Security Service Specification 15

15.1 Intoduction to Security

15.1.1 Why Security?

Enterprises are increasingly dependent airtimformaion systems to supportehr
business activities. Caomomise of ttese systemsither interms ofloss or inaccracy
of information or competitors gaining access to it can be extreoosily to the
enterprise.

Security breaches, which cgmomise information systemaye becoming more
frequent and varied. Bse may often be due to accidental misuse of the system
as usersaccidentally gaining unauthorized access to information. Commerciatla:
as government systems malgo be subject to malicious attacks (for example, to
access to sensitive inforrian).

Distributed systemare more vulnerable teecurity breaches than theore traditiona
systems, as there are more places where the system can be attackefir&h
security is neded in CORBA systems, which takes account efrtimherent
distributed nature.

15.1.2 What Is Security?

Security protects an information system from unauthorized attemptscéss
information or interfere with its operation. It is concerned with:

® Confidentiality. Information is disclosed only to users awthed to access it.

® [ntegrity. Information is modified only by users who have the right to do so,
only in authorized ways. It is transferred only between intendedsuand in
intended ways.

® Accountability. Users areaccountable for #ir security relevant actions. A
particdar case of this is non-rediation, whereresponsibility for an action cann
be denied.

CORBAservices: Common Object Services Specification 15-1

15

15-2

* Availability . Use of the system cannot be maliciously denied tooaizétd sers.

[Availability is often theresponsibility of other OMA components such as archive
restore services, or of underlying werk or operating systenservices. Therefore,
this specification does not respondatbavailability requiremets.]

Security is endrced usingsecurity functiomlity as described below. laddition, there
are costraints on how the sfem is constructed, for example, to ensure adequat
separation of objects so that they don't interfere watth other andeparation of
users’ duties so that the damage ativiual user can do is limited.

Security is pervasive, affecting many components ofsgesy, including some thare
not directly securityelated. Alsospecialist components, such as an autbatibn
service, provide services that are specifiseourity.

The assets of an enterprise need to be protected agaigsived threats. The amol
of protection the emtprise is prepared to pay for depends onvidae of the assets
and the threats that need to be countered.s€herity policy eeded to protect again
these threats may alsiepend on the environment and how vulnerableadsets are i
this environment. Thislocumentspecifies asecurity architecture which can suppol
variety of security policies to eet different needs.

15.1.3 Threats in a Distributed Object System

The CORBA securitgpecification is designed &dlow implementations to provide
protection against the following:

®* An authorized user of the system gaining access to infmmthat should be
hidden from him.

* A user masgerading as someone else, and so obtaining access toveihtiiat ser
is authorized to do, so that actions are being attributed to the wrong person.
In a distributed system, aser may delegate his rights to other atge so they ca
act on his behalf. This adds the threat of rights being delegated too widely,
causing a threat of unauthorized access.

® Security controls being Ipassed.
® Eavesdropping on a communication line, so gaining access toleotial data.

® Tampering with communication between objects - modifying, inserting and de
items.

® Lack of accourdbility due, for example, to inadequatientification of users.

Note that some of this protectiondependent on the CORBgecurity implementatio
being constructed in the right way according to assuranaiarfasspecified in
Appendix E, Gidelines for a Trustworthy System), and ussegurity mechanisms
with the right characteristics. Conformance to the CORBA security interfaces is
enough to ensure that this protection is provided, just as conformance to the
transactional interfaces (for exaie) is not enough to gwanteetransactional
semantics.

CORBAservices: Common Obj&arvices Specification

15

This specification does not attempt to counter all threats to a distributed systen
example, it does not include facilities to counter breaches caused by analyzing
traffic between machines.

More informationabout security treats and countermeasures is given ppéndix E,
Guidelines for a Trustworthy System.

15.1.4 Summary of Key Security Features

The security functionality defined by thépecification corprises:

® |dentification andauthentication of principals (human users and objects whicl
need to operate underefh own rights) to verify they are who they claimtte.

® Authorization andaccesscontrol - deciding whether a principal can access at
object, normally using the identity and/or otlpeivilege attributes of the praipal
(such as role, groupsecurityclearance) and the cant attributes of the target
object (stating which pricipals, or principals with which atbutes) can access it

® Security auditing to make users accountable for thegcurityrelated actions. It i
normally the human user who should be accahlet Auditing mechanisms shot
be able to identify the user correctByen after a chain afalls through many
objects.

® Security of communicationbetween objects, which is often ovesagureower
layer communications. Thigqures trust to be established Weien the client anc
target, which may redre authentication of clients to targetsandauthentication
of targets to clients It alsorequiresintegrity protection and (optionally)
confidentiality protection of messages in transit between objects.

® Non-repudiation provides irrefutable evidence of actions such as proof of orig
data to the recipient, or proof of receipt aftal to the sender to protect against
subsequent attempts to falsely deny the receiving or sending of the data.

® Administration of security information (for example, security policy)aiso
needed.

This visiblesecurity functionality ses othesecurity functionality such as

cryptography, which is used in support of many of the other functions but is no
visible outside the Sedty services. No direct use of cryptography by applicatior
objects is proposed in this specification, nor are any cryapbgc interbices defined

15.1.5 Goals

The security architecture anddilities described in this document wetlesigned with
the following goals in mind. Not all iplementations conforming to this esgification
will meet all these goals.

SecurityService:v1.0 NovemhE996 15-3

15

Simplicity

The model should be simple to understand and administer. This means it shou
few concepts and fewbjects.

Consisency

It should be possible to provide aistent securityacross the disibuted object syster
and associated legacy systems. This includes:

® Support of consisterfolicies for determining who should be able to access w
sort of information within a security domain that inddis hetrogeneous stems.

® Fitting with existingpermision mechanisms.

® Fitting with existing environments, for exare, the ability to provide end+tend
security even when using comnication services, which are iatently insecure.

® Fitting with existing logons (so extra logoase not needed) and with existing u
databases (teeduce the ser administraon burden).

Scalability

It should be possible to providecurity for a range of systems fromadinlocal
systems to large intra- and interergrise ones. For larger systems, it should be
possible to:

® Base access controls on the privilegeilaites of sers such as roles or groups
(rather than individuaildentities) to reduce administrativeosts.

®* Have a number dafecurity domains, which enforce different secupityicy details
but support interworking between them subject to policy. (This specification
includesarchitecture, but not tarfaces for such imrdomainworking.)

®* Manage the distribution of cryptaaphic keysacross large networksecurely and
without undue administrate overheads.

Usability for End Users

Security should bavailable as tragparently as possible, based onsigle,
configurable defaults.

Users should need to log on to the distributed system only once to access obje
systems and other IT services.

15-4 CORBAservices: Common Obj&srvices Specification

15

Usability of Admistrators

The model should be simple to understand and administer and should provide
system image. It should not be necessary for an administratoec¢dyspontrols for
individual objects or idividual users of ambject (except whersecurity policy
demands this).

The system should provide good filedity and fine granularity.

Usability for Impementors

Application developers must not need to be aware of security forapplications tc
be protected. However, a developer who understaecisrity should bable to preect
application specific actions.

Flexibility of Security Policy

The security policy redted varies from enterprise to enterprise, so choices of se
features should be allowed. An enterprise should need to pay only for the leve
protection it reqires, reducing thdevel (and tlereforecosts) for éss sensitive
information or when the system issk vulnerable tdhteats. The enterprise should
able to balance the costs of providing security, including the resoteqgéed to
implement, administer and run the system, against the perceivedigotesges
incurred as theesult of security breaches.

Particular ty pes of flexibilityrequired include:

® Choice of access control policyThe interfaces defined heaflows for a choice o
mechanisms, ACLs using a range of privilegteitaites such as identis, roles,
groups, or labels. Details are hiddercegtfrom some adminisative functions an
securityaware applications that want to chooseitlown mechanisms.

® Choice of audit policy The event tges which are to be audited is configurabls
This makes it pssible to control the size of the audit trail, aacethre the
resouces required to store and manage it.

® Support forsecurity functionality profiles as defined either in national or
international government cétia such as TCSEC (the US Trusted Cotepu
Evaluation Security Crtria) and ITSEC (the European Information Technolog
Security Evaluation Crria), or by more commercial groups such as X/Open,
requred.

Independence of Security Technology

The CORBA security mdel should beecurity technology nétal. For example,
interfaces specified faecurity of client-target object invocations shouidehthe
security mechanismssed from both the application objects and ORB:égt for some
security admirstrative functions). It should be possible to egher symnetric or
asymmetric key techatogy.

SecurityService:v1.0 NovemhE996 15-5

15

15-6

It should be possible to ptement CORBA security onwide variety of eisting
systems, reusing the security mechanisms anaqotst native to those systems. F
example, the system should mefjure introduction of new cryptosystems, ass
control repositories or user registries. If theteyn is instlled in an emironment that
also includes a procedursécurity regime, the compositessgm should not require
dual administration of the user or authorization policy infdioma

Application Portability

An application object should not need todware of security, so it can Iperted to
environments that enforaéifferent securitypolicies and usdifferent security
mechanisms. If an object enforce=curity itself, interfaces t8ecurity services shou
hide theparticular security mechanismsad, for example, for authentiwa. The
applicationsecurity policy (for exarple, to control access to its own functions anc
state) should be consistent with the system security policy; formramse should b
made of the same attributes faecess controPortability of applications enforcing
their ownsecurity depends on such attributes beingilable.

Interoperability

The security architecture should allowdrndperability between obgés including:

® Providing consistensecurity across a heterogeneousteyn wlere different
vendors may soply different ORBs.

® Interoperating betweesecure systems andoewithout security.

® Interoperating between domains of a distributed systeeranifferent domains
may support dierent securitypolicies, for exampledifferentaccess control
attributes.

® [nteroperating across systems that support diffeseatrrity technology.

This specification includes an architecture that coadiref these, ateast in outline,
but does not give specific interfaces and pcols for the last two. Interoperability
between domains is expected to have limited funetignin initial im plementations,
and inter@erability between security mechanisms is not expected to be supportc

Performance

Security should not ipose an unacceptable performaweerhead, partidarly for
normal commercial levels afecurity, although a greater performance overhead r
occur as highelevels ofsecurityare implemented.

Object Orientation

The specification should be object-oriented:

® The security intedces should be purely object-oriented.

CORBAservices: Common Obj&arvices Specification

15

®* The model should use eapsulation tgoromote system integrity and tade the
complexity of security mechanismsder simple interfaces.

®* The model should allow polyamphic implementations afs objects based on
different urderlying mechanisms.

Specific Security Goals

In addition to the security requirements listubve, there are more specific
requirements thateed to be met in somestgms, so tharchitecture must take intc
account:

® Regulatory requirements The security radel must conform to national
government regulations on the use of sigumechanisms (cryptography, for
example). There are several types of controls, for example, controls on what
exported and controls on deployment and use such as limitations on encryp
confidentiality. Details vary between countries; eyxdas ofrequirements to satis!
a number of these are:
 Allowing use of different cryptographic algorithms.
» Keeping the amount of information encrypted for confidsityi to a minimum.

» Using identities for auditing whichre anonymous, except to the auditor.

® Evaluation criteria for assurance The security functioality andarchitecture mus
allow implementations to conform to stiard security evaluation criteria such ¢
TCSEC or ITSEC for security functionality and assurance (which gives the re
level of confidence in the correctness and effleciess of thesecurity
functionality). It should allowassurance and security functionalitfasses or
profiles up toabout theE3/B2 level. Fbwever, the spedifation also allows systen
with lower levels ofsecurity, where other requirements such as performance
more important.

Security Architecture Goals

The security archécture should confine kesecurity functionality to a trustedre,
which enforces thessential part of the security policy such as:

® Ensuring that object invocations grmtected as redred by thesecurity policy.
® Requiring access control and auditing to leef@rmed on object invocation.

®* Preventing (groups of) application objects from interfering with each other ol
gaining unauthorized accessdach other’s state.

It must be possible to implement this trusted com puting base so it cannot be by
and kept small to reduce the amount of code which needs to be trusted and e\
in moresecure systems. This trusted core is distributed, so it mustdsébfe for
different domains to dve differentlevels of trust.

SecurityService:v1.0 NovemhE996 15-7

15

It should also be possible to construct systems wparicuar Security services cal
be replaced by ones using different security mechanisms, or supporting differel
security pokieswithout changing the application objects or ORB when using the
(unless these objects haveoskn to do this in a mechanism or polgpecific way).

The security architecture should be cotita with stardard distributed security
frameworks such as those of POSIX and X/Open.

15.2 Introduction to the Speitétion

15-8

This documenspecifies how to providsecurity instard-alone and distributed
CORBA-compliant systems. Introducin@pject Securityservices does not in itself
provide security in anobject environment; security @ervasive, so imbducing it has
implications on the Object Request Broker and on most Object services, Comn
Facilities and object iplementations.

This document defines thmresecurity fcilities and interfaceequred to ensure a
reasonable level of security of a CORBA-compliant system as a whole. Itésellh
the security dcilities required in the OS RFP3 and associated OMG White Pape
Security, except wére it is felt that this would be too big a step at this stage
(particularly when relevant standards are not in place). The specificatiodésclu

® A security nodel andarchitecture which describe the security concepts and
framework, the security objects needed to implement them, and how this col
security threats.

® The security &cilities available to applications. This includesurity provided
automatically by the system, protectialy applications, even those unaware of
security. The securityatilities can also be used Bgcurity-avare applications
through OMG IDL interhces defined in this specification.

® The security &cilities and interfaces available for performing esser#alirity
administration.

® The security facilies and interfaces available to ORB implementors, to be us
the production of secure ORBSs.

® A description of howSecurityservices affect the CORBA 2 ORB interoperabili
protocols.

Items not included in this specificati@re:

® Support for interoperability between ORBs usififferent security mechanisms,
though interoperability of different ORBs using the same security mechanisn
supported.

® Audit analysis tools, thagh an audit service that both the system and applica
can use to recordvents is included.

CORBAservices: Common Obj&arvices Specification

15

®* Management interfaces other thessenial security policy managementtérfaces,
as management services hdeen identiied as a Common Facility. The securit
policy management interfaces were viewed as a necessary feature of this
specification as it is notgssible todeploy a secure sfem without defining and
managing its policy.

® Interfaces to allovapplications to access cryptraghic functions for use, for
example, inprotecting tleir stored data. Theseténmfaces are not provided for tw
reasons: first, cryptography is ganally a low-level prinitive, used by Security
Service inplemenbrs but not needed by the majority of application developers
second providing a cryptographic interface woulelquire aldressing a variety of
difficult regulatory and import/export issues.

® Specific security policy profiles.

The security model and architectwgecified is extensible, to allow addition of furt
security fcilities later. Adlitional securityfacilities could bedesigned as ORB
extensions, Security Objeservices, or Common Facilities, aspappriate.

15.2.1 Conformance to CORBA Security

Conformance to CORBA security eers:

® Main security functionality. There are two possible levels:

» Level 1 This provides a first level decurity for apptations which are waware
of security and for those having limited requirements to enforce their own
security interms of &cess controls and auditing.

» Level 2 This provides morsecurity fcilities, and allowspplications to contrc
the security provided at object invocation. It also includes admatitst of
security policy, allowing pplications adminigring policy to be podble.

® Security Functionality Options. These are functions pected to be redred in
several ORBs, so amorth including in this specification, bare not generally
requred enough to fornpart of one of the main security functionality levels
specified above. There is only one such option in the specification.
» Non-repudiation This provides generation and checkingesfdence so that
actions cannot be repudiated.

This specification is desighed tdad security pdkies to be replaced. The
additional pakies must also conform to thipecification. This inclues, for
example, new AccedBolicies.

® Security Replaceability This specifies if and how the ORB fits witlifferent

Securityservices. There are two possild:

* ORB Services replaceabilitfhe ORB uses interceptor interfaces to call on
object services, including security ones. It must use the specified intercept
interfaces and call the interceptors in the specified order. An ORB conform
this does not include any significant security specifidegas that is in the
interceptors.

SecurityService:v1.0 NovemhE996 15-9

15

15-10

» Security Service replaceabilitfhe ORB may or may not use interceptors, bu
calls on Securityservices are made via the replaceabilitieiifaces specified in
Section 15.7, Implementor’s Security Intrés. These interfaces are positior
so that the Security services do not need to understand how thevaRB (for
example, how the required policy objects are located), so they can be repl
independently of that lawledge.

If the ORB does not conform to one of these replaceability options, the stan
security poicies defined in thispecification cannot be replaced by others, nor
the implementation of the Securisgrvices. For example, it would not be poss
to replace the standard access policy by a label-based policy if one of the
replaceability ofions is not spported. Note that sonreplaceability of thesecurity
mechanism used for security associations stdly/be provided if the
implementation ses some standard generic interfaceSecurityservices such a:
GSS-API.

An ORB that supports one or both ottte replaceability options may Becurity
Ready(i.e., supports ngecurity functionality elf, but ready to have security
added) or may qport security functionality Level 1 or Level 2.

® Secure Interoperability. Possibilities are:

e Secure Interoperabiy - Standard:An ORB conforming to standard secure
interoperability can generate and use security information in the IOR and «
send and receiveecure requests to/from other ORBs using the GIOP/IIOP
protocol with thesecurity (SECIOP) enhancements defined in Sectio8, 15
Security and Interoperability, if they both use the same undersdngrity
technology.

» Standard plus DCE-CIOP fion: An ORB conforming to standard plus DCE
CIOP secure imroperability suports all functionality requed by stardard
secure interoperability, and also providgesure interoprability (using the DCE
Security services) baeen ORBs using the DCE-CIOP probl.

If the ORB does not conform to one of these, it does not use the &Ity
enhancements, so will intggerate securely only in an environmeapiecific way.

The conformance statement required for a CORBA conformant security
implementation is defined in Appendix F, Conformance Statement. Thiglexla
table which can be ticked to show what the ORB conforms to.

15.2.2 Specifican Structure
Normative and Non-nonative Material

This specification contains normative and non-normative (explanatory) material
Sections 15.5 through 5.8 angperdices A, B, D, and F are normative.

CORBAservices: Common Obj&arvices Specification

15

Section Summaries

Section 15.1and its subséions, which is an introduction to security pdins why
security is needed idistributed object systems, and enumeratesdoarity
requirements for secure distributed object systems.

Section 15.2and its subseions provide an introduction to and overview of the
specification.

Section 15.3and its subsdions describe theecurity reference model which
provides the overall framework for CORBgecurity.

Section 15.4and its subsdions describe theecurity architecture, which underlies
this specificion. This introdicesdifferent usersviews ofsecurity and iyes an
outline of how secure CORBA-compliant systems are coct&tau It also presents hi
level models of the objects involved fdifferentviews, and describes how they ar
used.

Section 15.5and its subsections specify the security faesitand iterfaces availabl
to application developers Most functions can be implemented transparently to
application, though interfaces and additional functionality ardablaitosecurity-
aware applications.

Section 15.6and its subseions specify thead ministrator’'s facilities and interfaces
Only essential administration functioase defined by this specification; other
administrative capabilities are exgted to be developed side the Object Services
Program.

Section 15.7and its subsdions specify thelmplementors interfacesused to build
secure CORBA systems. This section spesithe IDL irterfaces of thesecurity
objects available to ORB iptemenbrs, and describes the relationship and
dependenies of these objects on the ORB core and also on extgecalityservices
where these are used.

Section 15.8and its subseéions specify the architecture fonteroperability in a
secue, distibuted object system. It also speesf howsecurity affects the CORBA
GIOP/IIOP and DCE ESIOP interoperability poobls.

Appendix A, Consolidated OMG IDL, contains the coplete OMG IDL
specification, including the module structure, of the interfaces defined in this
document, except for tise that are CORBA core exstons and defined in Append
B, Summary of CORBA 2 Core Changes.

Appendix B, Summary of CORBA 2 Core Changesdescribes the changes requi
to the CORBA 2 core fosecurity.

Appendix C, Relationship to Other Servicesdescribes the relationship of the
Securityservices to other object services and to the comraoititfes.

Appendix D, Conformance Details describes in more detail what conformance tc
security functionality conformance levels and the security implementation
conformance points redes.

SecurityService:v1.0 NovemhE996 15-11

15

Appendix E, Guidelines for a Trustworthy System provides gidelines for
implementation of a trustworthy system, which provides protection againstdoeity
threats in a distributed object system with the required assurance of its csscain
effectiveness.

Appendix F, Conformance Statementdescribes the conformance statement, wh
must accompany a secure CORBAplementation and what this implementation
contain.

Appendix G, Facilities Not in This Specification outlines sectity facilities that rave
not been included in this specification, but left for another phaseaofrity
specifications.

Appendix H, Interoperability Guidelines, includes guidelines for definingecurity
mechanism tags in interoperable objecerefces, and examples of the use of the
secure iner-ORB probcol SECIOP.

Appendix |, Glossary.

Proof of Concept

With the exception of Audit, Non-repudiati@ervices, and the revised lIORofocol
extensions for security, all thadilities in this specification haugeen prototy ped by «
least one of the submitting com panies.

The Non-repudiation Service interfaces are based upon the draft IETF Non-rept
functionality as defined in the IDUP-GSAPI proposal.

15.3 Security Reference Model

This section describessecurity reference adel that provides the overall frawork
for CORBA security. The purpose of the referenceletds to show the flakility for
defining many different securitgolicies that can be used to achieve tphprapriate
level of functionality and assurance. As such, the securfityerece nodel fundions as
a guide to the security architecture.

15.3.1 Definition of a SecuritReference Model

A reference model describes how and where a secure system enforces security
Security polkties define:

® Under what conditions active entities (such as clients acting on behalf of user
access objects.

® What authentication of users and other principals is required to prove who th
what they can do, and whether they can delegate tights. (Aprincipal is a
human user or stem entity that is registed in and is authentic to the system.

®* The security of communications between objects, including the trustedqu
between them and the quality of protection of the data in transit between the

15-12 CORBAservices: Common Obj&srvices Specification

15

®* What accountability of whickecurityrelevant agvities is needed.

Figure 15-1 depicts the model for CORBacure object systems. All object
invocationsare mediated by appropriasecurity to endrce policies such as access
controls. These functions should be tamper-proof, always be invokedredpgined by
security policy, and function correctly.

S

A

user

request request

ORB

\

Security Im plementation
enforcing securitypolicies

Figure 15-1 A Security modeffor object systems

Many applicationobjects are unaware of tlsecurity policy and how it is enfoed.
The user can be authenticated prior to calling fii@ation client and thesecurity is
subsequently enfced automatically during objectviacations. Some applications w
need to control or influence what policy is enforced by the system on their beh:
will not do the endrcement theselves. Some applications will need to enforeartt
own security, for exaple, to control access to their own data or audit their own
security relevant activities.

The ORB cannot be completely amare ofsecurity as this would result in insecur
systems. The ORB is assumed tdeaist handleequests correctly withowtolating
security policy, and tocall Securityservices asequred bysecurity policy.

A security malel normally defines apecificset of securitypolicies. Because the
Object Management Architecture (OMA) must supportidewariety ofdifferent
security pokies to meet the needs of many commercial markets, a sirggéam @e of
security nodel is not appropriate for the OMA. Insteadsezurity reference model
defined that provides a framework for building many different kinds otiesli The
security reference atel isa meta-policybecause it is intended to encaasg all
possiblesecurity paicies suported by the OMA

The meta-policy defines thabstract interdices that are provided by thecurity
architecture defined in this document. Thedal enumerates tsecurity functions
that are defined as well as the infotioa available. In this manner, the meta-polic

SecurityService:v1.0 NovemhE996 15-13

15

15-14

provides gidance on theermitted flexbility of the policy definition. The remaining
sections desire theelements of the meta-mael. The description is kept deliberat:
general at this point.

15.3.2 Principals and Their Security Attributes

An active entity must establish its rights to access objects in the system. It mus
be a prircipal, or a clienfacting on behalf of a principal.

A principal is a human user or ggm entity that is registed in and authentic to th
system. Initiating principals are the ones that initiate activities. An initiating prin
may be authenticated in a number of ways, the most common of which for hun
users is a password. For systems entities, the aithagah information such a#s
long-term key, eeds to be associatedgth the object.

An initiating principal has at least one, and possibly seveealtiies (represented it
the system by attributes), which may ksed as a means of:

® Making the prirtipal accountable for its actions.

® Obtaining access tprotected objects (though other privilege attributes of a
principal may also beequired for access control).

® |dentifying the originator of a message.

® |dentifying who to charge for use of the system.

There may be several formsidentity wised fordifferent purmses. For example, th
audit identity may need to be anonymous to all but the audit aidtndtior, but the

accesddentity may need to be understood so it can be specified as an entry in
access control list. The same value of the identity can be used for several of th

The prircipal may also have privilege abutes which can be used decide what it
can access. A variety of privilegerdiutes may bavailable depending on access
policies (see Access Policies under Secfiér3.4). The privilege attributes, which
principal is permitted to take, are known by the system. At any one timprittogpal
may be using only a subset ofepermitted attributes, either chosen by the princ
(or an application running on its behalf), or by using a default set specified for
principal. There may be limits on the duration for which these privilegibutes are
valid and may be controls on where and when they can be used.

Security attibutes may be acdped in three ways:

® Some attributes may be alaile, without authentication, to any principal. This
specification defines one such attributajled Public.

® Some attributes are acquired through authentication; identity attributes and pi
attributes are in this category.

® Some attributeare acqured throughdelegation from other praipals.

CORBAservices: Common Obj&arvices Specification

15

When a user or otharincipal is authenticated, it noatly supplies:
® |ts security name

®* The authentication information needed by the paicauthenitation method
used.

®* Requested privilege attributes (though the gpal may change these later).

A principal's security attributeare maintained isecure CORBA systems in a
credential as shown in Figure 15-2.

Credential - containing security attributes

unauthenticate authenticated attributes
attributes .
((pnvﬂege]

identity
attributes

- Public

attributes

Figure 15-2 Credential containing security attributes

15.3.3 Secure Object Invocations

Most actions in the system are initiated by pijrals (or system entitiescting on thei
behalf). For example, after the user logs onto the system, the client invokes a
object via an ORB as shown in Figure 15-3.

request request
ORB
client-side security on irocation target-side segity on invocation
security asociation, acess contrgl security asociation, access contfo
message protection, audit message protection, audit

Figure 15-3 Target Object via ORB

SecurityService:v1.0 NovemhE996 15-15

15

15-16

What security functionality is needed on object invocation depends on security
It may include:

® Establishing &ecurity associationbetween the client and target object so that «
has the required trust that the other is whadaims to be. In many iplementations
associations will normally persist for many interactions, not just a single invoc
(Within some environments, the trust may beieshd by local means, without u
of authentication and cryptography.)

® Deciding whether this client (acting for this principal) can perform this operati
this object according to the access control policy, as describ®ection 15.3.4,
Access Control Module.

® Auditing this invocdion if required, as dgeribed in ®ction 15.3.5, Auditing.

® Protecting the request amesponse from modification or eavesdropping in trar
according to the specified glity of protection.

For all these actionsecurity functions may beerded at the client and target obje
sides of the ingcation. For example, protecting a request mayireqategrity sealing
of the message bafe sending it, and checking the seal atttnget.

The association is asymmetric. If the target object invokes operations on the cl
new association is formed. It is possible for a client to have more than one ass
with the same target object. The application iaware ofsecurityassociations; it see
only requests and respses.

A secure system can also invoke objects in aedare sgtem. In thiscase, it will not
be possible to establish trust between the systems, and the client system may
the requestpassed to the target.

Establishing Security Associations

The client and target object establisBexureassociation by:

® Establishing trust in one another’s’ identities, which may involve the target
authenticating the client’s security attributes and/or the client’'s autiagntjcthe
target’s security name.

®* Making the client’s credentials (including its security attributesjilable to the
target object.

® Establishing the security context whichllvibe used when ptecting requests ant
resporses in transit between client atedfget object.

The way of establishing security association between client and object depends
the security policies governing both the client and target object, whethearehaythe
same domain, and the underlying security mechanism, for example, the type o
authentication and key distribution used.

The security paties define the choice dfecurityassociation options such as whet
one-way or mutual authentication is wanted between client and target, and the
of protection of data in transit he¢en them.

CORBAservices: Common Obj&arvices Specification

15

The securitypolicy is enforced using underlyirgpcurity mechanisms. Thisauel
allows a range of such mechanisms for security associations. For example, the
mechanism may use symmetric (secret) key telduyy, asymmaeic (public) key
technology, or a combination ofeébe. The KeyDistribution services, @rtification
Authorities and other underlying Seity services, which may be used, are not vis
in the model.

Message Protection

Requests and responses can béegted for:

® Integrity. This prevents undetected, unauthorized nicatibn of messages and m
detect whether messaga® received in the correct order and if angssages hay
beenadded or removed.

® Confidentiality. This ensures that theessages have nbeenread in transit.

A security association may in some environmentsabée to provide integrity and
confidentality protection through mechanisms inherent in the environment, and
avoid having to use encnyton.

The securitypolicy specifes the strength of intey and confidentiality protection
needed. Achieving this integrity protection may requiealing the rassage and
including sequence numbers. Cidehtiality prote¢cion may reqire encrypting it.

This security reference adel allows a choice of cryptagphic algorithms for
providing this protection.

Performing a request on a remote object using an ORB and associatedsseswch a
TP, might cause a message to be constructed to send to the target as shown i
following diagram. At the target, this process is reversedresults in the ORB
invoking the operation on the target passing itgheneters sent by the client. The
reply returned fdows a similar path.

Message prection could beprovided atdifferent points in the mssage handling
functionality of an ORB, which would affect how much of the message is prote

SecurityService:v1.0 NovemhE996 15-17

15

15-18

operation (parameters)

on target object reference

parameters

AB/OA

always protected if \

parameters any message protection is done
. always protected, so parameters can
operation| parameters e ysed only irspecifiedoperation
) . protected, so operation is on right object
target id| operation| parameters (means message must be back in clear
before being routed to targebject)
service) . service infole.g. GIOPservice contexts)
info | taroet id| operation| parameters 5qded by seices such as TP.
Service info should be pmtted.
host | service) . the host address cannot be encrypted
addrest info | t2r9et id| operationf parameters as this would prevent routing to the
\ correct port /
message header aprbtected message A

Figure 15-4 Message mtection

Messages are protected according to the quality of protestipried which may be
for integrity, but may also be for confidealtty. Both integity and confidentiality

protectionare applied to the sanmmart of the message. The request and response
be protectedlifferently.

The CORBA security radel can prtect messages even wheretk is no seaity in the
underlying communications software. In this case, the messateetae by CORBA
security includes the target id, operation aparameters, andlso any service

information included in the message.

In some systemgqrotection may be providelelow the ORB rassage layer (for

example, using theecure sockets layer or everoma physical meas). In this case, a
ORB that knows such security available will not need to provide its ownessage
protection.

CORBAservices: Common Obj&arvices Specification

15

Note that as messages will normally be imitggproteced, this will limit the type of
interoperability bridge that can be used. Any bridge that changesdtexted part o
the message after it has been integftiycorfidentiality) protected will cause the
security check at the target to fail unless a suitable security gatewagdsai
reprotect the message.

15.3.4 Access Control Model

The model depicted in Figure 15-5 provides a simple framework for wiéfieyent
access control security policies. This firamwork consists of two lars: anobject
invocationaccess policy, which is enforced automally on dbject invocation, and a
application access policy, which the application itself enforces.

The object invoction access policy @verns whether this client, acting on behalf of
current prirtipal, can invoke the requested opera on this targebbject. This policy
is enforced by the ORB and ttBecurityservices it uses, for all applibans, whethe
they are aware ofecurity or not.

The application object access policy is enforced within the client and/or the obj
implementation. The policy can be concerned with mlirig access to its internal
functions and data, or applying further controls on object invocation.

All instantations of the security reference moghdce at least some trust in the O
to enforce the access policy. Evenairthitectues where the access control niagidn
occurs solely within the client and target objects, the ORB is still requirealitiate
the request paramats and ensure essage delivery adescribed above.

S — - - - - - - - - = — - - - - - - — =

Client

Y request request
ORB
[client—side invocatioraccess decisio%s [target—side invocation accessailgons

Figure 15-5 Access cotrol model

SecurityService:v1.0 NovemhE996 15-19

15

15-20

The access control model shows tient invoking an operation as specified in th
request, an@dlso shows applidt®n access decisions, which can be independent o

Object Invocation Access Policy

A client may invoke an operation on ttegget object aspecified in the request only
this is allowed by the object invocati@tcess policy. This is enforced Bgcess
Decision Functions

Client side access decision functions define the conditionalioat the dient to
invok e the specified operation on the target object. Target side accessrdeci
functions define the conditions that allow tbieject to accept the invocation. One
both of these may not exist. Some systems may support target side controls ol
even then, only use them for some of tlogeots.

The access policy for object ingation is bilt into these access decision functions
which just provide ags/no answer when asked to check ifesmss is allowed. A ranc
of access policies can be supported as described in the Access Relities.

The access decision function usedatiject invocation talecide whether access is
allowed bases its desidon on:

®* The current privilege attributes of the princigs¢eSection 15.3.2, Pririples and
Their Security Attributes). Note thatabe can include capabilities.

®* Any controls on these aitbutes, for examle, the time for which they are valid.
® The operation to be performed.

®* The control attributes of thiarget objec(see the Access Policisgction).

The first three of thse functions are available part of the environment of the obje
invocation.

The control attributes for the targebject are associated with the object when it i
created (though may be changed lateseifurity policy permits).

Application Access Policy

Applications may also enforce accessi@es. An application access policy may
control who can invoke the apgdtion, extending the object invd@m access policy
enforced by the ORB, and taking irdocount other items such as the value of the
parameters, or the data beiagcessed. As fastardard object inwecationaccess
controls, there may be client and target object accessiatedunctions.

An application object may also control access terfigrained funtons and dta
encapsulated within it, which are not separate objects.

In either case, the application will need its own accessidadiunction to enforce th
requred access control rules.

CORBAservices: Common Obj&arvices Specification

15

Access Policies

The general access control model described here can be useddd supjide range
of access policies including Access Control List schemes, label-based scheme:
capability schemes. This sectidescribes the overall awdtization model used faall
types of access control.

The authorization model is based on the use of access decisidiorisnevhichdecide
whether an operation or function can be performed by appbaegss control rules
using:

® Privilege attributes of the initiatqcalled initiator Access Control Information o
ACI in ISO/IEC 10181-3).
® Control attributes of the target (sometimes known as the target ACI).

® Other relevant information about the action such as the operation and data,
about the context, such as the time.

Action and Initiator
contextinfo privilege attributes

Y

access allowed? Access desion function Target

enforcin -— .
9 control attributes
access control rules

Figure 15-6 Authorization model

The privilege and control attributese the main variables used to control access,
so this section focses on these.

Privilege Attributes

A principal can have a variety of privilege attiba used for access conltsuch as:
®* The prircipal’s acces&entity.

®* Roles, which are often related to the user’s job fions.

® Groups, which normally reflect organizational affiliations. A group could reflec
organizational hierarchy, for example, tepartment to which thesar belongs, ©
a cross-organizational group, which has a common interest.

® Securityclearance.

® Capabilities, whichidentify thetarget objects (or groups objects), and their
operations on which the principal idaated.

® Other privileges that an enterprisefides aseing useful for controllingccess.

SecurityService:v1.0 NovemhE996 15-21

15

15-22

In an object system, which may be large, using individual ideatfor access contr
may be difficult if many sets of cdrol attributes need to be changed when a user
or leaves the organization or changes his job. Where possible, controls should &
on some grouping construct (such as a role or organizational group) for scalab

The security reference modadbes not dictate the particulpriviiege atributes, that
any compliant secure system must support; howeverspsification does define ¢
standard, extensible set of privilegeribtite types.

Note: in this specificationprivilege is often used as shorthand fmivilege attribute.

Control Attributes
Control attributesire associated with the target. Examples are:

® Access control lists, whicldentify permitted gers by name or other privilege
attributes, or

* |nformation used in label-based schemes, such as the classifioh an object,
which identifies (according to less) thesecurityclearance of principals allowed
perform particlar operations on it.

An object system may have many objeeach of which may dve many operations
so it may not be praictal to associate controltabutes with eacloperation oneach
object. This would impose too large an overhead on the admtigstiaf the system
and the amount of storage needed to hold the information.

Control attributesare therefore gected to be shared by cabeigs of objects,
particuarly objects of the same type in the same sgcyolicy domain. However,
they could be associated with an individual object.

Rights

Control attributes may bassociated with a set of operations on an object, rather
each individuabperation. Therefore, ssar with specified privileges may hakights
to invoke a specific set of operations.

