_security_mechanisms();

Return Value

The mechanism types that both the client and target object support.

override_default_mechanism

For the rare cases where the application wants to influence what security mechanism
be used for future invocations, the application can ask to override the mechanism chose
by the system. This will apply only to invocations that this client makes using this obje
reference.

void override_default_mechanism (
in MechanismType mechanism_type);
Security Service: v1.0 November 1996 15-103

15

ho

nt

t

 that

n
get_security_names

This operation is for use by security sophisticated applications. It is used by clients w
wish to determine which security names are associated with the target. It is possible for
different security names to be used for the target, depending on the mechanism used for
the target. The name may be shared by several objects.

SecurityMechandNameList get_security_names ();

Return Value

A list of pairs of values, each containing a security mechanism and associated security
name.

Portability Implications

The security features that can be set are generally ones supported by a variety of security
mechanisms. Applications using them will therefore be portable between any systems
where the security mechanisms support these features. However, some security
mechanisms will not support all features, for example, they may not provide replay
protection, or may not support confidentiality of application data (owing to regulatory
controls). Applications should check the response when attempting to set security
features, and if a requested feature is not available, take suitable action.

15.5.6 Security Operations on Current

Description

The Current object represents service specific state information associated with the
current execution context; both clients and targets have Current objects representing their
execution contexts. (Note that a reference to the Current object representing the active
execution context can be retrieved using the ORB::get_current() operation; see
Section B.3, Extension to the Use of Current, for details). In a secure ORB, the Curre
object includes operations relevant to Security; these operations are described in this
section and provide access to information about one or more of the following credentials.

• invocation credentials: these are the credentials at the client, used when this clien
invokes another object. There must always be credentials available for invocations,
but setting these is generally done transparently to the business applications. When
a user logs on, the user sponsor or other logon program normally sets this to the
user’s credentials. If this is done outside the object system, it is picked up at ORB
initialization. At an intermediate object, its default value is either the received
credentials or the object’s own credentials, depending on the delegation policy
applies to that object.

• own credentials: the credentials associated with the active object. A particular
object may have its own credentials or may share credentials with other objects. A
object’s own credentials are normally set up as the result of the object (or the
environment domain to which it belongs) being initialized.
15-104 CORBAservices: Common Object Services Specification

15

On
• received credentials: the credentials received from the client of the invocation as
seen at the target object. Depending on delegation options, this may be a single
Credentials object, or a list of credentials including those of both the initiator and
other principals in the chain

• non-repudiation credentials: when non-repudiation is supported, the credentials of
the initiating principal in whose name evidence is being generated or verified.
logon, or ORB initialization, these are normally set to the user’s credentials. At
other objects, they are set by default to their own credentials.

The following applications have the following functions.

• get_attributes obtain privilege and other attributes associated with received
credentials (which should be the user’s privileges when at the workstation).

• set_credentials can specify the type of credentials. This changes the credentials to
be used in the future for invocation, as its own credentials, or for non-repudiation.

• get_credentials can obtain the credentials currently associated with the Current
object for invocation, non-repudiation, or as its own credentials.

• received_credentials attribute contains the credentials received from the client.

• received_security_features, an attribute at the target application, contains the
security features of the message sent by the client.

The application can also use the

• get_policy operation to find what security policies apply to it.

• required_rights_object attribute to discover which operations require which rights.

• principal_authenticator attribute to get a reference to a PrincipalAuthenticator
object (which can be used to authenticate principals and thus obtain Credentials
objects for them).

Interfaces

get_attributes

This is used to get privilege (and other) attributes from the client’s credentials. It is
available in the security functionality Level 1 to allow applications to enforce their own
security policies without these applications having to perform operations on credentials.

This interface can be used to get:

• Privilege attributes for use in access control decisions. If the principal was not
authenticated, only one privilege attribute is returned. This has type Public and no
meaningful value.

• Other attributes, such as audit or charging identities, if available.

At the client, this generally gets the user’s (or other principal’s) privileges. At the target, it
gets the received privileges.
Security Service: v1.0 November 1996 15-105

15

ges
Note that a get_attributes operation is also available on Credential objects.

AttributeList get_attributes (
in Attri buteTypeList attributes

);

Parameters

attributes The set of security attributes (privilege attributes and identities) whose
values are desired. if this list is empty, all attributes are returned.

Return Value

The set of attributes or identities reflecting the state of the credentials.

set_credentials

As described previously, credentials are associated with Current for different types of use.
Credentials are automatically associated with Current by the object system at
initialization, authentication, and object invocation. However, the application may want to
specify particular credentials to use. set_credentials on the Current object sets the
specified credentials as the default one for the following.

• Subsequent invocations made by that client.
This may be done to reduce the privileges available to that client by setting
credentials having fewer privileges. Also, an intermediate object can explicitly ask
for the received credentials to be delegated by using the
received_credentials as the specified credentials on set_credentials .

• The object’s own credentials.
If an application authenticates itself (so creates new credentials), or sets privile
on its own credentials, getting a new credentials object, it can use
set_credentials to set these credentials as its own on invocations requiring
them (e.g. for composite delegation).

• Non-repudiation.
As for the invocation credentials, non-repudiation credentials may be set
transparently to the business application. The credentials used for non-repudiation
may be the same as the credentials used for invocations.

void set_credentials (
in CredentialType cred_type,
in Credentials creds

);

Parameters

cred_type The type of credential to be set (i.e. invocation, own, or non-repudiation).

creds The object reference of the Credentials object, which is to become the
default.
15-106 CORBAservices: Common Object Services Specification

15

fy

lly

y
get_credentials

This operation allows an application access to the credentials associated with Current. As
for set_credentials , the application can ask for the default credentials for future
invocations, its own credentials, or the ones used for non-repudiation.

An application will normally get invocation or other credentials when it wants to modi
them (for example, reduce the privileges available).

Credentials get_credentials (
in CredentialType cred_type);

Parameters

cred_type The type of credentials to be obtained.

Return Value

The object reference of the credentials.

received_credentials

At a target object, this gets the credentials received from the client. If credentials
representing more than one principal are received, the contents of these credentials depend
on the delegation model in use. They may be:

• The credentials of the only principal identified, if simple delegation is used (or if
the security technology used has merged the credentials of all the callers in the
chain).

• A list of credentials, if the credentials for different principals in a chain of calls can
be distinguished. Note that the number of credentials in this list depend on the
delegation option in use. There may be credentials for the initiator of the chain and
the immediate invoker only, or credentials providing a trace of all principals in the
chain. The first entry in the chain is the “primary” principal’s credentials, norma
the credentials of the initiator of the chain. A get_attributes call on Current
returns the privileges from these credentials.

At the workstation, the received_credentials attribute is the user’s credentials,
which are also the default credentials for invocation.

readonly attribute CredentialsList received_credentials;

Return Value

A sequence of Credential object references received from the requester.

received_security_features

This attribute at the target application provides the security features of the message sent b
the client.
Security Service: v1.0 November 1996 15-107

15

readonly attribute SecurityFeatureValueList
received_security_features ;

Return Value

A sequence of feature-value pairs. A boolean value of TRUE indicates that the feature
is on; otherwise FALSE.

get_policy

This gets the security policy object of the specified type, which applies to this object.
When used on Current, it gets the security policy object for this client (which may not be
an object) or the current object.

Policy get_policy (
in PolicyType policy_type);

Parameters

policy_type The type of policy to be obtained.

Return Value

policy A policy object which can be used to interrogate the policy in force as
defined in Section 15.6, Administrator’s Interfaces. For example, the secure
invocation policy would give the secure associations defaults for this object,
and the delegation policy would say which credentials were delegated on
invocations by this object.

required_rights_object

This attribute is the RequiredRights object available in the environment. This object is
rarely used by applications directly; it is generally used by Access Decision objects to find
the rights required to use a particular interface, though it could be used directly by the
application if it wishes to do all its own access control, and base this on Rights.

readonly attribute RequiredRights required_rights_object;

The operations in the interface of this object are defined in Section 15.6.4, Access
Policies.

principal_authenticator

This attribute is the PrincipalAuthenticator object available in the environment. It can be
used by the application to authenticate principals and obtain Credentials containing their
privilege attributes.

readonly attribute PrincipalAuthenticator principal_authenticator;

The operations in the interface of this object are defined in Section 15.3.2, Principles and
Their Security Attributes.
15-108 CORBAservices: Common Object Services Specification

15

s

15.5.7 Security Audit

Description of Facilities

Auditing of object invocations is done automatically by the ORB according to the audit
invocation policies (ClientInvocationAudit and TargetInvocationAudit) for this
application.

Applications can also audit their own security relevant activities, where the auditing
performed by the ORB does not audit the required activities and/or data.

In this case, the application is responsible for enforcing the application audit policy. It use
an audit_needed operation on the Audit Decision object for the policy to decide
which activities to audit.

Audit information is passed to an Audit Channel object in the form of an audit record. The
audit record must contain, or be sufficient to identify:

• The type of event.

• The principal responsible for the action, identified by its credentials.

• Event-specific data associated with the event type. This will vary, depending on the
event type.

• The time. This may or may not be secure.

It may also want to record some of the values used for selecting whether to audit the event,
for example, its success or failure.

An application audit policy will specify the event families and event types as defined in
Section 15.6.5, Audit Policies.

Interfaces

The interfaces specified here are the ones to the Audit Decision object to decide what
to audit, and the Audit Channel interface used to write the audit records.

audit_needed

This operation on the Audit Decision object is used to decide whether an audit record
should be written to the audit channel. The application specifies the event type to be
checked and the values for the selectors, which the audit policy requires to make the
decision.

boolean audit_needed
(in AuditEventType event_type,

in SelectorValueList value_list
);
Security Service: v1.0 November 1996 15-109

15

it

.

ail.

Parameters

event_type Event type associated with the operation.

value_list List of zero or more selector id value pairs.

Return Value

True If an audit record should be created and sent to the audit channel.
False If an audit record is not needed.

audit_write

This operation writes an audit record to the Audit Channel object, and hence the aud
trail. The audit trail is implementation-specific and outside the scope of this document. It
is expected to be an event service of some sort, such as an OMG Event Service.

void audit_write (
in AuditEventType event_type,
in CredentialsList Creds,
in UtcT time,
in SelectorValueList descriptors,
in Opaque event_specific_data

);

Parameters

event_type The type of event being audited.
creds The credentials of the principal responsible for the event. If no credentials

are specified, the own credentials associated with Current are used.
time The time the event occurred.
descriptors A set of values to be recorded associated with the event in the audit trail

These are often the same values as those used to select whether to audit the
event.

event_specific_data
Data specific to a particular type of event, to be recorded in the audit tr

Return Value

None.

audit_channel

This attribute of the Audit Decision object provides the audit channel associated with this
audit policy.

readonly attribute AuditChannel audit_channel;
15-110 CORBAservices: Common Object Services Specification

15

.

Portability Implications

An application relying on the system audit policies enforced at invocation time is portable
to different environments, although the audit policies themselves may need changing

Applications with their own application audit policies are portable, providing the audit
policy itself is portable and the selectors used are available in these environments. For
example, if selectors use privileges, the same ones must be available.

15.5.8 Administering Security Policy

When an object is created, it automatically becomes a member of one or more
domains, and therefore is subject to the security policies of those domains.

Security aware applications can administer security policies (providing they are
authorized to do so) using the interfaces described in Section 15.6, Administrator’s
Interface.

15.5.9 Use of Interfaces for Access Control

Description of Facilities

Access policies for applications may be enforced the following ways.

• Automatically by the ORB services on object invocation, to determine whether the
caller has the right to invoke an operation on an object.

• By the application itself, to enforce further controls on who can invoke it to do
what.

• By the application to control access to its own internal functions and state.

This section is concerned with applications that wish to enforce their own access controls,
either supplementing the automatic controls on invocation or controlling internal
functions.

As explained in Access Policies under Section 15.3.4, Access Control Model, the decision
on whether to allow such access may use the following:

• The principal’s credentials (which either contain its privilege attributes, or identify
the principal so these can be obtained). Using only the principal’s identity generally
requires that identity to be known at all targets, and leads to scalability problems, so
its use is depreciated. Use of the principal’s role or group(s) are more likely to give
easier administration in large systems, as would security clearance. Enterprise-
defined attributes can also be used when supported.

• The target’s control attributes such as an ACL or security classification.
Security Service: v1.0 November 1996 15-111

15

ke

• Other relevant information about the action such as the operation (on object
invocation) and parameters, and also context information such as time.
The application can use rights associated with an interface (as described in Section
15.6.3, Security Policies Introduction) rather than specify controls for individual
operations.

• The security policy rules using this information as enforced by the access decision
function.

The access policies enforced automatically by the ORB during object invocation can ta
into account the principal’s credentials, the target’s control attributes, the operation and the
time (though the time is not used in the standard access policy defined in Section 15.6,
Administrator’s Interface). However, the ORB does not use the parameters to the
operation for controlling access. So, for example, if there is a rule that only senior
managers can authorize expenditure over £5000, the application is likely to need its own
function to perform the required check.

Where an application enforces its own access decisions, it will be responsible for
maintaining its own control information about operations, functions, and data it wishes to
protect. It can do this in a way specific to its own particular functions or data, but in some
cases, it is possible to have a more generic way of handling access decisions, and in these
cases, it may be possible to use a common access decision object with common
administration of the ACLs or other control attributes.

Interfaces

Application access decision functions should be made by Access Decision objects. These
may require different information depending on, for example, the action or data to be
controlled and the security policy rules as previously described.

The Access Decision object should support an access_allowed operation as is used
for enforcing access policies in the ORB (see Access Decision Object under Section
15.7.4, Implementation-Level Security Object Interfaces). The input parameters to this
should normally specify:

• The privileges of the initiator of the action. The form of these depends on the
specific policy. Some options are:

• The privileges of the initiator as supplied by a get_attributes operation on
Current (see Interfaces under Section 15.6.2, Security Operations on Current).

• A credentials object, which represents principal.

• A credentials list (the received_credentials), where access controls
distinguish initiator and delegate principals.

• Other information required by the access decision function, including:

• Application-level decisions on whether an invocation is permitted, the operation
and parameters passed in the request, and the object reference.

• Control of access to internal functions and data, the action, and relevant
parameters.
15-112 CORBAservices: Common Object Services Specification

15

re

d
:

 be

into

ain
ple,
The return value from the access_allowed operation should be TRUE if access is
permitted, otherwise FALSE.

It is recommended that where possible, access decisions are made by such Access
Decision objects (or at least separate internal functions) that hide details of the actual
security policy used, so the application does not need to know, for example, whether an
ACL or label-based policy is used.

Portability Implications

Portability of applications enforcing their own access controls is improved by use of
Access Decision objects as previously described. The application then does not need to
know the particular rules used, and even which principal and object attribute types a
used to decide whether access should be permitted. (It can also hide whether the
principal’s credentials include all privilege attributes needed, or whether these are
obtained dynamically when needed.).

Different systems may need to support different access control policies. By hiding details
of the access control rules used to enforce the policy behind a standard interface, the
application will generally be portable to environments with different policies.

Applications that use their own specific code to make access decisions will only be
portable to systems that support the identity and privilege attribute types used in those
decisions with the same syntax.

15.5.10 Use of Interfaces for Delegation

Description of Facilities

An operation on a target object may result in calls on many other objects as describe
in Section 15.3.6, Delegation. An intermediate object in this chain of objects may

• Delegate the credentials received (often containing the initiating principal’s
privileges) to the next object in the chain, so access decisions at the target may
based on that principal’s privileges.

• Act on its own behalf, so use its own credentials when invoking another object in
the chain.

• Supply privileges from both, so access decisions at the target object can take
account both the initiating principal’s privileges and where these came from.

Which of these delegation modes should be used depends on the application. For
example, a user might call a database object asking for some data, and this may obt
the data from a file that also contains data belonging to other users. In th is exam
the database object would control access to the data using the user’s privileges,
whereas the filestore object would use the database’s privileges.
Security Service: v1.0 November 1996 15-113

15

ng a

This

In general, the delegation mode used is specified by the administrator in the delegation
policy for objects of this type in th is domain. However, a security aware application
can also specify the delegation mode it wants to use, as it may want different modes
when invoking different objects.

