
15

of

 with
has no

h

blish
ent

15
or it will be the identifier associated with the receiver of the message (i.e. the request
target for request or request fragment messages or the request client for reply or reply
fragment messages). The value must equal Client if the value of
target_context_id_valid in the CompleteEstablishContext was false, or the
message has not yet been exchanged. It must equal Peer if the value of
target_context_id_valid in the CompleteEstablishContext was true. The use
peer identifiers allows the recipient of the message to more efficiently find its security
context. The values are defined as:

• Client. The context id is that of the association’s client.

• Peer. The context id is that of the recipient of the message.

• Sender. The context id is that of the sender of the message. This is only used
the DiscardContext message when the sender of the DiscardContext message
context and has received a message that it cannot process.

Message Definitions

MTEstablishContext

This message is passed by the client to the target when a new association is to be
established. Its definition is:

struct EstablishContext {

ContextId client_context_id;

sequence <octet> initial_context_token;

};

• client_context_id . This is the client’s identifier for the security association.
It is passed by the target to the client with subsequent messages within the
association. It enables the client to link the message with the appropriate security
context.

• initial_context_token . This is the token required by the target to establis
the security association. It contains a mechanism version number, mech type
identifier, and mechanism-specific information required by the target to establish
the context. It may be sent with a protected message (for example, if the client does
not wish to authenticate the target).

MTCompleteEstablishContext

This message is returned by the target to indicate that the association has been estaed.
It is sent as a reply to an establish context or continue establish context. It may be s
with a GIOP reply or reply fragment. Its definition is:

struct CompleteEstablishContext {

ContextId client_context_id;

boolean target_context_id_valid;

ContextId target_context_id;

sequence <octet> final_context_token;

};
Security Service: v1.0 November 1996 15-179

15

 a

e

.

ot send
ts to be
• client_context_id . This is the client’s identifier for the security association.
It is returned by the target to the client to enable the client to link the message with
the appropriate security context.

• target_context_id_valid . This indicates whether the target has supplied
target_context_id for use by the client. TRUE indicates that the following
field is valid.

• target_context_id . The targets identifier for the association. It is passed by
the client to the target with subsequent messages. It enables the target to associate a
local identifier with the context to allow the target to identify the context efficiently.

• final_context_token . This is the token required by the client to complete th
establishment of the security association. It may be zero length.

MTContinueEstablishContext

This message is used by the client or target during context establishment to pass further
messages to its peer as part of establishing the context. It may be the response to an
establish context or to another continue establish context and is defined as:

struct ContinueEstablishContext {

ContextId client_context_id;

sequence <octet> continuation_context_token;

};

• client_context_id . The client’s identifier for the association. It is used by
both client and target to identify the association during the establishment sequence

• continuation_context_token . This is the security information required to
continue establishment of the security association.

MTDiscardContext

This message is used to indicate to the receiver that the sender of the message has
discarded the identified context. Once the message has been sent, the sender will n
further messages within the context. The message is used as a hint to enable contex
closed tidily. Its definition is:

struct DiscardContext {

ContextIdDefn message_context_id_defn;

ContextId message_context_id;

sequence<octet> discard_context_token;

};

• message_context_id_defn . The type of context identifier supplied in the
message_context_id field.

• message_context_id . The context identifier to be used by the recipient of the
message to identify the context to which the message applies.
15-180 CORBAservices: Common Object Services Specification

15

d

t
• discard_context_token . A token to be used by the recipient of the message
to identify which context needs to be discarded. Not all security mechanisms emit
such tokens; in case no token is available, a zero-length octet string should be used.

MTMessageError

This message is used to indicate an error detected in attempting to establish an association
either due to a message protocol error or a context creation error. The message is also use
to indicate errors in use of the context.

struct MessageError {

ContextIdDefn message_context_id_defn;

ContextId message_context_id;

long major_status;

long minor_status;

};

• message_context_id_defn . The type of context identifier supplied in the
message_context_id field.

• message_context_id . The context identifier to be used by the recipient of the
message to identify the context to which the message applies. It is either the client’s
identifier for the context (type client) or the receiver of the messages identifier (type
peer).

• major_status . The reason for rejecting the context. The values used are those
defined by the GSS API (RFC 1508) for fatal error codes.