It is possible to dfine what rights iye access to what operations.

Access Policies Supported by Thipegification

The model allows a range of access policies using contridwges, which can grou
subjects (using privileges), objects (using domains), and operations (using righ

This specification defines a partlem access policy type and associated managen
interface as part of sedty functionality Level 2. This is defined in
DomainAccessPolicy Interface und®ection 15.6.4, Acess Policies

Regardless of the access control policy management interface used (i.e. regar
whether the particular Level 2 accgmdicy interfaces or other interfaces not defin
in this specification are udg all access decisions on objectdnationare made via
standard access decision interface, so the accesslqoolicy can be changeeither

CORBAservices: Common Obj&arvices Specification

15

by administrative action on, or substitution of, the objects that define the policy
implement theaccess decision. Howevalifferent management iatfaces Wil
ordinarily berequired for management of differenpgs of control attribtes.

15.3.5 Auditing

Security auditingassists in the detection of actual or attemseclrity violations.
This is achieved by recording detailss¥curity relevant eventsin the system.
(Depending on implementation, recording an aegiént may inolve writing event
information to a log, generating an alert or alarm, or some other action.) galidies
specify which events should be audited under what circumstances.

There are two categories of audit policisgstem audit policiesyhich control what
eventsare recorded as tiresult of relevant system activities, aapplication audit
policies,which control which events are audited by applications.

System events, which should be aabie, includesvents such as authentication of
principals, changing privileges, success or failure of objeatdation, and the

administration of securitpolicies. These systemvents may occur in the ORB or i
security or other sergés, and these components generate the required audit rec

Application events may be securitglevant, and therefore may needlitimg
depending on thepgplication .For example, an application that handles money teas
might audit who transferred how much money to whom.

Events can be categorized by event family (e.g. system,clialaapplication service),
and event type within that familfzor example, there are definedent types for
system events.

SecurityService:v1.0 NovemhE996 1523

15

15-24

— - - - - - - = o — - - - - - - - =

" client appication | | target apptation |
audit | audit |
request request
ORB
security asociation, security asociation,
invocation access control et invocation access controls efc

Figure 15-7 Auditing model

Potentially a very large nuber of events could beecorded; audit palies are used t
restrict what types odvents to audit wer which circumstances. System auygtiticies
are enforced automatically for applicationsgven security uamware ones.

The invocation audit policy is eoffced at a point in the ORB where the target ob,
and operation for the request are known, andre¢ply status is known. The model
supports audipolicies where the decision on whether taliaan event can bdased
on the event type (such as method invocationptete, access comt check done,
securityassociation made), the success or failure ofaéhént (Rilures only may be
audited), the object and the operatiming invoked, the audit id of principal on whc
behalf the invocation is being done, and even the time of day.

This specification defines a partlew invocation auditpolicy type and associated
management interfaces as part of functionality Level 2. @lisvs decisions on
whether to audit an invocation to depend on the object type, operagiEmt type, anc
success or failure of this.

The specification also definesparticular audit policy type for application auditing
which allows decisions on whether to audit 8vent to bébased on thevent type an
its success or failure.

Events can either be recorded on audit trails for later sisaty, if they are deemed
be serious, alarms can be sent to an administrapplication audit tails may be
separate from stem ones. Thispecification includes how audit records are genel

CORBAservices: Common Obj&arvices Specification

15

and then written to audit chaels, but not how these records #éiteered later, how
audit trails and channels are kegecue, and how the records can be collected an
analyzed.

15.3.6 Delegabn

In an object system, a clienalls on an object tperform an operation, but this obije
will often not complete the operatiorsélf, so vill call on other objects to do so. T
will usually result in a chain of calls on other objects as shown in Figure 15-8.

Target
Object

Object

Figure 15-8 Delegation model

This complicates the access modescribed in Section 15.3.4, Access Control Mo
as access decisions may need to be madacht point in the chain. Different
authorization schemes requiéferentaccess control information to be made
available to check which objects in the chain can invoke which further operatio
other objects.

In privilege delegation the initiating principal’s access control infortioa (i.e. its
security attribues) may bealelegated to further objects in the chain to give the
recipient the rights to act dts behalf under specified circigtarces.

Another authorization schemerisference restriction where the rights to use an
object under specified circumstances are passed as part of the olgemiaefto the
recipient. Réerencerestriction is not included in this specification, though descri
as a potential future security facility in Appendix Excilities Not in This
Specification.

SecurityService:v1.0 NovemhE996 15-25

15

15-26

The following terms are used in describidglegation options.
® [|nitiator : the first client in a call chain.
®* Final target: the final recipient in aall chain.

® |ntermediate: an object in aall chain that is neither the initiator nor the final
target.

®* Immediate invoker: an object or client from which an object receivesal.

Privilege Dédegation

Inmany cases, objects perform operations on behalf of the initiator of a chain of
invocations. In sucltases, the initiator needsdelegate some or all of ifwivilege
attributes to the intermediate objects which will act on its behalf.

Some intermediates in a chain may act on their own béenagh if they haveeceived
delegated credentials) and perform operations on other objects using their own
privileges. Such intermediates must be (or represent) principals so that theytaiar
their own privileges to be transmitted to objects they invoke.

Some intermediates may need to use their own privileges at some times, and di
privileges at other times.

A target may wish to restrict which of its op#was an invoker cangsform. This
restriction may be based on the identity or other privilege attributes of the initiatc
target may also want to verify that thequest comes from an authorized intermec
(or even check the whole chain of inteaetes). In these cases, it must be possib
distinguish the privileges of the initiator and thosecath intermdiate.

Some restrictions may or may not be placed by the foit@bout the set abbjects
which may be involved in a deletyan chain.

When no restrictionare placed and only the initiator's privileges being used, thi:
case is called ipersonation.

When restrictions are placed, additional information is used so that objects can
whether or not their dracterisics (e.g. their name or gart of thkeir name) satisfy th
restrictions. In order to law clients or initating objects tespecify this aditional
information, objects can be (securely) associated with these chréstics(e.g. their
name).

CORBAservices: Common Obj&arvices Specification

15

Overview of Delegation Schemes

There are poterdlly a large nurber ofdelegation rodels. They can all beaptued
using the following sentence.

An intermediate invoking a target object mpgrform:

1. one method on one object

2. several methods on one

object
3. any method on a. one object
b. some object(s) (target restritions)
c. any object (no target restrictions)

using (no privileges
(a subset of the initiator’s privileges (simple delegtion)
(both the initiator’'s and its owprivileges (composite delegation)
(received privileges and its owprivileges (combined ortraced
delegation, depending on
whether privileges are
combined or concatenated

during some validity period (part of time constraints)

for a specified number of invocations (part of time constraints

When delegatingrivileges through a chain afbjects, the caller does not know wh
objects will be used in completing thequest, and therefe cannot easily restrict
privileges toparticdar methods on objects. It garally relies on the target’s contro
attributes to do fks.

A privilege delegation scheme may provide any of the other controls, though ni
scheme is likely to provide all of them.

Facilities Potentially Aailable

Different facilities are available to intermediates (or clients) before initiatiject
invocations and to intermediate or target objects accepting an invocation.

Controls Used Beforénitiating Object Invocations

A client or intermediate can specify restrictions on the use of the access contrc
information provided to anothertermediate or to a targebject. Interhces mayllow
support of the following facilities.

® Control of privileges delegated An initiator (or an intermediate) can restrict wh
of its own privileges arelelegated.

SecurityService:v1.0 NovemhE996 15-27

15

® Control of target restrictions. An initiator (or an intermediate) can restrict whi
individual privileges can be used. This restriction mpghato particlar objects, o
some grouping of objects. It may restrict the target objects, which may use s
privileges for access control, and the intermediates, which cardelsgate them

Control of privileges used As previously éscrited, there are several options f
deciding which privileges an interrdiate object may use when invoking anoth
object. Note that delegated privilega® not actualldelegated to a single targe
object; they are available to aopject running under the same identity as the te
object in the target object’s address space (since any objects in the target's
space may retrieve the inbounde@enials and any object sharing the target’s
identity may successfully become the caller’s delegat

The specified interfaceslow the following.

* no delegation the client perrits the intermediate to use ipsivileges for acces
controldecisions, but does npermit them to belelegated, so the termediate
object cannot use these privileges when invoking the next object in the ch

client credentialgintermediate intermediate credely Target

@ Object

» simple delegation the client permits the intermediate to assumeiitgleges,
both using them for access control decisionsdgldgating them to other othe
The target object receives only the client's privileges, and does not know w
intermediate is (when used without targestridions, this is known as
impersondon).

Client

Figure 15-9 No delegation

client credentialgintermediate client credentials Target

@ Object

Client

Figure 15-10Simple delegation

15-28 CORBAservices: Common Obj&srvices Specification

15

» composite delegationthe client permits the interrdiate object to use its
credentials andelegate them. Both the client privileges and the immediate
invoker’s privileges are passed to the target, so that both the pligikges anc
the privilegesfrom the immediate source of the invocation can logvidually
checked.

: client credentialgintermediate client & intermediatels Target
Client .
Object /~credentials

Figure 15-11Composite delegation

» combined privileges delegtion: the client permits the interadiate object to us
its privileges. The intermediate converts these privileges drgdenials and
combines them with its own credentials. In that case, the target cannot dist
which privileges come from which pigipal.

Figure 15-12Combined privileges delegation

« traced delegation the client permits the intermediate object to useiigileges
and delegate them. However,esch inermaliate object in the chain, the
intermediate's privileges are added to privileges propagated to provide a ti
the delegates in the chain.

intermediate
objects

. client credenti \, chain of credentjalsTarget
Client

Figure 15-13Traced delegation

A client application may not see the differencenssin the last tiee options, it
may just see them all as some fornt‘adm posite”delegdion. However, the targe
object can obtain the credentials of intermediates and the initiator separately
havebeen transmittedeparately.

® Control of time restrictions. Time periods can bepalied torestrict the duration c
the delegation. In some plementations, the numer of invacations mayalso be
controllable.

SecurityService:v1.0 NovemhE996 15-29

15

15-30

Facilities Used on Accepting Object Invocations
An intermediate or a target object should be able to:

® Extract received privileges and use them in local access contrelaheci
Often only the privileges of the initiator are relevant. When this is not the case
the privileges of the immediate invoker may be relevant. In some cases, bot
relevant. Finally, the most complex authatibn scheme may require the full
tracing of the initiator andll the intermedites involved in aall chain.
In addition, some targets may need to obtain tiecellaneousecurity attributes
(such as audit identity, charging identity) and the assoctatgétrestridions and
time constraints.

® Extract credentials (when pernett) for use when making the next call as a
delegate.

® Build (when permittd) newcredenials from thereceived access control
information with changed (hormally reded) privileges and/adlifferenttarget
restridions or time constraints.

Specifying Dagation Options

The administrator may specify which delegation option should be used by defa
when an object acts as an intermediate. For example, he may specify whether
particular intermediate object normally delegates the initiatingcjpad's privileges o
uses its own, or both if needed. Also, the Access policy used at the targepeoult
or deny access based on more than one of the privileges it reeigethe initiabr's
and the intermediate's). This allows mapplications to be wware of thelelegation
options in use, as many of the controls for delegation are done automatically b
ORB when the intermediate invokes the next object in the chain.

However, a securitaware intermediatebject may itself specify what delegation i
wants. For example, it may choose to usedfiginal prircipal's privileges when
invoking some objects and its own when invoking others.

Technology Support for Delegation Options

Different security technologies support different delegation models. Currently, n
security technology supports all the options descrideal/e.

In Security Functioality Level 1, all delegation is done automatically in the ORB
according to delegatiopolicy, so theobjects in the chain cannot change the mod
delegation used, or restrict privilegeassed and where or when they are used.

Of the options on which credentials are passed, oolgelegatiorandimpersonatior
(simple delegation without antargetrestrictions)needto be supported.

CORBAservices: Common Obj&arvices Specification

15

In Security Functionality Level Z3pplications may use any of the interfaces speci
but may get &otSupportedxception retured. Note that these interfaces do albbw
the application to set controls such as targstrictions. Apendix G, Facilities Not i
This Specificéion, includes potential futuredsanceddelegation &cilities, which
include such controls.

15.3.7 Non-repudiation

Non-repudiation services providadilities to make users and oth@incipals
accountable for their actions. Irreéilie evidenceabout aclaimedevent or action is
generated and can be checked to provide proof of tiienadt can also be stored ir
order to resolve l@r disputesbout the ocawence or the nonoccurrence of the ev
or action.

The non-repudiatiorservicesspecified here are under the aahtof the applications
rather than used automatically on objectocation, scare only available to
applications aware of this service.

Depending on the non-repudiation policy in effect, one ompieces of evidence m
be requiied to prove that some kind of event or action has taken place. THeEnano
the characteristics afach depends upon that non-repudiapoticy. As an example,
evidence containing a timestamp from a trusted authority may bgeddo validate
evidence.

There are many types of non-repudiat@ndence, depending on theachcteristics o
the event or action. In order to distinguish between them, pestgre defined and &
part of the evidence. Conceptually, evidence may thusebe as being comped of
the following components:

®* The non-repudiation policfor policies) applicable to thevidence,
® The type of action or event,

® The paramaetdrs related to the type of action erent.

A date and time are also part of the evidence. This shows wherti@n @cevent tool
place and allows recery from some situations such as the compsenof a key.

The evidence includes some proof of the origin of data, so a recipient can clezel
it came from. It also allows the integrity of the data to be verified.

Facilities included here allow an applita to deal with evidence of a variety opis
of actions or events. Two commorpgs of non-repudiation evidenaee theevidence
of proof of creation of a message and proof of receipt of a message.

Non-repudiation of Creation protects against an originaifalse denial of &ving
created a message. It is moled at theoriginator by constructing and generating
evidence of Proof of Creation using non-repudiaservices. Thigvidence may be
sent to a recipient teerify who created the message, and can tredtand then mac
available for subsequesvidence retrieval.

SecurityService:v1.0 NovemhE996 15-31

15

15-32

Non-repudiation of Receipt ptects against eecipient's false deal of having
received a rassage (without necessarily seeing its content). It ieaet at the
recipient by constructing and generating evidence of Proof of Receipt using the
repudiation services. This is shown in Figure 15-14.

evidence ofreation — P

o (plusmessage) o
Originator - - Recipient
-@— ©vidence ofeceipt

Figure 15-14Proof of receipt

One or more Trusted Third Parties need to be involved, depending on the choi
mechanism or policy.

Non-repudiation services may include:
® Facilities to generate evidence of an action and verify that evidence later.

* A delivery autlority which delivers the evidence (often with the message) fron
originator to therecipient. Such delivery autlority may generat@roof of origin
(to protect against a sedear's false denial of sending assage or its content) an
proof of delivery(to protect against a recipientade denial of avingreceived a
message or its content). Non-repuibia of Origin and 2livery are defined in 1S(
7498-2.

®* An evidence storage and retraéd facility used when aisputearises. An
adjudicatorservice may beequred to setle the dispute, using the stored evider

Object < Object
A B

¢ Service Reg/Rsp ¢ Dispute/Judgement

Non-Repudiation Services

Evidence Evidence o
Generation| | Storage | |Delivery| [(-ag—m|Adjudicator
and and Authority

Verification Retrieval

Service Reqg/Rsp

Figure 15-15Non-repudiation services

CORBAservices: Common Obj&arvices Specification

15

The non-repudiatiorservices illustrated in Figure 15-15 are based on the I1SO nc
repudiation model; as the athed box in the diagram indies, this specification
supports only Evidence Generation and Verification, which provides:

® Generation of evidence of an action.

® \erification of evidence of an action.

® Generation of a request for evidence related to a message sent to a recipiet
®* Receipt of a request for evidence related to a message received.

® Analysis of details okvidence of an action.

® Collection of the evidenceequred for long term storage. In this case, more
complete evidence may be needed.

The Non-repudiation Servicelalvs an application to deal with a variety of types
evidence, not just the non-repudiation of creation and receipt previdestyibed.

No Non-repudiation Evidence Delivery Autfity is defined by this specification; it
anticipated that vedors will want to customize #se authories (which are responsib
for delivering messages and related non-repudiation evidegoteely in accordance
with specific non-repudiion policies) to meet specialized markegjuirements. Alsc
no evidence storage andnetal services are specified, as other object services c
used for this.

Note that this specification does not provide evidence that a request on annasye
successfully carried out; it does megjure use of non-regiation within the ORB.

15.3.8 Domains

A domain (as specified in the ORB Intperability Architectue) is adistinct scope,
within which certain common characteristics are exhibited and comnhes ru
observed. There are several types of domain relevasgciarity:

® Security policy domain. The scope over which a security policy isread. There
may be subdomains falifferentaspects of this policy.

® Security environment domain. The scope over which the enforcem emiaditya
may be achieved by some means local to that environment, so does not nee
enforced within the object system. For examplessagesvill often not need
cryptographic protection to achieve the regdiintegrity wherbeing transérred
between objects in the same machine.

® Security technology domain. he commorsecurity mechanismare used to
enforce the policies.

These can be independent of the ORB tetbgy domains.

SecurityService:v1.0 NovemhE996 15-33

15

15-34

Security Policy Domains

A security policy domain is a set of objects to whichsacurity policyapplies for a
set of security related activities and is administered dgcarity authority. (Note that
this is often just called aecurity domain.) Thebjects are the domain members. T
policy represents the les and criteria that constrain activities of thtgects to make
the domain seae. Secuty policies corernaccess control, authenticatisgcure
object invocation, delegation and accability. An access cdnol policy applies to
the security potiies themselves, camiling who may administesecurityrelevant
policy information.

Security Authority

security

policy
managemer

Figure 15-16Security policy domains

Security policy domainprovide leverage fodealing with theproblem of scale in
security policy management (by allowimagplication of policy at a domain grdatity
rather than at an individual objectstance granatity).

Security policy domains permépplication of security policy inforation to security-
unaware obijets without requiring changes to their intexrés (by associating the
security policy management intadeswith the domain rather than with the objects
which policy is gplied).

Domains provide a mechanism fdelimiting thescope of administrators’ authoritie

Policy Domain Hierarchies

A security authority must be identifiable and resgibte for defining the policies to t
applied to the domain, but mallegate that respeibility to a nuniber of
subauthorities, forming slomains wire the sbordinate authoties’ policies are
applied.

Subdomains may rkfct organizational subdivisions or the division of respbility
for different aspects of security. Typically, orgartiza-related domains W form the
higher-level superstructuraijth the separation of different asgts of security formin
a lower-level structure.

CORBAservices: Common Obj&arvices Specification

15

For example, there could be:
®* An enterprise domain, which sets thecurity policy aarss the enterprise.

® Subdomains for different deagments, each cerstent with the enterise policy but
eachspecifying more specifisecurity paties appropriate to that department.

With eachdepartment, authority may be further devolved:
® Authority for auditing could be thpreserve of an audit administrator.

® Control of access to a set of objects could berdisponsibility of a specific
administrator for those objects.

This supports what is recognized as good security practisep@rates administratol
duties) while relecting established organizationsifuctues.

Figure 15-17Policy domain hierarchies

Federated Policy Domains

As well as being structured into superior/eudinate relationships, security policy
domains may also be federated. In a federagach domain retains most ité
authority while agreeing to afford the other limited rights. The federatiogeatent
records:

®* The rights given to bothides, such as the kind of access allowed.

® The trust each has in the other.

It includes an ageement as to howolicy differencesare handled, for example, the
mapping of roles in one domain to roles in the other.

Figure 15-18Federated policy domains

System- and Application-Enfaxed Pdicies

In a CORBA system, the “system” security policy isaaéd by the distributed OR
and the Securitgervices it uses and thederlying operating systems that support
This is the only policy that applies to objects unawareegirity.

SecurityService:v1.0 NovemhE996 15-35

15

15-36

The applicatiorsecurity policy is erdrced by application objects, which have thei
own security requirements. For example, they may want to cateelss to their ow
functions and data at a finer granularity than the sysietarity policy provides.

@) @)

O
applicationsecurity B
policy domain O

O O
system securitpolicy domain

Figure 15-19System- andpplicationenforced policies

Overlapping Policy Domains

Not all policies have the same scope. For example b@gcbmay belong to one
domain for access control and a difnt domain for auditing.

o

o o

access control
domain

o o

@]
audit domain

Figure 15-200verlapping policy domains

In some cases, there mayen be gerlapping policies of the same type (however,
specification does nakqure implementations to supportverlapping policy domain:
of the same type).

Security Environment Domains

Security policy domainspecify the scope over which a policy applies. $igcu
environment domains are the scope over which theregrhent of the padies may be
achieved by means local to the environment. Ther@nment supporting the object
system may provide thequied security, and the objects withinspecific
environment domain may trust each othecantain ways. Environment domaiase
by definition implementatioispecific, as different iplementations run in different
types of environments, which may have difint security daracteristics.

Environment domains are not visible applications or Security services.

In an object system, the cost of using the security mechanisms to enforaty sscL
the individual objectevel in all ervironments would often be prohibitive and
unnecessary. For exate:

CORBAservices: Common Obj&arvices Specification

15

®* Preventing objects from interfering with each other might require them to ex
in separate stem processes or virtual machinass(iming the generation
procedure could not ensure this puaien) but, in most object siems, this woul
be considered an unacceptablerhead, ifapplied toeach object.

® Authenticating every object individually could also ioge too large aoverhead,
particuarly where:

» There is darge object population.
» There is high connectivity, andehefore a large number sécureassociations.

» The object populéon is volatle, requring objects to berequently introduced t
the Security services.

This cost can be reded byidentifying security environment domains ere
enforcement of one or one policies is not needed, as thevisnment provides
adequate protection. Twopgs of environment domairase considered:

®* Message protection domainsThese are domains where iniigg and/or
confidentiality isavailable by some specific means, for example, ateilying
secure transpogervice is used. An ORB, which knows syxbtection exists, ca
exploit it, rather than provide its own message protection

® |dentity domains. Objects in an identity domain canask the same identity.

Objects in the same identity domain and

» when invoking each other, do not need authentication to establish who the
communicating with.

» are equally trusted by aths to handleredenials received from a clientor
example, if a client is prepared delegate its rights to one object in the dom
it is prepared talelegate the same rights to all of them. If any object in the
identity domain invokes a further object, thatgetobject is prepared to trust tl
calling object based on théentity of its identity domain.

Note that neither of these affect what access contpply 4o the object (except in th
if trust is requred and is noestablished with this domain, then accesislve deried).

Security Technology Domains

These are domains that use the sammirity technology for enforcing the security
policy. For exanple:

®* The same methods are available fpancipal authentication and the same
Authenticationservices are used.

¢ Data in transit is protected in the same way, using common key distribution
technology with idential algorithms.

® The same types of access control are used. For example, alpad@uain may
provide discretionary access control using ACLs using the same type of ident
privilege attribues.

®* The same audit services are useddatect awit records in a consistent way.

SecurityService:v1.0 NovemhE996 15-37

15

A particular secrity technology is normally sed to authenticate pgipals and to
form securityassociations between client and object and handle message prote
(Different technologes may be able to use the same privilegebates, for example
the same access id and also the same audit id.) poriant part of this is the secur
technology sed for key distribution. Tére are two main types ekcurity technolog;
used for key distribution, both of which aagailable in commercigiroducts:

®* Symmetric key techmlogy where a shired key is established using a trusted K
Distribution Service.

* Asymmetric (or “public”) keytechrology wrere the client uses the lplic key of
the target (certified by a Certification Authority), ihthe target usesr@lated
private key.

Public key technology is also theost convenient technology upon which to
implement non-repudiation, which has led to its use in several electrailic m
products.

The CORBA security inteafces specified here asecurity mechanism nead, so car
be implemented usingwide variety of security mechanisms and protocols.

Domains and Interperability

Interoperability between objects depends on whether they are in the same:
® Security technology domain

®* ORB technology domain

® Security policy domains

®* Naming and other domains

The level ofsecurity ineroperability fully defined in this first CORBAecurity
specification is limited, though it includes architecture thaallows further
interoperability to be added.

The following diagram sbws a franework of domains and is used to discuss the
interoperability goals of this specification.

15-38 CORBAservices: Common Obj&srvices Specification

15

Security Technology Domain 1

ORB

Security
Technologly
Gateway

CORBA 2
interoperdility
bridge

Security Technolog
Domain 2

Domain B

Figure 15-21Framework of @mains

Interoperating between Secity Technology Domains

Sending a message across the boundary betweediffexent security technology
domains is only possible if:

®* The communication between the objects does not need to be protected, so
is not used between them, or

® A security technology gateway has bgmovided, which allows mssages tpass
between the two security technology domains. A gateway could be pk sima
physically secure link between the domains and aseagent between the
administrators of the two domains to turn séfcurity on messages saner the
link. On the other hand, it could be a very complicated affair including a prot
translationservice with complicated key management logic, for example.

It is not a goal of this specification to define interoperability acBesurity
Technology Domains, and hencesipecify explicit supprt for security technology
gateways. This is mainly because the technology is immature anopajate commot
technology cannot yet be idendifl. However, where thgecurity technology in the
domains can supportare than onesecurity mechanism, thigpecification allows an
appropriate matching mechanism toitdentified and used.

Interoperating betweei®RB Technology Domains

If different ORB implementéons are in the same securitgchrology domain, they
should be able to interoperate via a CORBA 2 interoperability bridge. (This
specification extends the CORBA 2 interoperability specification to detail how se
fits in it.) However, there may still be restrictions on interoperability when:

SecurityService:v1.0 NovemhE996 15-39

15

15-40

® The objects are idifferent security policy domains, and the securityilaites
controlling policy in one domain are not understood or trusted in the other dc
As previously described, crossingecurity policy boundary can be htad by a
security policy federation agreement. This can be enforced in either domain «
gateway.

® The ORBs are imifferent naming or other domains, an@ssages would normal
be modified by bridges outside the trusted code of either ORBoament.
Security protection prevents tampering with the messages (andotieesedy
changes to object referess in them). In general, crossing of such domains wit
using a Security Technology gateway is nosgible ifpolicy requres even
integrity protection of messages.

15.3.9 Security Management and Administration

Security administration is concerned with managingviéous types of domains ar
the objects within them.

Managing Security Policy Domains

For securitypolicy domains, thedilowing is required:

®* Managing the domains themselves - creating, deleting them including contrc
where they fit in the domain structure.

®* Managing the members of the domain, including moving objects between da

®* Managing the policies associated with the domains - setting details of the se
policies as well as specifying which policiagply to which domains.

This specification focuses on management ofsédwurity policies. However, managir
policy domains and their members in geal are expected to lpart of the
Management Common Facilities and also affected byCitleections Service, so on
an outline specificion is gven here.

This specification includes a framework for administeringeasfurity polcies, and
details of how to administgrarticdar types ofpolicy. For example, it includes
interfaces to specify the default quality of fction for nessages in this domain, t
policy for delegating credentials, and the events to be audited.

General admiistration of all access camtl policies is not detailed, as the way of
administering access control policies is dependent on the typelio§. For example
different administration is needed for Adiased policies and label-based policies
However, the administration of the sttarxd DomainAccessPolicy is defined.

Access policies may uggghtsto group operations for access control. Administra
of the mapping of rights to operations is included in this specificaBach mapping
of rights to operations is used by the standard DomainAccessPolicy, aatsadre
used by other access policies.

CORBAservices: Common Obj&arvices Specification

15

Interfaces for federation agreements allowing interaction with peer domains is le
later security specification.

Managing Security Environment Domains

For environment domains, an administrator may have to specify the characteris
the environment and which objects are members of the domain. This will often b
in an environment-specific ay, so no management émfaces for itare specified her

Managing Security Technology Domains

For security technology domains, administration may include:
® Setting up and maintaining the derlying Securityservicesrequired in the domair

® Setting up and maintaining trust between domains in line with the agreemen
between thir management.

* Administering entities in the way required by this séguechnology. Erities to be
administered include principals, which hadentities, long-term keys, and
optionally privileged attributes.

Such administration is often security technolaggcific. Also, it may be done outsi
the object system, as it is a goal of this specificationltavadommonsecurity
technology to be used, aregten allow a singleser logon to object, asell as other
applications. This specification does not include ssedurity technologgpecific
administration.

15.3.10 Implementing the Model

This reference mael is suficiently gereral tocover avery wide variety ofsecurity
policies and application domains to allow conformangléementations to bprovided
tomeet a wide variety of commercial and governnsectire sgtems in terms of bot
security functionality and assumaa (Any inplementation of this model willeed to
identify the particlar securitypolicies it supports.)

The model also allowdifferent ways of putting together the trusteate of asecure
object system to address difént requirements. Ehe are a number of jpementatior
choices on how to ensure that s$erurity enforcement cannot be lagsed. This

enforcement could be performed bgrdware, the wferlying operating system, the
ORB core, or ORB services.ppendix E, Gidelines for a Trustworthy System,

describes some of these options. (It is important when instantiating this architec
a particdar ORB product, or set of Satty services supgrting one or mre ORBS, tc
identify what portions of the odel must be trusted for what. This should be inclu
in a conformance statement as described in Appendix F, Conformance Statem

SecurityService:v1.0 NovemhE996 1541

15

15.4 Security Architecture

15-42

This section explains how the securitydrbis inplemened. It describes the comple
architecture as needed to suppattconformance levels described $®ction 15.2.1,
Conformance to CORBA Security. Not all ofee levels are mandatory for all
implementors to support.

This section starts yeviewing the diférentviews thatdifferent users lave ofsecurity
in CORBA-conpliant systems, as the seity architecture must cater to these.

The structural model fasecurity in CORBA-comliant systems is described. This
includes some expaion of the ORBservice copept introduced into CORBA 2 to
support interoprability beween ORBS.

The security object models for thaelk major views (application development,
administration, and object systemplamenbrs) are then described.

15.4.1 Different Users’ View of the Security Model

The security madel can be viewed from the following users’ perspest
® Enterprise management

® The end user

® The application developer

® Administration of an operational system

® The object system iplementors

Enterprise Management View

Enterprise management arsporsible for business assets including IT systems;
therefore they have ultimate resgdrility for protecting the informigon in the system
The enterprise view dfecurity is therefre mainly abouprotecting its assets again
perceived threats at an affordable cost. Thtgires assessing thisks to the assets
and the cost of countermeass against them as described in Appendix E, Guide
for a Trustworthy System. Will require setting aecurity policy for protecting the
system, which the security administrators caplé@ment and maintain.

Not all parts of an enterprise rdopithe same type gdrotection of their assets.
Enterprise management maentify different domains wéredifferent security
policies should apply. Manags will need to agree how much they tresch other an
what access theyillv provide to their assets. For example, when a user in doma
accesses objects in domain B, what rights should he have? Oneisatergy also
interwork with domains in other enterprises.

Enterprise management therefore kn@alsut the structure of the organization and
security poicies needed in diffrent parts of it. Security policy options supported |
the model include:

CORBAservices: Common Obj&arvices Specification

15

® A choice of access control policies. For example, controls can be based on jc
(or other attibutes) and use ACL, capabilities, or label-based access controls

* Differentlevels of auditing so choosing whiglvents to be logged can be fialy
chosen to meet the &@mprise needs.

* Differentlevels of protection of inform#&on commuicated between objects in a
distributed system. For example, integrity only or integrity plusidentiality.

The enterprise manager is not a direct user of the CORRArity system.

End User View

The human user is andividual who is normally authenticated to thestgm toprove
who he or she is.

The user may take on different job roles which allow usdiféérent fundions and
data, thereby allowingccess to diffrent objects in the system. Aar may also
belong to one or wre groups (within and across organizations) which again imp
rights to access objects. A user may also have other privileges sudeasity
clearance thgbermits access to secrdocuments, or an authorizatitevel that allows
the user to autirize purchaes of a given amount.

The user is modeled in the system as an initigbimgcipal who can have privilege
attributes such awles and groups and others privileges valid to this organizatio

The user invokes objects to perform besie functions on his behalf, and his privile
attributes are sed to decide what he can access. His audit identity is used to ma
individually accountable throughout the system. He has no idea of what further
arerequired to perform the busiess function.

The user view is described further in texurity nodel in Section 15.3, Segty
Reference Mdel.

Application Developer View

The application developer is respinle for the business objects in the system: th
applications. His main caern is the busiss functions to bperformed.

Many application developers can be unaware obévarity in the system, thougheth
applications argrotected by it. So much of the security in the system is hidden
the applications. ORB security services are called automatically on objecttion,
and both protect the conversation between objects and control wrezcass them.

Some application objects need to enforce seeawrity themselrs. For example, ar
application might want to control access based orvaéhee of the data and the time
well as theprincipal who initiated theperation. Also, an application may want to
audit particlar security relevant activities.

SecurityService:v1.0 NovemhE996 1543

15

15-44

The model includes a range scurity fcilities available for thosapplications that
want to use them. For example:

®* The quality of protection for object invocations can be specified and used to |
all commurication with a particuar target or just selectedviacations.

® Audit can also be used independently of other secuaitjlities anddoes not
require theapplication to uderstand other security issues.

¢ Other functions, such as user authentication odlvag privilege attributes for
access control generaltgqure moresecurity understanding and operations on
objects, which represent the user in the system. However, this is still done v
generic security inteafces, which hide thparticular security technologysed.

One special type of application developer is also catered for. The “application”
provides the user interface (user sponsor or logon client) needs an authenticat
interface capable of fitting with a range of authentication devicesieder, the mode
also allows autheitation to be done before calling the object system.

The application view is described $ection 15.5, Application Developer’s Intaces

Administrator’s View

Administrators, like any other users, know about their job roles and other privile
and expect these to control what they can do. In mastgras, tkre will be a numbe
of different administrtors, each respaible for administring only part of the systen
This may be partly to reduce the load on individual adstriators, but partly for
security reasons, for exaie to reduce the damage any gegson can do.

Administrators and administiae applications see one of the system than othesers
or normal application developers. For example, the application developers see
individual objects whreas the administrator &aws how these are grouped, for
example, in policy domains.

In an operational system, administratoiiffi e responsible focreating and
maintaining the domains, specifying who should be members of the domain, its
location, etc. They will also be respdle for adminisering the security paies that
apply to objects in these domains.

An administrator may also be responsible $ecurity attributesissociateavith
initiating principals such as human users, though this may be done outside the
system. This would include administration of privilege attrib@atesut sers, but
might also include other controls. For example, they might cainsthe extent to
which the user’s rights can loelegated.

The model does not include @icit management interfaces for managing domain
security attributes of initiating principals, though d@e$ describe theesultant
information. It is expected that the CORBA Comnteacilitieswill, in the future,
include management facilities that can mansgaurity, as wll as othebjects, in ar
OMA-compliant system. Note that the security facilities described here are also
applicable to management. For example, management information needs to be

CORBAservices: Common Obj&arvices Specification

15

protected from unauthorizeatcess angrotected for integrity in transit, and
significant management actions, particularly those changing security informatior
to be audited.

The administrator’s view is further described in Sectié6, Administrator’s
Interfaces.

Object System Implementor’s View

Secureobject system developers must put together:

* An ORB.

® Other Object Services and/or Common Facilities.

® The securityservices these require to provide teeurity features.

The system must be constructed in such a way as to make it secure.

The ORB implementor in a secure objecsteyn 1ses ORBSecurityservices during
object invocdion, as defined in Section 15.4.2, StruefuModel. In addition,
protection boudaries argequred toprevent interference between objects anld w
need conblling by the ORB and associat€bject Adapter and ORBervices.

Object Service and Common Facilities developers may need dedoeity aware if
they have particular security requirements (for example, functions whose use sh
limited or audited). However, like any application objects, most should depend
ORB and associated services to provseeurity of object invocations.

The Security services iplementor has to provide ORB Securdigrvices (forsecurity
of object invocations) and other seity services to suport applicationsview of
security agreviously defined. The ORB Seaity services inplementor sares some
application visiblesecurity objects such as a principal's credentials,adsal sees the
security objects sed in makingsecurityassociations. Th8ecurity services should u
the Security Policy and other security objects defined in tlnideinto decide what
security to provide.

While these seaity objects may provide all the securigquired themselves, theylw
often call on exernal securityservices, so that consistesdgcurity can b@rovided for
both object and other systems. The Secwsévices éfined in thisspecification are
designed to allow for convenient jilementation using gemic APIs for accessing

external securitpervices so it is easier to link with a range of such services. Us
such external securitgervices may imply use of existing, nonobject databases fi
users, certificees, etc. Such databases may be managed outside the object sys

The Implementor’s/iew is specified in Setion 15.7, Implementor’s Security
Interfaces. The implications of constructing thetsyn securely to meet threasse
described in Appendix E, Guidelines for a Tmaithy System.