Interfaces

All the interfaces used for delegation are specified elsewhere. This section describes
how they are used during delegation.

An intermediate object can set the delegation mode for an invocation by performi
set_security_features operation on the Credentials object to be used for the
invocation (see Section 15.5.4, Credentials). This can be used to set the delegation
mode to:

• NoDelegation, meaning use the intermediate’s object’s own credentials.

• SimpleDelegation, meaning use the credentials received from the client.

• CompositeDelegation, meaning use both.

The way the received and intermediate’s own credentials are combined in
CompositeDelegation is not defined. Depending on the implementation:

• The initiating principal’s and the intermediate’s own credentials are passed, and are
available separately at the target.

• The received credentials and intermediate’s own credentials are combined, so the
target sees only a single credentials object with privileges from each of these.

• Credentials from all objects in the delegation chain are passed and are available
separately to the target.

None of these particular composite delegation modes are part of the Security
Functionality Level 2. They are described here because of the effect on the
received_credentials (see Interfaces under Section 15.5.6, Security Operations
on Current), which a target object uses to find out who called it. The target normally
uses this to get privileges for use in access control decisions.

The received_credentials attribute provides a CredentialsList, not just a single
Credentials object. This list will only have more than one entry after composite
delegation as defined above. If there is more than one entry in the list, the first entry is
that of the initiator in the chain, normally the main one used for access controls.
is also the one whose privileges are obtained via get_attributes .

Portability Implications

Where possible, the delegation mode should be set using the administrative interfaces
to the delegation policy, so applications may delegate privileges (or not) without any
application level code, and so be portable.
15-114 CORBAservices: Common Object Services Specification

15

ges

he

n

ong
If an application sets its own delegation mode, it should be able to handle a
NotSupported exception if CompositeDelegation is specified, as this may not be
supported.

If the application wants to enforce its own access policy, it should use an Access
Decision object (as described in Interfaces under Section 15.5.9, Use of Interfaces for
Access Control), which hides whether access decisions utilize the initiator’s privile
separately from the delegate’s privileges.

However, where an application wants to provide specific checks which intermediates
have been involved in performing the original user’s operation, such checks are likely
to depend on the delegation scheme and its implementation, and so not be portable.

15.5.11 Non-repudiation

Non-repudiation is an optional facility, not part of security functionality Level 1 or 2.

Description of Facilities

The Non-repudiation Service provides evidence of application actions in a form that
cannot be repudiated later. This evidence is associated with some data (for example, t
amount field of a funds transfer document).

Non-repudiation evidence is provided in the form of a token. Two token types are
supported:

• Token including the associated data

• Token without included data (but with a unique reference to the associated data)

Non-repudiation tokens may be freely distributed. Any possessor of a non-repudiatio
token (and the associated data, if not included in the token) can use the non-repudiation
Service to verify the evidence. Any holder of a non-repudiation token may store it (al
with the associated data, if not included in the token) for later adjudication.

The non-repudiation interfaces support generation and verification of tokens embodying
several different types of evidence. It is anticipated that the following will be the most
commonly used non-repudiation evidence token types:

• Non-repudiation of Creation prevents a message creator's false denial of creating a
message.

• Non-repudiation of Receipt prevents a message recipient's false denial of having
received a message.

Generation and verification of non-repudiation tokens require as context a non-
repudiation credential, which encapsulates a principal's security information (particularly
keys) needed to generate and/or verify the evidence. Most operations provided by the
Non-repudiation Service are performed on NRCredentials objects.
Security Service: v1.0 November 1996 15-115

15

.

in

Non-repudiation Service operations supported by the NRCredentials interface are as
follows.

• set_NR_features specifies the features to apply to future evidence generation and
verification operations.

• get_NR_features returns the features which will be applied to future evidence
generation and verification operations.

• generate_token generates a non-repudiation token using the current non-
repudiation features. The generated token may contain:

• Non-repudiation evidence.

• A request, containing information describing how a partner should use the Non-
repudiation Service to generate an evidence token.

• Both evidence and a request.

• verify_evidence verifies the evidence token using the current non-repudiation
features.

• get_token_details returns information about an input non-repudiation token. The
information returned depends upon the type of the token (evidence or request)

• form_complete_evidence is used when the evidence token itself does not conta
all the data required for its verification, and it is anticipated that some of the data
not stored in the token may become unavailable during the interval between
generation of the evidence token and verification unless it is stored in the token.
The form_complete_evidence operation gathers the “missing” information
and includes it in the token so that verification can be guaranteed to be possible at
any future time.

The verify_evidence operation returns an indicator (evid_complete),
which can be used to determine whether the evidence contained in a token is
complete. If a token’s evidence is not complete, the token can be passed to
form_complete_evidence to complete it.

If complete evidence is always required, the call to form_complete_evidence
can, in some cases, be avoided by setting the form_complete request flag on the
call to verify_evidence ; this will result in a complete token being returned via
the evid_out parameter.

Interfaces

Non-repudiation Service Data Types

The following data types are used in the Non-repudiation Service interfaces:

typedef MechanismType NRmech;
typedef ExtensibleFamily NRPolicyId;

enum EvidenceType {
SecProofofCreation,

 SecProofofReceipt,
15-116 CORBAservices: Common Object Services Specification

15

 SecProofofApproval,
 SecProofofRetrieval,

 SecProofofOrigin,
 SecProofofDelivery,

SecNoEvidence // used when request-only token desired
};
enum NRVerificationResult {

SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};

// the following are used for evidence validity duration
typedef ulong DurationInMi nutes;

const DurationInMinutes DURATION_HOUR = 60;
const DurationInMinutes DURATION_DAY = 1440;
const DurationInMinutes DURATION_WEEK = 10080;
const DurationInMinutes DURATION_MONTH = 43200;// 30 days
const DurationInMinutes DURATION_YEAR = 525600;//365 days

typedef long TimeOffsetInMinutes;

struct NRPolicyFeatures {
 NRPolicyId policy_id;
 unsigned long policy_version;
 NRmech mechanism;
};

typedef sequence<NRPolicyFeatures> NRPolicyFeaturesList;

// features used when generating requests
struct RequestFeatures {

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;
};

Non-repudiation Service Operations

This section describes the Non-Repudiation Service operations. All these operations are
part of the interface of the NRCredentials object.

set_NR_features

When an NRCredentials object is created, it is given a default set of NR features, which
determine what NR policy will be applied to evidence generation and verification
requests.
Security Service: v1.0 November 1996 15-117

15

Security-aware applications may set NR features to specify policy affecting evidence
generation and verification. The interface for setting NR features is:

boolean set_NR_features (
 in NRPolicyFeaturesList requested_features,

 out NRPolicyFeaturesList actual_features);

Parameters

requested_features
The non-repudiation features required.

actual_features
The NR features that were set (may differ from those requested depending
on implementation).

Return Value

true If the requested features were equivalent.
false If the actual features differ from the requested features.

get_NR_features

A get_NR_features interface is provided to allow security-aware applications to determine
what NR policy is currently in effect:

NRPolicyFeaturesList get_NR_features ();

Return Value

The current set of NR features in use in this NRCredentials object.

generate_token

This operation generates a non-repudiation token associated with the data passed in an
input buffer. Environmental information (for example, the calling principal’s name) is
drawn from the NRCredentials object.

If the data for which non-repudiation evidence is required is larger than can conveniently
fit into a single buffer, it is possible to issue multiple calls, passing a portion of the data on
each call. Only the last call (i.e. the one on which input_buffer_complete =
true) will return an output token and (optionally) an evidence check.

void generate_token (
in Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,
in boolean input_buffer_complete,
out Opaque nr_token,
out Opaque evidence_check);
15-118 CORBAservices: Common Object Services Specification

15

ce

ill

nce

Parameters

input_buffer Data for which evidence should be generated.
generate_evidence_type

Type of evidence token to generate (may be NoEvidence).
include_data_in_token

If set TRUE, data provided in input_buffer will be included in
generated token; otherwise FALSE.

generate_request
The output token should include a request, as described in the
request_features parameter.

request_features
A structure describing the request. Its fields are:

requested_policy: non-repudiation policy to use when generating eviden
tokens in response to this request.

requested_evidence: type of evidence to be generated in response to this
request.

requested_evidence_generators: names of partners who should generate
evidence in response to this request.

requested_evidence_recipients: names of partners to whom evidence
generated in response to this request should be sent.

include_this_token_in_evidence: if set true, the evidence token
incorporating the request will be included in the data for which partners w
generate evidence. If set false, evidence will be generated using only the
associated data (and not the token incorporating the request).

input_buffer_complete
True if the contents of the input buffer complete the data for which evide
is to be generated; false if more data will be passed on a subsequent call.

nr_token The returned NR token.
evidence_check

Data to be used to verify the requested token(s) (if any) when they are
received.

Return Value

None.

verify_evidence

Verifies the validity of evidence contained in an input NR token.

If the token containing the evidence to be verified was provided to the calling application
by a partner responding to the calling application’s request, then the calling application
should pass the evidence check it received when it generated the request as a parameter to
verify_evidence along with the token it received from the partner.
Security Service: v1.0 November 1996 15-119

15

y be

 not

t
It is possible to request the generation of complete evidence. This may succeed or fail; if it
fails, a subsequent call to form_complete_evidence can be made. Output indicators
are provided, which give guidance about the time or times at which
form_complete_evidence should be called; see the parameter descriptions for
explanations of these indicators and their use. Note that the time specified by
complete_evidence_before may be earlier than that specified by
complete_evidence_after; in this case it will be necessary to call
form_complete_evidence twice.

Because keys can be revoked or declared compromised, the return from
verify_evidence cannot in all cases be a definitive “SecNRValid” or
“SecNRInvalid”; sometimes “SecNRConditionallyValid” may be returned, depending
upon the policy in use. “SecNRConditionallyValid” will be returned if:

• The interval during which the generator of the evidence may permissibly declare his
key invalid has not yet expired (and therefore it is possible that the evidence ma
declared invalid in the future), or

• Trusted time is required for verification, and the time obtained from the token is
trusted.

NRVerificationResult verify_evidence (
 in Opaque input_token_buffer,
 in Opaque evidence_check,
 in boolean form_complete_evidence,
 in boolean token_buffer_complete,
 out Opaque output_token,
 out Opaque data_included_in_token,
 out boolean evidence_is_complete,

 out boolean trusted_time_used,
 out TimeT complete_evidence_before,
 out TimeT complete_evidence_after);

Parameters

input_token_buffer
Buffer containing (possibly a portion, possibly all of) evidence token to be
verified; buffer may also contain data associated with evidence token
(parsing of buffer in this case is understood only by NR mechanism; see
get_token_details).

evidence_check
The evidence check.

form_complete_evidence
Set TRUE if complete evidence is required; otherwise FALSE.

token_buffer_complete
Set TRUE if the input_token_buffer completes the input token;
FALSE if more input token data remains to be passed on a subsequen
call.
15-120 CORBAservices: Common Object Services Specification

15

s

ce’s
e

 the

te and
e,
iated

output_token If form_complete_evidence was set to TRUE, this parameter will
contain complete evidence (and the Return Value will be Valid) or an
“augmented” but still incomplete evidence token, in which case
conditionally valid is returned.

data_included_in_token
Data associated with the evidence; extracted from input token (may be
null).

evidence_is_complete
TRUE if evidence in input token is complete; otherwise FALSE.

trusted_time_used
TRUE if the evidence token contains a time considered to be trusted
according to the rules of the non-repudiation policy. FALSE indicates that
the security policy mandates trusted time and that the time in the token i
not considered to be trusted.

complete_evidence_before
If evidence_is_complete is FALSE, and the return value from
verify_evidence is conditionallyValid, the caller should call
form_complete_evidence with the returned output token before this
time. This may be required, for example, in order to ensure that the time
skew between the evidence generation time and the trusted time servi
countersignature on the evidence falls within the interval allowed by th
current NR policy.

complete_evidence_after
If evidence_is_complete is FALSE and the return value from
verify_evidence is conditionallyValid, the caller should call
form_complete_evidence with the returned output token after this
time. This may be required, for example, to ensure that all authorities
involved in generating the evidence have passed the last time at which
current NR policy allows them to repudiate their keys.

Return Value

SecNRInvalid Evidence is invalid.
SecNRValid Evidence is valid.
SecNRConditionallyValid

Evidence cannot yet be determined to be invalid.

get_token_details

The information returned depends upon the type of the token (evidence or request). The
mechanism that created the token is always returned.

• If the input token contains evidence, the following is returned: the non-repudiation
policy under which the evidence has been generated, the evidence type, the da
time when the evidence was generated, the name of the generator of the evidenc
the size of the associated data, and an indicator specifying whether the assoc
data is included in the token.

• If the input token contains a request, the following is returned: the name of the
requester of the evidence, the non-repudiation policy under which the evidence to
send back should be generated, the evidence type to send back, the names of the
Security Service: v1.0 November 1996 15-121

15

ames
n

g
input
recipients who should generate and distribute the requested evidence, and the n
of the recipients to whom the requested evidence should be sent after it has bee
generated.

• If the input token contains both evidence and a request, an indicator describin
whether the partner’s evidence should be generated using only the data in the
token, or using both the data and the evidence in the input token.

void get_token_details (
 in Opaque token_buffer,
 in boolean token_buffer_complete,
 out string token_generator_name,
 out NRPolicyFeatures policy_features,
 out EvidenceType evidence_type,
 out UtcT evidence_generation_time,

out UtcT evidence_valid_start_time,
 out DurationInMinutes evidence_validity_duration,
 out boolean data_included_in_token,

out boolean request_included_in_token,
out RequestFeatures request_features);

Parameters

token_buffer Evidence token to parse.
token_buffer_complete

Indicator when the token has been fully provided.
token_generator_name

Principal name of token generator.
policy_featuresDescribes the policy used to generate the token.
evidence_type Type of evidence contained in the token (may be NoEvidence).
evidence_generation_time

Time when evidence was generated.
evid_validity_start_time

Beginning of evidence validity interval.
evidence_validity_duration

Length of evidence validity interval.
data_included_in_token

TRUE if the token includes the data for which it contains evidence;
otherwise FALSE.

request_included_in_token
TRUE if the token includes a request, otherwise FALSE.

request_features
Describes the included request, if any. See the generate_NR_token
parameter description for details.

Return Value

None.
15-122 CORBAservices: Common Object Services Specification

15

fied
form_complete_evidence

form_complete_evidence is used to generate an evidence token that can be veri
successfully with no additional data at any time during its validity period.

boolean form_complete_evidence (
in Opaque input_token,
out Opaque output_token,
out boolean trusted_time_used,
out TimeT complete_evidence_before,
out TimeT complete_evidence_after);

Parameters

input_token The evidence token to be completed.
output_token The “augmented” evidence token; may be complete.
trusted_time_used

TRUE if the token’s generation time can be trusted, otherwise FALSE. If
trusted time is required by the policy under which the evidence will be
verified, and if this indicator is not set, the evidence will not be considered
complete.

complete_evidence_before
If the return value is FALSE, form_complete_evidence should be
called before this time.

complete_evidence_after
If the return value is FALSE, form_complete_evidence should be
called after this time.

Return Value

true Evidence is now complete.
false Evidence is not yet complete.

15.6 Administrator’s Interfaces

This section describes the administrative features of the specification. Administration
specifies the policies that control the security-related behavior of the system. These
features form an ‘Administrator’s View,’ encompassing the interfaces that a human
administrator would need to use, but the facilities may also be used by conventional
applications that wish to be involved in administrative actions. ‘Administrator’ may
therefore refer to a human or system agent.

Most interfaces defined here are in Security Functionality Level 2, as Level 1 security
does not include administration interfaces.
Security Service: v1.0 November 1996 15-123

15

d

f

15.6.1 Concepts

Administrators

This specification imposes no constraints on how responsibilities are divided among
security administrators, but in many cases an enterprise will have a security policy that
restricts the responsibilities of any one individual. Also, legal requirements may dictate a
separation of roles so that, for example, there are different administrators for access
control and auditing functions.