• minor_status . This field allows mechanism specific error status to further
define the reason for rejecting the context. It is not defined further here.

MTMessageInContext

Once established messages are sent within the context using the MessageInContex
message. Its definition is:

enum ContextTokenType {

SecTokenTypeWrap,

SecTokenTypeMIC

};

struct MessageInContext {

ContextIdDefn message_context_id_defn;

ContextId message_context_id;

ContextTokenType message_context_type;

sequence <octet> message_protection_token;

};
Security Service: v1.0 November 1996 15-181

15

 to

s

d the

. In

 the

• message_context_id_defn . The type of context identifier supplied in the
message_context_id field.

• message_context_id . The context identifier to be used by the recipient of the
message to identify the context to which the message applies.

• message_context_type . An indicator on whether the protection token is a
"Wrap" token (which includes the protected message text and is ordinarily used
provide confidentiality protection) or an "MIC" token (which does not include the
protected message text and is used to provide only integrity protection).

• message_protection_token . The Wrap or MIC token for the message. Thi
is a self-defining token which indicates how the message is protected. If the
message is not protected, the token will be zero length.

For unprotected and integrity-protected messages, the token will be an MIC token, an
MessageInContext message will be followed by the higher level protocol message, which
is being protected by the security context (i.e. GIOP message or message fragment)
this case, the length of the higher level protocol message is included in the
message_size field of the MessageInContext message’s SECIOP header.

For confidentiality-protected messages, the protected message text will be included in
message_protection_token (which will be a Wrap token) of the
MessageInContext message, and no higher-level protocol messages will be transmitted
within the security context described by the MessageInContext message. In this case, the
value in the message_size field of the MessageInContext message’s SECIOP header
will represent the length of the MessageInContext message only.

SECIOP Protocol State Tables

Note that some mechanisms may start in state S3.

Table 15-11 Client State Table

No context (SO) Context being
created Message
allowed (S1)

Context being
created Message
not allowed (S2)

Context created
(S3)

request context
establish (cl ient
auth)

create context
send establish
context S1

request context
establish (target or
mutual auth)

create context
send establish
context S2

receive message
error

send
DiscardContext
with the message
sender’s
context_id SO

discard context SO discard context SO discard context SO
15-182 CORBAservices: Common Object Services Specification

15

See Table 15-12 for the Target State information.

receive continue
establish context
message

send
DiscardContext
with the message
sender’s
context_id S0

update context state
if ok
 send continue
 establish context
 S2
else
 send message error
 S0

receive complete
establish context
message

send
DiscardContext
with the message
sender’s
context_id S0

complete context
with target’s context
id
if ok
 S3
else
 delete context
 send message
 error S0

complete context
with target’s context
id
if ok
 S3
else
 delete context
 send message
 error S0

request to send
message in context

send message in
context with client
context id S1

send message in
xontext with client
or target context id
S3

receive message in
context

send
DiscardContext
with the message
sender’s
context_id S0

process message
if ok
 S1
else
 if message decode
 error send message
 error S1
else
 send message error
 S0

process message
if ok
 S3
else
 if message decode
 error send message
 error S3
else
 send message error
 S0

request to send
discard context
message

send discard context
message delete
context S0

send discard context
message delete
context S0

send discard context
message delete
context S0

receive discard
context message

delete context S0 delete context S0 delete context S0

No context (SO) Context being
created Message
allowed (S1)

Context being
created Message
not allowed (S2)

Context created
(S3)
Security Service: v1.0 November 1996 15-183

15

Table 15-12 Target State Table

No context (SO) Context being
created Message
allowed (S1)

Context being
created Message
not allowed (S2)

Context created
(S3)

receive establish
context message
(client auth)

create context
if ok
 send complete
 establish context
 S3
else
 send message
 error S0

receive extablish
context message
(target or mutual
auth)

create context
if ok
 if continuation
 send continue
S2
 else
 send complete
 establish S3
else
 send message
 error delete
 context S0

receive message
error

send
DiscardContext
with the message
sender’s
context_id SO

delete context SO delete context SO

receive continue
establish context
message

send
DiscardContext
with the message
sender’s
context_id S0

update context
if ok
 i f continuation
 send continuation
 S2
else
 send complete
 establish S3
else
 send message error
 context S0

request to send
message in context

send message in
xontext with peer
context id S3
15-184 CORBAservices: Common Object Services Specification

15

P
15.8.5 DCE-CIOP with Security

This section describes how to provide secure interoperability between ORBs, which use
the DCE Common Inter-ORB Protocol (DCE-CIOP). It describes how the DCE-CIOP
transport layer should handle security (for example, how it should interpret the security
components of the IOR profile when selecting DCE Security Services for a request and
secure invocation).