SecurityService:v1.0 NovemhE996 1545

15

15-46

15.4.2 Structural Model

The architecturelescribed in this section sets thajor corcepts on which the
subsequent specifications are based.

The structural model has four major levels used during objectatiom:

Application-level components, which may or may not be awaiseafrity;

Components implementing the Secustgrvices, independently of any specific
underlyingsecurity technology. (Thispecification dbws the use of an isolating
interface between this level and thecurity technology, allowing different secur
technologies to baccommodated within the architect)) These components ar

» The ORB core and the ORB services it uses.
» Security services.
 Policy objects used by these to enforce $eeurity Policy.

Components implementingpecificsecurity technology;

Basicprotection and communication, gaally provided by a combination of
hardware and operating system mechanisms.

request

ORB

ORB
Services Services

Basic Protection & Com mucrtions

Figure 15-22Strudural model

Figure 15-22 illustrates the major levels and components of the structural mod
indicating the relationshipseween them. Thbasic path of a client invotian of an
operation on a target object is shown.

CORBAservices: Common Obj&arvices Specification

15

Application Canponents

Many application components are unawarsegurity and rely on the ORB to call t
requred securityservices during object irocation. Fbwever, some applications
enforce their own security andetfefore call orsecurityservices directly (see The
Model as Seen by Applications, und®zction 15.4.5Security Object Mods). As in
the Object Management Architecture, the clieraypor may not, be an Hgt.

ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB
provides the basic representation of objects and the communicatiequafsts.” The
ORB Core therefore supports the minimum functionality necessary to enable a c
invoke an operation on a target object, with (some ofdtb&ibution transparercies
requred by the CORBAarchitectue.

An object request may be garated within an implicit context, which affects the w
in which it is handled by the ORB, thougltthe way in which a client makes the
request. The implicit context may include elements such as transactioniétentif
recovery data and, in particular, security context. All @ksth are associated with
elements of functioality, termed ORB Servicesgdditional to that of the ORB @e
but, from the application view, logicallgresent in the ORB.

ORB
Services

Figure 15-230RB services

i
| ORB
Services

ORB Core

Selection ofORB Services
The ORB Services used to handle an object request are determined by:

®* The securitypolicies that apply to the client and target objeetause of the
domains to which they belong, for example the access policies, defality apf
protection;

® Other static properties of the client atadget object such as the security
mechanisms and pmtols suported;

SecurityService:v1.0 NovemhE996 1547

15

15-48

®* Dynamic attributes, associated with a particulaedld of activity or inocation; for
example, whether eequest has integrity or confidentiality requirements, or is
transactional.

A client's ORB determines which ORB Services to use at the client when invok
operations on a target object. The target’s ORB determines which ORB Service:
at the target. If one ORB does not support the full set of serrégesred, then eithe
the interaction cannot proceed or it can only do so with reduced facilities, whicl
be agreed to by a process of negotiation between ORBs.

Bindings and Object References at the Client

The Security Architecture llds upon the CORBA 2 leroperability Architecture in
considering the selection of ORB Servicegpag of the process of establishing a
binding between a client andtarget object.

The ORB determines how to abtish the binding using thgolicies, statiqroperties,
and dynamic properties associated with the client and target. At the client, an ¢
reference defines ¢ise policies andtaticproperties of theéarget object that affect ho
the client's ORB establishes a binding to the object, for example, the quality of
protection needed. Subsequentlgrdhmay be a need to modify or extend details o
binding for a particlar invocation (e.g. when a request is reqd to be traractioral).

Associated witheach binding is informatiogpecific to the partidar usage by the
client of the object reference. A binding is uniquely associated with:

® The object reference of the target object.

® Elements of client context, for this binding, associated with paaticDRB or
Object Services (e.g. access policy domagegurity context).

A binding is distinct from the target object to which it is made, though uniquely
associated with it. The state associated with a bindirmgdsssible via operations ©
the target object reference on the client side (which are comptitgdyntedfrom its
application level perations), and via a "@ent" object at the targaide.

CORBAservices: Common Obj&arvices Specification

15

Object Reference

Request

— Binding - - P Binding -
ORB ORB
Services Services
ORB Core

Figure 15-240bject reference

If a client requres to esablish several distinct, independent bindings to the same t
object, then it can makeapy of an existing object refereg. Any binding
established via the new referencelistinct from bindings used with thed reference

Security Services

In a secure object system, the ORB Services called will include &#RBrity Service
for secure invocation analccess control.

ORB Security Sergies and applidions maycall on Object Security Services for
authentication, access control, audit, non-repudiation, and sevomiions. Tese
security services form the Sedty Rephceability Conformance option.

These objectecurityservices may in turn call on exterrsgcurity services to
implement security technology.

Security Policies and Domain Objects

A securitypolicy domain is the set of objects to which common sgcpolicies apply
as described irsecurityPolicy Domains, unde$Bection 15.3.8, Domains. The dom
itself is not an object. However, there is a policy domain manageyafdr security
policy domain. This domain manager is used when finding and managing ities
that apply to the domain. The ORB and secusiyvices use these to enforce the
security policies relevant to object wocation.

SecurityService:v1.0 NovemhE996 1549

15

15-50

On object creation, the ORB implicitly associates the object with one or morate
Policy domains as described in Administrative Model, under Section 13dchrity
Object Models. An ilplementation mayllow objects to be moved between domai
later.

There may be severaécuritypolicies associated with a domain, witlpalicy object
for each. Tlere is at most one policy efach typeassociated witleachpolicy domain.
(See Administrative Model, und&ection 15.4.5, for a list of policy jes.) These
policy objects are shared between objects in the domain, rathebehmmnassociate
with individual objects. (If an object needs to have an individual policy, trexe th
must be a domain manager for it.)

enclosing
domain managers

domain
manage

Figure 15-25Domain oljects

Where an object is a member of more than one domain, for example, there is
hierarchy of domains, the object is governed bypalicies ofits enclosing domains
The domain manager can find the enclosing domain’s manager to sepolibis it
enforces.

The reference wdel allows an object to be a member of multiple domains, which
overlap for the same type of policy (for example, be subject to overlapping acc
policies). This wouldequre corflicts amongpolicies defined by the multiple
overlapping domains to be resolved. The specification does not include expjmirs
for such overlapping domains and, therefore, the use of policy com positésn ru
requred to resolve conflicts giolicy enfacement time.

Policy domain managers apolicy objects have two types of intades:

® The operational intesices used when enforcing the policies. These are the
interfaces used by the ORB during an object intiona Some policy objects ma
also be used by applications, which enfora@rtbwn security policies.

The caller asks for thpolicy of a particular type (e.g. the delegation policy), a
then uses the policy object returned to enforceptbiey (as described in the
subsections The btel as Seen by Applitans, and The Mdel as Seen by the
Objects, under S¢ion 15.4.5, SecurityObject Models). The caller finding policy
and then enforcing it does not see the domain manager objects and the don
structure.

CORBAservices: Common Obj&arvices Specification

15

®* The administrative interfaces used to seturity poicies (e.g.specifying which
events to audit or who catcess objects of a specified type in this domain). -
administrator sees and navigates the dorstiincture, so isware of the scope o
what he is administering. (Administrative interfaces are described in Administ
Model, under Section 15.4.5.)

Applications will often not be aware skcurity at H, but will still be sulject to
security policy, as the ORB il enforce the policies for thenBecurity policy is
enforced automatically by the ORB both when an object invokes another and v
creates another object.

An application that knowsabout security ca@also overridecertain default security
policy degils. For example, a client can override the default quality of pioteof
messages to areaseprotection for particlar messages. (Application intexfes are
described in The Model as Seen by Applications, under Section 15.4.5.)

Note that this specification does not include any expli¢érfaces for managing the
policy domains themselves: creating and deleting theavjmg objects between ther
changing the domain structure and adding, changing and removing policies apj
the domains. Such interfes are gected to be the province of other objsetvices
and facilities such as Management Facilities and/or QateService in the future.

15.4.3 Security Technology

The object securitgervices previously described insulate the applications and C
from the security technology used. Security technology may be provided by ex
security components. Bse do not have domain managers or objects.riBecu
technology could be provided by the operating systeowever,distributed,
heterogeneous environments arer@asingly being sed, and for thesasgcurity
technology is provided by a set of distributturityservices. Thisrchitecture
identifies a separate layer containing those components whighllgcimplement the
security services. It is envisaged that varicgshrologies may be used to provide
these and, furthermore, that a (set of) generic security interface(s) such as the C
will be used to insulate the iplementations of the securigervices from detailed
knowledge of the underlying mechanisms. The range of services (and correspc
APIs) includes:

®* The means of creating and handling the security information required to est:
securityassociations, including keys.

® Message protectiorervices providing coidentality and integrity.

The use of standard, generic APIs for intéicns with external securityervices not
only allows interchangability of security mechanisms, but also enables exploitatic
existing, proven implementations of such mechanisms.

SecurityService:v1.0 NovemhE996 1551

15

15-52

15.4.4 Basic Protection and Communications

Environment Domains

As described irSecurity Erironment Domains, under Section 15.3.8, Domains,
way security padties are enforced can depend on dleeurity of the environment in
which the objects run. It may be pidds torelax orevendispense with some secur
checks in the object system on interactions between objects in the same envirc
domain. For example, in agssage protdéion domain wleresecure transport or low
layer communications is provided, encryption is not needed at the ORB level. |
identity domain, objects may ale asecurity identity and sdispense with
authenticatingeach other. Environment domains argiementation cocepts; they dc
not have domain managers.

Environment domains can be exploited to optimize performance andcesssage.

Component Protection

The maintenance of integrity and confidentiality in a sealject system depends:
proper segregation of the objects, which may include the satimegof security
services from other components. At the lowest level ofdhihitectwe, Proection
Domains, supported by a combination afrtiware and softwar@rovide a means of
protecting application components from each other, as well as protecting the
components that support security servidgg®tection Domains can be pided by
various techniques, including physical, temporal, anccldgggoaration.

The Security Architecture identifiasarioussecurityservices, which mediate
interactions between applicatibevel components: clients ardrget objets. The
Security Object Models show howetse mechanisms can themselves be modelec
implemented in terms of additional objects. Howegerurityservices can only be
effective if there is some means of ensuring that they are always invokeguasd
by securitypolicies: it must be possible to gante, to anyrequred level of
assurance, thapplications cannot bypass them. Moreogecurityservices
themselves, like other components, must be subject to security policies.

The general gmoach is to establisprotection boundariesaround groups of one o
more components which are said to belong padection domain. Components

belonging to a protection domaareassumed to trust each other, and interaction:
between them need not be mediated by stycaervices, whereas interactions acrc
boundaries may be subject to controls. In addition, it i®ssary to provide a meat
of establishing a trust relationship between components, allowing them to inter:
across protection boundaries, in a comtay, mediated by security services.

CORBAservices: Common Obj&arvices Specification

15

Controlled
Relationship

O

Protectio%)
o DomainB O

Protection
Domain A O

Figure 15-26Controlled relationship

In this architectte, the trusted components gopting securityservices are
encapsulated by objects, @sscribed in The Model as Seen by the Objects
Implementing Security, under Section 15.48&¢curityObject Models. Clearly, objec
that encapsulate sergé security information must bgrotected to ensure that the)
can only be accessed in an appropnahg.

O

Protectio%)
DomainB O

Protection
Domain A O
O

Security
Services

Figure 15-270bject enapsulation

Protection boundaries and the coradlrelationships that cross those bdaries mus
inevitably be supported by functionalityome fundamental than that of the Skyu
Object Models, and invariablgequires a combination of hardware and operating
system mechanisms. Whichever way it is provided, this functionality constitutes
of the Trusted Computing Base.

Protection boudaries may be created by piog separation, ierprocess boutaries,
or within process access control mechanigmg. mulilevel “onionskin” hardware-
supported access control). Lessorigus protection may be accapte in some
circumstances, and in such capestection boudaries can be provided, for examp
by using appropriate compilation tools to conceakguted interices and ata.

The archiecture is defined in a motiwm way so that, where necessary, ipéssible fol
implementations to creaf@otection boudaries between:

* Application components, which do not triestich other;
® Components supporting securiggrvices and other components;

® Components supporting securiggrvices an@ach other.

In addition, controlled commucation across protéion bourdaries may be requirec
In such cases, it must be possible to a@irstcomponents within a protection
boundary to ingract with components outside the protection lolauy only via
controlled communications paths (it must not be possible to use alternative pat
Such communication may take many forms, ranging froplieik message passing
implicit sharing of memory.

SecurityService:v1.0 NovemhE996 1553

15

15-54

15.4.5 Security Object Models

This section describes the objeotgured to providesecurity in a secure CORBA
system from three viewpoints:

®* The model aseen byapplications.
®* The model aseen by administrats and administrative applications.

®* The model aseen by the objects ptementing the secumbject system.

For eachviewpoint, the model describes the objects and the relationships betwe
them, and outlines the operations they support. A summary of all objedt® igven.

The Model as Seen by Applications

Many applications in a secure CORBA system are unawaseaofrity, and therefor
do not call on thesecurity inerfaces. This subsection is therefore mainly relevant
those applicions thatare aware of and utilize security. Facilities available to suc
applicationsare:

®* Finding what security featas this inplementation spports.

® Establishing a pricipal’s credenials for using the system. Authérdting the
principal may be necessary.

® Selecting various security attributgmarticularly privileges) to affect later
invocations and ecess decisions.

® Making a secure invocation.

® Handling security at a target object and aérim eliates in a chain of objects,
including use of credentials for application control of accessdatedyation.

® Auditing application activies.

® Non-repudiation facility -- generation and verification of evidence so that act
cannot be repudiated.

®* Finding the security pdlies that aply to this object.

Finding Security Features

An application can find out what security features are supported bgetise objec
implementation. It does this lyalling on the ORB to

get_service_information . Information returned includes tlsecurity
functionality level and options spprted and the version of the security sgeation
to which it conforms. It also includes security mechanisms supported (though th
Security ®rvices, rather than applications, needs this).

Establishing Credentials

If the principal has already been authieated outside the object sgm, then
Credentials can be obtained from Curréssge later).

CORBAservices: Common Obj&arvices Specification

15

user

If the principal has nobeen autheitated, but is only going to use lgic services
which do not require presentation of authenticatedileges, a Credentialgbject may
be created without any authenticated principal information.

If the principal has not been authenticated, but is going to use services that neel
be, then authentication is needed as shown in Figure 15-28.

1

User .
Sponsor: | Client

(O]
©
kS
=

(J)
= Yrequest
< Principal \ ¢reate (Credentials ---

Authentication . \

ORB

Figure 15-28Authentication

User sponsor

The usersporsor is the code that calls the CORBA Securiterfaces for user
authentication. It need not be an object, and no interface to it isedeftnisdescribec
here so that the process @ffedertials acquisition may be understood.

The user provides identity and authentication data (such as a password) to the
sporsor, and this calls on the Principal Autheator object, which authenticates th
principal (in this case, thesar) and obtain€redenials for it containing autheitated
identity and pivileges.

The usersporsor represents the entry point for the user intostceire system. It me
havebeen advated, and have authenticated the usemrgeéiny client application is
loaded. This allows unadified, security-unaware client applizns to fave
Credenials establishedransparently, prior to making invocations.

There is no cooept of atarget object sponsor.
Principal authenticator

The Prircipal Authenticéor object is the applicatiemisible object resposible for the
creation of Credeidls for a gven principal. This is achieved in one of two ways.
the prircipal is to be authenticatedthin the object system, thesersporsor invokes
the authenticate operation on the Bifral Authenticator (and
continue_authentication if needed for miiexchange authentitian
dialogles).

SecurityService:v1.0 NovemhE996 1555

15

15-56

Credentials

A Credentals object holds the security riiutes of a prigipal. Thesesecurity
attributes include its authenticatémt unauthenticatedjlentities andprivileges and
information for establishingecurityassociations. It provides operations to obtain
set security attributes of the peipal it represents.

There may beredentials for rare than onerincipal, for example, the indting
principal whorequested some action and the principal for the curreivieasbject.
Credentials are used on invticas and for non-repliation.

There is aris_valid operation to check if the credentiale valid and a refresh
operation to refresh the credentialpdssible.

Current

The Current object represents the current eti@eicontext (tihead of advity) at both
client and target objects. In a secur@imnment, the Current object supports the
SecureCuent interface, which giveasccess tsecurity information. Current retains
reference to the Credeal$ associated with the execution environmerje€t
invocations use Credentials in Current. Ifseusponsor is used, it should set the u:
credenials as the defaultredenials for sibsequent invocations in Current. This m
also be done as thesult of inifalizing the ORB when theser has been authenticat
outside the object system. Thisaals asecurity-unawarepplication to utilize the
credenials without faving to perform any explicit operation on them.

At target and intermediate j#gts, other Credeials are availableia Curent.

Handling Multiple Credentials

An application object may use different Credalstivith different security
characteristics fodifferent acivities.

Object
(client or
target)

set_credetials (invocation credentials)

Obj Ref (new)

Figure 15-29Multiple credentials

CORBAservices: Common Obj&arvices Specification

15

The Credentials::copy operation can be used to make a copy of the Ctiede
object and get the object reference for thpycd he new @edentials objecfi.e. the
copy) can then be adified as necessary, using its interface, before it is used.

When all required changes have been madeseéh eredentials operation can b
used on the Current object toegify a different Credetials object as the default fo
subsequent invocations.

At any stage, a client or target object can find the default credentials fecgiamt
invocations by callingyet _credentials on Current, asking for the invocation
credenials.

Selecting Seciity Attributes

A client may reqgire different security for different pugses, for example, to enforce
least privilege policy and so specify that limitedvileges should be used when
calling particular objects, or collections of objects, and restrict the scope to whi
these privileges are propagated. A client may also wapitoliect conversations wit|
different targets differently.

There are two ways of changisgcurity attributes for a primpal:

® Setting attributes on the credei$ for thatprincipal. If attributes are set on the
credenials, these apply to subsequent objecbirations using those credais. It
can therefore apply to invocations of many target objects.

® Setting attributes on the target object reference (meaning on the binding as
described in ORB Services, undexcBon 15.4.2, Structural Miel). Attributes se
here apply to suidequent invocations, which thitient makes using this referenc

In both cases, the change applies immediately to further objemtationsassociatec
with thesecredentials or this object reference.

) set_privileges)
Client - Credential
set_sedity features

override_default_ QOP

override_default_credentials

Figure 15-30Changing security attributes

SecurityService:v1.0 NovemhE996 1557

15

15-58

A wider range of attributes can be set on the crédisnthan on a specific object
refererce. Operationsvailable include:

® set privileges to set privileges in the credentials. The system will reject
attempt to set privileges if the calling principal is not entitled to one or more
requestedrivileges. There may be additional restrictions on which privileges
be claimed if the caller is an intermediate in a delegated call chainpsittgnio set
privileges on delegate@redenials.

® set_security_features to set such features as theality of protection of
messages (and tleeedentials to use for futureviacations when at an intermedic
object).

Setting any of these attiutes may result in a new securagsociation being needel
between this client and target.

Note: This specification does not contain an operatiarstrict when and where the
privileges can be used in target objects or delegated, though this may be spec
the future (se&ection G.9, Target Camtl of Message Ptection).

A client may want to use differeprivileges or controls when invokingjfferent
targets. It can do this by usimyerride_default_credentials specifying the
credenials to be used with that target. A client may wanspecify that a partidar
quality of protection applies only to selectedanations of a target object. For
example, it may want coidlentiality of selected messasg. The client can do this by
usingoverride_default_QOP , specifying a QOPn the target object reference
and then resetting this QOP when fidentiality is no longer reqgued.

From theapplication’s point ofview, theoverride_default operations are norm
invocations. However, they are actually operations upon the referencettogée
object rather than the target object itself.

Equivalentget_ operations are also providedgermit an apptation to determine
the security specific options currently requested, for @tamget_attributes

(privileges, and other attributes such as audit id) getdsecurity_features on
credenials objects andyet_active_credentials and
get_security_features on target objects.

Making a Secure Invocation

A secure invocation is atle in the same way as any other object invocation, but
actual invocation is ediated by the ORBecurity Services, irsibly to the
application, which enforce thegecurity requirements, both in terms of policy and
application preérence. Thedllowing diagram sbws anapplication making the
invocation, and the ORBecurity Services utilizing the security information in
Current, and hence the Crediats there.

CORBAservices: Common Obj&arvices Specification

15

request request

target obj ref

ORB ORB
Security Security
Services Services

ORBCore
I

Figure 15-31Making a secure invocation

Note: For any given invocation, it is target and client security policy that detern
which (if any) ORB Securityservices mediate thatvocation. If the policy for a give
invocation reqires nosecurity, then ngervices will be used. Sinailly, if only acces:
control isrequired, then only the OREbecurity Sevice resporsible for the provision
of access control il be invoked.

Security at the Target

At the target, as at the client, ther@nt object is the representative of tbeal
execution context within which the target object’s code is executing. The Curre
object can be used by the target object, or by ORB and Object Service code in
target object’s execution context, to obtain security information about an incom
securityassociation and the pdipal on whose behalf thevncationwas nade.

SecurityService:v1.0 NovemhE996 1559

15

15-60

application
access decisions

get_attributes

reques[*

- — {Credentialg

Figure 15-32Target object saurity

A security-avare target apptation may obtain informatioabout the attributes of th
principal responsible for the request by invoking gle¢ attributes operation or
Current. The target normally usgst_attributes to obtain the privilege
attributes it needs to make its owncess decisions.

Theget_attributes operation can also be used at the client and can be use
any Credentials object, not just on Current. Whetedadn Curent, it always gets th
incoming credentials from the client at the target object flamad the user at the clie
machine.

Intermediate Objects in a Chain of Objects

When a client calls a targebject to perform some operation, this target object o
calls another object tperform some furion, which calls anotherlject and so on.
Each intermediate object in such a chain acts first as a target, and then as a ¢
shown in Figure 15-33.

CORBAservices: Common Obj&arvices Specification

15

Intermediate Object

incoming
reques request
to next target

redertial
(delegated
and/or object’s
own)

Figure 15-33Securiy-unaware intemediate ofect

For asecurity-unaware intermediate object, Current retains a reference to the s
context established with the incoming client. When this intermediate object invc
another target, either ttielegated credentials from the client or dnedentials for th
intermediate object’s principal (or both) become theesut ones for the invocation.
The securitypolicy for this intermediate object governs which cradgs to use, anc
the ORB Security &vices enforce the policy, passing tegured credentials to the
target, subject to any delegation constraints. The intermediate objectippliwill be
authenticated, if needed, by the ORB SiguServices.

A securityaware intermediatebject can:
® Use the privileges of any delegated creddstfor access control.
® Decide which credentials to use when invoking furthereisig

® Restrict the privileges avable via theseredentials to further clients (whe
security technology permits).

SecurityService:v1.0 NovemhE996 1561

15

15-62

incoming
reques

authenticate

Intermediate Object
(acts as target, then client)

|
- set_credentials
get_crec‘ﬂenals ‘

|
|
| request
|

|
|
| to next target

Figure 15-34Security-aware intermediate object

After a chain of objectalls, the target can cajet_attributes on Current as
previously described. Note that trgall always oltains theprivilege and other
attributes associated with the first of trezeived credentials.

The target can use tireceived_credentials attribute on Current to get the
incoming credentials. This may be a list of one or nuveelential objects dependin
on the authentication and delegation tebgy used. If more than one credential i
returned, the first credential is that of the initiator. Otredentialsare of
intermediates in the chain. After composite delegatgme Setion 15.3.6,
Delegation), the credentials are of the initiator and immediate invoker. After tra
delegationcredentials for all intermediates in the chain willgresentas well as the
initiator). If a target object receivesrequest which incldes credentials for ore than
one prircipal, it may choose which privileges to use for access control and whic
credenials todelegate, subject to policy.

An intermediate object may wish to makeapy of the incomingredentials, modify
and then delegate them, though not albiem entation svill support this modification.
In this case, it musicqure a rekrence to the incoming credentials (using the
received_credentials attribute), and then usset_privileges to modify
them. Finally it uses a call t®et_credentials to make the received credentia
the default ones for subsequent invocations. Whenetteived credentials

are passed tget_credentials , logic under the Current interfe determines that
delegation operation is remad and does what is necessary transghren

If the intermediate object wishes to change the asorigecurity defaults (for
example, the quality of ptection) for subsequentwiocations, it can do so by using
the Current interfees(e.g. override_default_gop).

CORBAservices: Common Obj&arvices Specification

15

The intermediate object may bgpancipal and wish to use its owdentity and som:
specific privileges in further imocaions, rather than delegating the omeseived. In
this case, it carcall autheticate to obtain the appropriate credential, and ttegh
set_privileges to establish the appropriate rights. After doing this, it can us
set_credentials to establish its credeiat as the default for future wocations.

If the intermediate does not have its own individual cradénbject (for example, &
it does not have an individual security name) but insteateshredentials with othe
objects, it can calturrent::get_credentials (specifying own creddrals) to
get a copy of the credeaats (which will havebeen set up automiaally). It can then
copy andset_privileges , etc. on these, as appropriate for the objects it intel
invoking.

If it wants to use composite delegation with a miedifversion of its owrcredenials,
it should callCurrent::set_credentials (specifying its own credentials) an
the requred delegation mode before making thgdoation. Note that this will not
modify the credetials shared with other objects.

Security Mechaisms

Applications are normally aware of teecurity mechanism used to secure invocati
The secure object stem isaware of the mechanisms available to both client anc
target object and can choose an acalgjgt mechanism. However, soreecurity -
sophistcated applications may need to knabout, or even condl the choice of
mechanisms usinget_security_mechanism and
override_default_mechanism

ApplicationAccess Policies

Applications can enforce their own access policiesstdadard application access
policy is defined, as different applications are likely to want differe nérgaitfor

deciding whether accesspsrmitted.For example, an applitan may want to take
into account data values such as the amount of mowveyed in a funds transfer.

However, the application is recommended to use an access decision objacttsin
the one used for the invocation access policy. This isdlate the application from
details of the policy. Therefe, the application should decide if access is needed
shown in Figure 15-35.

Access
Decision
Object

access_allowed

Application

Figure 15-35access_allowed application
The application can sgify theprivileges of the initiating pricipal and a variety of

authorization data, which could include the function being performed, and the d:
being performed on.

SecurityService:v1.0 NovemhE996 1563

15

15-64

An applicationaccess policy can besad to supplement the standard invocatoness
policy with an applicdon-definedpolicy. Such a policy might, for example, take i
account the paramats to theequest. In thigase, the authoriian datapassed to th
application-defined policy would be likely to include the request’s operation,
parameters, and targebject.

The application access policy could be associated with the domain, and managt
the domain structure as for other pas (see Administteve Model, in Section
15.4.5). In this case, the application obtains the Access Decision object as sho
Figure 15-36.

'\ get_policy (application acces
pplicatior Current

Figure 15-36get_policyapplication

However, the application could choose to manage its access gdifienently.

Auditing ApplicationActivities

Applications can enforce ¢iir own audit policies, aliting their own activities. Audit
policies specify the selection aiia for deciding whether to audit events.

As for application access policies, application audit policies can be associated
domains and managed via the domain structure. No standard application level
policy is specified, adifferentapplications may want to uskfferentselectors in
deciding whichevents to adit. Application eventsare generally notelated to object
invocations. Applications can provideeih own audit policies, which us#fferent
criteria. The most common selectors for thesditgoolicies to use are thevent type
and its success or failure, thadit_id and the time. (Management of such polic
can generally be done using the interfaces for audit policy administration define
Section 15.6.5, AudiPolicies, by specifying new selectors, appropriate to the
application conerred.)

Whether or not the application uses an audit policy, it uses an Audit Channel ol
write the audit records. One Audit Channel object is created at ORB initializatior
and this is used faall system auditing. Applications can udiéferent audit chanais.
The way an Audit Channel object ltHes the audit records is not visible to the ca
It may filter them, route them to appropriate audit trails, or cause alents.
Different Audit Channel objects may sent auditords todifferent audittrails.

Applications and sstem components both invoke thedit write operation to
send audit records to the audit trail.

CORBAservices: Common Obj&arvices Specification

15

audit_write Audit
Channel

pplicatio

®

Figure 15-37audit_write application

If an application is using an audit policy administevealdomains, it uses an Audit
Decision object (see the Access Decision ofpjo decide whether to audit an even
can find the appropriate Auditd2isionobject using thget_policy operation on
Current as fobws.

o audit_needed Au'di't
pplicatio) Decision
audit_channel Object

get_policy (application audit)

*

Figure 15-38Audit decisionobject

The application invokes thaudit needed operation on the Audit Decision obje
passing the values the AuditDisionobject requies to decide whether auditing is
needed. (This set of selectors could include, for example, the type of event, its
or failure, the identity of the caller, the time, etc. See administration of paidites in
Section 15.6.5, AudiPolicies.) The Adlit Decision object responds with whether :
audit record needs to be written to the audit channel or not.

An audit channel caalso be associatesiith an auditpolicy object, so the applicatio
can use an audit chanredsociated with the application (and these can link into
system audit services). If so, the application usestité channel attribute to
find the Audit Channel object to use. However, applications castectaeir own
channel objects.

Finding What Security Pakies Apply

An application may want to find out what policies the system isreimig on its
behalf. For example, it may want to know the default qualitgrofection to be use
by default for messages or for non-rdfation evidence.

To do this, it can calgjet_policy on Current, and then the approprigt_
operation on the policy object obtained as defined in Section 15.6, Administrat
Interfaces (if permitted).

SecurityService:v1.0 NovemhE996 1565

15

15-66

Non-repudiation

The non-repudiatiorservices in this specification provide generatiorewitience of
actions and later verification of this evidence, to prove that the actioocbased.
There is often data associateith the action, so the service needs to provide evid
of the data used, agell as the type of action.

These core facilities can be used to build a range of non-repudiation services.
envisioned thatlelivery servicesvill be implemented to deliver this evidence toesd
it is needed anévidence storewill be built for use by adjudicats. Asdifferent
services may have different rdggments for tlese, interfaces for them are notincluc
in this specification.

Non-repudiation credentials and padies

Non-repudiation operations aperformed on NRCredentials. As for any other
Credentials object, these hold tidentity and attributes of a p&ipal. However, in
this case, the atbutes include whatver is needed fddentifying the ser for
generating and checking evidence. For example, it might includgrithapal’'s key
(or provide access to it) as needed to sign the evidence.

NRCredentialsare available via the Current object as for othed€ntals objects, an
support the operations defined for credaistpreviously described. Theredenials to
be used for non-repudiation can be speditising theset_credentials operation
on Current with a type of NRCredentials.

An application can setecurity attributes related to non-repudiation using a
set_ NR_features operation on the NBredertials object (see the
set_security features operations on Creddaats).

o set_NR_features)
Application NRCredentials

Figure 15-39set_NR_features operation

set NR_features can be used to specify, for example, the quality ofgotmn anc
the mechanism to be used when generating evidence us®eg ¢hedentials.

By default, the features are those associated with the non-repudiation policy of
by invokingget_policy specifying NRpolicy on Current.d¥ever, non-repdiation
policies may come from other sources. For exampleptiiey to be used when
generating evidence for a partiaurecipient may be supplied by that recipient.

There is aget_NR_features operation on NRCredeiats equvalent to
set NR_features

Evidence generation and veécition operations are also performed on N&denials
objects. These are described next.

CORBAservices: Common Obj&arvices Specification

15

Using non-repudiation services

An application can generate evidence associated witdttéon so that it cannot be
repudiated at a later date. All evidence aeldted infornation iscarried in non-
repudiation tokens. (The details olede are mechanism specific.)

The application decides that it wishes to generate some proof of an action and
generate_token operation on an NRCredgals object.

Application NRCredentials

Figure 15-40generate_tokenperation

This evidence is created in the form of a non-repudiation token rendered unfor
[Generation of the tokenses the initiatingrincipal’s security attributes in the
NRCredentls (normally a private key), for exaple, to sign the evidence.]

generate_token

Depending on the underlying cryptographic techniques used, the evidence is ge
as:

® A secure emelope of data based on symmetric crypapdpic algorithms requiring
what is termed to be a trusted third party as the evidence generating author

® A digital signature of data based on asymmetric crypajolgic algorithms which s
assued by public key certifices, issued by a Certification Authority.

Depending on the non-repudiation policy in effect for a specific application and
legal environment, additional information (such as certificates or a counter digit
signature from a Time Stamping Authority) maybe required to complete the nor
repudiation information. A time referenceakvays provided with a non-repu tian
token. A Notary service may be required to provddsurance about the properties
the data.

Complete evidence

Non-repudiation evidence may have to be verified long after it is generated. Wt
information necessary to verify the evider(eqy. the pulic key of the signer of the
evidence, the public key of the trusted tiservice used to countersign the eviden
the details of the policy under which teeidence was generated, etci)l vrdinarily
be easily acessible at the time thevidence is generated, that information may be
difficult or impossible toassenble a long time afterward.

The CORBA Non-repudiation Service providegifities for incorporatingll

information necessary for the verification of a piece of non-repudiation evidence
the evidence token itself. A token including both non-repudiation evidencalland
information necessary to verify that evidence is said to contain "complete" evid

SecurityService:v1.0 NovemhE996 1567

15

15-68

There may be policy-related limttans on the timeeriods during which complete
evidence may be formed. For example, Non-repudiation policy paayit addition of
the signer’s public key to the evidence only after expiration of the interval, durir
which the signer may permibly declare that key to haveeen compromsed.
Similarly, the policy may requirepalication of the Trusted Tim8ervice
countersignature within a specified interval aftpplicaion of the signer’s signature

To facilitate the generation of completeidence, the information returned from th
calls whichverify evidence and request formation of complete ewideincludes twc
indicators ¢omplete_evidence_before andcomplete_evidence_after)
indicating the earliest time at which cptete evidence may usefully be requested
the latest time at which complete evidence can essfally be formed.

A call to verify_evidence before complete evidence can be formed mezylt in
a response declaring the evidence to be "conditionally valid." This means that 1
evidence is not invalid at the current time, but a future event (e.g. the signer de
his key comprorised) might cause thevidence to be invalid when complete.

Figure 15-41 illustrates the policy considerations relating to generation of comy
evidence, and the sequence dfiats involved in generating and using complete
evidence.

CORBAservices: Common Obj&arvices Specification

15

user key repudiation window

trusted time ervice

| |
\ \
\ \
‘ countersignature ‘
| window \
- - — — — — il
| |
\ \
o \ \ .
‘ ‘ | \ Time
(< >) ~
complete_evidence_before complete_evidence_after
event L
data
A
evidence evidence complete
token token evidence
A with token
trusted A
generate timestamp form_complete_evidence verify
token A evidence
form_
complete
evidence
Non-Repudiation Sgice
Figure 15-41Non-repudiatiorservice
SecurityService:v1.0 NovemhE996 1569

15

An application may receive a token and need to know what sort of token it is.
done usingget_token_details . When the token contains evidence,
get_token_details can be used to extract dds such as the non-regliation
policy, the evidence type, the originator's name, and the date and time of gene
These details can be usedse&lect the appropriate non-repudiation policy and oth
features (usinget_NR_features), as necessary for verifying the evidence. W
the token contains a request to send back evidence to one orenipients, then if
appropriate, evidence can be generated.

An application verifes the evidence using therify_evidence operation.

o verify_evidence)
Application NRCredential

Figure 15-42verify_evidence operation

Verification of non-repudiation tokenses information associated with the Non-
repudiation Policy applicable to the non-rejation token and security information
about therecipient who is verifying the evidence (normally the [pukey from a
Certification Authority and a set of trust retmships between Cendfation
Authorities).

Using non-repudiation for receipt of messages

An application receiving a message with proof of origin maydkeait as shown in
Figure 15-43.

¢

delivermessage

—F

incoming reques

get_token details generate_evidencge

with message and evidence : . .
X o & verify _evidence e.g.proof of receipt
plus evidence elg. to originator e.g. L
L : e.g. proof of origin
proof of origin proof of receipt
NR
credential

Figure 15-43Proof of origin message
®* The application receives the incoming$sage with a non-repudiation token th
has been garated by the originator.