Administrators are subject to the same security controls as other users of the system. It is
expected that an enterprise will define roles (or other privileges) that certain
administrators will adopt. Administrative operations are subject to access controls an
auditing in the same way as other object invocations, so only administrators with the
required administrative privileges will be able to invoke administrative operations.

Because administrative or management services in general have been identified as a
Common Facility in the Object Management Architecture, only minimal, security-specific
interfaces are given here together.

This specification does not define administrative functions concerning the management o
underlying mechanisms supporting the security services, such as an Authentication
Service, Key Distribution Service, or Certification Authority.

Policy Domains

Security administrators specify security policies for particular security policy domains
(for brevity, only the words in bold are used for the remainder of this section).

A domain includes an object, termed the domain manager, which references the policy
objects for this domain, and zero or more other objects, which are domain members and
therefore subject to the policies.

The domain manager records the membership of the domain and provides the means to
add and remove members. The domain manager is itself a member of a domain, possibly
the domain it manages.

There are different types of policy objects for administering different types of policy. As
described in Security Policy Domains under Section 15.3.8, Domains, domains may be
members of other domains, so forming containment hierarchies. Because different kinds
of policy affect different groups of objects, objects (and domains) may be members of
multiple domains.

The policies that apply to an object are those of all its enclosing domains.
15-124 CORBAservices: Common Object Services Specification

15

ies,

other
Security Policies

This specification covers administration of security policies, which are enforced by a
secure object system either of the following ways.

• Automatically on object invocation. This covers system policies for security
communications between objects, control of whether this client can use this
operation on this target object, whether the invocation should be audited, and
whether an original principal’s credentials can be delegated.

• By the application. This covers security policies enforced by applications.
Applications may enforce access, audit, and non-repudiation policies. The
application policies may be managed using domains as for other security polic
or the application can choose to manage its own policies in its own way.

Invocation time policies for an object can be applicable only when this object is acting as
a client, only when it is a target object, or whenever it is acting as either.

Security policies may be administered by any application with the right to use the security
administrative interfaces. This is subject to the invocation access control policy for the
administrative interface.

15.6.2 Domain Management

This section includes the interfaces needed to find domain managers and find the policies
associated with these. However, it does not include interfaces to manage domain
membership, structure of domains, and manage which policies are associated with
domains, as these are expected to be developed in a future Management Facility
specification (for example, one based on the X/Open Systems Management Preliminary
Specification); the Collection Service is also relevant here.

This section also includes the interface to the construction policy object, as that is also
relevant to domains. Similarly, it includes the interface administrative applications
needed to find the domains (and therefore the policies) that apply to objects. The basic
definitions of the interfaces related to these are part of the CORBA module, since
definitions in the CORBA module depend on these.

Interfaces to administer the security policy objects are defined in Section 15.6.3,
Security Policies Introduction.

module CORBA // Basic Management infrastructure
{

interface Policy // Features common to all Policies
{ };

interface DomainManager {
// Features common to all Domain Managers
Security Service: v1.0 November 1996 15-125

15

m

orm to
// get policies for objects in this domain; each domain may have
// policies of various different types. This call returns the policy
// of the specified type for the domain which is the target of the call.

Policy get_domain_policy (
in PolicyType policy_type);

// Note that the domain manager also inherits the
// get_policy and get_domain_managers operations
// defined for all objects in a secure system - see below
};

interface ConstructionPolicy: Policy{
void make_domain_manager(

in CORBA::InterfaceDef object_type);
};

// additions to CORBA::Object interface
interface Object {

DomainManagerList get_domain_managers();
// Note that Section 15.5 defines other extensions to
// the Object interface, including get_policy
};

typedef sequence<DomainManager> DomainManagerList;
};

Policy

The return type of operations that retrieve policy objects. This is an empty interface fro
which various Policy interfaces are derived.

Domain Manager

The domain manager will provide mechanisms for:

• Establishing and navigating relationships to superior and subordinate domains.

• Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for
example, it must be possible to add new policies to a domain with a preexisting
membership. In this case, some means of determining the members that do not conf
a policy that may be imposed is required.

All domain managers provide the get_domain_policy operation, in addition to the
other policy-related operations provided by the CORBA::Object interface, i.e.
get_policy (described in Section 15.5.5, Object Reference) and
get_domain_managers (described in Extensions to the Object Interface under
Section 15.6.2, Domain Management).
15-126 CORBAservices: Common Object Services Specification

15

 a

s is
get_domain_policy

This gets the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type

);

Parameters

policy_type The type of policy for objects in the domain which the application wants
to administer. For security, the possible policy types are described in
Section 15.6.3, Security Policies Introduction.

Return Value

A reference to the policy object for the specified type of policy in this domain.

Construction Policy

The construction policy interface allows callers to specify that when instances of a
particular interface are created, they should be automatically assigned membership in
newly created domain at creation time.

make_domain_manager

This specifies that when an instance of the interface specified by the input parameter is
created, a new domain manager will be created and the newly created object will respond
to get_domain_managers () by returning a reference to this domain manager. This
policy is implemented by the ORB during execution of BOA::create (or equivalent)
and results in the construction of both the application-specified object and a Domain
Manager object.

void make_domain_manager (
in InterfaceDef object_type

);

Parameters

object_typeThe type of the objects for which Domain Managers will be created. If thi
nil, the policy applies to all objects in the domain.

Extensions to the Object Interface

Section 15.5.5, Object Reference, defines operations on the CORBA::Object interface
for application use. Note that these include a get_policy operation. For administrative
applications, the Object interface is also extended with the following operation.
Security Service: v1.0 November 1996 15-127

15

als,

ir

get_domain_managers

get_domain_managers allows security administration services (and security-aware
applications) to retrieve the domain managers, and hence the security policies applicable
to individual objects.

sequence <DomainManager> get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this domain manager.

15.6.3 Security Policies Introduction

Invocation security policies are enforced automatically by ORB services during object
invocation. These are:

• invocation access policies (ClientInvocationAccess and TargetInvocationAccess)
for controlling access to objects.

• invocation audit policies (ClientInvocationAudit and TargetInvocationAudit)
control which operations on which objects are to be audited.

• invocation delegation policies for controlling the delegation of privileges.

• secure invocation policies (ClientSecureInvocation and TargetSecureInvocation)
for security associations, including controlling the delegation of client’s credenti
and message protection.

Different policies generally apply when an object acts as a client from when it is the
target of an invocation.

In addition to these invocation policies, there are a number of policy types, which apply
independently of object invocation. These are:

• application access policy, which applications may use to manage and enforce their
access policies.

• application audit policy, which applications can use to manage and enforce the
audit policies.

• non-repudiation policies determine the rules for the generation and use of
evidence.

There is also a policy concerned with creation of objects, which is enforced by
BOA::create . This is the construction policy, which controls whether a new domain is
created when an object of a specified type is created.

Note: Policies associated with underlying security technology are not included. For
example, there are no policies for principal authentication as this is often done by specific
security services.

Interfaces are provided for setting all the types of security policies previously listed. In
each case, these management interfaces permit administration of standard policy
15-128 CORBAservices: Common Object Services Specification

15

his

h is

t

r
semantics supported by the interfaces defined in this specification. It is also possible for
implementors to replace the policy objects whose interfaces are defined in this
specification with different policy objects supporting different semantics; in general such
policy objects will also have management interfaces different from those defined in t
specification.

15.6.4 Access Policies

There are two invocation access policies: the ClientInvocationAccess policy, which is
used at the client side of an invocation, and the TargetInvocationAccess policy, whic
used at the target side.

There is one policy type for application access. However, no standard administrative
interface to this is specified, as different applications have different requirements.

Access Policies control access by subjects (possessing Privilege Attributes), to objects,
using rights. Privilege Attributes have already been discussed (in Section 15.5,
Application Developer’s Interfaces); rights are described in the next section.

Rights

The standard AccessPolicy objects in a secure CORBA system implement access policy
using rights (though implementations may define alternative, non-rights-based
AccessPolicy objects).

In rights-based systems, AccessPolicy objects grant rights to PrivilegeAttributes; for each
operation in the interface of a secure object, some set of rights is required. Callers must be
granted these required rights in order to be allowed to invoke the operation.

Secure CORBA systems provide a RequiredRights interface, which allows:

• Object interface developers to express the “access control types” of their operations
using standard rights, which are likely to be understood by administrators, withou
requiring administrators to be aware of the detailed semantics of those operations.

• Access-control checking code to retrieve the rights required to invoke an interface’s
operations.

A RequiredRights object is available as an attribute of Current in every execution context.
Every RequiredRights object will get and set the same information, so it does not matte
which instance of the RequiredRights interface is used. The required rights for all
operations of all secured interfaces are assumed to be accessible through any instance of
RequiredRights.

Note that Required Rights are characteristics of interfaces, not of instances. All
instances of an interface, therefore, will always have the same Required Rights.

Note also that because Required Rights are defined and retrieved through the
RequiredRights interface, no change to existing object interfaces is required in order to
assign required rights to their operations.
Security Service: v1.0 November 1996 15-129

15

,

d),

re
Rights Families

This specification provides a standard set of rights for use with the
DomainAccessPolicy interface defined in DomainAccessPolicy Interface later in th is
section. These rights may not satisfy all access control requirements. However; to
allow for extensibility, rights are grouped into Rights Families. The RightsFamily
containing the standard rights is called “corba,” and contains three rights: “g”
(interpreted to mean “get”), “s” (interpreted to mean “set”), and “m” (interpreted to
mean “manage”). Implementations may define additional Rights Families. Rights are
always qualified by the RightsFamily to which they belong.

RequiredRights Interface

A RequiredRights object can be thought of as a table; an example RequiredRights table
appears later in th is section. Note that implementations need not manage required
rights on an interface-by-interface basis; RequiredRights objects should be thought of
as databases of policy information, in the same way as Interface Repositories are
databases of interface information. Thus in many implementations, all calls to the
RequiredRights interface will be handled by a single RequiredRights object instance
or by one of a number of replicated instances of a master RequiredRights object
instance.

An operation’s entry in the RequiredRights table lists a set of rights, qualified (or
“tagged”) as usual with the RightsFamily. It also specifies a Rights Combinator; the
rights combinator defines how entries with more than one required right should be
interpreted. This specification defines two Rights Combinators: AllRights (which
means that all rights in the entry must be granted in order for access to be allowe
and AnyRight (which means that if any right in the entry is granted, access will be
allowed).

Note that the following behaviors of systems conforming to CORBA Security are
unspecified and therefore may be implementation-dependent:

• Assignment of initial required rights to newly created interfaces.

• Inheritance of required rights by newly created derived interfaces.

get_required_rights

This operation retrieves the rights required to execute the operation specified by
operationName of the interface specified by obj. obj’s interface will be determined and
used to retrieve required rights. The returned values are a list of rights and a
combinator describing how the list of rights should be interpreted if it contains mo
than one entry.

 void get_required_rights(
 in Object obj,
 in Identifier operation_name,
 in RepositoryId interface_name,

 out RightsList rights,
 out RightsCombinator rights_combinator

);
15-130 CORBAservices: Common Object Services Specification

15

ned.

Parameters

obj The object for which required rights are to be returned.
operation_name The name of the operation for which required rights are to be retur
interface_name The name of the interface in which the operation described by

operation_name is defined, if this is different from the interface of
which obj is a direct instance. Not all implementations will require this
parameter; consult your implementation documentation.

rights The returned list of required rights.
rights_combinator

The returned rights combinator.

set_required_rights

This operation updates the rights required to execute the operation specified by
operationName of the interface specified by interface. The caller must provide a list of
rights and a combinator describing how the list of rights should be interpreted if it
contains more than one entry. Note that consistency issues arising from replication of
RequiredRights objects or distribution of the RequiredRights interface must be handled
correctly by implementations; after a call to set_required_rights changes an
interface’s required rights, all subsequent calls to get_required_rights , from
any client, must return the updated rights set.

 void set_required_rights(
 in string operation_name,
 in RepositoryId interface_name,
 in RightsList rights,
 in RightsCombinator rights_combinator

);

Parameters

operation_name The name of the operation for which required rights are to be updated.
interface_name The name of the interface whose required rights are to be updated.
rights The desired new list of required rights.
rights_combinator

The desired new rights_combinator .

AccessPolicy Interface

This is the root interface for the various kinds of invocation access control policy. This
interface supports querying of the effective access granted by a credential by an invocation
access policy. It inherits the Policy interface and has one operation,
get_effective_rights .

get_effective_rights

This operation returns the current effective rights (of family RightsFamily) granted by
this AccessPolicy object to the subject possessing all privilege attributes in the
credentials cred.
Security Service: v1.0 November 1996 15-131

15

is

t
t

.

 the
RightsList get_effective_rights (
 in CredentialsList creds_list,
 in ExtensibleFamily rights_family

);

Note that this specification does not define how an Access Policy object combines
rights granted through different Privilege Attribute entries, in case a subject has more
than one Privilege Attribute to which the Access Policy grants rights. However, th
call will cause the Access Policy object to combine rights granted to all privilege
attributes in the input Credential (using whatever operation it has implemented), and
return the result of the combination.

Access Decision objects, and applications that check whether access is permitted
without using an Access Decision object, should use this operation to retrieve rights
granted to subjects.

Specific Invocation Access Policies

This specification allows different Invocation Access policies to be provided through
specialization of the AccessPolicy interface.

Each specific Invocation Access policy is responsible for defining its own administrative
interfaces. The specification defines a standard Invocation Access policy interface,
including administrative operations; it is presented in the next section. This standard
policy may of course be replaced by or augmented with other policies.

DomainAccessPolicy Interface

The DomainAccessPolicy interface provides discretionary access policy managemen
semantics. CORBA implementations with policy requirements, which cannot be me
by the DomainAccessPolicy abstraction, may choose to implement different Access
Policy objects; for example, they may choose to implement access control policy
management using capabilities.

Domains
This specification defines interfaces for administration of access policy on a domain basis
Each domain may be assigned an access policy, which is applied to all objects in the do-
main. Each access-controlled object in a CORBA system must be a member of at least one
domain.

A DomainAccessPolicy object defines the access policy, which grants a set of named
“subjects” (e.g. users), a specified set of “rights” (e.g. g,s,m) to perform operations on the
“objects” in the domain. A DomainAccessPolicy can be represented by a table whose row
labels are the names of subjects, and whose cells are filled with the rights granted to
subject named in that row’s label, as in Table 15-1 (note that the use of the
Delegation State will be discussed in the section of the same name next).
15-132 CORBAservices: Common Object Services Specification

15

ht

e is

 “user
Table 15-1 DomainAccessPolicy

This DomainAccessPolicy grants the rights “g” and “s” to Alice and Zeke, and the rig
“g” to Bob and Cathy. (The annotation “corba” prefixing the granted rights indicates
which Rights Family, as defined in the previous section, each of the rights in the tabl
drawn from. In this case, all rights are drawn from DomainAccessPolicy’s standard
“corba” Rights Family. The delegation state column is described under the heading
“Delegation States”.)

DomainAccessPolicy Use of Privi lege Attributes

Administration of principals by individual identity is costly, so the DomainAccess
Policy aggregates principals for access control. A common aggregation is called a
“user group.” This specification generalizes the way users are aggregated, using
“Privilege Attributes” (as defined in Access Policies under Section 15.3.4, Access
Control Module). Users may have many kinds of privilege attributes, including groups,
roles, and clearances (note that user access identities, often referred to simply as
identities” or “userids,” are considered to be a special case of privilege attributes). The
DomainAccessPolicy object uses Privilege Attributes as its subject entries.

This specification does not provide an interface for managing user privilege attributes;
an implementation of this specification might provide a “User Privilege Attribute
Table” enumerating the set of users granted each Privilege attribute. An implementor
might provide a user privilege attribute table, shown next.

Table 15-2 User Privilege Attributes (Not Defined by This Specification)

Given the definitions in this table, we can simplify our DomainAccessPolicy as
follows (note that, for convenience, each PrivilegeAttribute entry is annotated in the
table with its PrivilegeAttribute type).