Goals of Secure DCE-CIOP

The original goals of DCE-CIOP, documented in the CORBA 2.0 specification, are
maintained and enhanced by Secure DCE-CIOP:

• Support multivendor, mission critical, enterprise-wide, secure ORB-based
applications.

• Leverage services provided by DCE wherever appropriate.

• Allow efficient and straightforward implementation using public DCE APIs.

• Preserve ORB implementation freedom.

Secure DCE-CIOP achieves these goals by taking advantage of the integrated security
services provided by DCE Authenticated RPC. It is not a goal of the Secure DCE-CIO
specification to support the use of arbitrary security mechanisms for protection of DCE-
CIOP messages.

receive message in
context

send
DiscardContext
with the message
sender’s
context_id S0

process message
if ok
 S1
else
 if message decode
 error send message
 error S1
else
 send message error
 S0

process message
if ok
 S3
else
 if message decode
 error send message
 error S3
else
 send message error
 S0

request to send
discard context
message

send discard context
message delete
context S0

send discard context
message delete
context S0

receive discard
context message

delete context S0 delete context S0

No context (SO) Context being
created Message
allowed (S1)

Context being
created Message
not allowed (S2)

Context created
(S3)
Security Service: v1.0 November 1996 15-185

15

of a

get

r

s

 and
Secure DCE-CIOP Overview

Secure interoperability between ORBs using the DCE-CIOP transport relies on the DCE
Security Services and the DCE Authenticated RPC run-time that utilizes those services.

The DCE Security Services (specified in the X/Open Preliminary Specification X/Open
DCE: Authentication and Security Services), as employed by the DCE Authenticated RPC
run-time (specified in the X/OPEN CAE Specification C309 and the OSF AES/Distributed
Computing RPC Volume), provide the following security features:

• Cryptographically secured mutual authentication of a client and target

• Ability to pass client identity and authorization credentials to the target as part
request

• Protection against undetected, unauthorized modification of request data.

• Cryptographic privacy of data

• Protection against replay of requests and data

The RPC run-time provides the communication conduit for exchanging security
credentials between communicating parties. It protects its communications from threats
such as message replay, message modification, and eavesdropping.

The DCE-CIOP uses DCE RPC APIs to request security features for a given client-tar
communication binding. Subsequent DCE-CIOP messages on that binding flow over RPC
and thus are protected at the requested levels.

This Secure DCE-CIOP specification defines the IOR Profile components required to
support Secure DCE-CIOP. Each component is identified by a unique tag, and the
encoding and semantics of the associated component_data are specified. Client secure
association requirements, as indicated by client-side policy and target secure association
requirements, as specified in the target IOR Profile security components are mapped to
DCE Security Services. Finally, the use of DCE APIs to protect DCE-CIOP messages is
described.

IOR Security Components for DCE-CIOP

The information necessary to invoke secure operations on objects using DCE-CIOP is
encoded in an IOR in a profile identified by TAG_MULTIPLE_COMPONENTS. The
profile_data for this profile is a CDR encapsulation (see “CDR Transfer Syntax” in
Section 12.3 of the CORBA 2.0 specification) of the MultipleComponentProfile type,
which is a sequence of TaggedComponent structures. These types are described in Chapte
3 of CORBA 2.0.

The Multiple Component Profile contains the tagged components required to support
DCE-CIOP, described in Chapter 13 of the CORBA 2.0 specification, as well as the
components required to support security for DCE-CIOP. The general security component
are described in Security Components in the IOR under Section 15.8.4, CORBA
Interoperable Object Reference with Security. The DCE-specific security component
semantics for the common security components are described here.
15-186 CORBAservices: Common Object Services Specification

15

se to

Although a conforming implementation of Secure DCE-CIOP is only required to generate
and recognize the components defined here and in Chapter 13 of CORBA 2.0, the profile
may also contain components used by other kinds of ORB transports and services.
Implementations should be prepared to encounter profiles identified by
TAG_MULTIPLE_COMPONENTS that do not support DCE-CIOP. Unrecognized
components should be preserved but ignored. Although an implementation may choo
order the components in a profile in a particular way, other implementations are not
required to preserve that order. Implementations must be prepared to handle profiles
whose components appear in any order.