®* The application now wishes to know the type of token that it has received. I
this by calling theget_token_details operation. The token may be:

* A request that evidence be sent back (such as an acknowledge of receipt

15-70 CORBAservices: Common Obj&srvices Specification

15

» Evidence of an action (such as a proof of toga
» Both evidence and a request for further evigen

®* The application’s next action depends on which of the three cases applies.
* In the first case, the application verifies that it is appropriate tergemthe
requested evidence andsib, generates that evidence usijggerate_token

* In the seconaase, the application retrieves the data associated with the ev
if it is outside the token, and verifies theidence usingerify_evidence ,
presenting the token alone or the concatenation of the token and the data

« In the last case, the application verifies the receasdence by first calling
verify_evidence , and then generating evidence if appropriate, as in the
case.

* |f the application receives a token that contains vadidence, and wishes toosé
it for later use, it needs to make sure that it haltishe recessary information. |
may need to caflorm_complete_evidence in order to get the complete
evidence needed when this could not be provided using the verify operation

®* When the application has generated evidence as the result of a request fron
originator of the message, the apptica must send it to the variouscipients as
indicated in the NR token received.

Using non-repudiation services for adjudication

Adjudication applications use thesrify_evidence operation on the NR token,
which must contain complete evidence to settle disputes.

Administrative Model

The administrative model described here iscawned with administering security
policies.

® Administration of security environment domains and security technology don
may be implementatioapecific, so it is not covered here. This means
administrating security technologypecific objects is out of the scope of this
specification.

® Explicit management of nonsecurity aspects of domains isowared.
Administrative activities covered here are:

® Creating objects in a secure environment subject to the securitjepol
®* Finding the domain managers tlagply to this object.

® Finding the policies for which these domain managersesporsible.

® Setting security policy details fordse policy objects.

® Specifying which rights give access to which operations in support of acces:
policies.

SecurityService:v1.0 NovemhE996 15-71

15

15-72

The model used here is not specificsxurity, though thepecific policies describe
aresecurity pokies.

Secuity Policies
Security polcies may affect theecurity enbrced:

® By applications. In general, emting policy within applications is an applicatio
concern, so it is natovered by this specification. However, where the applica
uses underlying securitservices, it Wl be subject to tkeir policies.

* By the ORB SecurityServices during object invocation (the main focus of this
specification).

* |n other securityobject servicesparticularly authentidion and aulit.

® |n any underlyingsecurityservices. (In general, this is not covered by this
specification, as thessecurityservices are oftesecurity technologgpeciic.)

This specification defines thelfowing security policy types:

® |nvocation access policy
The object that implements tlaecess contrgbolicy for invocations of objects in
this domain.

® |nvocation audit policy
This controls which types afvents duringbject invocationare audited, and the
criteria contolling auditing of thesevents.

® Secure invocation policy
This specifiessecurity policies associatedith securityassociations and messag
protection. For example, it specifies:

* Whether mutual trust between client and target is needed (i.e., mutual
authentication if the communications path between them is not trusted).

» Quality of protetion of messages (integrity and confidentiality).

There may be separatevacationpolicies for applications acting as client and tho
acting as target objects in this domain. Téyplies to access, audit, apecure
invocation policies. There may also tseparate policies for different types of obje
in the domain.

® |nvocation delegation policy
This controls whether objects of the specified type in this domain, abtémng as
an intermediate in a chain, by default delegth ereceived credentials, use theit
own credentials, or pass both.

® Application access policy
This policy type can be used by applications to control whether application
functionsare permitted. Unlike invocation pdlies, it does not have to be mana
via the domain structure, but may be managed by the application itself.

CORBAservices: Common Obj&arvices Specification

15

® Application audit policy
This policy type can be used by applications totamnwvhich ty pes of applicatior
events should be auditeddsr what circuratarces.

® Non-repudiation policy
Where norrepudiation is supported, a non-repuibia policy has the ries for
generation and verification of evidence.

® Construction policy
This controls whether a new domain is created when an object of a specific
created.

Domains at Object Creation

When a new object is created irsecure environment, the ORB fiiicitly assocides
the object with thedllowing elements formingts environment.

®* One or moreSecurityPolicy Domains defining all the policies to which thebject
is subject.

®* TheSecurityTechnologyDomains,characterizing the partitar variants of securit
mechanisms available in the ORB.

® Particdar Security EnvironmeriDomainswhere relevant.

The application code involved in an object’s creation does not needawdre of
security to protect the objects it creat@lso, automatically making an object a
member of policy domains on creation emesuthat mandary controls of enclosing
domains are not bypassed.

The ORB will establish tase associations when the creating object calls
CORBA::BOA: create or an equivalent. Some or all of these associations m
subsequently be expitly refererced and modieéd by administrative or application
activity, which might be specificallgecurity related but could alsoccur as aide-
effect of some other activity, such asgwving an object to another host machine.

Also, in some cases, when a new object is created, a new domain is also neec
example, in a banking system, there may be a domaieafdr bank branch, which
provides policies for bankcaounts at that branch. @fefore when a banliranch is
created, a new domain is needed. As for a newly created object’s domain mém!
if the application code creating the object is to be unawaseairity, the domain
manager must be created transparently to the application. A construction policy
specifies whether new objects of this type in this domeduire a new domain.

This construction policy is enforced at the same time as the domainerstipbi.e.
by BOA:.create or equivalent.

Other Domain and Policy Administration

Once an object has beereated as a member of a policy domain, it may be mov
other domains using the appropriate domain management facilities (not specifi
this document).

SecurityService:v1.0 NovemhE996 15-73

15

15-74

Application

Once a domain manager has beesated, nevsecurity policy objects can be
associated with it using the appropriate domain manag eraeilitiés. Thesesecurity
policy objects are administered as defined in this specification.

The following diagram sbws the operations needed by an adstiative applicéon
to manage securitpolicies.

Object

get_domain_managers set_policy option

get_domain_managers get_domain__ policypplicy type)

Object
Reference

Domain Policy
Manager Object

Figure 15-44Managing security policies

Finding Domain Managers

An application can make a call on an object referengetodomain_managers
This returns a list of the immediately enclosing domain managers foohjast. If
these do not have the type of policy required, a call can be made to

get domain_managers on one of these domain managers to find its immedia
enclosing domains.

Finding the Policies

Having found a domain manager, the administeatipplicdion can now find the
security poicies associated with that domain by callipet_domain_policy on
the domain manager specifying the type of policy it wdetg. client secure
invocation policy, application audit policy). This returns the object needed to
administer the policy associated with this domaiach policy object supports the
operations required to administer that policy.

Note: The policy object used for administering the policy may be the same as t
used for enforcing it, but need not be. For exampleA@essPolicynterface for
managing the policy may be supported bdifleerentobjectfrom the one that sumpts
the AccessDecisiomterface used for deciding if access is allowed.

In this specification, no faciliés are provided to specify the rules for combining
policies for overlapping domains, though some implementations may include d¢
rules for this. (Definition of such rules is a potential candidate for fugecarity
specifications. See Appendix Gacilities Not in ThisSpecification.)

CORBAservices: Common Obj&arvices Specification

15

If the policy that applies to the domain manager’s owarface is required (rather
than the one for the objects in the domain), theh policy (rather than
get_domain_policy) is used.

Setting Secuty Policy Details

Having found the reqred security policy object, the application uses its
administrative interfaces to set the policy.

The administrative interfaces depend on the type of policy. For example, the del
policy only requres adelegdion mode to be set to specify delegation mode used \
the object acts as an intermediate in a chain of object invocatiorseaghan acces
policy will need to specify who can access the objects.

Administrative interfaces are defined $ection 15.6, Administrator’s Intextes, for
the standard policy pes, which all ORBs supportirsgcurity functionality level 2
support.

However, different administration may beeded if standard policies are replaced
differentpolicies. A supplier providing another policy may therefhave to specify it
administrative interfaces.

Specifying Use of Rights for Operatiokccess

The access policy is used to decide whether a user with specified privileges he
specifiedrights. A specific right may permit access to exactly one operation. Mo
often, the right permitaccess to a set of operations.

A RequiredRights object specifies which rights @guired to use which operations
an interface. The administrator caet_required_rights on this object.

The Model as Seen by the Objdatplanenting Security

Security isprovided forsecurity-uware applications by iplementation leel
security objects, which are not directly accessible to apfiics. These same
implementationobjects are also used topport the applicatiowisible security object:
and interfaces described in the subsections The Modetas by Aplications, and
Administrative Model.

There are two places whesecurity is provided for applications, which are unawat
security. Thesare:

® On object invocation when invocation time policies are automatically enforce

® On object creation, when an object automatically becomes a member of a d
and therefore subject to the domaip®licies.

SecurityService:v1.0 NovemhE996 15-75

15

15-76

Client

Implementor’s View of Secure Invocations

Figure 15-45 shows the implementation objects and services usepptartssecure
invocations.

request

~ Binding

(and other)
Services

Figure 15-45Securing invocations

ORB Scurity Senices

ORB Security ®rvices are interposed in the path between the clientasgdt object
to handle thesecurity of the object invation. They may be interspsed with other
ORB services, though whereessage protection is used, thiil e the last ORB
service at the client side, as the request cannot be changed after this.

The ORB services use the policy objects to find wipohicies to apply to the client
and target object, and hence the invocation. The ORB and $3RBces establish tf
binding between client and targaject as defined in ORB Services, un&exction
15.4.2, Structural Model. The ORB Security Servical on thesecurityservices to
provide therequred security.

Secuity Policy

The securitypolicies associated with the client object are accessed by the ORB
SecurityServices using thget_policy operation on Cuent specifying the type ¢
policy required. (The client side services also have to check the binding to see
policies havebeenoverridden by thelient using operations on the target object
refererce.) At the targetget_policy is used on the object’s reference lgst in
the message level interceptors, as Current is notadeaiat thastage).

CORBAservices: Common Obj&arvices Specification

15

ORB
Security
Service

get/check policy

get_policy (type of policy)

Current
br target objeq
reference

Policy
Object

Figure 15-46get_policyoperation

The policy may be associated with domain marags described in the admimadion
view. However, inform@ion may be cached duringwronment setup or previous
object invocdions, and theget_policy interface des whether the policy
information has been obtained in advance @e@rched for in response to thall.

Once the policy object has beentaihed, the ORB Servicesas it to enforce policy.
The operations used to em€e the policy depend on the type of policy. In some ¢
such as secure invocation or delegation, the GRBrice invokes get_ operation
specifying the partidar policy optionsrequied (e.g. whether confidentiality is
requred, and the delegation mode). It then uses this information to enforce the
for example, pass thequired policy options to the Vault to enforce.

Some policy objects may include rules, which enforce the policy. For example,
access policy object supports access_allowed operation which responds with
yes or no.

SecurityService:v1.0 NovemhE996 15-77

15

15-78

SpecificORB Scurity Senices and Regceable Security Setees

The specific ORBSecurity ®rvices andsecurityservices included in the CORBA
security object modere shown in Figure 15-47.

N~ e U
Access | pér request/Client : : :
BT — ! | Access |
Control | . Access 1 : :
J ‘ Recisigr ‘0 .| Control :
o) : ‘
L 1 1
at bind time }g } |
Tosetup 1
gSeTup z
security ! = T
Secure | associjation - create . '® ‘create = | Secure |
Invocation 3 ; : o n L — : . [Invocation
per messageSecurit
o protect
\ J message N J

ORB Core .

Figure 15-470RB SecurityServices

Two ORB Security 8rvices are shown:

® The access control service, which is responsible for checking ibplisation is
permitted and emfcing the invocation audit policy for sonegent types.

® The secure invocation service. On the client'sahitise of thisobject, it may neel
to establish aecurity association between client and target objectldb protects
the applicationrequests andeplies between client and targsiject.

The securityservices they use are discussed next.
Access policy

An access decision object is used to determine if this operation on this target o
permitted. It is obtained by the ORf&rvice using theget_policy operation
previously described. Hie may be dferentpolicies, and therefordifferentaccess
decision policy objects, at the client and target.

CORBAservices: Common Obj&arvices Specification

15

The ORB service invokes treezcess_allowed operation on the Access Policy
object specifying the operatioequired, the prigipal credentials to be used for
deciding if this access is allowed, etc. This is independent of the type of access
policy, which may be discretionary using ACLs or capabilities, man déabsls
usage, etc.

The Access Decision object uses the access policy to decide what rights the p
has. If the Access Policy object is separate from the Accessi@eaibject, it invoke
get_effective_rights on the Access Policy object.

If the access policies usights (rather than directlydentifying that this operation is
permited), the Access Decision object now invokies required_rights on the
RequiredRights object to find what rights are needed for this operation. It comy
these rights with the effective rights granted by the policy atbjeand if required
rights have been granted, it grants access. This model could be extended in th
to handle overlapping access policy domains as describegpandlix G,Facilities
Not in This Specificton.

Access Required

Rights

Policy

get_effectve_rig hts -) @t_requied_rights

Access

access_allowed o
- Decision

Figure 15-48Access decision object

Vault

The Vault object is respaible for establishing thsecurityassociation between clie
and target. It is invoked by the Secure Invocation ORB Service ati¢m and at th
target (usingnit_security context andaccept_security _context).
The Vault creates the security context objects, which are used for any further s
operations for this association.

Authentication of users (and some otpéncipals) is done explicitly using the
authenticate operation described in The Modebemn by Apptations, undefSection
15.4.5,Security Object Models. Authenttion of an intermediate object in a chain
the principal representing the object) may be done automatically by the Vault w
intermediate object invokes another object.

The Vault, like the security context objectikates, is invisible to all applitens.

SecurityService:v1.0 NovemhE996 15-79

15

15-80

Security context

For each securitgssociation, a pair dbecurity Contexbbjects (one associat&dth
the client, and one with the targgtovide thesecurity context information.
Establishing thesecurity contexts may repe several exchanges ofessages
containing security information, for exate, to handle mutual authentication or
negotiation of security mechanisms.

Security Context bjects maintain the state of the association, such as the dedsle
used, the target’s security name, and the sesspris valid andrefresh
operations are supported to check the validity of the context and refrestossible.

Security Context®bjects provide operations for protecting messages forritytegnd
confidentiality such aprotect message |, reclaim_message

They also haveeceived_credentials and
received_security features attributes, which are made available via the
Current object.

A security context can persist for manydrdctions and may be shared when a cl
invok es several target objects in the same trusted identity domain. Altheitighrrthe
client nor target imware of an “association,” it is an partant optimizing concept fc
the efficient provision of security services.

Relationship between implementation objects for associations

There is not always a oneffone relationship between client-target objeairs and
security contextskFor example, if a client uses difentprivileges for diferent
invocations on that object, this will result in separate security contexts. Also, a s
context may be shared between this client’s calls on more thatamgetobject. This
is normally the case if the target objects shasearity name, as shown in Figure
15-49. Note that the Vault decides whether to use the samdifierant security
context based on the targscurity name (which may be the name of an object ¢
trusted identity domain).

CORBAservices: Common Obj&arvices Specification

15

Obijects sharing
security name S1

arge
Object

\

obj ref obj ref obj ref
forT1 for T2 for T3

C-T3 messages

C-T2 messages

C-T1 messages

Figure 15-49Target objects sharing security names

Implementor’s View of 8cure Object Creation

When an object is created irsacure environment, it @ssociated witlsecurity
Policy, Environment, and Technology domainsdascribed Administrative Model, i
Section 15.4.5Security Object Models.

The way it is associated with Environment and Tetbgy domains is ORB
implementatiorspecific, and therefore not sleribed here.

SecurityService:v1.0 NovemhE996 1581

15

15-82

For policy domains, the construction policy of the &gion or factory creating the
object is used as shown in Figure 15-50.

applicatio

BOA::create

ore |
)

get_policy (construction policy)

application’

own object
reference

Figure 15-500bject created bgpplication or &ctory

The application (which may be a generic factory) objedis BOA::create to
create the new object refen The ORB otains the construction policgssociated
with the creating object.

The construction policy controls whether, in addition to creating the specified n
object, the ORB must also create a new domain for the newly created object. If
domain is needed, the ORB creates bothréfygiested object and a domain manag
object. A reference to this domain manager can be fourmhlling
get_domain_managers() on the newly created object'sfeeence.

While the management intade to the costruction policy object is standardized, tt
interface from the ORB to thaolicy object is assumed to be a private one, which |
be optimized for different implemertians.

If a new domain is created, tp®licies initially applicable to it are the policies of t
enclosing domain.

The calling application, or an administrativepdication later, can change the domse
to which this object belongs, using the domain managem entanésrf

Summary of Objects in the Model

The previous sections hadescribed the variousecurityrelatedobjects, which are
available to applicdons, admiistrators, and irplementors.

Figure 15-51 shows the relationship between the main objects visitiféeirentviews
for three types ofecurity functiomlity.

CORBAservices: Common Obj&arvices Specification

15

® Authentication of prigipals andsecurityassociations (which includes
authentication b&teen clients and tartg) and message protection.

® Authorization and access coal (i.e., theprincipal being authorized to have
privileges or capabilities and control of accessltgects).

® Accoungbility -- auditing of security-related events and using repudiation to
generate and check evidence of actions.

authoisaton and :
access control

authenticabn and

. . accountability
security associations

| |
| |
| |
| |
| |
application | | Principal ’ ‘ Current ’ [application ’L: Audit | | Audit
visible . |Authentication . LAccess Decisio, |Decision [channe
H | | |
objects ‘ " (Non-repudiation
! Credertials ! ! puc
| | ! credentials
| | |
777777777 [
| | |
implementation’ ‘ secure invocatior* 1 ‘ Access control| !
- ORB services, | |
| | |
777777777 S rl1 1 "1 00 "1 -0
implementation' . o ‘ :)
ity obi ts‘ Vault Security ! Access ' | Audit Audit
secunty objects Context || Decision |, |Decision |channe
| | | ‘ g
********* s e At iy Bt il
.. . | | . | . . .
administration, ‘ Secure Inocationpolicies ’ \ Access | (invocatior] (AppPn
| — | policy policy |
| |
| |

|
|
| delegation policj
|
|
|
|

‘ Domain Manager

Figure 15-51Relationship beteen main objects

Credertials are visible to the application after authentication skiting or obtaining
privileges and capabilities, for access control, and are available to ORB service
implemenbrs. Only the first of these usages is shown.

Policy objects have managementeifiaces to allow policies to be maintained. The
interfaces depend on the type of policy. For example, management of a mande
access contrgbolicy usinglabels isdifferent from management of an ACL. Howev
at run-time, an access policy object is used, which has a standard “check if ac
allowed” interface, whatever the access conpalicy used. The access policy obje
has both management and run-time iratees.

SecurityService:v1.0 NovemhE996 1583

15

The diagram does not aW:

® Environment objects, such as Current.

* Application objects (client, target object, target objecénaiice at the client).
® The ORB core (though theecurity ORBservices it calls are shown).

® The constructiorpolicy object.

15.5 Application Developer’s Interfaces

15-84

15.5.1 Introduction

This section defines the security intarés sed by thepplication developer who
implements the business logic of #ygplcation. For an overview of how these interfa
are used, see the Security Model as seempipjcations in Section 15.4, Security
Architecture.

Note that apptations may be completely unaware of security, and therefore not ne
use any of these inted@s. In gearal, applications mayave differentévels of seaity
awareness. For exate:

® Applications unaware decurity, so that anpplication object, which has not bee
designed with security in mind, cgarticipate in a secure object system and &
subject to its controls such as:
 Protection default quality of object invocations.
» Control of who can perform whichperations on which objects.
» Auditing of object invocations.

* Applications performingecurityrelevant activities. An application may control
access and audit its functions and data at a finer granularity than at object
invocation.

* Applications wanting some control of tkecurity of its requests on other objec
for example, the level of integrity paection of the request in transit.

® Applications that are more sophisticated in how they want taaotieir
distributed openions, for exanple, control whether thegredenials can be
delegated.

® Applications using more specialisecurity fcilities such as non-repudiation.

Security operations use the standard CORBA excepfimrsexample, any wocation
that fails because the security infrastructure does not permit it, will raise tdarstan
CORBA::NO_PERMISSION exception. A security operation that fails because the
feature requested is notpuorted in this implementation will raisé\N®® IMPLEMENT
exception. No securitgpecific exeptions are specified.

CORBAservices: Common Obj&arvices Specification

15

Security Functionality Conformance

Two security functionality levels are specified in thiiument, plus one optionfalility.

Security Functionalty Level 1

Security functionality level 1 provides an entry level gcurity functionality that applie
to all applications running undesacure ORB, whether aware of security or not. Thi
includes security of invocations between client and target object, message protect
some delegation, access control, and audit.

The security functionality is in gemalspecified by administering treecuritypoliciesfor
the objects, and is maintyansparent tapplications.

Security functionality Level 1 inclles interfaces for applications as follows:

® get_attributes allows an application to obtain the privileges and other
attributes of the pricipal on whose behalf it is epating. It can then usedse to
control access tds own functions and data (s&ection 15.5.4, Interfas, and
Section 15.5.9, Use of Intexfes for Access Control).

Security Functionalty Level 2

This security functionality level pvides further seaity functionality such as wre
delegation options.

It also allows an appation aware of security to have more tohof the enforcement ¢
this security. Most of the intextes specified in thisection are only avable as part of
this functionality level. Note that although im plem eiaias must support all Level 2
interfaces in order to conform 8ecurity Functionality evel 2, diferentimplementatior
of these interfaces may support different semantics; some implementations will th
be capable of enforcing ader variety ofpolicies than oths.

Security ReplaceabilitiReady éither option)

A securityreplaceabilityready ORB provides no security functionaliitself, but is
Security Readyi.e. it makes welformed calls to knowsecurity interfaces atefined in
Appendix D, Conformance Details) and supportsgée service_information
operation which allows an application to find out wheturity is supporte¢see
Section 15.5.2, Findin§ecurity Features). It alsogports theget_current

operation on the ORB to obtain the Current object for the execution context (see
B.3, Extension to the Use of Current).

Optional Functionality

The only specitd optional facility specified here is non-repudiation. Therfiaces for
this are specified in Section 15.5.11, Non-repudiation.

It is posdble to add other security policies to thjgecification, for example, extra acce
or delegation policies, but these are not part ofgpecification.

SecurityService:v1.0 NovemhE996 1585

15

15-86

Introduction to the Iterfaces

The interfaces specified here, as in other sections, are designed to allmwesoth
securitypolicies and mechanisms. Where possible, they are basettomational
stardard interfaces. Several of theedentialsinterfaces are Isad on those of GSS-AP|

Data Types

Many of the security data types usedapplications are also used forfementation
interfaces. These are therefore defined in the security common datamodule.

Some data types, such as security attributes and audisglhrame an extertde set of
values, so theser caradd values as required to meet usggecificsecuritypolicies. In
these cases, a family is idergifi and then a set of types or values for this family. Fa
identifiers 0-7 are reserved for OMG-defined famd|iand therefore standard vedu
More details of these families and associated data types are givependix A,
Consolidated OMG IDL.

module CORBA {
// the following data structurese used to return what
/] security is imptmented by et_service_information

typedefunsigned shorServiceVpe;

constServiceTpe Security = 1;
/I other Service types to lokefined

typedefunsigned long ServiceOption;

constServiceOption SecurityLevell = 1;
constServiceOption SecurityLevel2 = 2;
constServiceOption NonRepudiation = 3;
constServiceOption SecurityORBSepgReady = 4;
constServiceOption SecuritySerceéReady = 5;
constServiceOption ReplceORBSenges = 6;
constServiceOption RegplceSecuritySerees = 7;
constServiceOption StandardSecurelnteroperability = 8;
constServiceOption DCESecurelnteroperability = 9;

/I Service detailsupported byhe implementation
typedefunsigned long ServiceDetiype;

/I securitymech type(s) supported for secassociations

const ServiceDetailType SecurityMechanismyipe = 1;
/I privilege typesupported in standard access policy

const ServiceDetailType SecurityAttribute = 2;

CORBAservices: Common Obj&arvices Specification

15

struct ServiceDetail {

ServiceDetdiType service_detdi type;
sequence <octet> service_detail;

3

struct ®rvicelnformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

/I Security Palicy Types supported

enum PolicyType {
SecClientlnvocationécess,
SecTar@tinvocationAccess,
SecApplicationAcess,
SecClientlnvocationAudit,
SecTargtinvocationAudit,
SecApplicationAudit,
SecDelegation,
SecClentSecurelnvocation,
SecTar@tSecurelnvocation,
SecNonRepudiation,
SecConstruction

I3

module Security {
typedefstring SecurityName;
typedef sequence <octet> Opaque;

/I extensible families for standard data types
struct ExensibleFamily {

unsigned short family_definer;
unsigned short family;

h

Il security associatiomechanismype

typedef string MechanismType;

struct SecurtyMechandName {
MechanismType mech_type;
SecurtyName securty_name;

h

typedef sequence<MechanismType> MechanismTypeList;
typedef sequence<SecurityMechandNaBecurityMechandNamelList;

/I security attributes

typedefunsigned long Security&ributeType;

SecurityService:v1.0 NovemhE996 1587

15

15-88

I identity attrbutes; family = 0

const
const
const

SecurityAttribute Type
SecurityAttribute Type
SecurityAttribute Type

I/ privilege attrbutes; family = 1

const
const
const
const
const
const
const
const

struct

SecurityAttribute Type
SecurityAttributeType
SecurityAttributeType
SecurityAttribute Type
SecurityAttribute Type
SecurityAttribute Type
SecurityAttribute Type
SecurityAttribute Type

AttributeType {

ExtensibleFamily
SecurityAttribute Type

h

Auditld = 1;
Acountingld = 2;

NonRepudiatnld = 3;

Public =1;
Accessld = 2;

PrimaryGroupld = 3;

Groupld = 4;
Role =5;
AtributeSet
Clearance =7;
Capability = 8;

attribute_family;
attribute_type;

typedef sequence<tki buteType>AttributeTypeList;

struct SecAtribute {
Attri bute Type
Opaque
Opaque

[/l the value of this attbiute can be
[/l interpreted only witknowledge ofype

h

typedef sequence<SettAbute> AtributeList;

/I Authenticatiorreturn status

enum AuthentationStatus {
SecAuthSuccess,
SecAuthFailure,
SecAuthContinue,
SecAuthExped

h

/I Associatiorreturn status

enum AssociatinStatus {
SecAssocSuccess,
SecAssocFailure,
SecAssocContinue

h

Il Authenticationmethod

typedef

unsigned long

attribute_type;
defining_authorty;

AuthentiationMethod;

CORBAservices: Common Obj&arvices Specification

6;

15

/I Credential types which can be set as Cumlefault

enum Cedentialype {
SeclnvocationCredentials,
SecOwnCredentials,
SecNRCredentials

h

/I Declarations relted to Rights

struct Right {
Extensible Family rights_family;
string right;

3

typedef sequence <Rig RightsList;

enum RiditsCombnator {
SecAllRights,
SecAnyRight

h

/I Delegation related

enum DelegationState {
Seclnitator,
SecDelegate

3
/I pick up from TmeBase
typedef TmeBaseltcT UtcT;
typedef TmeBase::Interval T IntervalT;
typedef TmeBase:: TimeT TimeT,;

/I Securityfeaturesavailable orcredentials.
enum $curityFeature {

SecNoDelegation,
SecSimpleDelegation,
SecCompositeDelegation,
SecNolrotection,
Seclntegrity,
SecConfidentiality,
SeclIntegrityAndConfidentiality,
SecDetectReplay,
SecDetectMisordering,
SecEstablishilistinTarget

b

I/l Security feature-value

struct ®curityFeatureValue {
SecurtyFeature feature;
boolean value;

b

typedef sequence<SecurityFeatureValbecurityFeatureVakeList;

SecurityService:v1.0 NovemhE996 1589

15

/I Quality of protection whiclean bespecified
I/ for an object reference and used to prateeisages
enum QOP{
SecQOPNotection,
SecQOMmtegrity,
SecQORonfidentiality,
SecQOMtegrityAndConfdentiality

h

I/l Association optins whichcan beadministered
/I on secure invocation poli@nd used to
[/l initialize security context

typedef unsiged short AsociationOptins;
const AssociationOptins NoRotection= 1;

const AssociationOptinsintegrity= 2;

const AssociationOptinsConfidentiality = 4;

const AssociationOptionBetectReplay = 8;

const AssociationOptinsDetectMisordering = 16;

const AssociationOptinsEstablishTustinTarget = 32;
const AssociationOpbtinsEstablishTrustinCknt = 64;

I/l Flag to indicate whethersiationoptions being
/I administeredre therequired” or “supported” set

enum RequiresSupports {
SecRequires,
SecSupports

h

// Direction ofcommuntationfor which

/I securenvocation policy applies

enum CommuraationDirection {
SecDirectioBoth,
SecDirectionRequest,
SecDirectionReply

h

/I AssociationOptions-Direction pair

struct OptonsDirectionPair {
AssociationOptions opdins;
CommunicationDirection direction;

|3
typedef sequence<OptisDirectionPair>OptionsDirectionPairList;

/I Delegation mode whicban beadministered

enum DelegationMode {
SecDelModeNoDelegation, // i.eseown credentials
SecDelModeSimpleDelegation, /] debeg receredcredentials
SecDelModeCompositeDelegation // dedég both;

15-90 CORBAservices: Common Obj&srvices Specification

15

/I Association optins supported by a given mech type

struct MechandOptins {
MechanismType mechanism_type;
AssociationOptions optins_supported;

b

typedef sequence<MechandOptions>MechandDptiist;
/I Audit data structures

struct AudiEventType {

ExtensibleFamily event_family;
unsigned short event_type;

h

typedefsequence<AudEventType>AuditEventVpelList;

typedefunsigned long SelctorType;
const SetctorType InterfaceRef = 1;
const SetctorType ObjectRef = 2;
const SekctorType Operation = 3;
const SetctorType Initiator = 4;
const SetctorType SuccessFailre = 5;
const SetctorType Time = 6;

/I values defnedfor audit_needed and atdwrite are:
Il IntefaceRef.object reference

/I ObjedRef: object reference

// Operation: op_name

// Initiator: Credentials

/I SuccesFailureboolean

/I Time: utc time oraudit_write; time ptked up from
Il environment iraudit_needed ifequired

struct SekctorValue {
SelectorType selctor;
any value;
3
typedef sequence<SsitorValie> SeéctorValueList;
3

In the interface specifications in thest of this section, data types defirsmbve are
included without the qualifyingecurity:: for ease of readability. The full definitions al
included in Appendices A and B.

SecurityService:v1.0 NovemhE996 1591

15

15-92

15.5.2 Finding Security Features

Description of Facilities

An application can find out what security facilities this implementation suppants,
example, which security functionalityiel and options it supports. It can also find ou
what security technology is used to provide this implem entation.

Theget_service_information operation defined here could be used for
informationabout other CORBAacilities and services, so is ngiecific to secility,
though only security details aspecified.

Interfaces
interface ORB {

boolean gt_service_information (

in ServiceType seree_type,
out Servicelnformation serge_information,
);
k
Parameters
service_type

Identifies the service for which thefammation is required.
service_information
The informationpertaining to theervice.
Return Value
ReturnsTRUEIf the service is quported and, if so, the
service_information contains valid informtion. FALSEis returnec
if the service is unqported.

Portability Implications

Applications dependent asecurityfacilities beyond those isecurity functionality
Level 1 may not be portable betwedifierent secure ORBs. This interface allows
applcations to adapt to the security avhlia

15.5.3 Authentication of Principals

Description of Facilities

A principal must establish its credentials before it can invoke an agieetelyFor many
clients, theraare default credentials,eated when the user logs on. This may be
performed prior to using any object system client. These default credemngials
automatically used on objectiacation without the client having to take specific acti
Even if user authetication is exected within the object system, it should normally be

CORBAservices: Common Obj&arvices Specification

15

done by a user sponsor/login client, which is separate from thesbasipplication clien
so that business applications can remain @ne\wf security.

In most cases, pringals must be authenticatedestablish their edentials. Howver,
some services accept regts from unauthéitated users. In this case, if the principal
no credentials at the time the request is made, undidaien credenais are created
automatically for it.

If the user (or other pringal) requires authergation and has not been authenticated |
to calling the object stem, the (login) client must invoke tReincipal Authenticator
object to authenticate, and optionally select attributes for, the principal for $kisrse
This creates the required Cretials object and makes it avdila as the default
credentials for this client. Its object referencalgo returned so it can be used for oth
operations on the @dentials. If the object siem spports non-repudiation, the
credentials returned can be used for non-repudiapenations aspecified inSection
15.5.11, Non-repudiation.

Authentication of prinipals mayrequire more than one step, for exga) when a
challenge/rsponse or other multistep authentication method is used. In this case, t
authentication segice will return information to the caller, which may be used in furt
interactions with the user before continuing the authentication. So there are both
authenticate andcontinue authentication operations.

There is no need for an application to explicitly authenticate itself to act as an initi:
principal prior to invoking other objects, as this will be performed autoaltif needed
However, it does need to be performed eifhyi if the object wants to specify particule
attributes.

Interfaces

This section defines the “Authenticate” and “Continue Authenticatip®rations on the
Principal Authenticator object.

authenticate

This is called, for example, by @er sposor to authenticate the pcipal and optionally
request privilege attributes that the princigauires during its session with the syster
creates a Credentials object including the iregLattribues.

AuthenticatonStatusuthentcate (

in AuthenticatonMethod method,

in string secuty _name,

in Opaque auth_data,

in AttributeList privileges,

out Credentials creds,

out Opaque continuationdata,
out Opaque auth_specific_data

SecurityService:v1.0 NovemhE996 1593

15

15-94

Parameters

method The identifier of the authentication method used.
security_name The pmpal’'s identification ifiormation (e.g. login name).
auth_data The praipal's authetication information such gsassword or long term

key.
privileges The privilege attributes requested.
creds Object reference of the newly createeld€nials object. Not fully

initialized, therefore unaable unleseeturn paramter is ‘Success.’
auth_specific_data

Informationspecific to the particular authenticatisarvice used.
continuation_data

If the return parameter from the authenticate operation is ‘Continue,’

this parameter cdains challenge iformation for authentiation

continuation.

Return Value

The return paramter is used to specify the result of the operation.

‘SecAuthSucess’
Indicates that the object reference of the newly created initialized
credentals object is available in the creds parameter.

‘SecAuthFailure’
Indicates that authentication was in some way inconsistent or errone
and therefore edentials have not beereated.

‘SecAuthContinue’
Indicates that the authentication procedure uses a challenge/respon
mechanism. The creds contains the object reference of a partially init
Crederials object. Theontinuation_data indicates details of the
challenge.

‘SecAuthExpied’
Indicates that the authentication data contained sofomriation, the
validity of which had expired (e.g. expired pa®d). Credentials have
therefore not been created.

continue_authentication

This continues the authenticatioropess for authentication procedures that cannot
complete in a single operation. An example of this might be a challenge/response
authentication procedure.

AuthenticatonStatus continue_authecdiion (

in Opaque response_data,
inout Credentials creds,

out Opaque continuatbon_data,
out Opaque auth_specific_data

CORBAservices: Common Obj&arvices Specification

15

Parameters

response_data
The response data to the challenge.

creds Reference of the patrtially initializede@entials object. The Credential
object is fully initialized only when return parameter is ‘Success.’ Not¢
this parameter is described as inout, as the atithgon procedure will
modify the state of the Credeals obgct.

continuation_data
If the return parameter from tieentinue_authentication
operation isContinue,’ then thigparameter contains challengéoim ation
for authentication continuation.

auth_specifi_data
Information specific to thparticular authentication service used.

Return Value

The return parameter is used to specify the result of the operation.

‘SecAuthSuccess’
Indicates that the Credentialbject whose reference was identified by
creds parameter is now fully initialized.

‘SecAuthFailure’
Indicates that the response data was in some way inconsistent or err
and that therefore edentials have not beeneated.

‘SecAuthContinue’
Indicates that the authentication procedure requires a further
challenge/rgponse. The Credentialbject whose reference wiaentified
in the creds parameter is still only partially initigliz The
continuation_data indicates details of the next challenge.

‘SecAuthExpired’
Indicates that the authentication datatedored some information whose
validity had expired (e.g. expired password). A Credentials object he
therefore not beeoreated.

Portability Implications

Theauthenticateandcontinue autheitation operations allow different authentication
methods to be used. However, methods availabldegendent oavailability of
underlying authentication mechanisms. Tdpecification does nalictate that particula
mechanisms should be used. However, use of some mechanisms, e.g. those invo
hardware such as smart cards or fingart readers, may also require use of device-
specific objects so the client using such objects will not be portablstensy which do
not support suckevies. It is therafre ecommended that use of both the authentica
operations desitred here and angevice-pecific ones be confined to a user sponsor
login client, or that such authentication is done priaraiing the object sstem, where
the credentials re#ting from this can be ged in portable applications.