Subject
Delegation
State

Granted
Rights

alice initiator corba:gs-

bob initiator corba:g--

cathy initiator corba:g--

...

zeke initiator corba:gs-

Users Privilege Attr ibute

bob, cathy group:programmers

zeke group:administrators
Security Service: v1.0 November 1996 15-133

15

he

bject

Table 15-3 DomainAccessPolicy (with Privilege Attributes)

Delegation State

The DomainAccessPolicy abstraction allows administrators to grant different rights when
a Privilege attribute is used by a delegate than those granted to the same Privilege
attribute when used by an initiator (note that "initiator" means the principal issuing t
first call in a delegated call chain; that is, the only client in the call chain that is not also
a target object). The DomainAccessPolicy shown next illustrates the use of this feature.

Table 15-4 DomainAccessPolicy (with Delegate entry)

This DomainAccessPolicy grants Alice the “g” and “s” rights when she accesses an o
as an initiator, but only the “g” right when a delegate using her identity accesses the same
object.

DomainAccessPolicy Use of Rights and Rights Families

The rights granted to a Privilege Attribute by a DomainAccessPolicy entry must each
be “tagged” with the RightsFamily to which they belong; each DomainAccessPolicy
entry can grant its row’s PrivilegeAttribute rights from any number of different Rights
Families.

Implementations may define new Rights Families in addition to the standard “corba”
family, though this should be done only if absolutely necessary, since new Rights
Families complicate the administrator’s model of the system.

AccessDecision Use of AccessPolicy and RequiredRights

The AccessDecision object and its interfaces are described in Access Decision Object
under Section 15.7.4, Implementation-Level Security Object Interfaces. It is used at run-
time to perform access control checks. AccessDecision objects rely upon AccessPolicy

Privilege Attribute
Delegation
State

Granted
Rights

access_id:alice intitator corba:gs-

group:programmers ini tiator corba:g--

group:administrators ini tiator corba:gs-

Privilege
Attr ibute

Delegation
State

Granted
Rights

access_id:alice ini tiator corba:gs-

access_id:alice delegate corba:g--

group:programmers ini tiator corba:g--

group:administrators ini tiator corba:gs-
15-134 CORBAservices: Common Object Services Specification

15

 on

objects to provide the policy information upon which their decisions are based (some
implementations may provide both the AccessDecision and AccessPolicy interfaces
the same object).

To complete the example, imagine that we have the following set of object instances.

Table 15-5 Interface Instances

The DomainAccessPolicy object illustrated next has been updated to include a list of rights
of type “other” granted to each of the Privilege attributes.

Table 15-6 DomainAccessPolicy (with Required Rights Mapping)

Table 15-7 shows RequiredRights () for three object interfaces (c1, c2, and c3), using the
standard RightsFamily “corba” and a second RightsFamily, “other,” whose rights set is as-
sumed to be {g, u, o, m, t, s}.

Objects Inter face

obj_1, obj_8, obj_n c1

obj_2, obj_5 c2

obj_12 c3

Privilege
Attri bute

Delegation
State Granted Rights

access_id:alice initiator corba: gs-
other: -u-m-s

access_id:alice delegate corba: g--
other: ------

group:programmers initiator corba: g--
other: -u----

group:administrators initiator corba: gs-
other: ------
Security Service: v1.0 November 1996 15-135

15

olicy.

n

or,

,

d

tor,
Table 15-7 RequiredRights for Interfaces c1, c2 and c3

 Using this, we can calculate the effective access granted by this DomainAccessP

• alice can execute operations m1 and m2 of objects obj_1, obj_8, and obj_n as a
initiator, but may execute only m2 as a delegate.

• alice can execute operations m3 and m4 of objects obj_2, and obj_5 as an initiat
but may execute no operations of obj_2 and obj_5 as a delegate.

• alice can execute operations m5 and m6 of object obj_12 as an initiator, but may
execute no operations as a delegate.

• “programmers” can execute operation m2 of objects obj_1, obj_8, and obj_n as an
initiator, but no operations as a delegate.

• “programmers” can execute operation m3 of objects obj_2 and obj_5 as an initiator
but no operations as a delegate.

• “administrators” can execute operations m1 and m2 of objects obj_1, obj_8, an
obj_n as an initiator, but no operations as a delegate.

• “administrators” can execute operations m5 and m6 of object obj_12 as an initia
but no operations as a delegate.

DomainAccessPolicy Interface

The DomainAccessPolicy object provides interfaces for managing access policy.

Each domain manager may have at most one AccessPolicy, and therefore at most one
DomainAccessPolicy (though an object instance may have more than one domain
manager, and therefore, more than one DomainAccessPolicy). The DomainAccessPolicy
interface inherits the AccessPolicy interface and defines operations to specify which
subjects can have which rights as follows.

grant_rights

This operation grants the specified rights to the privilege attribute priv_attr in
delegation state del_state.

Required
Rights

Rights
Combinator Operation Inter face

corba:s all m1 c1

corba:gs any m2

other:u all m3 c2

other:ms all m4

other: s all m5 c3

corba:gs all m6
15-136 CORBAservices: Common Object Services Specification

15

le

ed to

Utilities that manage access policy should use this operation to grant rights to a sing
privilege attribute.

 void grant_rights(
in Attri bute priv_attr,

 in DelegationState del_state,
 in ExtensibleFamily rights_family,
 in RightsList rights

);

revoke_rights

This operation revokes the specified rights of the privilege attribute priv_attr in
delegation state del_state.

Utilities that manage access policy should use this operation to revoke rights grant
a single privilege attribute.

 void revoke_rights(
 in Attribute priv_attr,
 in DelegationState del_state,
 in ExtensibleFamily rights_family,
 in RightsList rights

);

replace_rights

This operation replaces the current rights of the privilege attribute priv_attr in
delegation state del_state with the rights provided as input.

Utilities that manage access policy should use this operation to replace rights granted
to a single privilege attribute in cases where using grant_rights () and
revoke_rights () is inappropriate. For example, replace_rights () might be
used to change an access_id’s authorizations to reflect a change in job description
(since the change in authorization in this case is related to the duties of the new job
rather than to the current authorizations granted to the user owning the access_id).

void replace_rights (
 in Attribute priv_attr,
 in DelegationState del_state,
 in ExtensibleFamily rights_family,
 in RightsList rights

);

get_rights

This operation returns the current rights (of type rightsFamily) of the Privilege
attribute priv_attr in delegation state del_state.
Security Service: v1.0 November 1996 15-137

15

nted

ple, an

d

it
Utilities that manage access policy should use this operation to retrieve rights gra
to an individual privilege attribute.

 RightsList get_rights (
 in Attribute priv_attr,
 in DelegationState del_state,
 in ExtensibleFamily rights_family

);

15.6.5 Audit Policies

There are two invocation audit policies: the ClientInvocationAudit policy, which is used at
the client side of an invocation, and the TargetInvocationAudit policy, which is used at the
target side. There is also an application audit policy type.

Audit policy administration interfaces are used to specify the circumstances under which
object invocations and application activities in this domain are audited. As for access
policies, this specification allows different audit policies to be specified, which may have
different administrative interfaces.

Different audit policies are potentially possible, which allow a great range of options of
what to audit. Some of these are needed to respond to the problem of getting the useful
information, without generating huge quantities of audit information.

Examples of what events could be audited during invocation include:

• Specified operations on objects.

• Failed operations (i.e. those that raise an exception) on specified object types in a
domain.

• Use of certain operations during certain time intervals (e.g., overnight).

• Access control failures on specified operations.

• Operations done by a specified principal.

• Combinations of these.

Note that many of these events may be related to the business application. For exam
operation of update_bank_account is a business, rather than system, operation.
However, some events are mainly of interest to a Privilege administrator (e.g., access
failures to systems objects).

Application audit policies may audit similar types of events, though these are often relate
to application functions, not object invocations.

Audit Administration Interfaces

A standard invocation audit policy administration interface is part of Security
Functionality Level 2. It can be used to administer both client and target invocation aud
policies.
15-138 CORBAservices: Common Object Services Specification

15

itial
This standard audit policy is used to specify for a set of event families and event types the
selectors to be used to define which events are to be audited.

These are related to the selectors used on audit_needed (on AuditDecision objects)
and audit_write (on Audit Channel objects) as follows.

Table 15-8 Standard Audit Policy

Note that audit policy is managed on an audit policy domain basis. Assignment of in
audit selectors to newly created domains is unspecified and hence may be
implementation-dependent.

The following operations are available on the audit policy object.

set_audit_selectors

This operation defines the selectors to be used to decide whether to audit the specified
event families and types.

void set_audit_selectors (
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,
in SelectorValueList selectors

);

Parameters

object_type The type of objects for which an audit policy is being set. If this is nil,
all object types are implied.

events Event types are specified as family and type ids. If the type id is zero,
the selectors apply to all event types in that family.

selectors The values of the selectors to be used.

Selector Type
Value on audit_needed
and audit_write Value Admini stered

Interface from object reference object type

Object object reference none - the policy applies to al l objects in
the domain

Operation op_name operation

Initiator credential list security attributes (audit_id and privileges)

Success Failure boolean boolean

Time utc when event occurred time interval during which auditing is
needed
Security Service: v1.0 November 1996 15-139

15

is a
clear_audit_selectors

This clears all audit selectors for the specified event families and types.

void clear_audit_selectors (
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,

);

replace_audit_selectors

This replaces the specified selectors.

void replace_audit_selectors (
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,
in SelectorValueList selectors

);

get_audit_selectors

This obtains the current values of the selectors for the specified event family or event.

SelectorValueList get_audit_selectors (
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,
in SelectorValueList selectors

);

set_audit_channel

This specifies the audit channel object to be used with this audit policy.

void set_audit_channel (
in AuditChannel audit_channel

);

15.6.6 Secure Invocation and Delegation Policies

These policies affect the way secure communications between client and target are set up,
and then used. There are three policies here:

• ClientSecureInvocation policy, which specifies the client policy in terms of trust in
the target’s identity and protection requirements of the communications between
them.

• TargetSecureInvocation policy, which specifies the target policy in terms of trust in
the client’s identity and protection requirements of the communications between
them

• Delegation policy, which specifies whether credentials are delegated for use by the
target when a security association is established between client and target. This
client side policy.
15-140 CORBAservices: Common Object Services Specification

15

,

n
In all these cases, there is a standard policy interface for administering the policy options.
Unlike access and audit policies, this is not replaceable. The standard policy
administration interfaces allow support of a range of policies.

Secure Invocation Policies

These are used to set client and target invocation policies which specify both a set of
required secure association options and a set of supported options that control how:

• The security association is made, for example, whether trust between client and
target is established (implying authentication if the client and target are not in the
same identity domain).

• Messages using that association are protected, for example, the levels of integrity
and confidentiality.

The administrator should specify the required association options, but will often not need
to specify the supported options as these default to the ones supported by the security
mechanism used. However, the administrator could choose to restrict what is supported
and in this case, should specify supported options.

Some implementations may support separate sets of association options for
communications in the request direction and the reply direction, e.g for an application that
requires no protection on the request, but confidentiality on the reply. Conforming
implementations are not required to support this unidirectional feature. Some selectable
policy options may not be meaningful to set for a certain direction, e.g. the
EstablishTrustInTarget option is not meaningful for a reply.

Both ClientSecureInvocation and TargetSecureInvocation support the same interface,
though not all of the selectable policy options are meaningful to both client and target.

Required and Supported Secure Invocation Policy

For both the ClientSecureInvocation and TargetSecureInvocation policies, a separate set
of secure association options may be established to indicate required policy and
supported policy. The required policy indicates the options that an object requires for
communications with a peer. The supported policy specifies the options that an object ca
support if requested by a communicating peer.

The required options indicate the minimum requirements of the object; stronger
protection is not precluded.

Secure Association Options

The selectable secure association options are listed next with a description of their
semantics for required policy and supported policy.

NoProtection

• Required semantics: the object’s minimal protection requirement is unprotected
invocations.

• Supported semantics: the object supports unprotected invocations.
Security Service: v1.0 November 1996 15-141

15

s.

t is
Integrity

• Required semantics: the object requires at least integrity-protected invocations.

• Supported semantics: the object supports integrity-protected invocations.

Confidentiality

• Required semantics: the object requires at least confidentiality-protected
invocations.

• Supported semantics: the object supports confidentiality-protected invocations.

DetectReplay

• Required semantics: the object requires replay detection on invocation messages.

• Supported semantics: the object supports replay detection on invocation message

DetectMisordering

• Required semantics: the object requires sequence error detection on fragments of
invocation messages.

• Supported semantics: the object supports sequence error detection on fragments of
invocation messages.

EstablishTrustInTarget

• Required semantics: On client policy, the client requires the target to authenticate its
identity to the client. On target policy, th is option is not meaningful.

• Supported semantics: On client policy, the client supports having the target
authenticate its identity to the client. On target policy, the target is prepared to
authenticate its identity to the client.

EstablishTrustInClient

• Required semantics: On client policy, this option is not meaningful. On target
policy, the target requires the client to authenticate its privileges to the target.

• Supported semantics: On client policy, the client is prepared to authenticate its
privileges to the target. On target policy, the target supports having the client
authenticate its privileges to the target.

Note that on an invocation, if both the client and target policies specify that peer trus
needed, mutual authentication of client and target is generally required.

If the target accepts unauthenticated users as well as authenticated ones, the
EstablishTrustInClient option may be set for supported policy, but not for required
policy. This allows unauthenticated clients to use this target (subject to access controls);
the target can still insist on only authenticated users for certain operations by using access
controls.
15-142 CORBAservices: Common Object Services Specification

15

 the

s for

e
Secure Invocation Administration Interfaces

Set Association Options

This method on the ClientSecureInvocation and TargetSecureInvocation policy objects is
used to set the secure association options for objects in the domain to which the policy
applies. Separate options may be set for particular object types by using the
object_type parameter.

This call allows requesting a different set of association options for communication in
request direction versus the reply direction, although conforming implementations are not
required to support this feature. The “request” and “reply” options sets are treated as
overrides to the “both” options set when evaluating policy for a single communication
direction. Implementations should raise the CORBA::BAD_PARAM exception if an
unsupported direction is requested on this call.

Not all selectable association options are meaningful for every policy set. For example,
EstablishTrustInClient, which is meaningful for the TargetSecureInvocation policy, is not
meaningful as a requirement for the ClientSecureInvocation policy. Likewise, certain
association options do not make sense when applied to only a single direction (e.g.,
EstablishTrustInTarget is not meaningful for communication in the reply direction). An
implementation may choose whether to raise an exception or silently ignore request
invalid association options.

void set_association_options (
in CORBA::InterfaceDef object_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction,
in AssociationOptions options

);

Parameters

object_type The type of objects that the association options apply to. If this is nil, all
object types are implied.

requires_supports
Indicates whether the operation applies to the required options or th
supported options.

direction Indicates whether the options apply to only the request, only the reply,
or to both directions of the invocation.

options Indicates requested secure association options by setting the
corresponding options flags.

get_association_options

This is used to find what secure association options apply on ClientSecureInvocation and
TargetSecureInvocation policy objects for the required or supported policy, for the
indicated direction, and for the specified object type.

Implementations should raise the CORBA::BAD_PARAM exception if an unsupported
direction is requested on this call.
Security Service: v1.0 November 1996 15-143

15

l, all

AssociationOptions get_association_options (
in CORBA::InterfaceDef object_type,
in RequiresSupports requires_supports,
in InvocationDirection direction

);

Parameters

object_type The type of objects that the association options apply to. If this is ni
object types are implied.

requires_supports

Indicates whether the operation applies to the required options or the
supported options.

direction Indicates whether the options apply to only the request, only the reply,
or to both directions of the invocation.

Return Values

The association options flags set for this policy.

Invocation Delegation Policy

This policy controls which credentials are used when an intermediate object in a chain
invokes another object.

set_delegation_mode

The set_delegation_mode operation specifies which credentials are delegated by
default at an intermediate object in a chain where objects invoke other objects. This
default can be overridden by the object at run time.

void set_delegation_mode (
in CORBA::InterfaceDef object_type,
in DelegationMode mode

);

Parameters

object_type The type of the objects to which this delegation policy applies.
mode The delegation mode. Options are:

SecDelModeNodelegation: the intermediates’s own credentials are used for
future invocations.
SecDelModeSimple: the initiating principal credentials are delegated.
SecDelModeComposite: both the received credentials and the intermediate
object’s own credentials are passed (if the underlying security mechanism
supports this). The requester’s credentials and the intermediate’s own
credentials may be combined into a single credential, or kept separate,
depending on the underlying security mechanism.
15-144 CORBAservices: Common Object Services Specification

15

 at

get_delegation_mode

This returns the delegation mode associated with the object.