TAG_DCE_SEC_MECH

For a profile to support Secure DCE-CIOP, it must include exactly one
TAG_DCE_SEC_MECH component. Presence of this component indicates support for
the [non-GSSAPI] “DCE Security with Kerberos V5 with DES” mechanism type. The
component_data field contains an authorization service identifier and an optional
sequence of tagged components.

Future versions of DCE Security that require different information than what is provided
by the component_data structure shown next are expected to be supported with a new
component tag, rather than with revisions to the data structure associated with the
TAG_DCE_SEC_MECH tag.

The DCE Security Mechanism component is defined by the following OMG IDL:

module DCE_CIOP {

const IOP::ComponentId TAG_DCE_SEC_MECH = 103

// CORBA IDL doesn't (yet) support const octet

//

// const octet DCEAuthorizationNone = 0;

// const octet DCEAuthorizationName = 1;

// const octet DCEAuthorizationDCE = 2;

struct DCESecurityMechanismInfo {

octet authorization_service;

sequence<TaggedComponent> components;

};

};

A TaggedComponent structure is built for the DCE Security mechanism component by
setting the tag member to TAG_DCE_SEC_MECH, and setting the component_data
member to a CDR encapsulation of a DCESecurityMechanismInfo structure.
Security Service: v1.0 November 1996 15-187

15

 RPC
authorization_service Field

The authorization_service field is used to indicate what authorization service is
required by the target, and therefore must be supported by the authenticated RPC run-time
for invocations on this IOR. Two authorization models are supported:

• DCEAuthorizationName and DCEAuthorizationDCE, with a third identifier.

• DCEAuthorizationNone, to indicate that no authorization is required.

See DCE RCP Authorization Services in Section 15.8.6, DCE-CIOP with Security, for
details.

Components field

The components field contains a sequence of zero or more tagged components, none of
which may appear more than once, from the following list of common security IOR
components: TAG_ASSOCIATION_OPTIONS, and TAG_SEC_NAME.

Each of these components, defined in Security Components of the IOR in Section 15.8.4,
CORBA Interoperable Object Reference with Security, may be present either in the
components field of the DCESecurityMechanismInfo structure, or at the top level of the
IOR profile. When one of these components appears at the top level of the profile, its data
may be shared by other security mechanisms in the profile. When it appears in the nested
components field of DCESecurityMechanismInfo, its data is available only to the DCE
Security mechanism and overrides the data of an identically-tagged component, if present,
at the top level of the profile.

TAG_ASSOCIATION_OPTIONS

The association options component, described in Security Components of the IOR in
Section 15.8.4, CORBA Interoperable Object Reference with Security, contains flags
indicating which protection and authentication services the target supports, and which it
requires. This component is optional for Secure DCE-CIOP; defaults are used when the
component is not present.

The way in which association options are interpreted for use with DCE security is
reflected in Table 15-13, which shows how an association option is mapped to a DCE
protection level and authentication service.
15-188 CORBAservices: Common Object Services Specification

15

Table 15-13 Association Option Mapping to DCE Security

If the TAG_ASSOCIATION_OPTIONS component is not present, then the target is
assumed both to support and to requirerpc_c_protect_level_default and
rpc_c_authn_dce_secret . (The value of rpc_c_protect_level_default
is defined by the DCE implementation or by a site administrator.) See Behavior When
TAG_ASSOCIATION_OPTIONS Not Present later in this section, for a description of
how DCE security parameters are selected when this component is not present.

See DCE RPC Protection Levels and DCE RPC Authentication Services later in this
section, for more details on the protection provided by the DCE authenticated RPC
services.

target_supports field

When an association option is set in the target_supports field of the
TAG_ASSOCIATION_OPTIONS component_data , it indicates that the target
supports invocations which use Secure DCE-CIOP with the protection level and
authentication service that correspond to the selected option, as shown in Table 15-13.
Any or all of the association options may be set in the target_supports field. The
options set in the target_supports field will be compared with client-side policy
required options to determine if the target can support the client’s requirements.