SecurityService:v1.0 NovemhE996 1595

15

15-96

15.5.4 Credentials

Description of Facilities

A Credertials object represents a principal’s currerdential information for theession
and therefore incldes information such as that pdipal’s privilege attribtes and
identities such as the audit id. (It also includes seaterity-sensitive data required wt
this pringpal is involved in peer entity authénation. Hovever, such data is not visible
applcations.)

An application may want to:

® Specify security invocation options to be used by defaulineter these credentic
are used for object ircations.

* Modify the privilege and other attrilbess in the credentials, for example, specif
new role or a capability. This canodiify the currenprivileges in use, or the
application can make eopy of the Credentialsbject first, and then nalify the
new copy.

® Inquire about the security attutes currently in the credaals, particdarly the
privilege attributes.

® Check if the credentialare still valid or if they have timed out, and if so,resh
them.

Crederial objects are created as the result of:
® Authentication (see &tion 15.5.3, Authentication of Pdipals).
® Copying an existing Credeats object.

® Asking for a Credentialsbject via Current (see Section 15.5.6, Security Opera
on Current).

The way these credentialse made available for use irvatations iglescribed irSection
15.4, Security Architecture, and defineddietail in Sections 15.5.5, Object Refecsn
and Section 15.5.6, Security Operations on Current.

Credernials used for non-remliation also support furthéacilities as decrbed in Sectior
15.5.11, Non-repudiation.

Interfaces

All the following operations are part of the Credential interface.

copy

This operation creates a n&@vedentials object, which is axact duptate (a "deep
copy") of theCredentials object which is the target of thedication. Theeturn value is :
reference to the newbreateccopy of the original Credéials object.

Credentialopy ();

CORBAservices: Common Obj&arvices Specification

15

Return Value

An object reference to a copy of the Credalstbbject, which was the target of the
call.

set_security_features

This associatesset of security features with a Credaigiobgct and sets each feature
be “on” or “off.” The security features affect how a secusmaistion is set up, such a:
what delegation mode to use, whether trust in the target is needed, and what mes
protection is requéd.

Some implementations may allow the security features to be set for communicatiol
direction only(i.e. for requests only, oreplies only) via the directionapameter, but this
suppott is not required for compliant im plem éiatas. The request-only and reply-onl
feature setare treated as ovatlgs to the “both” feature set. If an upported direction i
passed teet_security_features , theBAD_PARAMXxception should be raised

The value of a security feature set by this operation is used for invocations using t
Credentials object (if this does not contravene the ClientSecurelnvocation policy f
feature or the target’'swocationpolicy). Once associated with tlizederials object, a
feature may be turned “on” toff” again with an additionatall to
set_security_feature

void set_security_features (

in CommunicationDirection direction,
in SecurityFeatureVakList secutly _features
)i
Parameters
direction The communication direction (i.e. both, requestejply) to which the

security feature should be applied. Normaky to both.
security_features

A sequence of required feagdvalue pairs. They may indicate the

delegation mode or a secure associabjation such as a message protec

requirement, or whether trust in the target is needed. To setdtued on

set the boolean value TQRUE a value ofFALSE s used to turn off the

feature.

get_secutly features
This returns the securifgatures associated with tierederials.

The direction parameter indicates which set of security features (i.e. thésrtiset
request direction, the reply direction,bmth) should be returned. Conforming
implementations are not required to support the “request” and “reply” directions. If
unsupported direction is passedyid_security _features , the
CORBA::BAD_PARAMXception should be raised.

SecurityService:v1.0 NovemhE996 1597

15

15-98

SecurityFeatureValeList get_secuty_features (
in CommunicationDirection direction

);
Parameters

direction The communication directighe. both, request, or reply) for which the
security featoes should be régved. Normally set to both.

Return Value

A sequence of required featdvalue pairs. A bolean value offRUEindicates the
feature is on; a value ¢fALSE indicates the feature is off.

set_privileges

This is used to request a set af/pege attributes (such asle, groups), pdating the stat
of the supplied Credentials object. One of the attriigigisested may be an attribute
reference, which causes a set of attributes to be requested.

Note: This operation can only be used to set privilege attributes. Other attributes, -
the audit identity, are generated by the system and cannot be changedylittegion.

boolean set_privileges(

in boolean force_commit,
in AttributeList requested_privileges,
out AttributeList actual_privileges
);
Parameters

force_commit If true, the attributes shoulddpplied immediately. Otherwise, attribut
acquisition may beeferred to when required by the system.
requesed_privileges
A set of (typed) privilege attributalues. One of tase may be a role nan
which is an attribute set reference used to select a set of tatsripd null
attribute set requests default attributes.) Attributes can inclakbilities
actual_privileges
The set of (tped) privileges actuallgbtained.

Return Value

true Indicates that attributes can be set, and thatdfual_privileges
param eter contains the complete set or subset of those attributes rec
It is the resposibility of theapplcation programmer to interrogate the
returned attributes to determine their suitability.

false Operation failed, Credentials were not modified.

CORBAservices: Common Obj&arvices Specification

15

get_attributes
This is used to get privilege and other attribiditesy the Credetials. It can be used to:

® Get privilege attributes, including capabilities, for use in access control decisi
the principal was not authenticated, only @riwilege atribute is returned. This h:
type Public and no meaningful value.

® Get other attributes such as audit or charging itlestif available. (If the principe
is not authenticated, none of these wteirmed.)

Note: This operation is also avdila on the Current psdo-obgct.

AttributeList get_attrbutes (

in AttributeTypeList attrbutes
);
Parameters
attributes The set of security attributes (privilege attributesderdities) whose

values are deasd. If this list is empty, all attributes are returned.

Return Value

The requested set of attributes reflecting the state of the Credentials.

is_valid

Credentials objects may have limitecttimes. Thiooperation is used to check if the
Credentials are still valid.

boolean §_valid (
out UtcT expry_time

);
Parameters

expiry_time The time that th€redentials expire.

refresh
This allows the applation to update gired Cedentals.

boolean refresh ();
Return Value

False The Credéials could not be refreshed.

SecurityService:v1.0 NovemhE996 1599

15

15-100

Portability Implications

Theauthenticate andset privilege operations allow particular privilege
attributes to be specified. The attributes supported by different systems may vary
according to secity policies sypported. It isecommended that use of theseiifdces be
limited, so business application objects are not exposed to particular policy detads
they need to be, as they are enforcing compatdatarity policies directly).

15.5.5 Object Refence

Description of Facilities

If the client appliation is unaware of security (for expla, was written to use an ORE
without security), the ORBesvices will enforce the revant securityolicies
transparently to apishtions. As desdoed elsewhere, the security enforced is specifi
by:

® The security policy set at the client by administrative action.

®* The credentials used by the client.

® The security policy for the target object. Relevant security inftion about this i
made available to the client in the targetfgect reference.

These policies include associatigptions, any camols on whether this client can perfo
this operation on this taggy and the quality of protection ofassages.

The only visibility ofsecurity to nost applications is that some operations will now f
because they would breach security colstr

An applcation client unaare of security can communicate witsexurityaware one an
vice versa.

A client appication aware of security can alspecify what seqity policy options it
wants to apply when communicating with this target object by performing operatio
the target object’s reference. The followiogerations arevailable.

® override_default_credentialsspecifes a Gedentals object to be used when
calling this target object. For example, the client may want to make different
privileges available tdlifferent targets, so dose Credelwls with the required
privileges.

* override_default_ QOP specifes that gparticdar quality of potection is requred
for future messages it sends using this object reference.

® get_active_credentialgeturns the activeredenials to be used for iracationsvia
this target object reference.

® get_security featuresreturns the quality of protection and other security featt
which will apply to invocations via this object ezénce.

® get_policyis used to find the security policy of the specified type for this obj

CORBAservices: Common Obj&arvices Specification

15

® get security_mechanismseturns the securitgssociation mechanisms availabl
* override_default_ mechanismallows adifferent mechanism to be regsted.

® get security namegeturns the security namis) for the target.

Note: The applicatiostates itsninimum security requirements. A highavkel of
security may still be enforced as this may be required by security policy.

Although thes@perations quote the target object referettmscope of the effect of th
operation is the use of that reference itself, and not the object that it represents.

A target object can influence the security policy for incominvpdations by setting
security policies using the administrativédriaces in Section 15.6, Administrator’s
Interfaces. This will affct the security formation exorted as part of its object referer

Interfaces

In ORBs providing secity, the Obiject intedices incldes the security-related intades
defined in thissection. Thevailability and functionality opecific operations will vary
depending on the level of seity provided by the ORB. OMG IDL values for defined
security levels are described ippgendix A, Consolidated OMG IDL.

override_defalt_credentials

This specifies £redentials object to besad for future invocations that this client mal
on this target object. The client can choose any Credenbipgst avdable to it.For
example, it may want to enforce a least privilege policy, so usge@tials with only thos
privileges required by that targabject.

If neededpverride_default_credentials should be used before making an
invocation on thisobject, as it will genmlly result in a nevgecurity asociation reding
to be established with the target object.

void override_default_credentials (
in Credentials creds

):
Parameters

creds The object reference of the Credas object, which is to become the
default.

override_default QOP

The client applicatiomequests the quality of protection to use for messages when
invoking the target object, consistent with its controlling security policy. Note that ¢
request for a particular quality of protection mayoberridden by Security Policy. For
example, Security Policy may insist that all messages be confidential even if the cli
not asked for this. (The invoker can determine thisdling

get_security features and reading the value actually et it.)

SecurityService:v1.0 NovemhE996 15-101

15

15-102

Itis possible to use this operation to change the QOP (e fidentrality), for a particulal
message or sequence of messages, and theveaide default QOP again to
revert to aifferent set of options. Changing QOP will not in general require the
establishment of different securityassoition.

This operation does not allow QOP to be overridden for a single direction of
communication (i.ecequest or reply). If thdeature is required, use
set_security_features on an override @dentialobject.

void override_defatl QOP (

in QOP qgop
)i
Parameters
gop Requied quality of protection of messages.

get_security_featres

This is used by the client to find its rsetcurity requirements for invoking a particular
target object, as successfully regted thus far. Note that although the operation quc
the target object reference, the scope of the effect afgbrtion is the use of that
reference itself, and not thobject it repesents.

The direction parameter indicates which set of security featueethose seor the
request direction, theeply direction, or both) should beturned. Conforming
implementationsire not required to support the “request” and “reply” directions. If
unsupported direction is passedjt_security features , the
CORBA::BAD_PARAMXception should baised.

SecurityFeatureVakeList get_secuty_features (
in CommunicationDirection direction

);
Parameters

direction The communication directigne., both, request, or reply) for which the
security featues should be réaved. Normally set to both.

Return Value
The sequence of fealtvaluepairs curently requested on this object reference. A
boolean value oTRUEindicates the feature is on; otherwiSALSE

get_actie_crecdentials

This operation returns a reference to the credentials that wildsewhen invoking
operations using this object reference.

Credentials get_active_dentials ();

CORBAservices: Common Obj&arvices Specification

15

get_policy

This gets the security policy j@ut of thespecified type, which applies to this object. T
operation is also available on Current and is generadig there to get the policifes the
current object.

get_policy is used on object references during administration. For example, it n
used to get the policy for a domain.

CORBA::Palicy get_policy (
in CORBA::PolicyType policy_type
)i

Parameters
policy_type The type of policy to be obtained.

Return Value

policy A policy object that can be useddbtain thepolicy object.

get_security_mechanisms

Applications do not normally need to be aware of seeurity mechanismssad for
security of the invocation between client and target. The client environmewskn
what mechanisms it supports, and the target object reference exported from a
system specifies what mechanisms the target supports. So the client's ORB ca
normally choose the mechanism to use. Even if it cannot, negotiation of meche
may be supported without the application seeing it.

Applications can calfjet_security_mechanisms() to determine the set of
mechanisms supported by both the client and the target.

MechanismTypeList get_security_mechams();

Return Value

The mechanism types that both the client and target object support.

override_defalt_mechanism

For the rarecases where the application wants to influence what security mechanis
be used for future invocations, thpplcation can ask to override the mechanism chc
by the system. This wilpply only to invocations that this client makes using this okt
reference.

void override_default_mechanism (
in MechanismType mechasin_type);

SecurityService:v1.0 NovemhE996 15-103

15

15-104

get_security_names

This operation is for use by security sophisticated applications. It is used by client:
wish to determine which security nanmege associated with the tatglt is posible for
different security names to be used for the tadggending on the mechanism used f
the target. The name may be shared by several objects.

SecurityMechandNameList get_sed¢yrinames ();

Return Value

A list of pairs of valuesgach containing a security mechanism asslociated securi
name.

Portability Implications

The security éatues that can be set are generally on@pstded by a variety of securit
mechanisms. Applications using them will therefore be portable betweensiamsy
where the security mechanisms support thesteres. However, some security
mechanisms will not support alditures, for example, they may not provide replay
protection, or may not support confideity of applcation data (owing to regulatory
controls). Applications should check thesponse when attempting to set security
features, and if a requested feature is notablei take stable action.

15.5.6 Security Operations on Current

Description

The Current objeatepesents seice specific state inforation asociated with the
current execution context; both clients and targets have Cui@uts representing the
execution contextgNote that a reference to the Current object representing the act
execution context can betrieved using th©RB::get_current() operation; see
Section B.3, Extension to the Use of Current, for details). In a secure ORB, the Ct
object includesperations relevant to Securitygtbe operations aresiebed in this
section and provide access téoim ation about one or ore of the following crederals.

® invocation credentials these are theredentials at the client, used when this cl
invokes another object. There must alwaysiteslentialsavailable for inwcations,
but setting these is generally done transparently to thedsssapplications. Whe
a user logs on, the usseporsor or other logorprogram normally sets this to the
user’s credenals. If this is done outside thebject system, it is picked up at OF
initialization. At an inermediate object, its defaultlue is either theeceived
credentials or the object’s own credentials, depending on the delegation poli
applies to thabbject.

® own credentials the crederials associatedith the acive object. Aparticular
object may have its own credé@is or may share credentials with other objects
object’s own credentials are normally set up as the result of the dbjette
environment domain to which it belongs) being initialized.

CORBAservices: Common Obj&arvices Specification

15

® received credentials the credenéls received from the client of thevincation as
seen at the target objectefending on delegation options, this may be a sing|
Credentals dbject, or a list of crederdlis including those of both the imEtor and
other prirtipals in the chain

®* non-repudiation credentials: when non-repudiation is supportéide credentials c
the initiating principal in whose name evidence is being generated or verifie
logon, or ORB initialization, these are normally set to thers credentials. At
other objects, thegre set by default to their own credentials.

The following applications&wve the following functions.

® get attributes obtain privilege and other attributes associatét received
credenials (which should be the usepsivileges when at the worlagion).

® set credentialscan specify the type of credentials. This changes the cratsett
be used in the future for invocation, as its own cradéntor for non-repudiation

® get credentialscan obtain theredenials curently associated with the Current
object for invocation, non-repudiation, or as its own cradént

® received_credentialsattribute contains the credgas received from the client.

® received_security featuresan attribute at the target application, contains the
security feattes of the message sent by the client.

The appkation can also use the
® get policy operation to find what security policies apply to it.
® required_rights_object attribute todiscover which perations require which righ

® principal_authenticator attribute to get a reference to a PrincipalAuthenticatc
object (which can be used to authenticateqipals and thus obtain Credeals
objects for them).

Interfaces

get_attributes

This is used to get privilege (and other) attisufrom the client’s credentials. It is
available in the security functionality kel 1 to allow apptations to enforce #ir own
security policies without these applications having to perfmperations on creddals.

This interface can be used to get:

® Privilege attributes for use in access control slenis. If the prigipal was not
authenticated, only ongrivilege attribute is returned. This has typeblic and no
meaningful value.

® Other attribugs, such as audit or chargiigntities, if available.

At the client, this generally gets the user’s (or offrarcipal’s) privileges. At the target,
gets theaeceived privileges.

SecurityService:v1.0 NovemhE996 15-105

15

15-106

Note that aget_attributes operation is also available @redentialobjects.

AttributeList get_attrbutes (
in AttributeTypeList attrbutes

);
Parameters

attributes The set of security attributes\{pjege attributes and identities) wbe
values are degd. if this list is empty, all attributese returned.

Return Value

The set of attributes or idéties reflecting the state of the crederdi

set_credetials

As described previously, credeslt are associated with Current dtifferent types of use
Credernials are automatally associated with Current by tbkject system at
initialization, authentication, and object invocation. However, fiptiGation may want t
specify particulariedentials to useset_credentials on the Current object setst
specified credentials as tdefault one for the following.

® Subsequeninvocatiors made by that client.
This may be done to reduce the privileges available to that clies¢tbng
credentials havingefwer privileges. Also, an itermediate object can phcitly ask
for the received credentials to delegated by using the
received_credentials as the specifiedredentials orset_credentials

® The object'sown credentials.
If an application authenticates itself (so creates new credentials), or sets pri
on its own crederls, getting a newredentials object, it can use
set_credentials to set theseredenials as its own on wopcations requiring
them (e.g. for composite delegation).

®* Non-repudiation.
As for the invocation credentials, non-repudiation créidésamay be set
transparently to the busiss applicéon. The credendls used for non-repudiatior
may be the same as the credaistused for imocations.

void set_credentials (

in Credential Type credype,
in Credentials creds
);
Parameters

cred_type The type of credential to be set (i.eodation, own, or non-repudiation

creds The object reference of thee@entialobject, which isto become the
default.

CORBAservices: Common Obj&arvices Specification

15

get_credentials

This operation allows an ajigdtion access to the credentiatsociated with Current. /
for set_credentials , the application can agkr the default credentials for future
invocations, its owitredentials, or the ones used for non-repudiation.

An applcation will normally get invocation or other credentials when it wants to me
them (for example, reduce the privileges mlde).

Credentials get_credentials (
in CredentialType cred_type);

Parameters
cred_type The type of credentials to be obtained.
Return Value

The object reference of the credentials.

received_credentials

At a target object, this gets the credentials received from the clien¢dérials
representing more than one principal are received, the contents of tds#iatsiepenc
on the delegation model irse. They may be:

®* The credernals of the onlyprincipal identified, if simple delegation is usédr if
the security technologysed has merged the credaid of all the callers in the
chain).

® A list of credentials, if the credeats for differentprincipals in a chain of calls cc
be distinguished. Note that the number of credentials in this list depend on t
delegation option in use. €he may beredenials for the initator of the chain an
the immediate invoker only, or credentials providingaeée of allprincipals in the
chain. The first entry in the chain is the “primary” principal's credentials, norr
the credentials of the initiator of the chaingat_attributes call on Curent
returns the privileges from theseedentials.

At the workstation, theeceived_credentials attribute is the user'sedenials,
which are also the default credentials for invocation.

readonly attibute CredentialsLiseceived_credentials;

Return Value

A sequence of Credéal object referenca®ceved from the requester.
received_security features

This attribute at the target applicatirovides thesecurity features of the message ser
the client.

SecurityService:v1.0 NovemhE996 15-107

15

15-108

readonly attibuteSecurityFeatureVakList
receved_gcurity_features ;

Return Value

A sequence of feata-value pairs. Aoolean value oTRUEindicates that the featu
is on; otherwisd~ALSE

get_policy

This gets the securityolicy object of the specified type, which applies to this object.
When used on Current, it gets the secysijicy object for this client (which may not k
an object) or the current object.

Policy get_policy (
in PolicyType policy_type);

Parameters
policy_type The type of policy to be obtained.
Return Value

policy A policy object which can be used to interrogate the policgrod as
defined in Sectiod5.6, Administrator's Interfaces. For example,sbeure
invocation policy would give the secuassociations defaults for this ebf,
and the delegation policy would say whickdentals weredelegated on
invocations by thibject.

required_rights_object

This attribute is the RequiredRighdkject available in the environment. This object i
rarely used by applications directly; it is geslly used byAccess Decision objects to fit
the rights required to use a particular interface, though it coulddxt diectly by the
applcation if it wishes to do all its owaccess control, and base this on Rights.

readonly attribute RequiredRights regad_rights object;
The operations in the ierface of this object are defined in Sectldn6.4, Access
Policies.

principal_authenticator

This attribute is the PrincipalAuthoator object avéable in the environment. It can b
used by thapplcation to authenticate paipals andbtain Credentials caaining their
privilege attributes.

readonly attribute PraipalAuthenticator princigaauthenticator;

The operations in the terface of this object are defined in Sectldh3.2, Principles an
Their Security Attributes.

CORBAservices: Common Obj&arvices Specification

15

15.5.7 Security Audit

Description of Fcilities

Auditing of object invocations is done automdtchy the ORBaccording to the audit
invocationpolicies (ClientinocationAudit and TargetinvocationAudit) for this
application.

Applications can also audit their own security relevant acsjtiviere the auditing
performed by the ORB does not audit the regpiiativities and/ordata.

In this case, the application is respdesfor enforcing the application audit policy. It u
anaudit needed operation on the AudiDecision object for the policy to decide
which activities to audit.

Audit information is passed to an di1Channel object in the form of anditirecord. The
audit record must contain, or be sufficient to identify:

®* The type of event.
* The prircipal resporsible for the actionidentified by its credentials.

® Event-specific data associated with theent tye. This will vary, épending on th
event type.

®* The time. This may or may not be secure.

It may also want to record some of thues used for selecting whether to audiebhent,
for exanple, its success or failure.

An applcation auditpolicy will specify theevent families and event types as defined
Section 15.6.5, Adit Policies.

Interfaces

The interbices specified here are the ones to the Audtiionobject to decide whe
to audit, and the Audit Channel interface used to write the audit records.

audit_needed

This operation on the Audit Decision object is used to decide whether aneaadd r
should be written to the audit channel. Epplication pecifies the event type to be
checked and the values for thelectors, which the audit poliogquires to make the

decision.

booleanaudit_needed
(in AuditEventType event_type,
in SelectorValuelList value_list

);

SecurityService:v1.0 NovemhE996 15-109

15

15-110

Parameters
event type Eventtype assated with the operation.
value_list List of zero or more leetor id value pairs.

Return Value

True If an audit record should be created and sent to the audit channel.
False If an audit record is not needed.
audit_write

This operation writes an audit record to the Audit Channel object, and hence the a
trail. The audit trail is implementation-specific andside the scope of this document
is expected to be an event service of some sort, such as an OMG Evag. Ser

void audit_write (

in AuditEventType event_type,
in CredentialsList Creds,
in UtcT time,
in SelectorValueList desgtors,
in Opaque event_specific_data
);
Parameters

event_type The type of event being audited.

creds The credentials of the pripal esponsible for the event. If moedentials
are specified, thewn credentialg@ssociated with Current are used.
time The time the event occurred.

descriptors A set ofalues to beacorded associated with the event in the audit tr
These are often the saweues as thosesed to select whether to audit 1
event.

evert_specific_data
Data specific to a particular type of event, to be recorded in the audi

Return Value

None.

audit_channel

This attribute of the AudiDecision object provides theditichannel associated with tt
audit policy.

readonly attifpute AudiChannel audi channel;

CORBAservices: Common Obj&arvices Specification

15

Portability Implications

An appication relying on the stem aulit policies enforced at irocation time is portabl
to different environments, although the audit policies themselves may need chang

Applications with their own application audit polici&® portable, providing the audit
policy itself is portable and the selectors used ardadlaiin these enronments. For
example, if selectors use yiteges, the same ones must be lamé.

15.5.8 Administering Security Policy

When an object is created, it automatically becomes a member of one or more
domains, and therefore is subject to #eeuritypolicies of those domains.

Securityaware apptations can administesecurity policies (providing they are
authorized to d®o) using the interfaces describedSection 15.6, Administrator’s
Interface.

15.5.9 Use of Interfaces for Access Control

Description of Rcilities

Access policies for apiphtions may be enforced the following ways.

* Automatically by the ORB services on objectacation, to determine whether t
caller has the right to invoke an operation onobject.

® By the application itself, to enforce further controls on who can invoke it to c
what.

® By the application to contl access to its own farnal functions and state.

This section is concerned with applications that wish to enforce theiacwass control
either supplementing the automatic cofgon invocation or controlling tarnal
functions.

As explained imAccess Policies under Section 15.3.4, Access ContooldV| the decisiol
on whether to allow such access may use the following:

®* The prircipal’s credenials (which either contain itprivilege attribues, or identify
the principal so these can be ob#lh Using only the pritipal'sidentity gererally
regures that identity to be known at all targets, and leads to scalgtititfem s, sc
its use is depreciated. Use of the pijal’s role or group(s) are more likely to gi
easier admiistration in large systems, as would secucigarance. Enterprise-
defined attributes caalso be used when ported.

®* The target’s control attributes such as an AClseaurity classifcation.

SecurityService:v1.0 NovemhE996 15-111

15

15-112

® Other relevant informatioabout the action such as thpevation (on object
invocation) and parameters, aaldo context information such as time.
The application can use rights associated with an interface (as describection
15.6.3,Security Pokiies Intoduction) rather thaspecify controls for individual
operations.

® The security policy rules using this information as enforced byaditess decisiol
function.

The access policies enémd automatically by the ORB during object invocation can
into account the preipal's cedentials, the target’s ctol attributes, theperation and th
time (though the time is not used in the st access policgefined in Sectiorl5.6,
Administrator’s Interfae). However, the ORBoes not use the parameters to the
operation for controlling access. So, for exde if there is a rule that only senior
managers can authorize expenditover £5000, the apphtion is likely to need its owr
function to perform the reined check.

Where an appiation effiorces its own access dsians, it will be responsible for
maintaining its own control inforntian about operations, functions, atiaa it wishes t
protect. It can do this in a wapecific to its own particular functions data, but in som
cases, it is possible to have a more generic way of haratlteps desions, and in thse
cases, it may be possible to use a comaumess desion object with common
administration of the ACLs or other control attributes.

Interfaces

Application access decision functions should l@@enbyAccess Decision obégts. These
may require different information depending on, for example, the action or data to
controlled and theecurity policy rules agreviously described.

The Access Desion object should qport anaccess_allowed operation as is usec
for enforcing access policies in the ORB (see Access Deciggrt under Section
15.7.4, Inplementation-kvel Security Object Inteates). The inpytarameters to this
should normally specify:

® The privileges of the iniator of the action. The form of these depends on the
specific poicy. Some optionsre:
» The privileges of the initiator as supplied bget attributes operation or
Current(see Interfaces under 8mn 15.6.2, Secrity Operations on Current).
» A credentials bject, which represents pdipal.
» A credentials list (theeceived_credentials), where access controls
distinguish initiator and delegate pripals.
® Other information required by theccess desion function, including:

» Application-level decisions on whether arvatation ispermitted, the peration
and paramefrs passed in theequest, and the object reference.

» Control of access to internal functions and data, the actionredenhnt
parameters.

CORBAservices: Common Obj&arvices Specification

15

The return value from thaccess_allowed operation should bERUEIf access is
permitted, otherwisEALSE

It is recommended that whepessible, access dsimins are made by suéttcess
Decision objectgor at least separatet@rnal functions) thatide details of thactual
security policy used, so the ajgaltion does noteed to know, for example, whether a
ACL or label-based policy is used.

Portability Implications

Portablity of applcations enforcing their owaccess controls is improved by use of
Access Decision objects as previously dbsck. Theapplication then does not need t«
know the particular rules used, and even which principal and object attribute types
used to decide whether access should be gedn{it can alsoide whether the
principal’s credentials include all privilege attrtba reeded, or whether these are
obtained dynamically when need.).

Different systems mayaed to support different access control peicBy hiding detail
of the access control rules used tooeoé the policy behind stardard interce, the
application will geneally beportable to environments witifferent polices.

Applications that use their own specific code to make access decisions will only b
portable to systems that support the identity and privilegbue types sed in those
decisions with the same syntax.

15.5.10 Use of Interfaces for Delegation

Description of Rcilities

An operation on a target object may resultalls on many other objects as descri
in Section 15.3.6, Delegation. An intermediate object in this chain of objects m

® Delegate the credentialeceived (often containing the initiatingincipal’s
privileges) to the nexabject in the chain, so access decisions at the target m
based on that principal’s privileges.

® Act on its own behalf, so use its own credaistwhen invoking anothawbject in
the chain.

® Supply privileges from both, so access decisions at the target object can tak
account both the initiating priipal’s privileges and where these came from.

Which of thesalelegation modes should be used depends on the application. F
example, a ser might call a dabase object asking for some data, and this may c
the data from a file that also contains data belonging to other users. In this exe
the database object would control access to #te dsing the ser’s pivileges,
whereas the filestore object would use the database’s privileges.

SecurityService:v1.0 NovemhE996 15-113

15

15-114

In general, the delegation mode used is sigetiby the administrator in the delegati
policy for objects of this type in this domainoWever, asecurityaware application
can also specify the delegation mode it wants to use, as it may wn¢mifmales

when invoking different objects.

Interfaces

All the interfaces used for delegation are specified elsewhere.s€bt®n describes
how they are used during dedggpn.

An intermediate object can set the delegation mode for an invocation by perfor
set_security _features operation on the Credeals object to be used for the
invocation (see Section 15.5.4, CredemsdialThis can be used to set the delegatio
mode to:

®* NoDelegation, meaning use the intermediate’s object’s own credentials.
* SimpleDelegation, meaning use the credenteteived from the client.
® ComposieDelegation, meaning use both.

The way the received andtémmeliate’s own credentialare combined in
CompositeDelegation is not defined. Depending on th@ementation:

® The initiating principal's and the intermediate’s own creddsatare passed, and ¢
available seprately at the target.

®* The receivedtredentials and intermediate’s own credaistare combined, so the
target sees only a single credentials object with privileges &ach of tlese.

® Credentials from all objects in the delegation cheaim passed and are available
separately to the target.

None of these partitar composite delegation modese part of theSecurity
Functionality Level 2. They are described here because of the effect on the
received_credentials (see Interfaes umer Section 15.5.6Security Operation
on Current), which a target objectas to find out who called it. The target norma
uses this to get privileges for use in accesgrobuecisions.

Thereceived_credentials attributeprovides aCredertialsList, not just a singl
Credentials object. This list will only have more than one entry after composite
delegation as defined above. I&tk is nore than one entry in the list, the first entn
that of the initiator in the chain, normally the main one used for access controls
is also the one whose privileges are obtainedyeiaattributes

Portability Implications

Where possible, the delegation mode shoulddteusing the administrative interfac
to the delegation policy, so applications may delegate privilégresot) without any
application level code, and so pertable.

CORBAservices: Common Obj&arvices Specification

15

If an application sets its own delegation mode, it shouldlde to handle a
NotSupported exception if CompositeDelegation is specified, as this may not b
supported.

If the application wants to enforce its own access policy, it should use an Acce
Decision objecias described in Interfaces under Sectiorb B5.Use of Interfaces ft
Access Control), which hides whether access decisions utilize the initiator’s priv
separately from the delegate’s privileges.

However, where an application wants to provide specific checks whietmiadiates
have been involved in performing the originakts opertion, such checks are like
to depend on the delegation scheme and itdementation, and so not lpertable.

15.5.11 Non-repudiation

Non-repudiation is an option#dcility, not part ofsecurity functionality level 1 or 2.

Description of Fcilities

The Non-repudiatiorservice provides evidence of application actions in a form that
cannot be repliated later. This evidence is associated with some data (for exampl
amount field of a funds transfdocument).

Non-repudiation evidence jovided in the form of a token. Two tokerpss are
supported:

®* Token including the associated data

* Token without included data (but with a uniquéerence to thessociated data)

Non-repudiation tokens may be freely distributed. Any possessor of a non-repudia
token (and the associated data, if not idetiliin the token) can use the non-repudiati
Service to verify the evidence. Any holder of anon-repudiation token may store it
with the associatedata, if not incladed in the token) for later adjudication.

The non-repudiation interfaces support generationvaniication of tokens efnodying
severaltifferent types of evidence. It is anticipated that the following will be the mc
commonly used non-repudiation evidence token types:

® Non-repudiation of Creatioprevents a mssage creator'slée denial of creating
message.

® Non-repudiation of Receipt prevents @&ssage recipient'sise denial of &ving
received a rassage.

Generation and verification of non-repudiation tokens require as context a non-
repudiation crederdl, which ertapsulates a priffal's secuty information (particularly
keys) needed to generate and/or verifydkiglerce. Most operations provided by the
Non-repudiatiorService argperformed on NRCredentiadbjects.

SecurityService:v1.0 NovemhE996 15-115

15

15-116

Non-repudiatiorService operations pported by the NRCredentials interfaoe as
follows.

®* set NR_featuresspecifies the features to apply to futerddence generation an

verification operations.

get NR_featuresreturns the features which will be applied to futawdence
generation anderification operations.

generate_tokengenerates a non-repudiation token using the current non-
repudiation éatures. The gemated token may contain:

» Non-repudiation evidence.

» A request, containing information sleribing how a prtner should use the Nor
repudiation Service to generate an evidence token.

» Both evidence and a request.

verify_evidenceverifies the evidence token using the current non-repudiation
features.

get_token_detailsreturns information about an input non-rdfation token. The
information returned depends upon the type of the token (evidence or reque

form_complete_evidenceas used when the evidence token itself does not cor
all the data required for itgerification, and it is anticipated that some of the de
not stored in the token may become unavailable during the interveddmet
generation of the evidence token aratification unless it is stored in the token
Theform_complete evidence operation gatérs the “mssing” information
and includes it in the token so that verification can baranked to be possible
any future time.

Theverify_evidence operation returns an indicatavid_complete),
which can be used to tigmine whether thewidence contained in a token is
complete. If a token’s evidence is not complete, the token can be passed to
form_complete_evidence to complete it.

If complete evidence is always reged, the call tdorm_complete_evidence

can, in some cases, be avoided by settindahme_complete requesflag on the
call toverify_evidence ; this will result in a complete token being returnéal
theevid_out parameter.

Interfaces

Non-repudiation Serice Data Types
The following data types are used in the Non-repudiationiGzeinterfaes:

typedefMechanismYpe NRmech;
typedef BExensibleFamily NRPatyld,;
enum EvidenceType {
SeclroofofCreation,

SeckoofofReceipt,

CORBAservices: Common Obj&arvices Specification

15

SecPoofofApproval,

SeckoofofRetrieval,

SecPoofofOrigin,

SeckoofofDelivery,

SecNoEvdence // used wheaquest-onlyokendesired

b

enum NRVerifcationResult {
SecNRInvalid,
SecNRValid,
SecNRConditnallyValid

|3

I/ the following are usetbr evidence validity duration
typedef ulong DuratidnMi nutes;

const DurationInMinutes DURATION_HOUR =60;

const DurationinMinutes DURATION_DAY =1440;

const DurationinMinutes DURATION_WEEK = 10080;

const DurationinMinutes DURATION_MONTH =43200;// 30 days
const DurationinMinutes DURATION_YEAR =525600;//365 days

typedeflong TimeO#etinMinutes;

struct NRPolicyFeatures {

NRPolicyld policy_id;
unsigned long policy_version;
NRmech mechanism;

|3

typedef sequence<NRPolicyFeatures> NRPolieyresList;

/ features used whemgeratingrequests
struct RequestFeatures {

NRPalicyFeatures requested_policy;
EvidenceType requested_evidence;

string requested_evidenceegerators;
string requested_evidence_recipients;
boolean inalde_this_tokenn_evidence;
3

Non-repudiation Serice Operations

This sectiondescribes the NoRepudiation Seiceoperations. All these operations al
part of the interface of the NRCredexisi object.

set NR_features

When an NRCreddials object is created, it is\gn a default set of NR features, whic
determine what NRRolicy will be applied to evidence gematon and verification
requests.

SecurityService:v1.0 NovemhE996 15-117

15

Security-aware apightions may set NR features to specify polidgetingevidence
generation and verification. The interface for settingfBéRures is:

boolean set_NR_features (

in NRPolicyFeaturesList requested_features,
out NRPolicyFeaturesList actudeatures);
Parameters

requested_features
The non-repudiation features rerpd.

actual_features
The NR features thateve set (may differ from thosequested dependir
on implementation).

Return Value

true If the requestedthtures were edualent.
false If the actual feates differ from theequested features.

get NR_features

A get NR_featuremterface is provided to allow seity-awareapplcations to determin
what NR policy is currently in effect:

NRPolicyFeaturesList get_NR_features ();

Return Value

The current set of NR featess in use in this RCredetials object.
generate_token

This operation generates a non-repudiation telssociated with the data passed in a
input buffer. Environmental inforation (for example, the calling pdipal's name) is
drawn from the RCredetials object.