DelegationMode get_delegation_mode (
in CORBA::InterfaceDef object_type

);

15.6.7 Non-repudiation Policy Management

This section defines interfaces for management of non-repudiation policy. These
interfaces are included in the non-repudiation conformance option.

Non-repudiation policies define the following:

• Rules for the generation of evidence, such as the trusted third parties which may be
involved in evidence generation and the roles in which they may be involved and
the duration for which the generated evidence is valid.

• Rules for the verification of evidence, for example, the interval during which a
trusted third party may legitimately declare its key to have been compromised or
revoked.

• Rules for adjudication, for example, which authorities may be used to adjudicate
disputes.

The non-repudiation policy itself may be used by the adjudicator when resolving a
dispute. For example, the adjudicator might refer to the non-repudiation policy to
determine whether the rules for generation of evidence have been complied with.

For each type of evidence, a policy defines a validity duration and whether trusted time
must be used to generate the evidence.

For each non-repudiation mechanism, a policy defines the set of trusted third parties
(“authorities”), which may be used by the mechanism. A policy also defines, for each
mechanism, the maximum allowable “skew” between the time of generation of evidence
and the time of countersignature by a trusted time service; if the interval between these
two times is larger than the maximum skew, the time is not considered to be trusted.

For each authority, a policy defines which roles the authority may assume, and a time
offset, relative to evidence generation time, which allows computation of the last time
which the authority can legitimately declare its key to have been compromised or revoked.
For example, if an authority has a defined last_revocation_check_offset of
negative one hour, then all revocations taking effect earlier than one hour before the
generation of a piece of evidence will render that evidence invalid; no revocation taking
place later than one hour before the generation of the evidence will affect the evidence’s
validity. Note that the last_revocation_check_offset is inclusive, in the sense
that all revocations occurring up to and including the time defined by
generation_time + offset are considered effective.
Security Service: v1.0 November 1996 15-145

15

Data Types for Non-repudiation Policy Management Interf aces

The following data types are used by the NR policy management interfaces.

struct EvidenceDescriptor {
 EvidenceType evidence_type,
 DurationInMinutes evidence_validity_duration,
 boolean must_use_trusted_time,
 } ;

typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name,
string authority_role,
TimeOffsetInMinutes last_revocation_check_offset
 // may be >0 or <0; add this to evid. gen. time to
 // get latest time at which mech. will check to see
 // if this authority’s key has been revoked.

 } ;

typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;

struct MechanismDescriptor {
 NRmech mech_type,
 AuthorityDescriptorList authority_list,
 TimeOffsetInMinutes max_time_skew,

 // max permissible difference between evid. gen. time
// and time of time service countersignature

 // ignored if trusted time not reqd.
} ;

typedef sequence <MechanismDescriptor> MechanismDescriptorList;

Non-repudiation Policy Management Interf aces

The non-repudiation policy defined in this specification supports
get_NR_policy_info and set_NR_policy_info operations.

get_NR_policy_info

Returns information from a non-repudiation policy object.

void get_NR_policy_info (
 out ExtensibleFamily NR_policy_id,

out unsigned long policy_version,
 out TimeT policy_effective_time,
 out TimeT policy_expiry_time,

out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList supported_mechanisms

);
15-146 CORBAservices: Common Object Services Specification

15

erify

s
Parameters

NR_policy_id The identifier of this non-repudiation policy.
policy_version

The version number of this non-repudiation policy.
policy_effective_time

The time at which this policy came into effect.
policy_expiry_time

The time at which this policy expires.
supported_evidence_types

The types of evidence that can be generated under this policy.
supported_mechanisms

The non-repudiation mechanisms which can be used to generate and v
evidence under this policy.

set_NR_policy_info

Updates non-repudiation policy information.

boolean set_NR_policy_info (
in MechanismDesciptorList requested_mechanisms,
out MechanismDescriptorList actual_mechanisms

);

Parameters

requested_mechanisms
The non-repudiation mechanisms to be supported under this policy.

actual_mechanisms
The non-repudiation mechanisms now supported under this policy.

Return Values

true If the requested mechanisms were all set.
false If the actual mechanisms returned differ from those requested.

15.7 Implementor’s Security Interfaces

This section describes the ORB facilities available to security service implementors to
support construction of secure ORBs using portable components and also the object
security services, which implement security. The interfaces defined in this appendix
support the replaceability conformance options defined in Appendix D, Conformance
Details.

• Generic ORB service (interceptor) interfaces. This section defines ORB interface
that allow services such as security to be inserted in the invocation path.
Interceptors are not specific to security; they could be used to invoke any ORB
service. Interceptors are therefore proposed as a generic ORB extension. For this
reason, the generic interfaces supported by interceptors are presented in Appendix
B, Summary of CORBA 2 Core Changes; only security-specific interceptor
Security Service: v1.0 November 1996 15-147

15

s

wo
interfaces are defined in this section. These interfaces permit services to be neatly
separated so that, for example, security functions can coexist with other ORB
services such as transactions and replication (see Section 15.7.1, Generic ORB
Services and Interceptors).

• Security Service replaceability. This appendix defines the security service
interfaces. that allow different security service implementations to be substituted,
whether or not the generic ORB service interfaces are supported (see Section
15.7.4, Implementation-Level Security Object Interfaces, for details).

Appendix E, Guidelines for a Trustworthy System, offers additional guidance to
implementors of secure ORBs, including a discussion of using protection boundaries to
separate components, depending on the level of security required.

The description of security interceptors in Section 15.7.3, Security Interceptors
(particularly that in Invocation Time Policies), specifies how client and target side policie
and client preferences are used to decide what policy options to enforce. This definition of
how the options are used applies whether the ORB conforms to the replaceability options
or not.

None of the interfaces defined in this section affect the application and administrator's
views described in Section 15.5, Application Developer’s Interfaces, and Section 15.6,
Administrator’s Interfaces.

15.7.1 Generic ORB Services and Interceptors

An Interceptor implements one or more ORB services. Logically, an interceptor is
interposed in the invocation (and response) path(s) between a client and target object. T
types of interceptors are defined in this specification:

• Request-level interceptor, which perform transformations on a structured request.

• Message-level interceptors, which perform transformations on an unstructured
buffer.

Figure 15-52 shows interceptors being called during the path of an invocation.
15-148 CORBAservices: Common Object Services Specification

15

t

Figure 15-52Interceptors Cal led During Invocation Path

15.7.2 Request-Level Interceptors

Request-level interceptors are used to implement services which may be required
regardless of whether the client and target are collocated or remote. They resemble the
CORBA bridge mechanism in that they receive the request as a parameter, and
subsequently reinvoke it using the Dynamic Invocation Interface (DII). An example of a
request-level interceptor is the Access Control interceptor, which uses information about
the requesting principal and the operation in order to make an access control decision.

The ORB core invokes each request level interceptor via the client_invoke operation
(at the client) or the target_invoke operation (at the target) defined in this section.
The interceptor may then perform actions, including invoking other objects, before
reinvoking the (transformed) request using CORBA::Request::invoke . When the
latter invocation completes, the interceptor has the opportunity to perform other actions,
including recovering from errors and retrying the invocation or auditing the result if
necessary, before returning.

Message-Level Interceptors

When remote invocation is required, the ORB will transform the request into a message,
which can be sent over the network. As functions such as encryption are performed on
messages, a second kind on interceptor interface is required.

The ORB code invokes each message-level interceptor via the send_message
operation (when sending a message, for example, the request at the client and the reply a
the target) or the receive_message operation (when receiving a message). Both have
a message as an argument. The interceptor generally transforms the message and then

request request

Request
level

Interceptors

Message
level

Interceptors

Request
level

Interceptors

Message
level

Interceptors

reply reply

client
target
object
Security Service: v1.0 November 1996 15-149

15

ary

g of
l
invokes send. Send operations return control to the caller without waiting for the operation
to finish. Having completed the send_message operation, the interceptor can continue
with its function or return.

Selecting Interceptors

An ORB that uses interceptors must know which interceptors may need to be called, and
in what order they need to be called. An ORB that supports interceptors, when serving as a
client, uses information in the target object reference, as well as local policy, to decide
which interceptors must actually be called during the processing of a particular request
sent to a particular target object.

When an interceptor is first invoked, a bind time function is used to set up interceptor
binding information for future use.

Interceptor Interfaces

This section describes the interceptors defined specifically for invoking the security
services.

Details of the interfaces common to all interceptors are included in Appendix B, Summ
of CORBA 2 Core Changes, as they are not security-specific. Appendix B includes
definitions of:

• The RequestInterceptor interfaces client_invoke and target_invoke .

• The MessageInterceptor interfaces, including send_message and
receive_message .

Appendix B also describes which interfaces the interceptors call, e.g. to get information
from the tags in an IOR. Some extensions are proposed to these CORBA interfaces to give
access to other information not currently in the CORBA 2 specification, such as the
component tags of a multicomponent profile in an object reference.

15.7.3 Security Interceptors

The ORB Services replaceability option requires implementation of two security
interceptors:

• Secure Invocation Interceptor. This is a message-level interceptor. At bind time,
this establishes the security context required to support message protection; when
processing a request, it is a message-level interceptor that uses cryptographic
services to provide message protection and verification. It is able to check and
protect messages (requests and replies) for both integrity and confidentiality.

• Access Control Interceptor. This is a request-level interceptor, which determines
whether an invocation should be permitted. This interceptor also handles auditin
general invocation failures, but not related to denial of access (access-control denia
failures are audited within the Access Decision object, which is called by this
interceptor to check access control).
15-150 CORBAservices: Common Object Services Specification

15

led in

sage-
This specification does not define a separate audit interceptor, as the other interceptors’
implementations or the security service implementations call Audit Service interfaces
directly if the events for which they are responsible are to be audited.

The security interceptors implement security functionality by calling the replaceable
security service objects (defined later in this section) as shown in Figure 15-53.

Figure 15-53Security Functionality Implemented by Securi ty Service Objects

The diagram shows the order in which security interceptors are called. Other interceptors
may also be used during the invocation. The order in which other interceptors are cal
relationship to security interceptors depends on the type of interceptor.

At the client:

• In general, the access control interceptor should be called first (to avoid
unnecessary processing of the request by other interceptors when permission to
perform the request is denied).

• All request level interceptors (e.g. transaction or replication ones) are called before
the secure invocation interceptor, as the secure invocation interceptor is a mes
level interceptor.

The secure invocation interceptor should ordinarily be the last interceptor invoked
(because message protection may encrypt the request, so that the code
implementing a further interceptor will not understand it). Even if only integrity
protection is used, the integrity check will fail if the message has been altered in
any way. Note that data compression and data fragmentation should be applied
before the message-protection interceptor is called.

At the target, analogous rules apply to the interceptors in the reverse order.

ORB Core

request/
reply

request/
reply

Client access
control

Interceptor

Client
Secure

Invocation
Interceptor

Target access
control

Interceptor

Target
Secure

Invocation
InterceptorSecurity

Context Vault

Vault

Target
Access

Decision

Client
Access

Decision

Security
Context

per request

at bind time

per message
Security Service: v1.0 November 1996 15-151

15

ent

 at

ptor

the
 the
Invocation Time Policies

Interceptors decide what security policies to enforce on an invocation as follows:

• They call the get_policy operation defined in Section 15.5, Application
Developer’s Interfaces, to find what policies apply to this client (at the client side)
or this target (at the target side).

• At the client side, the security hints in the target object reference are used to find
what policies apply to the target object and what security mechanisms and protocols
are supported. This uses operations on the object reference.

• At the client, the overrides set by the client on the credentials or target object
reference and the security supported by the mechanism in the client’s environm
are taken into account. The Secure Invocation interceptor uses
get_credentials on Current and get_security_features on the object
reference.

The get_policy operation may be used to get any of the following policies:

• The invocation access policies of the current execution context. These are used by
the access control interceptor to check whether access is permitted.

• The invocation audit policy. This is used by interceptors and security services to
check whether to audit events during an invocation.

• The secure invocation policy. This is used by the secure invocation interceptor
bind time. It uses get_association_options as defined in Section 15.6,
Administrator’s Interfaces. The secure invocation policies (and hints in the object
reference) specify required and supported values. The interceptor checks that the
required values can be supported, and will not continue with the invocation if the
client’s requirements are not met. If the target’s requirements are not met, the
invocation may optionally proceed, allowing policy enforcement at the target.

• The invocation delegation policy. This is used by the secure invocation interce
at bind time. The interceptor calls get_delegation_mode to retrieve this
information.

Secure Invocation Interceptor

At bind time, the secure invocation interceptor establishes a security context, which
client initiating the binding can use to securely invoke the target object designated by
object reference used in establishing the binding. At object invocation time, the secure
invocation interceptor is called to use the (previously established) security context to
protect the message data transmitted from the client to the invoked target object.

Note: The remainder of this section assumes that security interceptors are implemented
using the security services replaceability interfaces defined in this specification;
interceptors built for implementations which do not provide the security services
replaceability interfaces will have similar responsibiliti es, but will obviously make
different calls.
15-152 CORBAservices: Common Object Services Specification

15

t

ides
nt

urity

he

e

 not
s

ther
Bind Time - Client Side

The Secure Invocation interceptor’s client bind time functions are used to:

• Find what security policies apply.

• Establish a security association between client and target. This is done on first
invoking the object, but may be repeated when changes to the security contex
occur, such as those caused by the client invoking
override_default_credentials .

Security policies relevant to this interceptor are the client secure invocation and delegation
policies. To retrieve the invocation policy objects, the Secure Invocation interceptor calls
the get_policy operation.

The interceptor checks if there is already a suitable security context object for this client’s
use of this target. If a suitable context already exists, it is used. If no suitable context
exists, the interceptor establishes a security association between the client and target
object (see Establishing Security Associations under Section 15.3.3, Secure Object
Invocations).

The client interceptor calls Vault::init_security_context to request the
security features (such as QOP, delegation) required by the client policy, client overr
and target (as defined in its object reference). The Vault returns a security token to be se
to the target, and indicates whether a continuation of the exchange is needed. It also
returns a reference to the newly-created Security Context object for this client-target
security association. (The way trust is established depends on policy, the security
technology used, and whether both client and target object are in the same identity
domain. It may involve mutual authentication between the objects and negotiation of
mechanisms and/or algorithms.)

The interceptor constructs the association establishment message (including the sec
token, which must be transferred to the target to permit it to establish the target-side
Security Context object). The association establishment message may be constructed in
one of two ways:

• When only the initial security token is needed to establish the association, the
association establishment message may also include the object invocation in t
buffer (i.e. the request) supplied to the interceptor when it was invoked by
send_message . After constructing the association establishment message, the
interceptor invokes send, which results in the ORB sending the message to th
target. After receipt at the target, the association establishment message is
intercepted by the Secure Invocation Interceptor in the target, which at bind time
calls Vault::accept_security_context to create the target Security
Context object (if needed).

• When several exchanges are required to establish the security association, the
association establishment message is sent separately, in a message that does
include the object invocation in the buffer (i.e. the request), again using send. Thi
message is intercepted in the target and the Vault called to create the Security
Context object. However, in this case, the target interceptor must generate ano
security token and send it back to the client interceptor. The client interceptor calls
Security Service: v1.0 November 1996 15-153

15

the Security Context object with a continue_security_context operation
passing the token returned from the target to check if trust has now been
established. There may be several exchanges of security tokens to complete this.
Once the security association has been established, the original client object
invocation (i.e. request) is sent in a separate association establishment message.

Details of the transformation to the request and the association establishment message
formats appear in Section 15.8, Security and Interoperability.

Bind Time - Target Side

The secure invocation interceptor’s target bind functions:

• Find the target secure invocation policies.

• Respond to association establishment messages from the client to establish security
associations.