Although, for the DCE security mechanism, a single selected option may imply support
for several other options (e.g., selection of the Integrity option implies support for
DetectReplay, DetectMisordering, and EstablishTrustInClient), it is recommended that
every supported option be explicitly set in the target_supports field to facilitate
comparison with client requirements.

Association Option DCE RPC
Protection Level

DCE RPC
Authentication Service

NoProtection rpc_c_protect_level_none rpc_c_authn_none

Integrity rpc_c_protect_level_pkt_integrity rpc_c_authn_dce_secret

Confidentiality rpc_c_protect_level_pkt_privacy rpc_c_authn_dce_secret

DetectReplay rpc_c_protect_level_pkt rpc_c_authn_dce_secret

DetectMisordering rpc_c_protect_level_pkt rpc_c_authn_dce_secret

EstablishTrustInTarget rpc_c_protect_level_connect rpc_c_authn_dce_secret

EstablishTrustInClient rpc_c_protect_level_connect rpc_c_authn_dce_secret

tag not present rpc_c_protect_level_default rpc_c_authn_dce_secret
Security Service: v1.0 November 1996 15-189

15

pports

isms

CE

target_requires field

When an association option is set in the target_requires field of the
TAG_ASSOCIATION_OPTIONS component_data , it indicates that the target
requires invocations secured with at least the protection level and authentication service
that correspond to the selected option, as shown in Table 15-13. Since DCE RPC su
a range of protection levels, each of which provides all the protection of the level below it
and also some additional protection, selecting multiple target_requires options
does not make sense. For DCE, no more than one option need be selected in the
target_requires field.

If a TAG_ASSOCIATION_OPTIONS component is contained within the
DCESecurityMechanismInfo structure, the target_requires field may conform to
the DCE semantics (i.e. no more than one option selected). If other security mechan
are sharing the TAG_ASSOCIATION_OPTIONS component, and perhaps using different
rules for interpreting the target_requires field, then the target_requires field may
have several options selected. The DCE Association Options Reduction algorithm,
described later in this section, handles both cases and is used to select the appropriate D
secure invocation services given a set of required association options.

The EstablishTrustInTarget option in the target_requires field is meaningless, and
is therefore ignored.

TAG_SEC_NAME

The security name component contains the DCE principal name of the target. Generally,
this is a global principal name that includes the name of the cell in which the target
principal’s account resides. If a cell-relative principal name (i.e., the cell prefix does not
appear) is specified, the local cell is assumed. Cell-relative principal names are only
appropriate for use in IORs that are consumed by clients in the same cell in which the
target resides. When an IOR containing a cell-relative principal name in the
TAG_SEC_NAME component crosses a cell boundary, the cell-relative principal name
should be replaced with a global name.

The format of a “human-friendly” DCE principal name is described in Section 1.13 of the
X/Open DCE: Authentication and Security Services specification [hereafter referred to as
X/Open DCE Security]. It is a string containing a concatenated cell name and cell-relative
principal name that looks like:

/.../cell-name/cell-relative-principal-name

For example, the principal with the cell-relative name “printserver” in the
“mis.prettybank.com” cell has the global principal name:

/.../mis.prettybank.com/printserver

The component_data member of the TAG_SEC_NAME component is set to the string
value of the DCE principal name. The string is represented directly in the sequence of
octets, including the terminating NUL.

If the TAG_SEC_NAME component is not present, then a value of NUL is assumed,
indicating that the client will depend on the DCE authenticated RPC run-time to retrieve
15-190 CORBAservices: Common Object Services Specification

15

d

e

t’s

the DCE principal name of the target, identified in the IOR by the DCE-CIOP string
binding and binding name components. This case indicates that the client is not intereste
in authentication of the target identity.

DCE RPC Security Services

This section provides details about the protection provided by DCE Authenticated RPC
authorization services, protection levels, and authentication services. See the
rpc_binding_set_auth_info() man page in the OSF DCE 1.1 Application
Development Reference for more information about using these protection parameters to
secure an association between a client and target.

DCE RPC Authorization Services

This section describes the DCE authorization service indicated by the
authorization_service member of the DCESecurityMechanismInfo structure in
the component_data field of the TAG_DCE_SEC_MECH component.