If the data for which non-repudiation evidence is regglis larger than can convenien
fit into a single buffer, it is possible to issue multiple cqbssing gortion of the data o
each call. Only the last call (i.e. the one on whighut_buffer_complete =
true) will return an output token and (optionally) an evidence check.

void generate_token (

in Opaque input_buffer,

in EvidenceType generate_ewdence_type,
in boolean incluel data_m_token,
in boolean generate_request,

in RequestFeatures request_features,

in boolean inpubuffer_compekte,
out Opaque nr_token,

out Opaque evidence_check);

15-118 CORBAservices: Common Obj&srvices Specification

15

Parameters

input_buffer

Data for which evidence should be generated.

generate_evidence_type

Type of evidence token to generate (may be NoEgiegn

include_data_in_token

If set TRUE data provided immput_buffer will be included in
generated token; otherwiSALSE

generate_request

The output token should include a request, as described in the
request_features parameter.

request_éatures

A structuredescribing the request. Its fields are:

requested_policynon-repudiation policy to use when generating evid
tokens in response to this request.

requested_evidenclype of evidence to be generated in response to t
request.

requested_evidence_generatanames of partners who should genera
evidence in response to this request.

requested_evidence_recipientsmes of partners to whom evidence
generated in response to this request should be sent.

include_this_token_in_evidendgset true, the evidence token
incorporating theequest will be included in the data for which partners
generate evidence. If setda, evidence will be generated using only tl
associatedata (and not the token incorporating the request).

input_buffer_complete

nr_token

True if the contents of the input buffer complete the data for which evi
is to be generated; false if more data will be passed ohseguent call.
The returned NR token.

evidence_check

Return Value

None.

Data to be used to verify thequested token(s) (if any) when treg
received.

verify_evdence

Verifies the valility of evidence contained in an input NR token.

If the token containing the evidence tousgified was provided to thealling appication
by a partner responding to the calleygplication’s regast, then the callingpalication
should pass the evidence check it received when it generatestjtiest as a param etel
verify_evidence along with the token it reosd from the partner.

SecurityService:v1.0 NovemhE996 15-119

15

It is possible taequest the generation of complete evidence. This ntaeed or falil; if it
fails, a subsequenall toform_complete_evidence can be made. Output indicat
are provided, which give guidanabout the time or times at which
form_complete_evidence should be called; see the parameisciptions for
explanations of these indicators and their use. Note that thepgendied by
complete_evidence_before may be earlier than that specified by
complete_evidence_after; in this case it will lee@ssary to call
form_complete_evidence twice.

Because keys can be revokedieclared corpromised, the return from
verify_evidence cannot in all cases be a definitive “SecNRValid” or
“SecNRInvalid”; sometimes*‘SecNR ConditionallyValid” may be returned, depending
upon the policy in use. “SedRCorditionallyValid” will be returned if:

® The interval during which the generator of the eviden ce peayissibly declare his
key invalid has not yet expired (and therefore it is possible that the evidence 1
declared invalid in the future), or

® Trusted time is required for verification, and the time obtained from the token
trusted.

NRVerificationResulverify_evidence (

in Opaque input_token_buffer,

in Opaque evidence_check,

in boolean form_complete_ewence,

in boolean token_buffer_comglte,

out Opaque output_token,

out Opaque data_inetled_n_token,

out boolean evidence_is_coraf#,

out boolean trustel_time_used,

out TimeT complete_edience_before,

out TimeT complete_edence_after);
Parameters

input_token_buffer
Buffer containing(possibly gportion,possibly all of) evidence token to !
verified; buffer may also contain data associated with evidence toke
(parsing of buffer in this case is undesi only by NR mechanism; see
get_token_details).
evidence_check
The evidence check.
form_conplete_evidence
SetTRUEIf complete evidence igquired; otherwis€ALSE
token_buffer_complete

SetTRUEIf theinput_token_buffer completes the input token;
FALSE if more input token data remains to be passed on a subsequ
call.

15-120 CORBAservices: Common Obj&srvices Specification

15

output_token Ifform_complete_evidence was set td RUE this parameter will
contain complete evidence (and the Return Value will be Valid) or ar
“augmented” but still incomplete evidence token, in witake
conditionally valid is returned.

data_inclded_in_token
Data associated with the evidemn extracted from input token (may be
null).

evidence §_complete
TRUEIf evidence in input token is complete; othenkige SE

trusted_time_used
TRUEIf the evidence token ctains a time condered to be trsted
according to the rules of the non-repudiaiaiicy. FALSE indicates tha
the securitypolicy mardates trusted time and that the time in the toke
not considered to be trusted.

complete_evidence_before
If evidence_is_complete is FALSE, and the return value from
verify_evidence is conditionallyValid, thecaller should call
form_complete_evidence with the returned output token beé this
time. This may be required, for expia, in order to ensure that the tims
skew between the evidence generation time and the trusted time se
countersignature on the evidence falls within the interval allowed by
current NR policy.

complete_evidence_after

If evidence_is_complete is FALSE and the return value from
verify_evidence is conditionallyValid, thecaller should call
form_complete_evidence with the returned output token after th

time. This may be required, for example, to ensure that all authoritie
involved in generating the evidence have passed the last time at wh
current NR policy allows them to repudiate their keys.

Return Value

SecNRInvalid Evidence isinvalid.
SecNRValid Evidence is valid.
SecNRConditionallyValid
Evidence cannot yet be determined to belidva

get_token_details

The information returned depends upon the type of the takédefce or request). The
mechanism that created the token is always retlirn

® |f the input token contains evides, the following is returmned: the non-repudiat
policy under which the evidence has been generated, the evidence type, the
time when the evidenogas gemrated, the name of the generator of the evide
the size of the associated data, and an indicator specifying whether the ass
data is included in the token.

® |f the input token contains a request, the following is returned: the name of 1
requester of the evidence, the non-repudiation poligeuwhich theevidence to
send back should be gmated, the evidence type to sdmatk, the names of the

SecurityService:v1.0 NovemhE996 15-121

15

15-122

recipients who should generate and distribute the requested evidence, and th
of the recipients to whom threquested evidence should be sent after it has b
generated.

® |f the input token contains both evidence and a request, an indicator describ
whether the partner’s evidence should be generated using only the data in tf
token, or using both the data and the evidence in the input token.

void get_token_details (

in Opaque token_buffer,

in boolean token_buffer_compte,

out string token emerator_name,

out NRPolicyFeatures policy_features,

out EvidenceType evidence_type,

out UtcT edence_generation_time,

out UtcT euvilence_valid_start_time,

out DurationinMnutes euvilence_validity_duration,

out bookan data_includedri_token,

out boolean request_includedni_token,

out RequestFeatures request_features);
Parameters

token_buffer Evidence token to parse.
token_buffer_complete
Indicator when the token has been fully provided.
token_generator_name
Principal name of token gerator.
policy_featuresDescrbes thepolicy used to generate the token.
evidence_type Type of evidence contained in the token (mayjbg&vidence).
evidence_generation_time
Time when evidence was generated.
evid_validity_start_tine
Beginning of evidence validity interval.
evidence_validity_duration
Length of evidencealidity interval.
data_included ni_token
TRUEIf the token includes the data for which it contains evidence;
otherwse FALSE
request_includedni token
TRUEIf the token includes equest, otherwisEALSE
request_features
Descrbes the included request, if any. Seegaperate NR_token
parameter description for details.

Return Value

None.

CORBAservices: Common Obj&arvices Specification

15

form_complete_evidence

form_complete_evidence is used to generate an evidence token that can be v
successfully with nadditional data at any time during its ity period.

booleanform_complete_ewdence (

in Opaque input_token,

out Opaque output_token,

out boolean trusted_time_used,

out TimeT complete_evidee_before,

out TimeT complete_evidee_after);
Parameters

input_token The evidence token to be qiated.

output_token The “augmented” evidence token; may be complete.

trusted _time_used
TRUEIf the token’s generation time can be trusted, otherrAdeSE If
trusted time is required by tipmlicy under which the evidence will be
verified, and if this indicator is not set, the evidence will not bsicaned
complete.

complete_ewdence_before
If the return value i§ALSE, form_complete_evidence should be
called before this time.

complete_evidence_after
If the return value i§ALSE, form_complete_evidence should be
called after this time.

Return Value

true Evidence is now complete.
false Evidence is not yet complete.

15.6 Administrator’s Interfaces

This sectiondescribes the administrative features of the specification. Admaitiist
specifies theolicies that control theecurity-related behavior of the systeme$a
features form an ‘Administrator’s View,” encqrassing the interfaces that a human
administrator would need to use, but the facilities may also be used by ttonakn
applications that wish to be involved in administrative actigdministrator’ may
therefore refer to a human orssgm agent.

Most interfaces defined here areSacurity Functionality bvel 2, as Level 1 security
does not include administrationtémfeces.

SecurityService:v1.0 NovemhE996 15-123

15

15-124

15.6.1 Concepts

Administrators

This specification imposes no constraints on how respiiies are drided among
security administrators, but in maggses an entgrise will have a security policy that
restricts the responsibilities of any one individuakdllegal requirements may dictat
separation of roles sodh for example, ther@re diferent admirstrators for access
control and auditing functions.

Administrators are dyject to the samsecurity contols as other users of the system. |
expected that an enteige will define ples (or other privileges) thaertain
administrators will adopt. Administrative operations are subject to access controls
auditing in the same way as other object invocations, so only administrators with t
requred administrative privileges will be able to invoke administrative operations.

Because administrative or managementises in genel have been identified as a
Common Facilityn the Object Management Architecture, only minimal, secspgeific
interfaces are givehere together.

This specification does ndefine admirstrative functions concerming the managemer
underlying mechanisms gporting the securityesvices, such as an Authentication
Servte, Key DistributionService, or Certication Authority.

Policy Domains

Securityadministrators specify sectity policiesfor particular security policgomains
(for brevity, only the words in bold are used for the remainder of this section).

A domain includes an objedermed thelomain manager which references thgolicy
objectsfor this domain, and zero or more other objects, which are damezimbersand
therefore subject to the policies.

The domain manager records the nbemship of the domain andgwides the means to
add and remove members. The domain manageselsa member of a domain, possik
the domain it manages.

There are different types of poliopjects for admiisteringdifferent types of policy. As
described irSecurity Policy Domains wer Section 15.3.8, Domains, domains may
members of other domains, so forming containmegrianchies. Because different kinc
of policy affect different groups afbjects, objects (and domains) may be members ¢
multiple domains.

The policies thaapply to anobject are those of all its elwsing domains.

CORBAservices: Common Obj&arvices Specification

15

Security Policies

This specification covers admdgtiation of securityolicies, which are enforced by a
secure object system either of the following ways.

® Automatically on object invoden. This covers system policies feecurity
communications between objects, aohbf whether this leent can use this
operation on this target object, whether the invocation should be audited, an
whether an original principal's credentials can be deéxfat

® By the application. This coverecuritypolicies enforced by applications.
Applications may enforce access, audit, and nonédigpion poicies. The
application policies may be managed using domains as for other security pc
or the application can dose to manage its own policies in its oway.

Invocation time policies for anobject can be apphible only when this object is acting
a client, only when it is a target object, or wheneverdatigg as either.

Securitypolicies may be administered by any application with the right to use thrtys
administrative interfaces. This is subject to the invocation access qooltcylfor the
administrative interface.

15.6.2 Domain Management

This section includes the interfaces needed to find domain raremnagd find the policie
associated with these. Howevewdtes not include interfaces to manage domain
membership, structure of domains, and manage which policies are associated wit
domains, as these arepexted to be developed in a future Managerfractlity
specification (for example, one based on the X/OpeteBys Management Prelimary
Specification); the Collection Service is also relevant here.

This section also includes the interface to thestrorctionpolicy object, as that is al
relevant to domains. Similarly, it includes theerfiace administrative applications
needed to find the domains (and therefore the policies) that appbjdcts. The basi
definitions of the interfaces related to these are part of the CORBA module, sinc
definitions in the CORBA module depend on these.

Interfaces to administer theecurity policy djects are defined iSection 15.6.3,
Security Pdties Introduction.

module CORBA // Basic Managemenfiastructure

{
interface Palicy /I Features common to all Palicies
{ &

interfaceDomainManager {
/I Features common to &lomain Managers

SecurityService:v1.0 NovemhE996 15-125

15

15-126

I/l get policies foobjects in thislomain;eachdomainmayhave

I policies of varous different types. This call returns the policy

/I of the specified type fahedomain which ighetarget ofthe call.
Policy get_domain_policy (
in PolicyType policy_type);

/I Note that thelomain manager also inherits the

/l get_policy and get_domain_mareg operations

/I definedfor all objects in a secure systersee below

h

interface ConstructionPolicy: Policy{
void make_domain_manager(
in CORBA::InterfaceDef object_type);

h

/[additions toCORBA::Object interface
interface Object {
DomainManagerList get_domain_manags();
/I Note that Section 15&efinesother extensins to
/I theObject interface, includinged_policy

3

typedef sequence<DomainMareag DomainManagerList;
3
Policy

The return type obperations that retrieve policy objects. Thisis an empty interface
which various Policy interfaces are derived.

Domain Manager

The domain manager will provide mechanisms for:
® Establishing and navigatinglationships to superior and sarbinate domains.

® Creating and accessing jués.

There should be no unnecessary constraints on the ordering of thesesctoriti
example, it must be possible to add new policies to a domain with astiregx
membership. In this case, some means of determining the members that do not cc
a policy that may be imposed is recpd.

All domain managerprovide theget_domain_policy operation, in addition to the
other policy-related operations provided by @@RBA::Object interface, i.e.
get_policy (described in Section 15.5.5, Object Refarep and
get_domain_managers (descibed in Extensions to the Object Interface under
Section 15.6.2, Domain Management).

CORBAservices: Common Obj&arvices Specification

15

get_domain_policy
This gets the policy of the specified type for objects in this domain.
Policy get_domain_policy (
in PolicyType policy_type
);
Parameters

policy_type The type of policy for objects in the domain which the applicetons
to administer. Fosecurity, thgossible policy types aescribed in
Section 15.6.3, Securifjolides Introduction

Return Value
A reference to thpolicy object for the specified type of policy in this domain

Construction Policy

The construction policy interfac@wvs callers tespecify that when istarces of a
particular interfacare created, they should be automatically assigned mem bership
newly created domain at creation time.

make_domain_manager

This specifies that when ansiance of the imrface specified by the input parameter i
created, a new domain manager will be created and the cexaked object will iIgpond
to get_domain_managers () by returning a reference to this domain manager. Tt
policy is implemented by the ORB during executiorBGfA::create (or equvalent)
and results in the construction of both the aggpilon-pecified object and a Domain
Manager object.

void make_domain_manager (
in InterfaceDef object_type

)i
Parameters
object_typeThe type of the objects for which Domain Managers will be created. If

nil, the policy applies to atibjects in the domain.
Extensions to the Object Interface

Section 15.5.5, Object Reference, definpsrations on thEORBA::Object interface
for application use. Note that these includget policy operation. For administrati\
applications, th®©bject interface ialso extended with the following operation.

SecurityService:v1.0 NovemhE996 15-127

15

15-128

get_domain_managers

get_domain_managers allows security administrationrséces (and security-awar
applcations) to retrieve the domain managers, and hence the sgmlidgigs applicable
to individual objects.

sequence <DomainManag> get_domain_manags ();

Return Value
The list of immediately enclosing domain managers of this domain manager.

15.6.3 Security Policies Introduction

Invocationsecurity policies are enforced autonsatly by ORB serices during object
invocation. These are:

® invocation accesgolicies(ClientinvocationAcess and TargetncationAccess)
for controlling access to objects.

® invocation audit policies(ClientInvocationAudit and TargetinvocationAudit)
control which operations on which objects are to be audited.

® invocation delegationpolicies for controlling thelelegation of privileges.

® secure invocationpolicies(ClientSecurelnvocation and TargetSecuxalcetion)
for security associations, including controlling the delegation of client's creder
and message protection.

Different policies generally apply when an object acts as a client from when it is
target of an invocation.

In addition to these Wrocationpolicies, therare a number of policy types, which appl
independently of object invocation. @e are:

® application accessolicy, which gplicaions may use to manage and @rce their
access policies.

® application audit policy, which applications can use to manage and enforce |
audit policies.

® non-repudiation policies determine the rules for the gestion and use of
evidence.

There is also a policy concemed witleation of objects, which is emriced by
BOA::create . This istheconstruction policy, which controls whether a new domaii
created when an object of a specified type is created.

Note: Policies associated with underlyisecurity technology are not included. For
example, there are mpwlicies forprincipal authentication as this is often donespegcific
securityservices.

Interfaces are proged for setting all the types of secufitglicies previously ted. In
each case, these managem etgrfaces permit administration of standard policy

CORBAservices: Common Obj&arvices Specification

15

semantics supported by the interfaces defined in this sgaifi. It is &0 possible for
implementors to repte thepolicy objects whse interfaces are defined in this
specification with different policy objects supporting different seticanin gereral such
policy objects will also have management interfaces different from those defined i
specification.

15.6.4 Access Policies

There are two invocatioaccess policies: the ClientlocationAccespolicy, which is
used at the client side of an invocation, and the TargetinvocationAccess policy, wt
used at the target side.

There is one policy type for application access. However, no standard administrat
interface to this is specified, dsferentapplications ve different requirements.

Access Policies control accessdnbjectspossessing Privilege Attributes), to objects
usingrights. Privilege Atributes haveleeady been discussed @ection 15.5,
Application Developer’s Interfasg rights arelescrbed in the next section.

Rights

The stalard AccessPolicy objects in a secure CORB#ey implemenéccess policy
usingrights (though implementations may define alternative, non-rights-based
AccessPolicy objects).

In rights-based stems, AcessPolicy objectgrantrights to PrivilegeAttributedpr each
operation in the interface ofsaecure object, some set of rightseiguired Callersmust b
granted these required rights in order to be allowed to invoke the operation.

Secure CORBA systemsqvide a RequiredRights interface, whichoalb:

®* Object interface developers to express the “access contes’tgp their operation
using standardights, which are likely to be understood by administrators, witt
requring administrators to baware of the detailed semantics of thoperations.

® Access-control checking code toriete the rightsequred to invoke an interface
operations.

A RequiredRights object Bvailable as an attribute of Curreneiery execution contex
Every RequiredRights object will get arett the same information, so it does not ma
which instance of thRequiredRightinterface is sed. The required rights for all
operations of all secured interfaces are assumed to beikdetisrough any instance c
RequiredRigks.

Note that Required Rights arearhcterisics of interfacesnot of instances. All
instances of an interface, therefongll always have the sam&equired Rights.

Note also that because Required Rights are defined and retrieved through the
RequiredRights interface, no change to existing object interfaces ise@du iorder tc
assign reqired rights to theioperations.

SecurityService:v1.0 NovemhE996 15-129

15

Rights Families

This specification provides stardard set of rights for use with the
DomainAccessPolicy interface defined in DomainAccessPolitsrfiace later in this
section. These rights may notisft all access control requirements. However; to
allow for extensibility, rights are grged into Rights Families. The Rigfamily
containing the standard rights is called “corba,” and contains three rights: “g”
(interpreted to mean “get”), “s” (interpreted to mean “set”), and “m” (interpreted
mean “manage”). liplementations may define additional Rights Hem. Rights are
always qualified by the RightsFamily to which they belong.

RequiredRights Interface

A RequiredRights object can be thought of as a table; an example&iRjights tabls
appears later in this section. Note that implementations need not maaged
rights on an interface-by-interface basis; ReqlRights djects should be thought
as databases of policy information, in the same way as Interface Rejssitre
databases of interface infortian. Thus in many implementatiores] calls to the
RequiredRights interfaceill be hardled by a single RequiredRights object instan
or by one of a number of replicated instances of a m&squiredRights object
instance.

An operation’s entry in the RequiredRights table lists a set of rights, qudlified
“tagged”) as usual with the RightsFamily. It alspecifies eRights Combinatqrthe
rights combinator defines how entries with more thanregeired right should be
interpreted. This specification defines two Rights Com birsatslIRights (which
means that all rights in the entry must be granted in order for access to be allo
and AnyRight(which means that if any right in the entry is granted, accdkbav
allowed).

Note that the following behaviors of systems conforming to COR¥g4urityare
unspecified and therefore may bepiementation-dependent:

® Assignment of initial required rights to newly created interfaces.

® |nheritance of requed rights by newly created derived enflaces.
get _required_rights

This operation retrieves the rights reeui to execute the operation specified by
operationNamef the interface specified bj. obj's interface will be determined ar
used to retrieveequired rights. The returnedaluesare a list of rights and a
combinator describing how the list of rights should be interpreted if it contains |
than one entry.

void get_required_ghts(

in Object obj,

in Identifier operan_name,
in Repositoryld interface_name,
out RightsList rtgs,

out RigtsCombinator rights_combinator

15-130 CORBAservices: Common Obj&srvices Specification

15

Parameters

obj The object for which required rights are to be returned.

operation_name The name of the operation for which required rights are to be re

interface_name The name of the interface in whiclothexation desdoed by
operation_name is defined, if this iglifferent from the interface ¢
which obj is a direct instance. Not allflementations will require thi
parameter; consult your implementation documentation.

rights The returned list of required rights.

rights_combinator
The returned rights combinator.

set_required_rights

This operation updates the rights rizggd to execute theperation specified by
operationNamef the interface specified bpterface The caller must provide a list
rights and a combinator describing how the list of rights should be interpreted i
contains more than one entry. Note that consistency issues dr@mgeplcation of
RequiredRights objects or distriton of theRequiredRightinterface must be hdted
correctly by inplementations; &r acall toset_required_rights changes an
interface’s required rights, all Beequentalls toget_required_rights , from
any client, must return the updated rights set.

void set_required_ghts(

in string operath_name,
in Repogoryld interface_name,
in RightsList rigts,

in RightsComimator rights_combinator

);
Parameters

operation_name The name of the operation for which required rights arepddted
interfface_name The name of the interface whose medjuightsare to be updated.
rights The desired new list of raged rights.
rights_combinator

The desired newights_combinator

AccessPolicy Interface

This is the root interface for the various kinds of invocasiooess control policy. This
interface supports querying of thdegttiveaccess granted by aedential by an mocation
access policy. It inherits the Policyténface and has one operation,
get_effective_rights

get_effective_rights

This operation returns the current efieetrights (of familyRightsFamily granted by
this AccessPolicy object to the subject possessing all privilegbuaes in the
credenials cred

SecurityService:v1.0 NovemhE996 15-131

15

15-132

RightsList get_effective_rights (
in CredentialsList creds_list,
in ExtensibleFamily rights_family

);

Note that this specification does not define how atess Policy object combines
rights granted through differeftrivilege Attribute entries, itase a subject has mc
than one Privilege Attribute to which the Access Policy grants rights. However,
call will cause the AccedRolicy object to combine rights grantedaib privilege
attributes in the input Credeat (using whatever jgeration it has irplemened), and
return the result of the combination.

Access Decisiombjects, and applications that check whether accgsnsitted
without using an Access Datn object, should use this operation to retrieve rigl
granted to subjects.

Specific Invocation Access Policies

This specification allows dirent InvocationAccess policies to be provided through
specialization of the AccessPolicy interface.

Eachspecific Irvocation Accesgolicy is esponsible for defining its own administrati
interfaces. The specification defines a standard Invocatizess policy iterfece,
including administrative operations; it is presented in the sestton. This staradd
policy may of course be regded by or augmeed with other policies.

DomainAccessPolicy Interface

The DomainAccessPolicinterfaceprovides discretionary access policy managem
semantics. CORBA iplementations with policy requirements, which cannot be r
by the DomainAccessPolicgbstraction, may choose toplement differentAccess
Policy objects; for example, they may choose tpléementaccess control policy
management using capabilities.

Domains

This speciftation defines interfaces for administratioraotess policy on a domain ba
Each domain may ba&ssigned an access policy, which is applied toladicts in the do-
main. Each access-controlled object in a CORBA system must be a membeasf an|
domain.

A DomainAccessPolicy obgt defines thecgess policy, which grants a set of named
“subjects” (e.g. users), a specified set of “rights” (e,g,ng) toperform operations on tf
“objects” in the domain. A DomainAccessPolicy can h@asemed by atable whose rov
labels are the names of subjects, and whose cells are filled with the rights grantec
subject named in that row’s label, as in Table 15etghat the use of the
Delegation State will be discussed in #eetion of the same name next).

CORBAservices: Common Obj&arvices Specification

15

Table 15-1 DomainAccessPolicy

Delegation | Granted
Subject State Rights
alice initiator corba:gs-
bob initiator corba:g--
cathy initiator corba:g--
zeke initiator corba:gs-

This DomainAccessPolicy grants the rights “g” and “s” to Alice and Zeke, and the
“g”to Bob and Cathy. (The annotatiéoorba” prefixing the granted rights indicates
which Rights Family, as defined in the previous section, each of the rights in the te
drawn from. In thiscase, all rights are drawn from DomAttessPolicy’s standard
“corba” Rights Family. The deletjan state column is described under the heading
“Delegation States”.)

DomainAccessPolicyse ofPrivilege Attributes

Administration of prirtipals by irdividual identity is costly, so the Domaircéess
Policy aggregates priipals for access control. A common aggregation is called
“user group.” This spedifation generalizes the waysers are aggregated, using
“Privilege Attributes”(as defined in Access Policies under t8ec15.3.4, Access
Control Module). Users may have many kindpotilege attributes, including group
roles, and clearances (nhote that user access identities, often referred to simply
identities” or “userids,” are considered to be a special case of privilegiausdts). The
DomainAccessPolicy object uses Privilege Attributes as its subjedeent

This specification does not provide an interface for managing user priviltipe tas;
an implementation of thispecification might provide a “Us@&rivilege Atribute
Table” enumerating the set ofers grante@achPrivilege atribute. An implementor
might provide a user privilege attribute table, shown next.

Table 15-2 User Privilege Attributes (Not Defined by This Specification)

Users Privilege Attr ibute
bob, cathy groupprogrammers
zeke groupadministrators

Given the definitions in thisable, we can simplify our DomainAccessPolicy as
follows (note that, for convenienceach PivilegeAttribute entry is annotated in the
table with its PrivilegeAttibute type).

SecurityService:v1.0 NovemhE996 15-133

15

15-134

Table 15-3 DomainAccessPolicy (with Privilege Attributes)

Delegation | Granted
Privilege Attribute State Rights

access_id: alice intator corba: gs-

group:programmers initiator corba: g--

groupadministators | initiator corba: gs-

Delegation State

The DomainAccessPolicgbstraction atiws adminstrators to grant different rights wh
a Privilege attribute is used by a dedégythan thse granted to the sameviege

attribute when used by an initiator (note that "initiator* means the principal issuin
first call in a delegated call chain; that is, the only client incilechain that is not als
a targetobject). The DomainAccessPolicy shown next illustrates the use dedtige.

Table 15-4 DomainAccessPolicy (with Delegate entry)

Privilege Delegation | Granted
Attr ibute State Rights
access_id:alice initator corba: gs-
access_id: alice delgate corba:g--
group:programmers| initiator corba: g--
groupadministators | initiator corba: gs-

This DomainAccessPolicy grants Alice the “g” and “s” rights when she accesses ar
as an initiator, but only the “g” right when a delegate using her identitgsesthe sam
object.

DomainAccessPolicy Use of Rights and Rights Families

The rights granted to a PrivilegetAbute by a DomainA&cessPolicy entry mustach
be “tagged” with the RiglsFamily to which they belonggach Domain&cessPolicy

entry can grant itsow’s PrivilegeAttribute rights from any nuwer of different Rights
Families.

Implementations may define new Rights Familieaddition to the standard “corba
family, though this should be done only if absolutely necessary, since new Rigt
Families complicate the administrator’s model of the system.

AccessDecisiotyse of AccessPolicy arRlequiredRights

The AccessDesion object and its interfaces alescribed in Access Dxsion Object
under Section 15.7.4, Implematibn-LevelSecurity Object Interfaes. It isused at run
time to performaccess control checks. Accessi3®n objects rely upon AccessPolicy

CORBAservices: Common Obj&arvices Specification

15

objects to provide the policy information upon which their decisions are based (sol
implementations may provide both the AccessDecision and AccessPolicy interfac
the same object).

To complete the example, imagine that we have the following set of objectistan

Table 15-5 Interface Instances

Objects Inter face
obj_1, obj_8, obj_n cl
obj_2, obj_5 c2
obj_12 c3

The DomainAccessPolicy object illustrated nextlxen updated to include a list of rig
of type “other” granted to each of the Privilege attributes.

Table 15-6 DomainAccessPolicy (with Required Rights Mapping)

Privilege Delegation

Attri bute State Granted Rights

access_id:alice initi ator corba: gs-
other: -u-m-s

access_id:alice delegate corba: g--
other: ------

groupprogrammers initi ator corba: g--
other: -u----

groupadministrators| initiator corba: gs-
other: ------

Table 15-7 showRequiredRights () for three object inteceqcl, c2, and c3), using tt
standard RightsFamilicorba” and asecond RigtgFamily, “otker,” whose rights set is
sumed to be {g, u, o, m, t, s}.

SecurityService:v1.0 NovemhE996 15-135

15

15-136

Table 15-7 RequiredRights for Interfacesl, c2and c3

Required Rights

Rights Combinator Operation Inter face
corba:s all ml cl
corba:gs any m2

other:u all m3 c2
other:ms all m4

other: s all m5 c3
corba:gs all m6

Using this, we can calculate the effective access granted by this DomainAcces

alice can executeperations m1l and m2 of objects obj_1, obj_8, and obj_n as
initiator, but may execute only m2 as a delegate.

alice can executeperations m3 and m4 of objects obj_2, and obj_5 as an init
but may execute no operationsadfj 2 and obj_5 as a delegate.

alice can executeperations m5 and m6 of object obj_12 as an initiator, but n
execute no operations as a delegate.

“programmers” can execute operation m2 of objects obj_1, obj_8olgnd as an
initiator, but no operations as a delegate.

“programmers” can execute opgea m3 of objects obj_2 and obj_5 as an initiat
but no operations as a delegate.

“administrators” can execute operations m1l and m2 of objects obj_1, obj_8,
obj_n as an initiator, but no operations as a delegate.

“administrators” can execute operations m5 and m6 of object obj_12 as an in
but no operations as a delegate.

DomainAccessPolicy Iterface
The DomainAccessPolicy object provides interfaces for managing access polic!

Each domain manager may have at mostAeeessPolicy, and therefore at most one
DomainAccessPolicy (though an object instance may have than one domain
manager, and therefore, more than one DoairssPolicy). Th®omainAccssPolicy
interface inherits thAccessPolicynterface and defines operations to specify which
subjects can have which rights as follows.

grant_rights

This operation grants the specifigdhts to the privilege attributeriv_attr in
delegation statdel_state

CORBAservices: Common Obj&arvices Specification

15

Utilities that manage accepslicy should use this operation to grant rights to a si
privilege atribute.

void grant_rights(

in Attribute priv_attr,

in DelegationState del_state,

in ExtensibleFamily rights_family,
in RightsList hts

)i
revoke_rights

This operation revokes the speed rights of the privilege dtibute priv_attr in
delegation statdel_state

Utilities that manage access policy should use this operation to revoke rights gre
a single privilege attribute.

void revoke_rights(

in Attrbute priv_attr,

in DelegationState del_state,

in ExtensibleFamily rights_family,
in RightsList ghts

)i

replace_rights

This operationreplaces the current rights of the privilegeibtite priv_attr in
delegation statdel_statewith therights provided as input.

Utilities that manage access policy should usedperation to replace rights grant
to a single privilege attribute in sas where usingrant_rights () and
revoke_rights () is inappropriate. For exampleeplace_rights () might be
used to change an access_id’s auttations to reflect a change job description
(since the change in authorization in thése is related to the duties of the new jc
rather than to the ctent authorizations granted to the user owning the access_i

void replace_ripts (

in Attribute priv_attr,
in DelegationState del_state,
in ExtensibleFamily rights_family,
in RightsList ghts
);
get _rights

This operation returns the current rights (of tyightsFamily) of the Privilege
attributepriv_attr in delegation statdel_state

SecurityService:v1.0 NovemhE996 15-137

15

15-138

Utilities that manage access policy should use this operation to retrieve rights
to an individual privilege attribute.

RightsList get_ribts (

in Attrbute priv_attr,
in DelegationState del_state,
in ExtensibleFamily rights_family

);

15.6.5 Audit Policies

There are two wocation audit poligs: the ClientlmocationAudit policy, which issed a
the client side of an invocation, and the TargetinvocationAuddiicy, which is used at tt
target side. There is also application audit policy type.

Audit policy administration iterfaces are used to specify thiecunmstarces under whick
object irvocations and application tadties in this domain are auditl. As for access
policies, this specification allowkfferent audit policies to bgpecified, which may hav
different admiistrative interfaces.

Different audit policies are pottally possible, which allow a great rangeagitions of
what to audit. Some of #se are needed to respond togtablem of getting the useful
information, without gearating huge quantities of audifanmation.

Examples of what events could be audited during invocation include:
® Specified operations on objects.

® Failed operations (i.e. those thaise an egeption) on specified objectpgs in a
domain.

® Use of certain operations during certain time inter¢alg., overnight).
® Access controfailures on specified opetians.
® Operations done by a specifipdncipal.

® Combinations of these.

Note that many of these events may be related to the business application. For exa
operation ofupdate_bank_account is a business, rather thars®m, peration.
However, some events are mainly dkirest to a Privilege administrator (e.g., e
failures to systems objects).

Application audit policies may audit similar typeswgnts, though these are often rel:
to application functions, not object invocations.
Audit Administration In¢rfaces

A standard invocation audit policy administration interface is pa®ectirity
Functionality Level 2. It can besed to administer both client and target invocation a
policies.

CORBAservices: Common Obj&arvices Specification

15

This stamlard audit policy issed to specify for a set of event families awdnt types th
selectors to be used to define which events are to be audited.

These are fated to the selectors used andit_needed (on AuditDecision objects)
andaudit_write (on Audit Channel objects) as follows.

Table 15-8 Standard Audit Policy

Value on audit_needed

Selector Type and audit_write Value Administered

Interface from object reference object type

Object object reference none - the polapplies to all bjects in
the domain

Operation op_name operation

Initiator credential list securitgttributes (audit_id and privileges)

Success Failure| boolean boolean

Time utc when event occurred timeeéntal during which auditing is
needed

Note that audit policy is managed on an audit policy domain basis. Assignment of
audit selectors to newly created domains is unspecified and hence may be
implem entation-depetent.

The following operations are available on the audit policy object.
set_audit_selectors

This operation defines the selectors to beduto decide wheer to audit thepecified
event families and types.

void set_audit_sektors (

in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,
in SelectorValueList sektors

);

Parameters

object_type The type of objects for which an audit policy is bsétgif this is nil,
all object types are implied.

events Event tyes are specified as family and tygs. If the type id is zero,
the selectors apply to all evenpis in that family.

selectors The values of theesgtbrs to be sed.

SecurityService:v1.0 NovemhE996 15-139

15

15-140

clear_audit_selectors

This clears all audit selectors for the speciBgdnt families and pes.

void clear_audit_seltors (
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,

);

replace_audit_selectors

This replaes the specified selectors.

void replace_audit_settors (

in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,
in SelectorValuelList sektors

);

get_audit_selectors

This obtains the current values of g8@ectors for the specifieyent family or event.

SelectorValueList get_audit_seitors (

in CORBA:InterfaceDef object_type,
in AuditEventTypeList events,
in SelectorValueList sektors

);

set_audit_channel

This specifies the audit channel object to be used with this audit policy.

void set_audit_channel (
in AuditChannel audit_channel

);

15.6.6 Secure Invodah and Delegation Policies

These policies &ct the way secure communicatidmetween client and target aet up,
and then used. Hre are three policies here:

ClientSecurelnvocation paly, which species the Gient policy in terms of trust i
the target’s identity and protiian requirements of the commigations between
them.

TargetSecurelnvocatiopolicy, which specits the targepolicy in terms of trust ir
the client’s identity and protection requirements of the com mtiaita between
them

Delegation policy, which speddfs whethercredentialaare delegted for use by th
target when a securitgssociation is established between client and target. Thi
client side policy.

CORBAservices: Common Obj&arvices Specification

15

In all these cases, there is a standard policy aterfor administering thgolicy options.
Unlike access and audit policies, this is not replaceablestaingard policy
administration interfees allow spport of a range of policies.

Secure Invocation Policies

These are used to set client and target invocaitidinies which speciffpoth aset of
required secure association options and a setppiosted options that control how:

®* The securityassociation is made, for example, whether trust between client &
target is established (implying authentication if the client tangetare not in the
same identity domain).