On receiving an association establishment message, the target secure invocation
interceptor separates it (if needed) into the security token and the request message and
uses the Vault (if there is no security context object yet) or the appropriate Security
Context object to process the security token. As previously described, this may result in
exchanges with the client. Once the association is established, the message protection
function described next is used to reclaim the request message and protect the reply.

Message Protection (Client and Target Sides)

The Secure Invocation Interceptor is used after bind time for message protection,
providing integrity and/or confidentiality protection of requests and responses, according
to quality of protection requirements specified for this security association in the active
Security Context object.

The quality of protection required for the request may have changed since the last
invocation in this security association, as the client may have used
override_default_QOP to set the QOP on the target object reference. The
interceptor therefore has to get the QOP by using get_security_features on the
object reference. The interceptor should also check if
override_default_credentials has been used, and if so, set up a new security
association as at bind time.

The Secure Invocation Interceptor’s send_message method calls
SecurityContext::protect_message , and its receive_message method
calls SecurityContext::reclaim_message , in each case using the appropriate
Security Context object.

Access Control Interceptor

Bind Time

At bind time, the client access control interceptor uses Current::get_policy to get
the ClientInvocationAccess Policy and ClientInvocationAudit policy. The target access
15-154 CORBAservices: Common Object Services Specification

15

t

arget

ity

e,

for

;

d
control interceptor uses the get_policy interface on the target object reference to ge
the TargetInvocationAccessPolicy and TargetInvocationAudit policy.

Access Decision Time

The Access Control Interceptor decides whether a request should be allowed or
disallowed.

Access control decisions may be made at the client side, depending on the client access
control policy, and at the target side depending on the target’s access control policy. T
side access controls are the norm; client-side access controls can be used to reduce
needless network traffic in distributed ORBs. Note that in some ORBs, system integr
considerations may make exclusive reliance on client-side access control enforcement
undesirable.

The Access Control Interceptor client_invoke and target_invoke methods
invoke the access_allowed method of the Access Policy object obtained at bind tim
specifying the appropriate authorization data. The access policy returns a boolean
specifying whether the request should be allowed or disallowed.

The Access Control Interceptor does not know what sort of policy this Access Policy
object supports. It may be ACL-based, capability-based, label-based, etc. It also does not
know if the Access Policy object uses the credentials exactly as passed, or takes the
identity from the credentials and uses these to find further valid privileges if needed
this principal from a trusted source.

The Access Control Interceptor may also check if this invocation attempt should be
audited, by calling the audit_needed operation on the appropriate Audit Policy object
if this call indicates that the invocation attempt should be audited, the Access Control
Interceptor calls the Audit Channel interface to write the appropriate audit record.

This interceptor does not transform the request. It either passes the request unchanged
when using CORBA::Request::invoke to continue processing the request, or it
aborts the request by returning with an exception, rather than calling
CORBA::Request::invoke .

15.7.4 Implementation-Level Security Object Interfaces

This specification defines four implementation-level security object interfaces to support
security service replaceability:

• Vault is used to create a security context for a client/target-object association.

• Security Context objects hold security information about the client-target security
association and are used to protect messages.

• Access Decision objects are used (usually by Access Control Interceptors) to decide
if requests should be allowed or disallowed.

• Audit. Audit Decision objects are used to decide if events are to be audited, an
Audit Channel objects are used to write audit records to the audit trail.
Security Service: v1.0 November 1996 15-155

15

ed to

s
, or

e

Vault

The Vault interface provides methods for establishing security contexts between clients
and targets when these are in different trust domains, so that authentication is requir
establish trust. Implementations of the Vault interface are responsible for calling
audit_needed to determine whether the audit policy requires auditing of successful
and/or failed access control checks, and for calling audit_write whenever audit is
needed.

Interfaces

The Vault interfaces are described next. Note that if a call to the Vault interface results in an
incomplete Security Context (i.e. one which requires continued dialogue to complete), the
continuation of the dialogue is accomplished using the interface of the incomplete Security
Context object rather than the Vault interface.

init_security_context

This is used by the association interceptor (or the ORB if separate interceptors are not
implemented) at the client to initiate the establishment of a security association with the
target. As part of this, it creates the Security Context object, which will represent the
client’s view of the shared security context.

AssociationStatus init_security_context (
in CredentialsList creds_list,
in SecurityName target_security_name,
in Object target,
in DelegationMode delegation_mode,
in OptionsDirectionPairList association_options,
in MechanismType mechanism,
in Opaque mech_data,
in Opaque chan_bindings,
out Opaque security_token,
out SecurityContext security_context);

Parameters

creds_list The credentials to be used to establish the security association. There i
normally only one credential object: either the default ones from Current
the ones specified in an override operation on the target object reference.
However, for composite, combined or traced delegation, more than on
credential object is needed.

target_security_name
The security name of the target as set in its object reference.

target The target object reference.
delegation_mode

The mode of delegation to employ. The value is obtained by combining
client policy and application preferences as described in Invocation Time
Policies under Section 15.7.3, Security Interceptors.
15-156 CORBAservices: Common Object Services Specification

15

.

ject

association_options
A sequence of one or more pairs of secure association options and direction.
The options include such things as required peer trust and message
protection. Normally, one pair will be specified, for the “both” direction.
Implementations that support separate association options for requests and
replies may supply an additional options set for each direction supported
These values are obtained from a combination of the client’s security
policy, the hints in the target object reference, and any requests made by the
application.

mechanism Normally NULL, meaning use default mechanism for security associations.
Otherwise, it contains the security mechanism(s) requested. (These may
have been obtained from the target object reference.)

mech_data Any data specific to the chosen mechanism, as found in the target ob
reference.

chan_bindingNormally NULL (zero length). If present, they are channel bindings as in
GSS-API.

security_token The token to be transmitted to the target to establish the security association.
Note that this may take several exchanges, but operations required at the
client to continue the establishment of the association are on the Security
Context object.

security_context
This is the Security Context object at the client which represents the shared
security context between client and target as identified by the specified
security target name.

Return Value

The return value is used to specify the result of the operation.

SecAssocSuccess
Indicates that the security context has been successfully created and that no
further interactions with it are needed to establish the security association.

SecAssocFailure
Indicates that there was some error, which prevents establishment of the
association.

SecAssocContinue
Indicates that the association procedure needs more exchanges.

accept_security_context

This is used by the association interceptor (or ORB) at the target to accept a request from
the client to establish a security association. As part of this, it creates the Security Context
object, which will represent the target’s view of the shared security context.

AssociationStatus accept_security_context (
in CredentialsList creds_list,
in Opaque chan_bindings,
in Opaque in_token,
out Opaque out_token,
out SecurityContext security_context

);
Security Service: v1.0 November 1996 15-157

15

ns
y

o

Parameters

creds_list The credentials of the target. Note that this may be the credentials of the
trust domain, not the individual object.

chan_bindings If present, the channel bindings are as in GSS-API.
in_token The security token transmitted from the client.
out_token If establishment of the security association is not yet complete, this contai

the security token to be transmitted to the client to continue the securit
dialogue. Note that as at the client, any further operations needed to
complete the security association are on the security context object.

security_context
The Security Context object at the target which represents the shared
security context between client and target.

Return Value

SecAssocSuccess
Indicates that the security context has been successfully created and n
further interactions with it are needed to establish the security association.

SecAssocFailure
Indicates that there was some error that prevents establishment of the
association.

SecAssocContinue
The first stage of establishing the security association has been successful,
but it is not complete. The out_token contains the token to be returned
to continue it.

get_supported_mechs

This operation returns the mechanism types supported by this Vault object and the
association options these support.

MechandOptionsList get_supported_mechs ();

Return Value

The list of mechanism types supported by this Vault object and the association options
they support.

Security Context Object

A Security Context object represents the shared security context between a client and a
target. It is used as follows:

• By the security association interceptors to complete the establishment of a security
association between client and target after the Vault has initiated this.

• By the message protection interceptors in protecting messages for integrity and/or
confidentiality.

• In response to a target object’s request to Current for privileges and other
information (sent from the client) about the initiating principal.
15-158 CORBAservices: Common Object Services Specification

15

 the
• In response to a target object’s request to Current to supply one (or more)
credentials object(s) from incoming information about principal(s).

• To check if the security context is valid, and if not, try and refresh it.

Interf aces

The Security Context object has the following attributes in common with the Current
object:

readonly attribute CredentialsList received_credentials;

readonly attribute SecurityFeatureValueList security_features;

continue_security_context

This operation is invoked by the association interceptor to continue establishment of
security association. It can be called by either the client or target interceptor on the local
security context object.

AssociationStatus continue_security_context (
in Opaque in_token
out Opaque out_token

);

Parameters

in_token The security token generated by the other one of the client-target pair and
sent to this Security Context object to be used to continue the
dialogue between client and target to establish the security association.

out_token If required, a further security token to be returned to the other Security
Context object to continue the dialogue.

Return Value

SecAssocSuccess
The security association has been successfully established.

SecAssocFailure
The attempt to establish a security association has failed.

SecAssocContinue
The context is only partially initialized and further operations are required
to complete authentication.

protect_message

The protect_message operation on the Security Context object provides the means
whereby the client message protection interceptor may protect the request message, or the
target interceptor may protect the response message for integrity and/or confidentiality
according to the Quality of Protection required.
Security Service: v1.0 November 1996 15-159

15

sage
void protect_message (
in Opaque message,
in QOP qop,
out Opaque text_buffer,
out Opaque token

);

Parameters

 message The message for which protection is required.

 qop Required message protection options.

 text_buffer The protected message, optionally encrypted.

 token The integrity checksum, if any.

Return Value

None.

reclaim_message

The reclaim_message operation on the Security Context object provides the means
whereby a protected message may be checked for integrity and the message optionally
decrypted if needed.

boolean reclaim_message (
in Opaque text_buffer,
in Opaque token,
out QOP qop,
out Opaque message

);

Parameters

text_buffer The message for which the check is required and optionally the mes
to be decrypted.

token The integrity checksum, if any. Will typically be zero length if QOP
indicates that confidentiality was applied.

qop The quality of protection that was applied to the protected message.

message The unprotected message, decrypted if required.

Return Value

If the reclaim_message operation returns a value of FALSE, then the message has
failed its integrity check. If TRUE, the integrity of the message can be assured.

is_valid

The is_valid operation on the Security Context object allows a caller to determine
whether the context is currently valid.

boolean is_valid (
out UtcT expiry_time);
15-160 CORBAservices: Common Object Services Specification

15

l

r
Parameters

expiry_time The time at which this context is no longer valid.

Return Value

If the is_valid operation returns a value of FALSE, then the context is no longer valid.
If TRUE, the context is still valid.

refresh

This operation may extend the useful lifetime of the SecurityContext. The precise
behavior is implementation-specific. refresh may be called on both valid and expired
contexts.

boolean refresh ();

Return Value

If the refresh operation returns a value of FALSE, then the context could not be
refreshed. In this case, the caller should acquire a new context using the
Vault::init_security_context interface. If TRUE, the context was
successfully refreshed.

Access Decision Object

The Access Decision object is responsible for determining whether the specified
credentials allow this operation to be performed on this target object. It uses access contro
attributes for the target object to determine whether the principal’s privileges, obtained
from the Security Context object, are sufficient to meet the access criteria for the
requested operation. The interfaces are as follows.

access_allowed

interface AccessDecision {

boolean access_allowed (
in SecurityLevel2::CredentialsList cred_list,
in CORBA::Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);

Parameters

cred_list The list of Credentials associated with the request. The list may be empty
(in the case of unauthenticated requests), it may contain only a single
credential, or it may contain several credentials (in the case of delegated o
otherwise cascaded requests). The Access Decision object is presumed to
have rules for dealing with all these cases.

target The reference used to invoke the target object. The method invoked.
operation_name

The name of the operation being invoked on the target.
Security Service: v1.0 November 1996 15-161

15

s.
red

uch

-

r-
target_interface_name
The name of the interface to which the operation being invoked belong
This may not be required in some implementations and will only be requi
in cases in which the operation being invoked does not belong to the
interface of which the target object is a direct instance.

Return Value

boolean A return value of TRUE indicates that the request should be allowed,
otherwise FALSE.

Audit Objects

There are two types of audit objects:

• The audit decision object, used to find out whether an action needs to be audited.
Similar audit decision objects are used for all audit policies.

• The audit channel objects, used by many of the implementation components (s
as interceptors and security objects) and also used by applications to write audit
records.

Audit Decision Objects

Audit Decision objects support the audit_needed interface defined in Section 15.5,
Application Developer’s Interfaces.

boolean audit_needed (
in AuditEventType event_type,
in SelectorValueList value_list

);

Parameters

event_type The type of the event that has occurred.

selector_values A list containing the values of the following audit selectors:

Initiator (the credentials-list of the principal whose action caused the
event)

Object (the target object reference. If no target object exists, pass a
reference to “self”)

Operation (the name of the operation being invoked. Pass null if not
applicable)

SuccessFailure (a boolean indicating whether the operation which trig
gered the event succeeded or failed)

Return Value

boolean A return value of TRUE indicates that the event must be audited, othe
wise FALSE.
15-162 CORBAservices: Common Object Services Specification

15

e

t
g the

r
gh it
in
A standard audit policy is proposed in Section 15.6, Administrator’s Interfaces, but if this
is to be replaceable without ORB/interceptor changes, a standard interface needs to be
available for the ORB or interceptor to call. Therefore, for replaceability, the selectors
used on audit needed during invocation must always be the same (see
selector_values above), though not all of these need to be used in taking the
decision to audit, depending on policy. Note that the time is not passed over this interface.
If the selectors specified in the audit policy use time to decide on whether to audit th
event, the AuditDecision object should obtain the current time itself.

Audit Channel Objects

Audit Channel objects support the audit_write interface defined in Section 15.5,
Application Developer’s Interfaces.

Principal Authentication

The Principal Authentication object defined in Section 15.5.3, Authentication of
Principals, may also be called by implementation security objects, specifically the Vault.

Non-repudiation

The Non-repudiation services are accessible through the NRCredentials interface. Its
functionality and operations are defined in Section 15.5, Application Developer’s
Interfaces.

15.7.5 Replaceable Security Services

It is possible to replace some security services independently of others.

Replacing Authentication and Security Association Services

Replacement of the authentication, security context management, and message proection
services underlying a secure ORB implementation can be accomplished by replacin
Principal Authentication, Vault, Credentials, and Security Context objects with
implementations using the new underlying technology.

Note that if the Vault uses GSS-API to link to external security services, it may be
substantially security technology independent, and so may require no changes or mino
changes in order to accommodate a new underlying authentication technology (thou
may also have to use technology independent interfaces for principal authentication
some circumstances, as this is not always hidden under GSS-API).

The Vault is replaced by changing the version in the environment.

Replacing Access Decision Policies

Access control policies can be changed by replacing the Access Policy objects, which
define and enforce access control policies (for example, substituting another Access
Security Service: v1.0 November 1996 15-163

15

nd

olicy
 a

it

ed

or
Policy object for DomainAccessPolicy). If a single object supports both AccessPolicy a
AccessDecision interface, then only that object needs to be replaced. Otherwise, both
AccessPolicy and AccessDecision objects may need to be replaced.

Applications may also change their access control policies. If the application access p
object(s) is similar to the invocation access policy object(s), then they can be replaced in
similar way.

Replacing Audit Services

Audit policies may be replaced, for example, to support certain types of invocation aud
policy not supported by the standard audit policy objects. In this case, the policy objects
are replaced in a similar way to the access policy objects.

Also, Audit Channel objects may be replaced to change how audit records are routed to a
collection point or filtered.

The Audit Channel object used for object system auditing is replaced by replacing the
Audit Channel object in the environment. Other Audit Channel objects may be replac
by associating a different channel object with the appropriate audit policy.

Application auditing objects can be replaced by the application.

Replacing Non-repudiation Services

The Non-repudiation Service is a stand-alone replaceable security service associated with
NRCredentials and NRPolicy objects. Different NR services may use different
mechanisms and support different policies. For example, it may be that a service using
symmetric encipherment techniques may be replaced by a service using asymmetric
encipherment techniques.

The same credentials and authentication method may be used for non-repudiation and f
other secure invocations, so when replacing either of these, the effect on the other should
be considered.