DCEAuthorizationName indicates that the target performs authorization based on th
client security name. The DCE RPC authorization service DCEAuthorizationName asserts
the principal name (without cryptographic protection if the association option
NoProtection is chosen, or with cryptographic protection otherwise).

DCEAuthorizationDCE indicates that the target performs authorization using the clien
Privilege Attribute Certificate (for OSF DCE 1.0.3 or previous versions), or the client’s
Extended Privilege Attribute Certificate (for DCE 1.1). The authorization service
DCEAuthorizationDCE asserts the principal name and appropriate authorization data
(without cryptographic protection if the association option NoProtection is chosen, or
with cryptographic protection otherwise).

DCEAuthorizationNone indicates that the target performs no authorization based on
privilege information carried by the RPC run-time. This is valid only if the association
option NoProtection is chosen.

The authorization_service identifiers defined here for Secure DCE-CIOP
correspond to DCE RPC authorization service identifiers and are defined to have identical
values.

Table 15-14 Relationship between Identifiers

Secure DCE-CIOP
authorization_service

DCE RPC
Authorization Service

Shared
Value

DCEAuthorizationNone rpc_c_authz_none 0

DCEAuthorizationName rpc_c_authz_name 1

DCEAuthorizationDCE rpc_c_authz_dce 2
Security Service: v1.0 November 1996 15-191

15

ribed
at

l.

n
DCE RPE Protection Levels

The meanings of the DCE RPC protection levels referenced in Table 15-14 are desc
next. For the purposes of evaluating the protection levels, it is interesting to remember th
a single DCE-CIOP message is transferred over the wire in the body of one or more DCE
RPC PDUs.

• rpc_c_protect_level_none indicates that no authentication or message protection is
to be performed, regardless of the authentication service chosen. Depending on
target policy, the client may be granted access as an unauthenticated principa

• rpc_c_protect_level_connect indicates that the client and server identities are
exchanged and cryptographically verified at the time the binding is set up betwee
them. Strong mutual authentication and replay detection for the binding setup only
is provided. There are no protection services per DCE RPC PDU.

• rpc_c_protect_level_pkt indicates that the rpc_c_protect_level_connect services
are provided plus detection of misordering or replay of DCE RPC PDUs. There is
no protection against PDU modification.

• rpc_c_protect_level_pkt_integrity offers the rpc_c_protect_level_pkt services
plus detection of DCE RPC PDU modification.

• rpc_c_protect_level_pkt_privacy offers the rpc_c_protect_level_pkt_integrity
services plus privacy of RPC arguments, which means the DCE-CIOP message in
its entirety is privacy protected.

• rpc_c_protect_level_default indicates the default protection level, as defined by
the DCE implementation or by a site administrator (should be one of the above
defined values).

DCE RPC Authentication Services

The meanings of the DCE RPC authentication services referenced in Table 15-14 are
described next.

• rpc_c_authn_none indicates no authentication. If th is is selected, then no
authorization, DCEAuthorizationNone, must be chosen as well.

• rpc_c_authn_dce_secret indicates the DCE shared-secret key authentication
service.

Secure DCE-CIOP Operational Semantics

This section describes how the DCE-CIOP transport layer should provide security for
invocation and locate requests.

During a request invocation, if the IOR components indicate support for the DCE-CIOP
transport and the TAG_DCE_SEC_MECH component is present, then a Secure DCE-
CIOP request can be made.
15-192 CORBAservices: Common Object Services Specification

15

ing

ingle

wing
Deriving DCE Security Parameters from Association Options

The client-side secure invocation policy and the target-side policy expressed in the
TAG_ASSOCIATION_OPTIONS component are used to derive the actual options us
the method described in Determining Association Options in Section 15.8.4, CORBA
Interoperable Object Reference with Security. These options are then reduced to a s
required_option using the algorithm described in DCE Association Options
Reduction Algorithm, next. The resultant required_option is used to select a DCE
RPC protection level and authentication service using Table 15-13, Association Option
Mapping to DCE Security. The derived protection level and authentication service are
used to secure the association via the rpc_binding_set_auth_info() call (see
Securing the Binding Handle to the Target, further in this section).