® Messages using that associatame protected, for example, tHevels of integrity
and confidenglity.

The administrator should specify the requiasgociation options, but will often not ne
to specify the supported options as these default to the opesrted by the security
mechanism used. However, the adistitor could choose to restrict what is support:
and in this case, should sjfg supported options.

Some implementations mayornt separate sets of associatitions for
communications in the request direction and the réjpgction, e.gfor anapplcation tha
requires no protection on the request, bufidentiality on the rely. Conforming
implem entations are not required to support thisivegtional feature. Some selectabl
policy options may not be meaningful to set for a certain direction, e.g. the
EstablishTrustin Targeiption is not meaningfubr a reply.

Both ClientSecurelnvocation and TargetSecuretation support the same interface,
though not all of the selectable polioptions are meaningful to both client and targe

Required and Supported Secure Invocation Policy

For both the ClientSecurelocation and TargetSecurelnvocatjoolicies, a separaset
of secureassociation options may be established to indieataired policy and
supported policy. Therequired policy indicates the options that abject requires for
communications with a peer. Thepported policy specifies the options that an object
support if requested by a communicating peer.

Therequired options indicate the minimum requirements of the object; stronger
protection is not precluded.

Secure Assoeition Options

The selectable secure associatiptionsare listed next with a deggtion of their
semantics forequired policy andsupported policy.

NoProtetion

® Required semantics: thabject’s minimal preection requirement is pnotected
invocations.

® Supported semaits: theobject supports unptected irvocations.

SecurityService:v1.0 NovemhE996 15-141

15

15-142

Integrity
®* Required semantics: the object requireteast integrity-protected invocations.

® Supported semaits: the object soports integrity-protected invocations.

Confidentiality

® Required semantics: the object requireteast confideriality-protected
invocations.

® Supported semaits: the object oports confidentiality-protected invatiens.

DetecReplay
®* Required semantics: the object requireglay detection on invotian messages.

® Supported semaits: the object goports replay detection on invocation messag

DetectMisordering

® Required semantics: the object requiseguencesrror detection on fragments of
invocation messages.

® Supported semaits: the object goports sequencerror detedion on fragments of
invocation messages.

EstablishTrustinTarget

® Required semantics: On client policy, the client rezgithe target to authenticate
identity to the client. On target policy, this option is not meaningful.

® Supported semaits: On clientpolicy, the client supports having the target
authenticate its identity to the client. @rget policy, the target is preped to
authenticate its identity to the client.

EstablishTrustinClient

® Required semantics: Ottient policy, this option is not meaningful. Qarget
policy, the target reques the client to authenticate fisivileges to the target.

® Supported semaits: On clientpolicy, the client is prepared to authenticate its
privileges to the target. Ormrget poky, the target supports having the client
authenticate its privileges to tharget.

Note that on an invocation, if both the client and target policies specify that peer tr
needed, mutual authentication of client and target is generallyeequi

If the target accepts unauthemtied sers as well as authenticated ones, the
EstablishTrustinClient option may be set $apported policy, but not forequired
policy. This allows unautheitated clients to use this target (subject to accessateptr
the target can still insist on only authenticated users for certain operations bgacsss
controls.

CORBAservices: Common Obj&arvices Specification

15

Secure Invocation Administration Interdces
Set Association Options

Thismethod on the ClientSecurelnvocation and TargetSesoedtion policy objects i
used to set the secure association options for objects in the domain to witolighe
applies.Separate options may be set for particular object types by using the
object_type param eter.

This call allows requesting a different set of association options for communicatior
request direction versus the reply diieg, although conforming iplementationsire not
required to support this feature. The “request” amplyf’ options sets are treated as
overrides to the “both” options set when ewalngpolicy for asingle communication
direction. Implementations shouldise theCORBA::BAD_PARAMXxception if an
unsupported direction is requested on this call.

Not all selectable association opti@re meaningful for everyolicy set. For example,
EstablishTrustinClient, which is meaningful for the Target&souocationpolicy, is not
meaningful as a regi@ment for the ClientSecurelnvocatipolicy. Likewise,certain
associatioroptions do not make sense whagpled to only a singléirection(e.g.,
EstablishTrustinTarget is not meaningfoll communication in theeply direction). An
implem entation may choose whether to raise an exception or silently ignore reque
invalid association options.

void set_association_optis (

in CORBA::InterfaceDef object_type,
in RequiresSupports requires_supports,
in CommuncationDirection direction,
in AssociationOptions optins
)i
Parameters
object_type The type of objects that #wsociatioroptions apply to. If this is nil, a

object types are implied.
requires_supports
Indicates whether the operation applies to the required options or

supportedptions.

direction Indicates whether tlogtions apply to only the request, only tegly,
or to bothdirections of the imocation.

options Irdicates requested secure association optiorsethiyng the

corresponding options flags.

get_association_ptions

This is used to find what secure association options apply on &tiemtel nvocation an
TargetSecurelocationpolicy objectdor the requied or supportegolicy, for the
indicated direction, and for the specified object type.

Im plementations should raise t6®RBA::BAD_PARAMXxception if an unsupported
direction is requested on this call.

SecurityService:v1.0 NovemhE996 15-143

15

AssociationOptions €f_association_opins (

in CORBA::InterfaceDef object_type,
in RequresSupports requires_supports,
in InvocatonDirection direction
);
Parameters
object_type The type of objects that the association options apply to. If this is

object types are implied.
requires_supports

Indicates whether the operation applies torégriired options or the
supportedptions.

direction Indicates whether the options apply to only theasgyonly the reply,
or to both directions of the invocation.

Return Values

The assciation options flags set for thiolicy.

Invocation Delegation Policy

This policy controls which credentials are used when an intermedigget in a chain
invokes another object.

set_delegation_mode

Theset_delegation_mode operation specifies which credentials are delegatec
default at an intermediate object in a chain where objects invokeattjeets. This
default can be overridden by the object at run time.

void set_delegation_mode (

in CORBA:InterfaceDef object_type,
in DelegationMode mode
)i
Parameters

object_type The type of the @ajts to which this delegation poliepplies.

mode The delegation mode. Options are:
SecDelModeNodelegatiothe intermediates’s own credentials are dee
future invocations.
SecDelModeSimpl¢éhe initiating pringbal cedentialsare delegted.
SecDelMdeConposite both the received credentials and thterimediate
object’s own credetials are passed (if the underlying sgtyum echanism
supports this). The requester’s credaistand the intermediate’s own
credentials may be combined into a single crédkmr kept separate,
depending on the underlying security mechanism.

15-144 CORBAservices: Common Obj&srvices Specification

15

get_delegation_mode
This returns thelelegation mode associated with the object.

DelegationMode gt_delegatin_mode (
in CORBA:InterfaceDef object_type

):

15.6.7 Non-repudiation Policklanagement

This section defines intextes for management of non-repudiationgyolThese
interfaces are included in the nogpudiation conformance option.

Non-repudiation policies define the following:

* Rules for the generation of evidence, such as the trusted thirdspattich may b
involved in evidence generation and tloées in which they may be involved an
the duration for which the genated evidence igalid.

® Rules for the veritation of evidence, for example, the interval during which &
trusted thirdparty may legitimatelydeclare its key to have been gaomised or
revoked.

® Rules foradjudication, for examle, which authorities may be usedatjudicate
disputes.

The non-repudiation policy i may be used by the adjeator when resolving a
dispute. For example, the adjudicator might refer to the non-repudgetiiioy to
determine whether the rules for generation of evidence have beeriemnvith.

For each type of evidence, a policy defines a validity duration and whetbtedttime
must be used to generate the evidence.

For each non-repudiation mechanism, a pafiefines the set of trusted third parties
(“authorities”™), which may besed by the mechanism. A policy also defines, for eacl
mechanism, the maximum allowable “skelpétween the time of generation of evider
and the time of countersignature by a trusted sergce; if the interval between dise
two times is larger than the maximum skew, the time is notderesl to be trusted.

For each authority, a poliajefines whictroles the authority magssume, and a time

offset, relative to evidence generation time, which allows com putation of the last ti
which the authority can legitimatetieclare its key to havgeen compronsied orevoked.
For example, if an authority has a defilast_revocation_check_offset of

negative one hour, then all revocations taking effect earlier than one hour before tl
generation of a piece of evidence will render that eviden@did) no evocation taking
place later than one hour before the generation aévtdence will afect the evidence’s

validity. Note that théast_revocation_check_offset is inclusive, in the sens
that all revocations occurring up &nd includingthe time defined by
generation_time + offset are considered fefctive.

SecurityService:v1.0 NovemhE996 15-145

15

15-146

Data Types for Non-repdiation Pdicy Managementinterf aces
The following data types are used by the NR policy managementigsrf

struct EvidenceDesggtor {

EvidenceType evidence_type,
DurationinMnutes ewilence_validity_duration,
bookan must_use_trusted_time,

|

typedef sequence <EvidenceDescriptor> EvidenceO@edrist;

struct AuthorityDescrptor {
string authoritpame,
string authority_role,
TimeOffsetinMinutes &st_revocation_check_offset
/l may be >0 or <(gdd this to evid. gen. time to
/I get latest time at whiailech. will check to see
/l'if this authority’s key halseen revoked.

s
typedef sequence <uthorityDescrptor> AuthorityDescriptorList;

structMechanismDescptor {

NRmech mech_type,
AuthorityDescriptorList authoty_list,
TimeOffsetinMnutes max_time_skew,

/I max permissible fierence between evideg. ime
/l and time of timeservice countersignature
/l'ignored if trusted time not reqd.

I

typedef sequence <MechaniDescrptor>MechanismDescriptorList;

Non-repudiation Pdicy Managemeninterf aces

The non-repudiation policy defined in tlipecification supports
get_NR_policy_info andset_NR_policy_info operations.

get_NR_policy_info
Returns information from a non-regiation policy object.

void get_NR_poky_info (

out ExtensibleFamily NR_policy_id,

out unsigned long poley_version,

out TimeT policy_effective_time,

out TimeT policy_expiry_time,

out EvidenceBscriptorList supported_edence_types,
out MechanismDescriptorList supported_mechanisms

CORBAservices: Common Obj&arvices Specification

15

Parameters

NR_policy id The identifier of this non-repudiatipolicy.
policy vesion

The version number of this non-repudiation policy.
policy effective_time

The time at which this policy came into egt.
policy _expiry_time

The time at which this policy expires.
supported_evidence_types

The types of evidence that can be generated undequdlicg.
suppored_mechanisms

The non-repudiation mechanisms which can be used to generate an

evidence under this policy.

set_NR_policy_info
Updates non-repudiation policy information.

booleanset_ NR_poldy_info (

in MechanismDesciptorList requested_mechasins,
out MechanismDescriptorList actuahehanisms
);
Parameters

requested_mechanisms

The non-repudiation mechanisms to be supported under this policy.
actual mechanisms

The non-repudiation mechanisms now supported under this policy.

Return Values

true If the requested mechanismsne all set.
false If the actual mechanisms returned differ from those requested.

15.7 Implementor’s Security Interfaces

This sectiondescribes the ORB facilities avdila to security ervice inplementors to
support construction afecure ORBs usingprtable components and also tigect
security services, which iplement security. The intexfes defined in this appendix
support the replaceability ctmimance options defined lyppendix D, Conformance
Details.

® Generic ORB service (ietceptor) interfaces. This section defines ORB interfe
that allow services such ascurity to be inserted in the invocation path.
Interceptors are not specific security; they could besed to invoke any ORB
service. Interceptors are therefore proposed as erige@RB extesion. For this
reason, the generic interfaces supported by intesceptrepresented in Apendix
B, Summary of CORBA 2 Core Changes; os8curityspecific interceptor

SecurityService:v1.0 NovemhE996 15-147

15

15-148

interfaces are efined in thissection. These interfaces permadrvices to be neath
separated so that, for exammegcurity functions can coexist with other ORB
services such as traactions and replicatiofsee Section 15.7.1, Generic ORB
Services and Interceptors).

® Security Service replaceability. This appendix definesstdweirityservice
interfaces. that allowifferent securityservice implementations to be substilit
whether or not the generic ORB service interfaces areostguisee Setion
15.7.4, Implementation-Levé&ecurity Object Intedces, for details).

Appendix E, Guidelinefor a Trustworthy Sgtem, offersadditional guidance to
implementors of secure ORBSs, including a discussion of ystgction boudaries to
separate componts) depending on the level of security required.

The desdption of security interceptors in Section 15.7.3, Securityrbeqgtors
(particularly that in Inocation TimePolicies), specifies how client and target side poli
and client preferences are usedégide what policyptions to enforce. This definition
how the options aresed applies whether the ORB conforms to the repllity options
or not.

None of the interfaces defined in tisisction affect the gication and administrator's
views desched in Section 15.5, Application Beloper’s Interfaces, arflection 15.6,
Administrator’s Interfaes.

15.7.1 Generic ORB Services and Interceptors

An Interceptor implements one orone ORB sarices. Logically, an inteeptor is
interposed in the invocation (anesponse) path(s) between a client and target object
types of interceptorare defined in this specification:

® Request-level interceptoy which perform transformations on a struetdirequ est.

®* Message-level inteeptors, which perform transformations on an unstructurec
buffer.

Figure 15-52 shows interceptors begajled during the path of anviacation.

CORBAservices: Common Obj&arvices Specification

15

. target
client obj?act
reques' Areply requeA Vreply
A I A I
Request Request
level level
Interceptors ™ Interceptors ™
Message Message
level level
Interceptorg 1™ Interceptorg 1™
| |

Figure 15-52Interceptors Calle®uring InvocationPath

15.7.2 Request-Level Interceptors

Request-level inteceptors are used to implementseses which may be required
regardéss of whether the client and target are collocated or refirfogg resemble the
CORBA bridge mechanism in that they receive the request as a parameter, and
subsequently reinvoke it using the Dynamic Invocation latef(DIl). An example of ¢
request-level interceptor is the Access Control interceptor, which dsasationabout
the requesting principal and the operation in order to make an access @ecisioh.

The ORB core invokes eacbquestevel inteceptorvia theclient_invoke operatior
(at the client) or thtarget_invoke operation (at the target) defined in this sectio
The interceptor may then perform actions, including invoking other objectsebef
reinvoking the (transformed) regst usingCORBA::Request::invoke . When the
latter invocation completes, the interceptor has the opportunigrtorm other actions,
including recovering from errors ametrying the invocation or auditing the result if
necessary, beforeturning.

Message-Level Interceptors

When remote invocation is required, the ORB will sfanm therequest into a messag
which can be sent over the network. As functions such as encrgptigrerformed on
messages, a second kind on interceptor mterisrequired.

The ORB code invokes each message-leveldapgor via thesend_message
operation (when sending a message, for exampleetjuest at the client and the reply
the target) or theeceive_message operation (whemeceiving amessage). Both he
amessage as an argument. The interceptor generally transforms#ageand then

SecurityService:v1.0 NovemhE996 15-149

15

15-150

invokes sendSend operations return control to the caller withaaiting for the operatio
to finish. Having completed thteend_message operation, the interceptor can contir
with its function or return.

Selectingnterceptors

An ORB that uses interceptors must know which interceptors may need toeble aadl
in what order they need to be eall An ORB that goports interceptors, wheerying as
client, uses information in the target object reference, as weltabkpolcy, to decide
which interceptors must actually belled during the processing of a particukaquest
sentto a particular target object.

When an interceptor is first invoked, a bind time fiorcis used to set upterceptor
binding information for futurese.

Interceptor Interfaces

This section desitres the interceptors definegecifically for invoking thesecurity
services.

Details of the interfaces common to all interceptors are included in Appendix B, Su
of CORBA 2 Core Changes, as they are not seegpggcific. Appendix B inclues
definitions of:

® The Requestinterceptor interfacgdsent_invoke and target_invoke

® The Messagelnterceptortéifaces, includingend_message and
receive_message

Appendix B also describes which interfaces the agtgtors call, e.g. to get informatior
from the tags in an IOR. Some extensions are proposed to these CORBas@s to give
access to other information notreently in the CORBA 2 specification, such as the
component tags of a multicomponent profile in an object reference.

15.7.3 Security Interceptors

The ORB Services repladslity option requires implementation of twecurity
interceptors:

® Secure Invocation Inerceptor. This is a messaglevel interceptor. At bind time
this establishes the security conteaqiuired to sypport message protection; whe
processing aequest, it is a messagdevel interceptor that uses cry ptaghic
services to provide assage protection and verification. It is able to check anc
protect messages (requests andiespffor both integty and confidentiality.

® Access Control Interceptor.This is a requedevel interceptorwhich determines
whether an invocation should be permitted. This interceptor also handles aud
general ivocation failures, but not related to d@nof access (access-control der
failures are audited within the AcceBgcision object, which isalled by this
interceptor to check access awi}.

CORBAservices: Common Obj&arvices Specification

15

This specification does not define a separate audit interceptor, as the otlceptotst
implem entations or the securigrvice inplementationgall Audit Service interfaces
directly if the event$or which they are responsible are to be audited.

The security iterceptors implement security fufmmality by calling the replaceable
security service obfts (defined later in this section) as shown in Figure 15-53.

request/ reques
reply reply

Cl ien'lfI acces Targ et”acces S

control | control

Intercepto Interceptor
[[

Client Target

Secure Secure
Invocation Invocation
Interceptor | Interceptor

ORB Core

Figure 15-53Security Functionality Img@mented bySecurity Service Qects

The diagram shows the order in whidcurity interceptors amalled. Other interceptol
may also be used during the invocation. The order in which other interceptors are «
relationship to security interceptors depends on the type of interceptor.

At the client:

® In general, the access controldmteptor should be called first (to avoid
unnecessary processing of tleguest by other interceptors whpermission to
perform the request is died).

® All requestlevel interceptors (e.g. traaction or replication @s) are called befe
the secure invocation interceptor, as the secure invocation interceptor is a n
level interceptor.

The secure invocation interceptor should ocadily be the last irdrceptor invoked
(because message protection may encrypt the request, so that the code
implementing a further interceptor will not understand it). Even if only integri
protection is used, the integrity check wall if the message has beenaltd in
any way. Note that data cgression and data fragmentation should be applie
before the message-protection interceptor is called.

At the target, analogous rulapply to the interceptors in thevezse order.

SecurityService:v1.0 NovemhE996 15-151

15

15-152

Invocation Time Policies

Interceptors decide whaecurity policies to etfce on an iiocation as follows:

®* They call theget_policy operation defined in Section 15.5, Application
Developer’s Interfaces, to find what policiapply to this client (at the clierside)
or this target (at the target side).

® At the client side, theecurity hints in the targetbject referencare used to find
what policies apply to the target object and wseaturity mechanisms and poobls
are sypported. This ses operations on the objecternce.

® At the client, the overrides set by the client on the credentials or target obje
reference and the security supported by the mechanism in the client’s envirc
are taken into account. Tl&ecure Inocation interceptorses
get_credentials on Current andjet_security _features on the object
reference.

Theget_policy operation may be used to get any of the following policies:

® The invocation access policies of theremt exection context. Tlse are used b
the access control iatceptor to check whether accespésmited.

® The invocation audit policy. This is used by interceptors sealirityservices to
check whether to audit events during an invocation.

® The secure invocation policy. This is used by the secure invocation intercept
bind time. It useget_association_options as defined in Section 15.6,
Administrator’s Interfaces. Thgecure invocatiomolicies (and hints in the objec
refererce) sgecify requred and supped valies. The interceptor checks that th
requred values can be supported, and will not contimite the invocation if the
client’s requirementare not met. If thearget’s requirementare not met, the
invocation may optionally peeed, allowing policy emfcement at the target.

®* The invocation delegation policy. This is used by the secure invocation inter
at bind time. The intercepr callsget _delegation_mode to retrieve this
information.

Secure Invocation Interceptor

At bind time, the secure invocation interceptor establishes a security context, whic
clientinitiating the binding can use to securely invoke the target object designated
object reference used in establishing the bindingbdct invocation time, the secure
invocation interceptor isalled to use the (previously establishsefurity context to
protect the message data transmitted from the client to the invoked target object.

Note: The remainder of this section assumes that security interceptorpleraémted
using the security services replaceabilittenfaces defined in thispecification;
interceptors built for imlementations which do nptrovide thesecurity sevices
replaceability interfaces will have similaispondbilities, but willobviously make
differentcalls.

CORBAservices: Common Obj&arvices Specification

15

Bind Time - Client Side
The Secure Invocation interceptor’s client bind time functions are used to:

* Find what securitypolicies apply.

® Establish asecurityassociation between client and target. This is done on firs
invoking the object, but may be repeated when changes to the security cont
occur, such as tse caused by the client invoking
override_default_credentials

Security policies relevant to this inteptor are the cliesecure invocation and delegat
policies. To retrieve the Wrocation policy objects, the Secure Invocationriceptor calls
theget_policy operation.

The interceptor checks if there is already itedulesecurity context object for this clien
use of this target. If a gable context akrady exists, it is used. If no suitable context
exists, the interceptor establishes a security assoclatioveen the client and target
object (see Establishing Seity Associations under Section 15.3.3, Secure Object
Invocations).

The client interceptor callault::init_security context to request the
security features (such as QOP, delegation) required by the client policy, client ov
and target (as defined in its object refemn The Vault returns a security token to be
to the target, and indicates whether a continuation of the exchange is needed. It a
returns a reference to the newly-created Security Contex¢tdby this clientarget
security association. (The way trust is established depengisliop, thesecurity
techrology used, and whether both client and target object are in the same identity
domain. It may involve mutual authentication between the objects and negotiation
mechanisms and/or algorithms.)

The interceptor constructs the association establishment message (including the ¢
token, which must be transferred to the target to permit it to establish taedisley
Security Context object). Theessociation establishment ssage may be constructed i
one of two ways:

®* When only the initiakecurity token is @eded to esblish theassociation, the
association establishment message may also include the object invocation i
buffer (i.e. the request) supplied to the interceptor when it was invoked by
send_message . After constructing thassociation establishment message, tt
interceptor invokes send, which results in the ORB sending the message to
target. After receipt at thiarget, theassociation eablishment rassage is
intercepted by the Secure Invtica Interceptor in the target, which at bind tim
callsVault::accept_security _context to create the targ&ecurity
Context object (if needed).

®* When several exchanges are required to establish the security association,
association establishment message is sent separately, in a message that dc
include the object invocation in the buff@me. the request), again using send. 1
message is intercepted in the target and the ‘caliid to create th8ecurity
Context object. However, in this case, the target interceptor must generate &
security token and send it back to tent interceptor. The client interceptoalls

SecurityService:v1.0 NovemhE996 15-153

15

15-154

the Security Contexdbject with acontinue_security _context operation
passing the tokereturned from the target to check if trust has now been
established. There may be several exchangesafrity tokens to completeish
Once the securitassociation habeen estblished, the original client object
invocation (i.e. request) is sent irs@parate assodian establishment message.

Details of the tragformation to theequest and the associatiestablishment message
formats appear in Section 15.8, Security andomterdility.

Bind Time - Target Side
The secure invocation interceptor’s target bind functions:
®* Find the target secure invocatipolicies.

®* Respond t@association establishment messages from the clientdblisktsecurity
associations.

On receiving an association establishment message, the target secca&ion
interceptor separates it (if needed) into the security token and thestegessage and
uses the Vault (if there is re@curity context object yet) or tppropiate Security
Context object to process the security token. As previalesgrbed, his mayresult in
exchanges with the client. Once the association is established, the npeesagi@®n
function deschied next is ged to reclaim the regst message and pezot the reply.

Message Protection (Cliergind Target Sides)

The Secure Invocation Interceptor &ad after bind time for messagetection,
providing integrity and/or confidentity protection of requests andsponses, accordir
to quality of protection requiremengpecified for thisecurity asociation in the active
Security Context object.

The quality of protection required for the regtimay have changed since thet |
invocation in this securitgssoiation, as the clientmay have used
override_default_ QOP to set the QOP on the target object reference. The

interceptor therefore has to get the QOP by ugetgsecurity features on the
object refereoe. The interceptor should also check if
override_default_credentials has been used, and if so, set up a sewrity

association as at bind time.

The Secure Invocation Interceptossnd_message method calls
SecurityContext::protect_message , and itsreceive_message method
calls SecurityContext::reclaim_message , in each case using th@propriate
Security Context object.

Access Control Interceptor

Bind Time

At bind time, the client access control interceptsesCurrent::get_policy to get
the ClientinvocationAccess Policy and Clientinvocatiodidpolicy. The targeaccess

CORBAservices: Common Obj&arvices Specification

15

control interceptor usestlget _policy interface on the target object reference to
the TargetinvocationAxessPolicy and TargetinvocationAudit policy.

Access Decision Time

The Access Cdrol Interceptodecides whetherr@quest should be alved or
disallowed.

Access control desions may be made at the client side, depending on the d@rdsa
control policy, and at the target side depending on the target's access control polic)
side access contradse the norm; cligkside access controls can ksed to reduce
needless network traffic in distributed ORBs. Note that in some ORBSs, system inte
considerations may make exclusive reliance on clientagidess camol enforcement
undesirable.

The Access Cdnol Interceptocklient_invoke andtarget_invoke methods
invoke theaccess_allowed method of the Access Policy object obtained at bind
specifying theappropriate authoritian data. Theiccess policyeturns eéoolean
specifying whether the request should be allowed or disallowed.

The Access Cdnol Interceptor does not know what sortpaiiicy this Access Policy
object supports. It may be ACL-based, capability-basee|tmsed, etc. It also doesn
know if the Access Policy objeckas thecredentials exactly as passed, or takes the
identity from the credentials and uses these to find further valid privileges if neede
this principal from atrusted source.

The Access Cdnol Interceptor may also check if this invocation attempt should be
audited by calling theaudit needed operation on the appropriate Audit Policy obj
if this call indicates that the invocation attempt should be eddine Access Carol
Interceptorcalls theAudit Channelnterface to write thepgropriate audit record.

This interceptor does not transform the requesither passes threquest unchanged
when usingCORBA::Request::invoke to continue processing the request, or it
aborts thaequest by returning with an exception, rather thaliing
CORBA::Request::invoke

15.7.4 Implementation-Level Security Object Interfaces

This specification defines four implem etiva-levelsecurity object integces to suppot
security service replaceability:

® Vaultis used to create security context for a client/tagtrobject association.

® Security Contexbbjects hold seatty information about the client-target security
association and are usedpmtect messages.

® Access Decisionbjects are used (usually by Access Canihterceptors) to decid
if requests should ballowed or disallowed.

® Audit Audit Decision objects are used to decide if events are to be audited,
Audit Channel objectare used to write audit records to the additl.

SecurityService:v1.0 NovemhE996 15-155

15

15-156

Vault

TheVaultinterface prowes methds for establishing security contexts between clier
and targets when these are in different trust domains, so that authentication is req
establish trust. Implementations of tult interface are respoitde for calling

audit needed to determine whether the audit poli®guies auditing of stcessful
and/or failed access control checks, and for cadlingjt write whenever audit is
needed.

Interfaces

TheVaultinterfacesare described next.dte that if call to theVaultinterface resits in an
incom pleteSecurity Contex{i.e. one which redues continued dialogue to complete), tl
continuation of the dialogue is accomplished using the aterbf the incomplet8ecurity
Contextobject rather than theault interface.

init_security _context

This is used by the association icgstor (or the ORB if separate interceptors are nc
implemented) at the client to initiate the establishmentsaeicarity association with the
target. As part of this, it creates the Security Context object, whicheprisent the
client’s view of the shared saity context.

AssociatbnStatus init_securitgontext (

in CredentialsList creds_list,
in SecurtyName target_secutly _name,
in Object target,
in DelegationMode delegation_mode,
in OptionsDirectionPairList association_aqtis,
in MechanismType mechanism,
in Opaque mech_data,
in Opaque chan_bindings,
out Opaque securty_token,
out SecurityContext security_context);

Parameters

creds_list The crederatss to be used to establish the security association. Ther
normally only one credential object: either the default ones from Curre
the ones specified in an overridperation on the target object referenc
However, for com posite, combined or traced delegation, more than
credential object iseeded.

target_security_name
The security name of the target as set in its object reference.

target The target object reference.

delegation_mode
The mode of delegation to employ. The value is obtained by combin
client policy and appdiation preferences as deibed in Invocation Time
Policies unler Section 15.7.3, Security Interceptors.

CORBAservices: Common Obj&arvices Specification

15

associationoptions
A sequence of one or maguairs ofsecureassaiation options and directio
The options include such things as required peer trust and message
protection. Normally, oneair will be specified, for théboth” direction.
Im plem entations that support separate associafitions for requests ar
replies may spply an additional options set for each direction suppor
These values are obtainfedm a combination of the client’s security
policy, the hints in the target object reference, andeqyests made by tl
application.

mechanism Normally NULL, meaning use default mechanisrseiturityassociations
Otherwise, it cotains thesecurity mechanism(s) requested. (Thesem
have been obtained from the target object refergn

mech_data Any data specific to the chosen mechanism, as found in the target
reference.

chan_bindingNormally NULL (zero length). If pesent, they are channel bindings as
GSS-API.

security_token The token to be transmitted to the target to establish the sessoitiation
Note that this may take several exchesdut operations required at th
client to continue the establishment of the association are on théhyse
Context object.

security _context
This is the Security Context object at the client whigitesents the shar
security context between client atadget as identified by thepecified
security target name.

Return Value

The return value is used to specify the result of the operation.

SecAssocSuccess
Indicates that theecurity context has been sassfully created and that
further interactions with it are needed to establish theige@ssociation
SecAssocFailure
Indicates that tre was some error, whichepents establishment of the
association.
SecAssocContinue
Indicates that thassociation proceduresads nore exchanges.

accept_security _context

This is used by the assodtat inteceptor (or GRB) at the target to accept a request fi
the client to establish securityassociation. As part of this, it creates the SgcContext
object, which will represent the target’s view of the sharedrisgaontext.

AssociatbnStatus accept_security_context (

in CredentialsList creds df,

in Opaque chan_bindings,
in Opaque in_token,

out Opaque out_token,

out SecurityContext security_context

SecurityService:v1.0 NovemhE996 15-157

15

15-158

Parameters

creds_list The crederas of the target. Note that this may be the cradismof the
trust domain, not the individual object.

chan_bindings If present, the channel bindings are as in GSS-API.

in_token Thesecurity token transmitteficom the client.

out_token Ifestablishment of theecurity association is not yet complete, this conf
the security token to be transmitted to the client to continue the secu
dialogue. Note that as at the client, any further operations needed tc
complete the security association are on the security context object.

security_context
The Security Contextbject at theéarget whichrepiesents the sired
security context between client and target.

Return Value

SecAssocSuccess
Indicates that the security context has been successfully created ant
further interactions with it are needed to establish the se@sdtyciation
SecAssocFailure
Indicates that there was some error that prevents establishment of tl
association.
SecAssocContinue
The first stage of establishing the security association has beassud,
but it is not complete. Theut_token contains the token to be return
to continue it.

get_supported_mechs

This operation returns the mechanism types supported by thisolgeitt and the
association options thesepport.

MechandOptionsListet_supported_mechs ();
Return Value

The list of mechanism types supported by this Vault object anasBeiation options
they support.

Security Context Object

A Security Context object represents tharsld sectity context between a client and &
target. It is used as follows:

® By the securityassociation interceptors to complete thalkkthment of aecurity
association btween client and target after the Vault has initiatésl th

®* By the message protection interaaqstin prdecting nessages for integrity dfor
confidentiality.

® |n response to a target object’s request to Currenprivileges and other
information (sent from the cliengbout the initiating pricipal.

CORBAservices: Common Obj&arvices Specification

15

®* |n response to &argetobject’s request to Current to supply qoe more)
credenials objec{s) from incoming informatiombout prircipal(s).

®* To check if the security context valid, and if not, try and reésh it.

Interf aces

The Security Context object has tiodlowing attributes in common with the Current
object:

readonly atttbute CredentialsList received_credentials;
readonly attdbute SecurityFeatureMabList secuty_features;
continue_security _context

This operation is invoked by the association interceptor to continue establishment
security association. It can be called by either the client or target interceptor ooal
security context object.

AssociatbnStatusontinue_security_context (

in Opaque in_token
out Opaque out_token
)i
Parameters
in_token The security token generated by the other one of the clientgargahd

sent to this Security Context object to be used to continue the
dialogue between client and target to establish the seass@tion.

out_token If requied, afurther secity token to be returned to the other Security
Context object to continue theathgue.

Return Value

SecAssocSuccess

The security association has beencassfully established.
SecAssocFailure

The attempt to establish a security association has failed.
SecAssocContinue

The context is only partially initialized and further operations are reqd

to complete authentication.

protect_message

Theprotect_ messageperation on the Security Context object provides the means
whereby the client message protection interceptor may protect trestessage, or th
target interceptor may protect the response message for integlity eonfdertiality
according to the Quality of Protection rexpd.

SecurityService:v1.0 NovemhE996 15-159

15

15-160

void protect_message (

in Opaque message,
in QOP qop,
out Opaque text_buffer,
out Opaque token
);
Parameters
message The message for which protection is redui
gop Required messageotection options.
text_buffer Theprotected message, optionally encrypted.
token The integrity checksum, if any.

Return Value
None.
reclaim_message

Thereclam_messag®peration on th&ecurity Context object provides the means
whereby a protected message may be cheftkadtegrity and the message optionally
decrypted if needed.

boolean reclaim_message (

in Opaque text_buffer,
in Opaque token,
out QOP qop,
out Opaque message
);
Parameters
text_buffer The message for which the check is required and optionally the mr
to be decrypted.
token The integrity checksum, if any. Will typically be zero length if QO
indicates that confidentiality was applied.
gop The quality of protection that wapplied to therotected nessage.
message The unprotected message, decrypted ifedqui

Return Value

If the reclaim_message operation returns a value BALSE then the message ha:s
failed its integrity check. ITRUE the integrity of the message can be esdu

is_valid

Theis_valid operation on th&ecurity Context object allows a caller to determine
whether the context is currently valid.

boolean is_valid (
out UtcT expry_time);

CORBAservices: Common Obj&arvices Specification

15

Parameters
expiry_time The time at which this context is no longer valid.
Return Value

If theis_valid operation returns a valueBALSE, then the context is no longer val
If TRUE the context is still valid.

refresh

This operation may egnd the useful lifetime of th®ecurityContext. Therecise
behavior is inplementationspecific.refresh may be called on both valid and expir
contexts.

boolean refresh ();
Return Value

If therefresh operation returns a value BALSE, then the context could not be
refreshed. In this case, thaller shouldacquire a new context using the
Vault::init_security context interface. IfTRUE the context was
successfully refreshed.

Access Deesion Object

The Access Decision object ssponsible for determining whether gpecified
credentials allow this operation to be performed on this talgjett. It uses access cont
attributes for the targetbject to determine whether the principal's privileges, obtaine
from theSecurity Context object, are sufficient to meetdleess criteria for the
requested operation. The interfaces are agvisll

access_allowed
interface AccessDecision {

boolean access_allowed (

in SecurityLevel2::CredentialsList cred_list,
in CORBA::Object target,
in CORBA::Identifier operain_name,
in CORBA::Identifier targetnterface_name
)i
Parameters
cred_list The list of Creddials associated with threquest. Thedt may be empty

(in the case of unauthenticated requests), it may contain only a sing
credental, or it may contain severaledtentials (in the case of delegate
otherwise cascaded requs)siThe Access Decisianbject is presumed t«
have rules for dealing with all these cases.
target The referencesad to invoke the target object. The method invoked.
operation_name
The name of the operation being invoked on the target.

SecurityService:v1.0 NovemhE996 15-161

15

15-162

target_interface_name
The name of the interface to which the operation being invoked belo
This may not be required in some im plementations and will only be rec
in cases in which theperation being invoked does not belong to the
interface of which the targebject is a direct instance.

Return Value

boolean A return value afRUEindicates that the request should bewatid,
otherwiseFALSE
Audit Objects

There are two types of audit objects:

® The audit decision object, used to find out whether an aceedato be audited
Similar auditdecision objects are used for all auglilicies.

®* The audit channel objects, used by many of the implementation components
as interceptors angecurity objects) andlso used by applications to writediiu
records.