Other Replaceability

No other replaceability points are defined as part of this specification. However,
individual implementations may permit replacement of other security services or
technologies.

Linking to External Security Services

Most of an OMA-compliant secure system is unaware of the actual security services used,
and that these may be shared with other systems. OMA-compliant secure system
implementors are not required to make any interfaces other than those in Section 15.5,
Application Developer’s Interfaces, available to applications (though some
implementations may expose more of the interfaces in this specification); ORBs and ORB
interceptors use the interfaces specified in this section.
15-164 CORBAservices: Common Object Services Specification

15

s Key

ity

xts.

n

logy.
The security service interfaces specified in this section may encapsulate calls to external
security services via APIs.

The external services used may include:

• Authentication Services, to authenticate principals.

• Privilege (Attribute) Services, for selecting and certifying privilege attributes for
authenticated principals (if access control can be based on privileges as well as on
individual identity).

• Security Association Services, for establishing secure associations between
applications. These services may themselves use other security services such a
Distribution Services (if secret keys are used), a Certification Authority for
certifying public keys, and Interdomain Services for handling communications
between security policy domains.

• Audit (and Event) Services.

• Cryptographic Support Facilities, to perform cryptographic operations (perhaps in
an algorithm-independent way).

This proposal does not mandate which interfaces are used to access external secur
services, but notes the following possibilities:

• The GSS-API is used for security associations and for the majority of Credentials
and Security Context operations, as this allows easy security service replacement.
With this in mind, several interfaces in Section 15.4, Security Architecture, have
been designed to allow easy mapping to GSS-API functions, and the Credentials
and Security Context objects are consistent with GSS-API credentials and conte

• IDUP GSS-API may be used for independent data unit protection and evidence
generation and verification.

• Cryptographic operations performed by a Cryptographic Support Facility (CSF) to
ease replacement of cryptographic algorithms. No specific interface is
recommended for th is yet, as such interfaces are being actively discussed in X/Ope
and other international bodies, and standards are not yet stable.

15.8 Security and Interoperability

This section specifies a model for secure interoperability between ORBs, which conform
to the CORBA 2 interoperability specification and employ a common security techno

The interoperability model also describes other interoperability cases, such as the effect on
interoperability of crossing security policy domains. However, detailed definitions of
these are not given in this specification.

This section defines the extensions required to the interoperability protocol for security.
This includes:

• Specification of tags in the CORBA 2 Interoperable Object Reference (IOR), so this
can carry information about the security policy for the target object, and the security
technology which can be used to communicate securely with it.
Security Service: v1.0 November 1996 15-165

15

nd

• A security interoperability protocol to support the establishment of a security
association between client and target object and the protection of CORBA 2
General Inter-ORB Protocol (GIOP) messages between them for integrity and/or
confidentiality. This is independent of the security technology used to provide this
protection.

• Security when using the DCE-CIOP protocol.

As the security information needed by a security mechanism is generally independent of
which ORB interoperability protocol is used, other Environment-Specific Protocols
(ESIOPs) may support security in a similar way to that described for GIOP. However, the
proposal in Section 15.8.5, DCE-CIOP with Security, only addresses DCE-CIOP, which
supports only DCE security.

The security protocol specified does not define details of the contents of the security
tokens exchanged to establish a security association, the integrity seals for message
integrity, or the details of encryption used for confidentiality of messages, as these depe
on the particular security mechanism used. This specification does not specify
mechanisms.

15.8.1 Interoperability Model

This section describes secure interoperability when:

• The ORBs share a common interoperability protocol.

• Consistent security policies are in force at the client and target objects.

• The same security mechanism is used.

All other options build from this. The model for secure interoperability is shown in Figure
15-54.
15-166 CORBAservices: Common Object Services Specification

15

Figure 15-54Secure Interoperability Model

When the target object registers its object reference, this contains extra security
information to assist clients in communicating securely with it.

The protocol between client and target object on object invocations is as follows:

• If there is not already a security association between the client and target, one is
established by transmitting security token(s) between them (transparently to the
application).

• Requests and responses between client and target are protected in transit between
them.

Security Information in the Object Reference

When an object is created in a secure object system, the security attributes associated with
it depend on the security policies for its domain and object type and the security
technology available. A client needs to know some of this information to communicate
securely with this object in a way the object will accept. Therefore, the object reference
transferred between two interoperating systems includes the following information:

• A security name or names for the target so the client can authenticate its identity.

• Any security policy attributes of the target relevant to a client wishing to invoke it.
This covers policies such as the required quality of protection for messages and
whether the target requires authentication of the client’s identity and supports
authentication of its identity.

request
request

Client
Target
Object

ORB
Security
Services

ORB
Security
Services

ORB Core

security tokens at association set up

protected messages

object reference

reply reply
Security Service: v1.0 November 1996 15-167

15

in

e
• Identification of the security technology used for secure communication between
objects this target supports and any associated attributes. This allow the client to use
the right security mechanism and cryptographic algorithms to communicate with the
target.

Establishing a Security Association

The contents of the security tokens exchanged depend on the security mechanism used.

A particular security mechanism may itself have options on how many security tokens are
used. The minimum is an initial context token (a term used in GSS-API), sent from the
client to the target object to establish the security association. This typically contains:

• An identification of the security mechanism used.

• Security information used by this mechanism to establish the required trust between
client and target and to set up the security context necessary for protecting messages
later.

• The principal’s credentials.

• Information for protecting th is security data in transit.

In addition to this token, subsequent security tokens may be needed if:

• Mutual authentication of client and target is required.

• Some negotiation of security options for this mechanism is required, for example,
the choice of cryptographic algorithms.

Protecting Messages

The invocation may be protected for integrity and/or confidentiality. In either case, the
messages forming the request and reply are transformed by the ORB Security Services.
For integrity, extra information (e.g., an integrity seal and sequence number) is added to
the message so the target ORB Security Services can check that the message has not been
changed and that no messages have been inserted or deleted in the sequence.

For confidentiality, the message itself is encrypted so it cannot be intercepted and read
transit.

Details of how messages are protected are again mechanism-dependent. Note, however,
that messages cannot be changed once they have been protected, as they cannot b
understood once confidentiality protected, and the integrity check will fail if they are
altered in any way.

Security Mechanisms for Secure Object Invocations

The interoperability model above can be supported using different security mechanisms.
15-168 CORBAservices: Common Object Services Specification

15

ty

r
rd

at

 basic
This specification does not define a standard security mechanism to be supported by all
secure ORBs. It therefore does not specify a particular set of security token formats and
message protection details for a particular security mechanism.

Security Mechanism Types

There are two major types of security mechanisms used in existing systems for securi
associations, which are:

• Those using symmetric (secret) key technology where a shared key is used by both
sides, and a trusted third party (a Key Distribution Service) is used by the client to
obtain a key to talk to the target.

• Those using asymmetric (public) key technology where the keys used by the two
sides are different, though linked. In th is case, long term, public keys are normally
freely available in certificates that have been certified by a Certification Authority.

Several existing systems use symmetric key technology for key distribution when
establishing security associations. These are usually based on MIT’s Kerberos product.
Such systems normally include no public key technology.

Other security mechanisms use public key technology for authentication and key
distribution as this has advantages for scalability and interenterprise working. The numbe
of public key-based systems are growing and the use of public key technology is standa
for non-repudiation, which is an optional component in this specification, and increasingly
needed in commercial systems so any OMG security specification must not preclude its
use. Also, the use of smart cards with public key technology is increasing. However, non-
repudiation is not a service required for secure interoperability.

Interoperating with Multiple Security Mechanisms

The current specification allows a client to identify the security mechanism(s) supported
by the target. Where a client or target supports more than one mechanism, and there is at
least one mechanism in common between client and target, the client can choose one th
they both support.

Some security mechanisms may support a number of options, for example:

• A choice of cryptographic algorithms for protecting messages.

• A choice of using public or secret key technology for key distribution.

The appropriate options can be chosen by the client in the same way as choosing the
mechanism, via the client security policy and information in the target’s object reference.
However, some mechanisms will be able to negotiate options using extra exchanges at
association establishment, which are specific to the particular mechanisms.

Interoperability where there is no mechanism in common is likely to be the subject of a
future security RFP. It is expected that this would be done by a specialist interoperability
bridge as described in the Security Interoperability Bridges section.
Security Service: v1.0 November 1996 15-169

15

it.

pal’s

ed on
:

s in

s in

 target

en
Interoperating between Underlying Security Services

Security mechanisms for secure object invocations use underlying security services for
authentication, privilege acquisition, key distribution, certificate management, and aud
Under some circumstances, these need to interoperate. For example, key distribution
services may need to communicate with each other, and audit services may need to
transmit audit records between systems.

Interoperability of such underlying security services is considered out of scope of this
specification, as they are mechanism dependent.

Interoperating between Security Policy Domains

The previous sections consider interoperability within a security policy domain where
consistent security policies apply to access control, audit, and other aspects of the
system. These rely on information about the principal, including its identity and
privilege attributes, being trusted and having a consistent meaning throughout the
policy domain.

Where a large distributed system is split into a number of security policy domains,
interoperation between security policy domains is needed. This requires the
establishment of trust between these domains. For example, an ORB security
association service at a target system will need to identify the source of the princi
credentials so it can decide how much to trust them.

Once the identity of the client domain has been established, interdomain security
policies need to be enforced. For example, access control policies are mainly bas
the principal’s certified identity and privilege attributes. The policy for this could be

• The target domain trusts the client domain to identify principals correctly, but does
not trust their privilege attributes, so treats all principals from other domains as
guest users.

• The administrators of the two domains have agreed to some privilege attribute
common, and trust each other to give these only to suitably authorized users. In this
case, the target system will give principals from the client domain with these
privileges the same rights as principals from the target domain.

• The administrators of the two domains agree what particular privilege attribute
the client domain are equivalent to particular privilege attributes in the target
domain, and so grant corresponding access rights.

For the first two of these, the target domain security policy could enforce restrictions on
which privilege attributes may be used there. This would not necessarily affect the
interoperability protocols; the get_attributes operation will simply not return all of
the privileges. But even in this case, some security mechanisms will choose to modify the
principal’s credentials to exclude unwanted attributes.

In the third case, the privilege attributes need to be translated to the ones used in the
domain. If this translation is to be done only once, an interdomain service could be used,
which both translates the credentials and reprotects them so they can be delegated betwe
nodes in the target domain.
15-170 CORBAservices: Common Object Services Specification

15

ms.

s

y,

nent
Such an interdomain service may be invoked by the ORB Security Services, but may be
invoked by a separate interoperability bridge between the ORB domains. If invoked by an
ORB service, it extends the implementation of the Vault object described in Section 15.7,
Implementor’s Security Interfaces, and this will probably call on a mechanism-specific
Interdomain Service.

Secure Interoperability Bridges

Secure Interoperability Bridges between ORB domains are relevant to this architecture, as
in the future, they may be specified as part of some secure CORBA-compliant syste
However, this specification does not describe how to build such bridges. If security
interoperability bridges implemented separately from ORB Security Services are needed,
they are expected to be the subject of separate RFPs.

Secure interoperability bridges may be needed for:

• ORB-mediated bridges, where data marshalling is done outside the ORB and
associated ORB services.

• Translating between security mechanisms (technology domains).

• Mapping between security policy domains.

In all these cases, both the system and application data being passed will need to be
altered, affecting its protected status. This needs to be reestablished using security service
trusted by both client and target domains.

15.8.2 Protocol Enhancements

The following sections detail the enhancements required to the CORBA 2 interoperability
specification for security.

• Section 15.8.3, CORBA Interoperable Object Reference with Security, defines the
enhancements needed for the Interoperable Object Reference (IOR).

• Section 15.8.4, Secure Inter-ORB Protocol (SECIOP), defines the enhancements
needed to secure GIOP messages, and Section 15.8.5, DCE-CIOP with Securit
defines the DCE-CIOP with security.

15.8.3 CORBA Interoperable Object Reference with Security

The CORBA 2 Interoperable Object Reference (IOR) comprises a sequence of ‘tagged
profiles.’ A profile identifies the characteristics of the object necessary for a client to
invoke an operation on it correctly, including naming/addressing information. The tag is a
standard, OMG-allocated identifier for the profile, which allows the client to interpret the
profile data, but although the tag is OMG-allocated, the profile itself may not be OMG-
specified.

One profile thought necessary for OMG to define was a multicomponent profile, that is, a
profile that itself consisted of tagged components. It is proposed that new multicompo
TAGs are defined, which allows the multicomponent profile to be used for IIOP.
Security Service: v1.0 November 1996 15-171

15

e

r
and
AG

an be
However, use of tagged components within the multicomponent profile to carry IIOP,
security, and other data may cause performance degradations in certain situations. For
example, if an IOR carries many tagged components unrecognized by a client
implementation, it must process these when they appear before those that it does
recognize. Some, such as the components describing IIOP, have a high probability of
being recognized and used by many clients. Consequently, implementations with an
objective to optimize IOR processing will place such components at the beginning of th
tagged component sequence.

The following TAGs are defined:

• IIOP components, which can be used in a multicomponent profile (see Section
B.7, Further Definition of ORB Interoperability).

• Security components that identify security mechanism types, one for each
mechanism supported. Each security mechanism component can also include
mechanism-specific data.

• Aspects of the target object policy that cover the dependencies between an overall
use of components (for example, the quality of protection required) may be
specified in separate policy components. This avoids establishing unnecessary
dependencies between other (technology) components.

Security Components of the IOR

The following new tags are used to define the security information required by the client
to establish a security association with the target. Note that a tag may occur more than
once, denoting that the target allows the client some choice. See the revised CORBA 2.0
specification (OMG Document Interop/96-05-01) for more information about placement
of security information in IORs to support interoperable security in IIOP, GIOP protocols,
DCE-CIOP, and ESIOP protocols via the multi-component profile. Chapter 10 of that
document defines the IOR format, supported tags, and rules for composition of IOR
components; Chapter 12 of that document describes the GIOP header and message
formats and the IIOP IOR format; and Chapter 13 of that document describes the DCE-
CIOP message formats.

TAG_x_SEC_MECH

This is the prototype TAG definition for OMG registered security association
mechanisms. The mechanism is identified by the TAG value. The component data fo
TAGs of this kind is defined by the person who registers the TAG. The confidentiality
integrity algorithms to be used with the mechanism may be either encoded into the T
value or in mechanism-specific data (see Guidelines for Mechanism TAG Definition in
Appendix H, Interoperability Guidelines).

If this definition includes:

sequence <TaggedComponent> components ;

The components field can contain any of the other component TAGs, whose values c
specific to the mechanism.
15-172 CORBAservices: Common Object Services Specification

15

nce to

nce to

,
If the mechanism is selected for use, the components in this field are used in prefere
any recorded at the multicomponent level.

Multiple TAG_x_SEC_MECH components may be present to enumerate the security
mechanisms available at the target.

TAG_GENERIC_SEC_MECH

This TAG enables mechanisms not registered with the OMG, but common to both client
and target to be used with the standard interoperability protocol. Its definition is:

struct GenericMechanismInfo {

sequence <octet> security_mechanism_type;

sequence <octet> mech_specific_data;

sequence <TaggedComponent> components;

};

The first part of this TAG is the security_mechanism_type , which identifies the
type of underlying security mechanism supported by the target including confidentiality
and integrity algorithm definition. It is an ASN.1 Object Identifier (OID) as described for
use with the GSS-API in IETF RFC 1508.

The mech_specific_data field allows mechanism specific information to be passed
by the target to the client.

The components field can contain any of the other component TAGs, whose values can be
specific to the mechanism.

If the mechanism is selected for use, the components in this field are used in prefere
any recorded at the multicomponent level.

Multiple TAG_GENERIC_SEC_MECH components may be present to enumerate the
security mechanisms available at the target.

TAG_ASSOCIATION_OPTIONS

This TAG is used to define the association properties supported and required by the target.
Its definition is:

struct TargetAssociationOptions{

AssociationOptions target_supports;

AssociationOptions target_requires;

};

Parameters

target_supports
Gives the functionality supported by the target.

target_requires
Defines the minimum that the client must use when invoking the target
although it may use additional functionality supported by the target.
Security Service: v1.0 November 1996 15-173

15

The following table gives the definition of the options.