Audit Decision Objects

Audit Decision objects support tlaeidit needed interface defined in Section 15.5
Application Developer’s Interfaces.

boolean audi needed (
in AuditEventType event_type,
in SelectorValueList value_list
)i
Parameters
event_type The type of the event that has occurred.

selector_values A list containing the values offdilowing audit selectors:

Initiator (the credentialssdt of the pritipal whose action cagd the
event)

Object (the target object reference. If no taggect exists, pass a
reference to “self”)

Operation (the name of the operation being invoked. Pass null if r
applicable)

SuccessFailure @olean indicating whether the operation which ti
gered the event succeeded or failed)

Return Value

boolean A return value ofRUEindicates that the event must be audited, ot
wise FALSE

CORBAservices: Common Obj&arvices Specification

15

A standard audit policy igroposed in Section 15.6, Administrator’s Inéeés, but if thi
is to be replaceable without ORBimceptor changes, a sthard interbice needs to be
available forthe ORB or interceptor to call. Thereforerémiaceabity, theselectors
used on audit needed duringy@tation must always be the same (see
selector_values above), though not all of these need to beduin taking the
decision to audit, depending on policyotd that the time is ngtassed over this interfac
If the selectors specified in the audit policy use time to decide on whether to audit
event, the AuditDecision object should obtain theeni time itself.

Audit Channel Obgcts

Audit Channel objects support thadit_write interface defined in Section 15.5,
Application Developer’s Interfaces.

Principal Auhentication

The Principal Authetication object defined in Section 15.5.3, Authentication of
Principals, may also be called by implementation security obfgmsifically the Vault.

Non-repudiation

The Non-repudiation seices are accedse through the NRCredéals interface. Its
functionality and operations are definedSaction 15.5, Application Delaper’s
Interfaces.

15.7.5 Replaceable Security Services

It is possible to repke some securitgrvices independently of others.

Replacing Authentication and Security Associationigesv

Replacement of the authentication, security context management, and m essagjieng
services underlying a secure ORB implementation can be accomplished by replac
Principal Authentication, Vault, Credgals, andSecurity Context objects with

implem entations using the new underlying tealbgy.

Note that if the Vault uses GSS-API to link to external scaervices, it may be
substantially seaity technology independent, and so may require no changes orm
changes in order to accommodate a new underlying authentication technology (th
may also have to use technology independent interfaces for principal authenticatic
some circumstances, as this is not always hiddderu@SS-API).

The Vault is re@ced by changing the version in the environment.

Replacing Access Decision Policies

Access control policies can be changed bya@ph the Acess Policy objects, which
define and erdrce access control policies (for exam pldystituting another Acess

SecurityService:v1.0 NovemhE996 15-163

15

15-164

Policy obgct for DomainAcessPolicy). If a single object supports both AccessPolicy
AccessDecisiomterface, then only that object needs to be replaced. Ot aath
AccessPolicy and AccessBision objects may need to teplaced.

Applications may also change their access control policies. If the application acces
object(s) is similar to the wocation acess policy object(s), then they can be replacec
similar way.

Replacing Audit Services

Audit policies may be repted, for example, to support certain types of invocation &
policy not sypported by the standardditipolicy objects. In this case, tpelicy objects
are repaiced in a similar way to the accesdicy objects.

Also, Audit Channel objects may be replaced to change hdiwvmacords are routed to
collection point or filtered.

The Audit Channel object used for object systewitag isrephced by rplacing the
Audit Channel object in the environment. Other Audit Channel objects may be rep
by associating a different channel object with the ap@atepaulit policy.

Application auditing objects can be rapéd by thepplication.

Replacing Non-repudiation Services

The Non-repudiation Service istard-alone replaceable seity sewice associated wit
NRCredentials and NRPolicy objects. Different NR services m agitfegent
mechanisms and support different p@s.For exanple, it may be that a séce using
symmetric egipherment techniques may be replaced bgraice using asymmetric
encipherment techniques.

The same credentials and auttieation method may be used for non-repudiation an
other secure invocations, so whephcing either of these, thefeft on the other shoul
be considered.

Other Replaceability

No other replaceabilitpoints are defined as part of this speeifion.However,
individual implementations may permit replacement of other secerityces or
technologes.

Linking to External Security Services

Most of an OMA-compliant secure system is uaeanof the actual sedty sevices used
and that these may be shared with othetesys. OMA-compliant secure system
implementors are not required to make any interfaces other thsa ithSection 15.5,
Application Developer’s Interfaces, available to agatlons (though some
implementations may expose more of the itess in thisgecification); ORBs and OR
interceptors use the interfaces specified in this section.

CORBAservices: Common Obj&arvices Specification

15

The security seice interfaces specified in thigction may ecapsulate calls to externe
security servicesia APIs.

The externaservces used may include:
® AuthenticationServices, to authenticateincipals.

® Privilege (Attribute) Serges, for selecting and certifyingrivilege atributes for
authenticated principals (if access gohtan be based on privileges aslivas on
individual identity).

® Security Association Services, for establishisgcureassociations between
applications. These services may themselves use other security services suc
Distribution Services (if secret keyse used), a Certification Authority for
certifying public keys, and IstdomainServices for handling communications
between security policy domains.

® Audit (and Event) Services.

® Cryptographic Support Facilities, to perform cryptographic operationsdpgin
an algorithm-independent way).

This proposal does not mandate which interfaces are used to access external sec
servies, but notes the followingossibilities:

®* The GSS-API is sed forsecurityassociations and for the majority of Credenti
and Security Context operations, as this allows easy sesa@ritjce replacement
With this in mind, several interfaces $ection 15.4Security Architecture, have
been designed to allow easy mapping to GSS-API functions, and the Gakder
and Security Contexibjects are consistent with GSS-API credentials and cor

®* |IDUP GSS-API may besed for ingpendent data unit protection and evidence
generation and verification.

® Cryptographic operations performed by a Cryptographic Support Facilgi)(@
ease refcement of cryptagphic algorithms. Nepecific irterface is
recommened for this yet, as suchteérfaces are being actively discussed in X/O
and other international bodies, and standards are not yet stable.

15.8 Securityand Intepperability

This sectiorspecifies a model for secure interaglality between OBs, which conform
to the CORBA 2 interoperability specification and employ a common security tech

The interopeaability model also describes otheténopeability cases, such as theesft on
interoperability of crossingecurity policy domains. Hoaver, detailed defitions of
these are not given in thipexification.

This section defines the extensions required to ttezapeability protocol for secuty.
This includes:

® Specification of tags in the CORBA 2 Interoperable ObjeceRgfce (IOR), so thi
can carry information about the security policy for the target object, and thritys
technology which can be used to comicatesecurely with it.

SecurityService:v1.0 NovemhE996 15-165

15

15-166

® A security ineroperability prodvcol to support the establishment ofecurity
association btween client and target object and the protection of CORBA 2
General Iner-ORB Proocol (GIOP) messages between them for integrity and/
confidentiality. This is indpendent of the security technologsed to provide thi:
protection.

® Security when using the DCE-CIOP pobl.

As the security information needed by a security mechanism ésalgnindependent of
which ORB interoperabilityprotocol is sed, other EnvironmérSpecific Protocols
(ESIOPs) may spportsecurity in a similar way to thdescibed for GIOP. Howver, the
proposal inSection 15.8.5, BE-CIOP with Security, onladdresses DE-CIOP, which
supports only DCEecurity.

The security protocol specified does not define details of the contents of the secur
tokens exchanged to establish a security association, the integrity seals formesse
integrity, or the details of encryptiosed for confidentiality of messages, as these de
on the particular security mechanism used. This specificdtes not specify
mechanisms.

15.8.1 Interoperability Model

This section describes secure interoperability when:
® The ORBs share a common interoperabifitptocol.
® Consistensecuritypolicies are in force at the client atatget objects.

® The same security mechanism ised.

All otheroptions build from this. The odel for secure interoperability is shown in Fig
15-54.

CORBAservices: Common Obj&arvices Specification

15

object reference

Security
Services

Security
Services

security tokens at association set P

ORECEE protected messagg'

Figure 15-54Secure Interoperability Model

When the targeatbject registers its ob§t reference, this contains extra security
information to assist clients in communicating securely with it.

The protocol between client and targbject on object invocations is as follows:

® |f there is not akady a securitgssociation between the client amadget, one is
established by transmittingpcurity token(s) between them (transparently to th
application).

® Requests and respsgs letween client and targareprotected intransit between
them.

Security Inbrmation in the Object Refence

When an object is created in a secure object system, the security attribo¢egedsvith
it depend on the securipolicies for its domain andbject type and the security
techrology available. A client needs to know some of this information to communic
securely with this object in a way the object will accept. Thereforalifeet reference
transferred betweetwo interopeating systems incldes the following iformation:

® A security name or names for the target so the client can aictitenits idenity.

® Any security policy attributes of the targetevant to a client wishing to invoke
This covers policies such as the required quality ofgat@mn for messages and
whether the target re@es autheritation of the client’s identity and supports
authentication of its identity.

SecurityService:v1.0 NovemhE996 15-167

15

15-168

® |dentification of the security tecblogy wsed for secure communication betwee
objects this target supports and any associated atsibThisallow the client to us
the right security mechanism and cry ptographioathms to communicate with tt
target.

Establishing a Securitfxssociation
The contents of the security tokens exchardgmend on the sedty mechanism sed.

A particular security mechanism magelf have options on how masgcurity tokens at
used. The minimum is dnitial contexttoken (a term used in GSS-API), sent from th
client to the target object &stablish the security association. This typicallytaors:

® An identification of the security mechanismed.

® Security information used by this mechanism t@keksh theequied trust betweel
client and target and to set up the security contextssarg forprotecting messags
later.

® The prircipal’s credenials.

* [nformation for protecting this security data in tsén

In addition to this token, subsequent sigiokens may be reeled if:
®* Mutual authentication oflient andtarget is reqgired.

® Some negotiation of security options for this mechanism is redufor example,
the choice of cryptographic agthms.

Protecting Messages

The invocation may be protected for integritydéor confidentiality. Ineither case, the
messages forming the request and reply are transformed by the ORB S®envites.
For integrity, extra iformation (e.g., an integrityeal and sequence nber) is added to
the message so the target ORB Securityi&es can check that theassage has not be
changed and that no messages have been inserted or deleted in the sequence.

For confidetiality, the messagiself is encrypted so it cannot be intercepted and re:
transit.

Details of how messagese protected are again mechanism-depenblete, fowever,
that messages cannot be changed once they have been protected, as they canno
undersbod once confidentiality protesd, and the integrity check will fail if they are
altered in any way.

Security Mechanisms for Secure Object Invocations

The interopability modelabove can be supported usindatiént security mechanism:

CORBAservices: Common Obj&arvices Specification

15

This specification does not define a standaclrity mechanism to bemuorted by all
secure ORBs. It #refore does not specify a particular sesamfurity token formats anc
message protection details for a particskgurity mechanism.

Security Mechanism Types

There are two mjor types of security mechanisms used in existing systems for seci
associations, which are:

® Those using symmetric (secret) key temlogy where a sared key is used by bo
sides, and a trusted thighrty (a Key Distribution &rvice) is used by the client
obtain a key to talk to the target.

® Those using asymmetric (public) key teology where the keys used by the twi
sides are diffrent, though linked. In thisase, long term, public keys are norm:
freely available in certificates that haleeencertified by a Certification Authority

Several exdting systems use symetric key echrology for keydistribution when
establishing security associationsebk are usuallgased on MIT's Kerberos product.
Such systems normally include no public key technology.

Other security mechanisms use public key technology for authentication and key
distribution as this haedvantages for skebility and interenterprise working. The num
of public key-based systenase growing and the use of public key technology is star
for non-repudiation, which is an optional component inghicification, and increasing
needed in commeial systems so any OMG saity specification must not pclude its
use. Also, the use of smart cards with public key teldyy is increasing. Hogver, non
repudiation is not aesvice requied for secure interopaility.

Interoperating with Multiple Security Mechanisms

The current specificatiorilaws a clent to identify thesecurity mechanism (S) supportc
by the target. Where a client or targgports more than one mechanism, aretehis at
least one mechanism in commioaetween client and target, the client can choose on
they both support.

Some security mechanisms may support a number of options, for example:
® A choice of cryptographic algorithms for protemg messages.

® A choice of using public or secret key teology for key distribution.

The appropriate options can be chosen by the client in the same way as choosing
mechanism, via the client securglicy and iformation in the target’sbject reference
However, some mechanisms will be able toatiege options gsing extra exchanges at
association establishment, which are specific to the particular mechanisms.

Interoperability where tre is no nechanism in common is likely to be thégect of a
future security RFP. It is expected that this would be donedpeeialist interoperability
bridgeas deschied in the Security leroperabity Bridges section.

SecurityService:v1.0 NovemhE996 15-169

15

15-170

Interoperating betwen Underlying Security Services

Security mechanisms for secure object invocations uderlying securityservices for
authentication, privilegacquisition, key distribution, certificate management, and au
Under some circumstances, these need to interoperate. For example, keytidlistribu
services may @ed to communicate with each other, and audiices may eed to
transmit audit records between systems.

Interopeability of such underlyingecurity srvices is condiered out of scope of this
specification, as thegre mechanisndependent.

Interoperating betwen Security Policy Domains

The previous sdmns corsider interoperability within aecurity policy domain wére
consistensecurity pakies apply to access control, audit, and othgrects of the
system. These rely on informi@n about the principal, including itdentity and
privilege attributesbeing trusted and having a consistent meaning throughout tf
policy domain.

Where a largalistributed system is split into a number of secupityicy domains,
interoperation between securjplicy domains is neded. Thigequres the
establishment of trust between these domains. For example, ars€2R Bty
association service at a target system will need to identify the source of the prir
credenials so it can decide how much to trust them.

Once the identity of the client domain has been established, interdomain secur
policies need to be enforced. For example, access control policies are mainly b
the prircipal’s certified identity and privilege attributes. The policy for this could

®* The target domain trusts the client domain to identify gipialscorrectly, but doe:
not trust their privilege atibutes, sareatsall principals from other domains as
guest sers.

® The administrators of the two domains have agreed to some privilege attribt
common, and trust each other tgegthese only to suably authorized users. In tf
case, the target systenillvgive principals from the client domain with these
privileges the same rights as pripals from the target domain.

® The administrators of the two domains agree what particular privilege attribu
the client domain are equivalent particular privilege attributes in tharget
domain, and so grant corresponding access rights.

For the first two of these, the target domain security policy could enfestections on
which privilege attributesmay be used there. This would ect¢ssarily afict the
interopeability protocols; theget_attributes operation will simply noteturn all of
the privileges. But even in thisase, some security mechanisms wiba@se to modify the
principal’s credentials to exclude unwantetlibtites.

In the third case, the privilege attributes need to be translated to the ones used in't
domain. If this translation is to be done only once, an interdomaiiceepuld be used
which both translates theeedentials anteprokects them so they can be delegated bet
nodes in the target domain.

CORBAservices: Common Obj&arvices Specification

15

Such an interdomain service may be invoked by the ORB Secunitig&gibut may be
invoked by a separate interogbility bridgebetween the ORB domains. If invoked by
ORB service, it extends the piementation of the Vault object dedmd in Section 15.
Implementor’s Security Inteates, and this will probably call on a mechanism-specii
Interdomain Service.

Secure Interoperability Bridges

Secure Interoperability Bridges between ORB domaiege¢vant to this architecture,
in the future, they may be specified as part of some secure CORBA-com pliant sys
However, this specification does not describe how to build suchestidfgsecurity
interoperability bridges implemented separately from CHeBurity Serices are needel
they are egected to be the subject of separate RFPs.

Secure iteropeability bridges may be needed for:

®* ORB-mediated bridges, wheratd marshalling is done outside the ORB and
associated ORB services.

® Translating between security mechanisms (technology domains).

®* Mapping between security policy domains.

In all these cases, both the system and application data beseglpaill reed to be
altered, affectingits protectedstatus. This needs to beestablished using security servi
trusted by both client and target domains.

15.8.2 Protocol Enhancements

The following sections detail the enhancemeatgired to the CORBA 2 interoperdityi
specification for secity.

® Section 15.8.3, CORBA Ietoperable Object Refence with Security,afines the
enhancements needed for the Interoperable Objeer&efe (IOR).

® Section 15.8.4, Secure Inter-ORB Rratl (SECIOP), defines the enhancement
needed tsecure GIOP messages, and Section 15.8.5, DCE-CIOP with Secu
defines the DCE-CIOP with security.

15.8.3 CORBA Interoperable Object Reference with Security

The CORBA 2 Interoperable Object Reference (IOR) cisepra sequence thgged
profiles.” A profileidentifies the charactistics of theobject recessary for a client to
invoke an operation on it correctly, including nanadgressing information. The tag i
standard, ONG-allocated identifier for the profile, which allows the client to itetrthe
profile data, but although the tag is OMG-allocated pitwdile itself may not be OMG-
specified.

One profile thought neceary for OMG to define was a multicom ponpntfile, that is, ¢
profile that itself consisted of tagged components. It is proposed that new multicom
TAGs are defined, which allows the multicompongrdfile to be used for I1OP.

SecurityService:v1.0 NovemhE996 15-171

15

15-172

However, use of tagged components within the multicomponent profile to carry |IC
security, and other data may capseformance degradations in certain situations. Fc
example, if an IOR carries many tagged componenecognized by a client
implementation, it mugtrocess these when they appeaotethose that itioes
recognize. Some, such as the components describing k@dahhigh mbability of
being recognized and used by many clients. Consequently, implementations with
objective tooptimize IORprocessing will place such components at the beginning o
tagged component sequence.

The following TAGs are defined:

® [IOP components which can be used in a multicomponenafile (seeSection
B.7, Further Definition of ORB Intemerability).

® Security componentsthat identify security mechanismpgs, one foeach
mechanism supported. Easbcurity mechanism component caro include
mechanism-specific data.

® Aspects of thdarget objecpolicy thatcover the dependencies Ween anoverall
use of components (for example, thealify of protection required) may be
specified in separatgolicy components This avoids establishing unnecessary
dependencies between other (tebgy) components.

Security Components of the IOR

The following new tags are used to define the security informatiorireedoy the client
to establish a security sciation with the target. Note that a tag may ocooenthan
once, denting that the target allows the client someick. See the revised CORBA 2
specification (OMG Document Interop/96-0%) for more information aboydacement
of security iformation in IORs to uport interoperablsecurity in 11OP, GIOP protocol
DCE-CIOP, and ESIOP protols via the multi-componemtrofile. Chapter 10 of that
document defines the IOR format pparted tags, and rules for cposition of IOR
components; Chapter 12 of that docuneedcribes the GIOP header and message
formats and the 1IOP IOR format; and Chapter 13 of that docudestibes the DCE-
CIOP message formats.

TAG_x_SEC_MECH

This is the prototype TAG definition for OMG registered sigglassoimtion
mechanisms. The mechanism is identified by the TAG value. The component date
TAGs of this kind is defined by the person who registers the TAG. The confidentiali
integrity algorithms to be used with the mechanism may be either encoded into th
value or in mechanism-specific data (§&addelines for Mechanism TAG fixgtion in
Appendix H, Interoperability Guidelines).

If this definition includes:

sequence <TaggedComponent> components ;

The components field can contain any of the other component TAGs, whose value
specific to the mechanism.

CORBAservices: Common Obj&arvices Specification

15

If the mechanism is selected for use, the components in this field are used in prefe
any recorded at the multicomponent level.

Multiple TAG_x_SEC_MECH components may be present to enumerate the secu
mechanisms avaible at the target.

TAG_GENERIC_SEC_MECH

This TAG enables mechanisms not registered with the OMG, but comrbothtolient
and target to be used with tsardard interoperability protocol. Its definition is:

struct GenericMechanisminfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <TaggedComponent> components;

h

The first part of this TAG is theecurity_mechanism_type , which identifies the
type of underlying security mechanismpported by the target including darentiality
and integrity algorithm definition. It is an ASN.1 Object Identifier (OlDylascribed for
use with the GSS-API in IETF RFC 1508.

Themech_specific_data field allows mechanism specificformation to be pesec
by the target to the client.

The components field can dam any of the other com ponemi&s, whosevalues can b
specific to the mechanism.

If the mechanism is selected for use, the components in this field are used in prefe
any recorded at the multicomponent level.

Multiple TAG_GENERIC_SEC_MECH components may firesent to enumerate the
security mechanisms available at theyet.

TAG_ASSOCIATION_OPTIONS

This TAG is used to define the associatpyoperties supported and required by thedia
Its definition is:

struct TargetAssociationOptions{
AssociationOptions target_supports;
AssociationOptions target_requires;
|3
Parameters

target_spports
Gives the functionality supported by the target.

target_requires
Defines the minimum that the client must use when invoking the targ
although it may use additional functionality supported by the target.

SecurityService:v1.0 NovemhE996 15-173

15

The following table gives the definition of the options.

Table 15-9 Option Definitions

target_spports

target_requires

NoProtection

The target supports
unprotected messages

The target's minimal
protection requirement is
unprotected invocations

Integrity

The target supports integrit
protected messages

y The target requires
messages to be integrity
protected

Confidentiality

The target supports confi-
dentiality protected invoca-
tion

The target requires
invocations to be protected
for confidentiality

DetectReplay

The target can detect repl
of requests (and request
fragments)

ayfhe target requés security
associations to detect
message replay

DetectMBordering

The target catetect
sequence errors of regsts
and request fragments

The target requés security
associations to detect
message missequencing

EstablishTrustinTarget

The target is prepared to
authenticate its identity to
the client

(This option is not defined.

EstablishTrustinClient

The target igpable of
authenticating the client

The target requeés estab-
lishment of trust in the cli-
ent’s identity

TAG_SEC_NAME

The target security name component contains the security resrdeaiidentify and
authenticate the target. It is an octet sequence, the content and syntax of défictets
by the authenticatioresvice in use at the taaty The security name is often the name
the environment domain rather than the particular target object.

The TAG_SEC_NAME component is not needed if the target does not need to be

authenticated.

15-174

CORBAservices: Common Obj&arvices Specification

15

Table 15-10 IOR Example

Mech Specific
Tag Value Tag Value
tag_sec_name | “Manchester branch”
tag_association_ | Supports andequires
options integrity to establish
trust in the clients
privileges
tag_genericsec_ | mech 1 oid tag_sec_name "MBnI"
mech
tag_assdation_ | Supports and require
options integrity, replay detec
tion, misordering
detection, to establis
trust in the client’s
security attributes
tag_genericsec_ | mech 2 oid tag_assiation_ | Target requires and
mech options supports confidetimal-
ity, to establish trustin
the client’s security
attributes

In this example if mechanism “mech 1” is used, the taxgetirity name is “MBn1” whil
the association must use integritypleg and nisorderingoptions. If mechanism “mech
is used, no mechanisspecific security name has begrdfied and so “Manchester
branch” isused as the security name. Tiseciationoptionsare EstablishTrustinClien
and Integrity.

Operatinal Semantics

This sectiondescribes how an ORB and associated ORB services should use the |
security components to provide security for invocations, and how the target object
information should be provided.

Client Side

During a request invocation, the nonsecurity tagged components in the IOR
multicomponent profile indicate whether the target supports IIOP and/or some oth
environment-specific protocol such REE-CIOP. Security mechanism tag componel
specify the security mechanisms (asdaiated integrity and confidentiality alghms)
that this target can use. The ORB selects a combination of intebdpeiprotocol and ¢
security mechanism that it can support.

If there is a common interomdility protocol, but no common security mechanism, th
secure request on this IOR cannot be assured.

SecurityService:v1.0 NovemhE996 15-175

15

15-176

If the same security mechanism is supported at the client and the target, but the
TAG_ASSOCIATION_OPTIONS componenpexifies that no protection is needed ol
SEC_MECH is specified, then unprotected requests are supportedtaygéteand the
request can be atle without usingecurityservces. If the target requires protected
requests, then the ORB must choose an alternative transgtot security mechanism.

The IOR tags and the client’s policies and preferencessarttagether to dose the
security for this client’s corersation with the tagg.

The specifisecurity servicesed may not uferstand the CORBA security val and s
may require them to beapped into values it can understand.

Determining association options

The association options in the IOR table in Section 15.8.5, DCE-CIOP with Securi
possible association options such afkbtection, Integrity, DeteReplay.

The actual aciation options used when a client invokes a target object via an 10}
depend on:

® The client-side secure invocation policy and environment.

® Client preferences as specified $§t_association_options on the
Credentials ooverride_default QOP on the object reference.

®* The target-sidesecure iwocation policy and environmengas indicated by
information in the TAG_ASSOCIATION_OPTIONS component).

An association option should be enforced by therggcsewices if the client requires i
and the target supports it, or the target requires it and the client supports it.

If the target cannot support the client’s requiretagiihen a NOPERMISSION exceptio
should be raised. If the client cannot meet the requirements of the target, then the
invocation may optionallproceed, allowing policy enforcement on the target side.

Target Side

The security information required in the IOR for this target must be supplied from t
target (or its environment). Thipecification does nalefine exactly when particular
information isadded, as some of it may only be needed when the obfertnce is
exported from its own environment.

The security information may come from a combination of:

® The object'sown credential§see Setion 15.5.6, Sectity Operations on Quent).
This includes, for example, the targetiscurity name. It could include mechani
specific information such as the target’s public key if it has one.

® Policy associatedith the object. This incldes, for example, the QOP.

® The environment. This includes, for example, the mechanism types supporte

The target object does not need to supply this information itself. This is done
automatically by the ORB when required. For eplenmuch of the iformationfor the
target’'s own credentials are set upainect creation.

CORBAservices: Common Obj&arvices Specification

15

As at the client, the specific seity service used may require CORBA security value
be mapped into those it derstands.

If when the client invokes the target identified by t®®| an Invoke Responseessage i
returned for the request with the status INVOKE_LOCATIGRRWARD, then the
returned multiple component profile must contain security information as well as tf
binding information for the target specified in the original InvBlegLest message.

Any security information in the returned profépplies to the new binding information
and replaces adlecurity information in the origingirofile. This

INVOKE_L OCATION_FORWARD behavior can besad to inform the client of updat
security informatior(even if theaddress information hasn’t changed).

15.8.4 Secure Inter-ORB Protocol (SECIOP)

To provide dlexible means of securing intgper#ility between OmBs, a new protocol
introduced into the CORBA 2.0 Interopéility Architecture. This protocol sits below tf
GIOP protocol and provides a means of transmitting Gl@PRsages (or message
fragmentskecurely.

GIOP GIOP
fragmentation fragmentation
— — — —

SECIOP SECIOP

| transport |

Figure 15-55New CORBA 2.0 Protocol

SECIOP nessages qport the establishment of Security Contelgjectsand protected
messag@assing. Independence from GIOP allows the GIOP protocol to be revise
independently of SECIOP (e.g. tgpgort request fragmentation).

SECIOP Message Header

SECIOP nessages share a common header format with Gl€Bages defined in
CORBA 2.0. Thdields of this headerdve the following definition for SECIOP.

®* Magic. Identifies the mtocol of the nessage. Each patol (GIORSECIOP) is
allocated a uniquaentifier by the OMG. The value for SECIOP is “SECP.”

® Protocol_\ersion. This contains the major and mimpootocol versions of the
protocol identified by magic. The initial value for SECIOP is 1 major version,
minor version.

®* byte _order, as in the GIOP header definition.

SecurityService:v1.0 NovemhE996 15-177

15

15-178

® message type. This is the gyobl specificidentifier for the nessage.

® message_size, as in the GIORuther definition.

Aminor change is required to the GIOP header to rename the field GIOP_Version
protocol_version

SECIOP

The SECIOP protocol issed to control the secure association between clients and
and provides a meaffigr the transmission of protected messages between clients al
targets.

Where possile, SECIOP rassages are sent with GlORssages rather than separate
exchanges. However this is not always posgilg. when the client wishes to
authenticate the target before it is prepared to send a GIOP message).

Each name in the enumeratioalow coresponds to a structure dissed later in this
section. The name of the designated structurbt@ined by removing theitral "MT"
from the name of the corresponding enumeration constant (for example, the struc
corresponding to MTEstablishContext is named EstablishContext). The section titl
under which thetructues are discussed bear the names of thegmnding enumeratic
constantgi.e. the section names start with "MT").

SECIOP has the following messagpéeg:
enum MsgType {

MT EstablishContext, MTCompleteEstablishContext,
MTContinueEstablishContext, MTDiscardContext,
MTMessageError, MTMessagelnContext

b
struct ulonglong {
unsigned long low;
unsigned long high;
|3
typedef ulonglong Contextld;
enum ContextldDefn {
Client, Peer, Sender

Contextld

This type is used to define the identifiers allocated by the client and target for the
association.

ContextldDefn

This enum is used to define the kind of context identifier held in a SECIOP messal
context identifier will either be the orspecified by the client that established the cont

CORBAservices: Common Obj&arvices Specification

	Security Service Specification
	15.1 Introduction to Security
	15.1.1 Why Security?
	15.1.2 What Is Security?
	15.1.3 Threats in a Distributed Object System
	15.1.4 Summary of Key Security Features
	15.1.5 Goals
	Simplicity
	Consistency
	Scalability
	Usability for End Users
	Usability of Administrators
	Usability for Implementors
	Flexibility of Security Policy
	Independence of Security Technology
	Application Portability
	Interoperability
	Performance
	Object Orientation
	Specific Security Goals
	Security Architecture Goals

	15.2 Introduction to the Specification
	15.2.1 Conformance to CORBA Security
	15.2.2 Specification Structure
	Normative and Non-normative Material
	Section Summaries
	Proof of Concept

	15.3 Security Reference Model
	15.3.1 Definition of a Security Reference Model
	15.3.2 Principals and Their Security Attributes
	15.3.3 Secure Object Invocations
	Establishing Security Associations
	Message Protection

	15.3.4 Access Control Model
	Object Invocation Access Policy
	Application Access Policy
	Access Policies
	Privilege Attributes
	Control Attributes
	Rights
	Access Policies Supported by This Specification

	15.3.5 Auditing
	15.3.6 Delegation
	Privilege Delegation
	Overview of Delegation Schemes
	Facilities Potentially Available
	Controls Used Before Initiating Object Invocations...
	Facilities Used on Accepting Object Invocations

	Specifying Delegation Options
	Technology Support for Delegation Options

	15.3.7 Non-repudiation
	15.3.8 Domains
	Security Policy Domains
	Policy Domain Hierarchies
	Federated Policy Domains
	System- and Application-Enforced Policies
	Overlapping Policy Domains

	Security Environment Domains
	Security Technology Domains
	Domains and Interoperability
	Interoperating between Security Technology Domains...
	Interoperating between ORB Technology Domains

	15.3.9 Security Management and Administration
	Managing Security Policy Domains
	Managing Security Environment Domains
	Managing Security Technology Domains

	15.3.10 Implementing the Model

	15.4 Security Architecture
	15.4.1 Different Users’ View of the Security Model...
	Enterprise Management View
	End User View
	Application Developer View
	Administrator’s View
	Object System Implementor’s View

	15.4.2 Structural Model
	Application Components
	ORB Services
	Selection of ORB Services
	Bindings and Object References at the Client

	Security Services
	Security Policies and Domain Objects

	15.4.3 Security Technology
	15.4.4 Basic Protection and Communications
	Environment Domains
	Component Protection

	15.4.5 Security Object Models
	The Model as Seen by Applications
	Finding Security Features
	Establishing Credentials
	Handling Multiple Credentials
	Selecting Security Attributes
	Making a Secure Invocation
	Security at the Target
	Intermediate Objects in a Chain of Objects
	Security Mechanisms
	Application Access Policies
	Auditing Application Activities
	Finding What Security Policies Apply
	Non-repudiation

	Administrative Model
	Security Policies
	Domains at Object Creation
	Other Domain and Policy Administration
	Finding Domain Managers
	Finding the Policies
	Setting Security Policy Details
	Specifying Use of Rights for Operation Access

	The Model as Seen by the Objects Implementing Secu...
	Implementor’s View of Secure Invocations
	ORB Security Services
	Security Policy
	Specific ORB Security Services and Replaceable Sec...
	Implementor’s View of Secure Object Creation

	Summary of Objects in the Model

	15.5 Application Developer’s Interfaces
	15.5.1 Introduction
	Security Functionality Conformance
	Security Functionality Level 1
	Security Functionality Level 2
	Security Replaceability Ready (either option)
	Optional Functionality

	Introduction to the Interfaces
	Data Types

	15.5.2 Finding Security Features
	Description of Facilities
	Interfaces
	Portability Implications

	15.5.3 Authentication of Principals
	Description of Facilities
	Interfaces
	authenticate
	continue_authentication

	Portability Implications

	15.5.4 Credentials
	Description of Facilities
	Interfaces
	copy
	set _security_features
	get_security_features
	set_privileges
	get_attributes
	is_valid
	refresh

	Portability Implications

	15.5.5 Object Reference
	Description of Facilities
	Interfaces
	override_default_credentials
	override_default_QOP
	get_security_features
	get_active_credentials
	get_policy
	get_security_mechanisms
	override_default_mechanism
	get_security_names

	Portability Implications

	15.5.6 Security Operations on Current
	Description
	Interfaces
	get_attributes
	set_credentials
	get_credentials
	received_credentials
	received_security_features
	get_policy
	required_rights_object
	principal_authenticator

	15.5.7 Security Audit
	Description of Facilities
	Interfaces
	audit_needed
	audit_write
	audit_channel

	Portability Implications

	15.5.8 Administering Security Policy
	15.5.9 Use of Interfaces for Access Control
	Description of Facilities
	Interfaces
	Portability Implications

	15.5.10 Use of Interfaces for Delegation
	Description of Facilities
	Interfaces
	Portability Implications

	15.5.11 Non-repudiation
	Description of Facilities
	Interfaces
	Non-repudiation Service Data Types
	Non-repudiation Service Operations

	15.6 Administrator’s Interfaces
	15.6.1 Concepts
	Administrators
	Policy Domains
	Security Policies

	15.6.2 Domain Management
	Policy
	Domain Manager
	get_domain_policy

	Construction Policy
	make_domain_manager

	Extensions to the Object Interface
	Return Value

	15.6.3 Security Policies Introduction
	15.6.4 Access Policies
	Rights
	Rights Families
	RequiredRights Interface

	AccessPolicy Interface
	Specific Invocation Access Policies
	DomainAccessPolicy Interface
	Domains
	DomainAccessPolicy Use of Privilege Attributes
	Delegation State
	DomainAccessPolicy Use of Rights and Rights Famili...
	AccessDecision Use of AccessPolicy and RequiredRig...
	DomainAccessPolicy Interface

	15.6.5 Audit Policies
	Audit Administration Interfaces

	15.6.6 Secure Invocation and Delegation Policies
	Secure Invocation Policies
	Required and Supported Secure Invocation Policy
	Secure Association Options
	Secure Invocation Administration Interfaces
	get_association_options

	Invocation Delegation Policy
	set_delegation_mode
	get_delegation_mode

	15.6.7 Non-repudiation Policy Management
	Data Types for Non-repudiation Policy Management I...
	Non-repudiation Policy Management Interfaces

	15.7 Implementor’s Security Interfaces
	15.7.1 Generic ORB Services and Interceptors
	15.7.2 Request-Level Interceptors
	Message-Level Interceptors
	Selecting Interceptors
	Interceptor Interfaces

	15.7.3 Security Interceptors
	Invocation Time Policies
	Secure Invocation Interceptor
	Bind Time - Client Side
	Bind Time - Target Side
	Message Protection (Client and Target Sides)

	Access Control Interceptor
	Bind Time
	Access Decision Time

	15.7.4 Implementation-Level Security Object Interf...
	Vault
	Interfaces

	Security Context Object
	Interfaces

	Access Decision Object
	Audit Objects
	Audit Decision Objects
	Audit Channel Objects

	Principal Authentication
	Non-repudiation

	15.7.5 Replaceable Security Services
	Replacing Authentication and Security Association ...
	Replacing Access Decision Policies
	Replacing Audit Services
	Replacing Non-repudiation Services
	Other Replaceability
	Linking to External Security Services

	15.8 Security and Interoperability
	15.8.1 Interoperability Model
	Security Information in the Object Reference
	Establishing a Security Association
	Protecting Messages
	Security Mechanisms for Secure Object Invocations
	Security Mechanism Types
	Interoperating with Multiple Security Mechanisms

	Interoperating between Underlying Security Service...
	Interoperating between Security Policy Domains
	Secure Interoperability Bridges

	15.8.2 Protocol Enhancements
	15.8.3 CORBA Interoperable Object Reference with S...
	Security Components of the IOR
	TAG_x_SEC_MECH
	TAG_GENERIC_SEC_MECH
	TAG_ASSOCIATION_OPTIONS
	TAG_SEC_NAME

	Operational Semantics
	Client Side
	Target Side

	15.8.4 Secure Inter-ORB Protocol (SECIOP)
	SECIOP Message Header
	SECIOP
	ContextId
	ContextIdDefn