Table 15-9 Option Definitions

TAG_SEC_NAME

The target security name component contains the security name used to identify and
authenticate the target. It is an octet sequence, the content and syntax of which is defined
by the authentication service in use at the target. The security name is often the name of
the environment domain rather than the particular target object.

The TAG_SEC_NAME component is not needed if the target does not need to be
authenticated.

target_supports target_requires

NoProtection The target supports
unprotected messages

The target’s minimal
protection requirement is
unprotected invocations

Integrity The target supports integrity
protected messages

The target requires
 messages to be integrity
protected

Confidentiality The target supports confi-
dentiality protected invoca-
tion

The target requires
invocations to be protected
for confidentiality

DetectReplay The target can detect replay
of requests (and request
fragments)

The target requires security
associations to detect
message replay

DetectMisordering The target can detect
sequence errors of requests
and request fragments

The target requires security
associations to detect
message missequencing

EstablishTrustInTarget The target is prepared to
authenticate its identity to
the client

(This option is not defined.)

EstablishTrustInClient The target is capable of
authenticating the client

The target requires estab-
lishment of trust in the cli-
ent’s identity
15-174 CORBAservices: Common Object Services Specification

15

 a
Table 15-10 IOR Example

In this example if mechanism “mech 1” is used, the target security name is “MBn1” while
the association must use integrity replay and misordering options. If mechanism “mech 2”
is used, no mechanism-specific security name has been specified and so “Manchester
branch” is used as the security name. The association options are EstablishTrustInClient
and Integrity.

Operational Semantics

This section describes how an ORB and associated ORB services should use the IOR
security components to provide security for invocations, and how the target object
information should be provided.

Client Side

During a request invocation, the nonsecurity tagged components in the IOR
multicomponent profile indicate whether the target supports IIOP and/or some other
environment-specific protocol such as DCE-CIOP. Security mechanism tag components
specify the security mechanisms (and associated integrity and confidentiality algorithms)
that this target can use. The ORB selects a combination of interoperability protocol and a
security mechanism that it can support.

If there is a common interoperability protocol, but no common security mechanism, then
secure request on this IOR cannot be assured.

Tag Value
Mech Specific
Tag Value

tag_sec_name “Manchester branch”

tag_association_
options

Supports and requires
integrity to establish
trust in the clients
privileges

tag_generic_sec_
mech

mech 1 oid tag_sec_name "MBnl"

tag_association_
options

Supports and requires
integrity, replay detec-
tion, misordering
detection, to establish
trust in the client’s
security attributes

tag_generic_sec_
mech

mech 2 oid tag_association_
options

Target requires and
supports confidential-
ity, to establish trust in
the client’s security
attributes
Security Service: v1.0 November 1996 15-175

15

o

 lists

-

If the same security mechanism is supported at the client and the target, but the
TAG_ASSOCIATION_OPTIONS component specifies that no protection is needed or n
SEC_MECH is specified, then unprotected requests are supported by the target, and the
request can be made without using security services. If the target requires protected
requests, then the ORB must choose an alternative transport and/or security mechanism.

The IOR tags and the client’s policies and preferences are used together to choose the
security for this client’s conversation with the target.

The specific security service used may not understand the CORBA security values, and so
may require them to be mapped into values it can understand.

Determining association options

The association options in the IOR table in Section 15.8.5, DCE-CIOP with Security,
possible association options such as NoProtection, Integrity, DetectReplay.

The actual association options used when a client invokes a target object via an IOR
depend on:

• The client-side secure invocation policy and environment.

• Client preferences as specified by set_association_options on the
Credentials or override_default_QOP on the object reference.

• The target-side secure invocation policy and environment (as indicated by
information in the TAG_ASSOCIATION_OPTIONS component).

An association option should be enforced by the security services if the client requires it
and the target supports it, or the target requires it and the client supports it.

If the target cannot support the client’s requirements, then a NO_PERMISSION exception
should be raised. If the client cannot meet the requirements of the target, then the
invocation may optionally proceed, allowing policy enforcement on the target side.

Target Side

The security information required in the IOR for this target must be supplied from the
target (or its environment). This specification does not define exactly when particular
information is added, as some of it may only be needed when the object reference is
exported from its own environment.

The security information may come from a combination of:

• The object’s own credentials (see Section 15.5.6, Security Operations on Current).
This includes, for example, the target’s security name. It could include mechanism
specific information such as the target’s public key if it has one.

• Policy associated with the object. This includes, for example, the QOP.

• The environment. This includes, for example, the mechanism types supported.

The target object does not need to supply this information itself. This is done
automatically by the ORB when required. For example, much of the information for the
target’s own credentials are set up on object creation.
15-176 CORBAservices: Common Object Services Specification

15

o

new

As at the client, the specific security service used may require CORBA security values t
be mapped into those it understands.

If when the client invokes the target identified by the IOR, an Invoke Response message is
returned for the request with the status INVOKE_LOCATION_FORWARD, then the
returned multiple component profile must contain security information as well as the
binding information for the target specified in the original Invoke Request message.

Any security information in the returned profile applies to the new binding information
and replaces all security information in the original profile. This
INVOKE_LOCATION_FORWARD behavior can be used to inform the client of updated
security information (even if the address information hasn’t changed).

15.8.4 Secure Inter-ORB Protocol (SECIOP)

To provide a flexible means of securing interoperability between ORBs, a new protocol is
introduced into the CORBA 2.0 Interoperability Architecture. This protocol sits below the
GIOP protocol and provides a means of transmitting GIOP messages (or message
fragments) securely.

Figure 15-55New CORBA 2.0 Protocol

SECIOP messages support the establishment of Security Context objects and protected
message passing. Independence from GIOP allows the GIOP protocol to be revised
independently of SECIOP (e.g. to support request fragmentation).

SECIOP Message Header

SECIOP messages share a common header format with GIOP messages defined in
CORBA 2.0. The fields of this header have the following definition for SECIOP.

• Magic. Identifies the protocol of the message. Each protocol (GIOP,SECIOP) is
allocated a unique identifier by the OMG. The value for SECIOP is “SECP.”

• Protocol_version. This contains the major and minor protocol versions of the
protocol identified by magic. The initial value for SECIOP is 1 major version, 0
minor version.

• byte_order, as in the GIOP header definition.

transport

fragmentation

GIOP

SECIOP

IIOP

fragmentation

GIOP

SECIOP

IIOP
Security Service: v1.0 November 1996 15-177

15

gets

e

. The
t,
• message_type. This is the protocol specific identifier for the message.

• message_size, as in the GIOP header definition.

A minor change is required to the GIOP header to rename the field GIOP_Version
protocol_version .

SECIOP

The SECIOP protocol is used to control the secure association between clients and tar
and provides a means for the transmission of protected messages between clients and
targets.

Where possible, SECIOP messages are sent with GIOP messages rather than as separate
exchanges. However this is not always possible (e.g. when the client wishes to
authenticate the target before it is prepared to send a GIOP message).

Each name in the enumeration below corresponds to a structure discussed later in this
section. The name of the designated structure is obtained by removing the initial "MT"
from the name of the corresponding enumeration constant (for example, the structur
corresponding to MTEstablishContext is named EstablishContext). The section titles
under which the structures are discussed bear the names of the corresponding enumeration
constants (i.e. the section names start with "MT").

SECIOP has the following message types:

enum MsgType {

MTEstablishContext, MTCompleteEstablishContext,

 MTContinueEstablishContext, MTDiscardContext,

 MTMessageError, MTMessageInContext

};

struct ulonglong {

unsigned long low;

unsigned long high;

};

typedef ulonglong ContextId;

enum ContextIdDefn {

Client, Peer, Sender

};

ContextId

This type is used to define the identifiers allocated by the client and target for the
association.

ContextIdDefn

This enum is used to define the kind of context identifier held in a SECIOP message
context identifier will either be the one specified by the client that established the contex
15-178 CORBAservices: Common Object Services Specification

	Security Service Specification
	15.1 Introduction to Security
	15.1.1 Why Security?
	15.1.2 What Is Security?
	15.1.3 Threats in a Distributed Object System
	15.1.4 Summary of Key Security Features
	15.1.5 Goals
	Simplicity
	Consistency
	Scalability
	Usability for End Users
	Usability of Administrators
	Usability for Implementors
	Flexibility of Security Policy
	Independence of Security Technology
	Application Portability
	Interoperability
	Performance
	Object Orientation
	Specific Security Goals
	Security Architecture Goals

	15.2 Introduction to the Specification
	15.2.1 Conformance to CORBA Security
	15.2.2 Specification Structure
	Normative and Non-normative Material
	Section Summaries
	Proof of Concept

	15.3 Security Reference Model
	15.3.1 Definition of a Security Reference Model
	15.3.2 Principals and Their Security Attributes
	15.3.3 Secure Object Invocations
	Establishing Security Associations
	Message Protection

	15.3.4 Access Control Model
	Object Invocation Access Policy
	Application Access Policy
	Access Policies
	Privilege Attributes
	Control Attributes
	Rights
	Access Policies Supported by This Specification

	15.3.5 Auditing
	15.3.6 Delegation
	Privilege Delegation
	Overview of Delegation Schemes
	Facilities Potentially Available
	Controls Used Before Initiating Object Invocations...
	Facilities Used on Accepting Object Invocations

	Specifying Delegation Options
	Technology Support for Delegation Options

	15.3.7 Non-repudiation
	15.3.8 Domains
	Security Policy Domains
	Policy Domain Hierarchies
	Federated Policy Domains
	System- and Application-Enforced Policies
	Overlapping Policy Domains

	Security Environment Domains
	Security Technology Domains
	Domains and Interoperability
	Interoperating between Security Technology Domains...
	Interoperating between ORB Technology Domains

	15.3.9 Security Management and Administration
	Managing Security Policy Domains
	Managing Security Environment Domains
	Managing Security Technology Domains

	15.3.10 Implementing the Model

	15.4 Security Architecture
	15.4.1 Different Users’ View of the Security Model...
	Enterprise Management View
	End User View
	Application Developer View
	Administrator’s View
	Object System Implementor’s View

	15.4.2 Structural Model
	Application Components
	ORB Services
	Selection of ORB Services
	Bindings and Object References at the Client

	Security Services
	Security Policies and Domain Objects

	15.4.3 Security Technology
	15.4.4 Basic Protection and Communications
	Environment Domains
	Component Protection

	15.4.5 Security Object Models
	The Model as Seen by Applications
	Finding Security Features
	Establishing Credentials
	Handling Multiple Credentials
	Selecting Security Attributes
	Making a Secure Invocation
	Security at the Target
	Intermediate Objects in a Chain of Objects
	Security Mechanisms
	Application Access Policies
	Auditing Application Activities
	Finding What Security Policies Apply
	Non-repudiation

	Administrative Model
	Security Policies
	Domains at Object Creation
	Other Domain and Policy Administration
	Finding Domain Managers
	Finding the Policies
	Setting Security Policy Details
	Specifying Use of Rights for Operation Access

	The Model as Seen by the Objects Implementing Secu...
	Implementor’s View of Secure Invocations
	ORB Security Services
	Security Policy
	Specific ORB Security Services and Replaceable Sec...
	Implementor’s View of Secure Object Creation

	Summary of Objects in the Model

	15.5 Application Developer’s Interfaces
	15.5.1 Introduction
	Security Functionality Conformance
	Security Functionality Level 1
	Security Functionality Level 2
	Security Replaceability Ready (either option)
	Optional Functionality

	Introduction to the Interfaces
	Data Types

	15.5.2 Finding Security Features
	Description of Facilities
	Interfaces
	Portability Implications

	15.5.3 Authentication of Principals
	Description of Facilities
	Interfaces
	authenticate
	continue_authentication

	Portability Implications

	15.5.4 Credentials
	Description of Facilities
	Interfaces
	copy
	set _security_features
	get_security_features
	set_privileges
	get_attributes
	is_valid
	refresh

	Portability Implications

	15.5.5 Object Reference
	Description of Facilities
	Interfaces
	override_default_credentials
	override_default_QOP
	get_security_features
	get_active_credentials
	get_policy
	get_security_mechanisms
	override_default_mechanism
	get_security_names

	Portability Implications

	15.5.6 Security Operations on Current
	Description
	Interfaces
	get_attributes
	set_credentials
	get_credentials
	received_credentials
	received_security_features
	get_policy
	required_rights_object
	principal_authenticator

	15.5.7 Security Audit
	Description of Facilities
	Interfaces
	audit_needed
	audit_write
	audit_channel

	Portability Implications

	15.5.8 Administering Security Policy
	15.5.9 Use of Interfaces for Access Control
	Description of Facilities
	Interfaces
	Portability Implications

	15.5.10 Use of Interfaces for Delegation
	Description of Facilities
	Interfaces
	Portability Implications

	15.5.11 Non-repudiation
	Description of Facilities
	Interfaces
	Non-repudiation Service Data Types
	Non-repudiation Service Operations

	15.6 Administrator’s Interfaces
	15.6.1 Concepts
	Administrators
	Policy Domains
	Security Policies

	15.6.2 Domain Management
	Policy
	Domain Manager
	get_domain_policy

	Construction Policy
	make_domain_manager

	Extensions to the Object Interface
	Return Value

	15.6.3 Security Policies Introduction
	15.6.4 Access Policies
	Rights
	Rights Families
	RequiredRights Interface

	AccessPolicy Interface
	Specific Invocation Access Policies
	DomainAccessPolicy Interface
	Domains
	DomainAccessPolicy Use of Privilege Attributes
	Delegation State
	DomainAccessPolicy Use of Rights and Rights Famili...
	AccessDecision Use of AccessPolicy and RequiredRig...
	DomainAccessPolicy Interface

	15.6.5 Audit Policies
	Audit Administration Interfaces

	15.6.6 Secure Invocation and Delegation Policies
	Secure Invocation Policies
	Required and Supported Secure Invocation Policy
	Secure Association Options
	Secure Invocation Administration Interfaces
	get_association_options

	Invocation Delegation Policy
	set_delegation_mode
	get_delegation_mode

	15.6.7 Non-repudiation Policy Management
	Data Types for Non-repudiation Policy Management I...
	Non-repudiation Policy Management Interfaces

	15.7 Implementor’s Security Interfaces
	15.7.1 Generic ORB Services and Interceptors
	15.7.2 Request-Level Interceptors
	Message-Level Interceptors
	Selecting Interceptors
	Interceptor Interfaces

	15.7.3 Security Interceptors
	Invocation Time Policies
	Secure Invocation Interceptor
	Bind Time - Client Side
	Bind Time - Target Side
	Message Protection (Client and Target Sides)

	Access Control Interceptor
	Bind Time
	Access Decision Time

	15.7.4 Implementation-Level Security Object Interf...
	Vault
	Interfaces

	Security Context Object
	Interfaces

	Access Decision Object
	Audit Objects
	Audit Decision Objects
	Audit Channel Objects

	Principal Authentication
	Non-repudiation

	15.7.5 Replaceable Security Services
	Replacing Authentication and Security Association ...
	Replacing Access Decision Policies
	Replacing Audit Services
	Replacing Non-repudiation Services
	Other Replaceability
	Linking to External Security Services

	15.8 Security and Interoperability
	15.8.1 Interoperability Model
	Security Information in the Object Reference
	Establishing a Security Association
	Protecting Messages
	Security Mechanisms for Secure Object Invocations
	Security Mechanism Types
	Interoperating with Multiple Security Mechanisms

	Interoperating between Underlying Security Service...
	Interoperating between Security Policy Domains
	Secure Interoperability Bridges

	15.8.2 Protocol Enhancements
	15.8.3 CORBA Interoperable Object Reference with S...
	Security Components of the IOR
	TAG_x_SEC_MECH
	TAG_GENERIC_SEC_MECH
	TAG_ASSOCIATION_OPTIONS
	TAG_SEC_NAME

	Operational Semantics
	Client Side
	Target Side

	15.8.4 Secure Inter-ORB Protocol (SECIOP)
	SECIOP Message Header
	SECIOP
	ContextId
	ContextIdDefn