DCE Association Options Reduction Algorithm

The DCE Association Options Reduction algorithm is used to select a single association
option, required_option , given the value required by client and target derived as
described in Determining Association Options in Section 15.8.3, CORBA Interoperable
Object Reference with Security. The resultant required_option indicates, via Table
15-13, the DCE protection level and authentication service to use for invocations.

The association option names used in the following algorithm refer to options in the
negotiated-required options set.

The DCE Association Options Reduction algorithm is expressed as follows.

If Confidentiality is set, then required_option = Confidentiality;

else if Integrity is set, then required_option = Integrity;

else if DetectReplay is set, OR

 if DetectMisordering is set,

 then required_option = DetectReplay;

 (alternatively, the same results are obtained with:

 then required_option = DetectMisordering;)

else if EstablishTrustInClient is set,

 then required_option = EstablishTrustInClient;

else required_option = NoProtection.

Behavior When TAG_ASSOCIATION_OPTIONS Not Present

As described earlier, if the TAG_ASSOCIATION_OPTIONS component is not present,
then the target is assumed to support and require rpc_c_protect_level_default
and rpc_c_authn_dce_secret . Since these protection parameters are not expressed
as association options, the usual method of deriving a single required_option by
combining client and target policy (see Determining Association Options in Section
15.8.3, CORBA Interoperable Object Reference with Security, and DCE Associations
Options Reduction Algorithm, above) cannot be used. As an alternative, use the follo
method to derive the required DCE RPC protection level and authentication service:
Security Service: v1.0 November 1996 15-193

15

ion

, if

E

e
• Translate the client-side secure invocation policy from a set of client supported
association options to a single client_supported_option and from a set of
client required association options to a single client_required_option ,
using in each case the algorithm described in DCE Association Options Reduction
Algorithm.

• Using Table 15-13, Association Option Mapping to DCE Security, translate the
client_supported_option and client_required_option to
corresponding “supported” and “required” DCE RPC protection level/authentication
service pairs.

• If the target principal is a member of the local cell, determine the target required
protection level implied by rpc_c_protect_level_default by calling
rpc_mgmt_inq_dflt_protect_level() passing
rpc_c_authn_dce_secret as the authn_svc parameter. If the target
principal is not a member of the local cell or if it’s difficult to determine, then
assume a target required protection level of
rpc_c_protect_level_pkt_integrity .

• If the client supports rpc_c_authn_dce_secret , then choose the strongest
protection level that both the client and target support and that does not exceed the
strongest protection level required by either the client or target. If the client does
not support rpc_c_authn_dce_secret , then choose rpc_c_authn_none
and rpc_c_protect_level_none . Use the protection level and authentication
service thus derived to secure the association between this client and target.

Securing the Binding Handle to the Target

The DCE-CIOP protocol engine acquires an rpc_binding_handle to the target using
its normal procedure. The DCE_CIOP sets authentication and authorization informat
on that binding handle with the rpc_binding_set_auth_info() call using data
from the IOR profile security components in the following way:

• The target security name string from the TAG_SEC_NAME component (or NUL
the component is not present) is passed to rpc_binding_set_auth_info()
via the server_princ_name parameter.

• If the TAG_ASSOCIATION_OPTIONS component is present in the IOR, see
Deriving DCE Security Parameters from Association Options above to select a DC
RPC protection level and authentication service for th is invocation.

If the TAG_ASSOCIATION_OPTIONS component is not present in the IOR, se
Behavior When TAG_ASSOCIATION_OPTIONS Not Present above to select a
DCE RPC protection level and authentication service for this invocation.

The selected protection level is passed to rpc_binding_set_auth_info()
via the protect_level parameter. The selected authentication service is passed
via the authn_svc parameter to rpc_binding_set_auth_info() .

• The auth_identity parameter is set to NUL to use the DCE default login
context.
15-194 CORBAservices: Common Object Services Specification

15

• The authorization service identifier from the authorization_service field of
the DCESecurityMechanismInfo component_data is mapped to the
corresponding DCE RPC authorization service identifier, which is then passed via
the authz_svc parameter.

After a successful call to rpc_binding_set_auth_info (), the authenticated
binding handle will be used by the DCE-CIOP protocol engine to make secure requests.
Security Service: v1.0 November 1996 15-195

15

n

 2
Appendix A Consolidated OMG IDL

A.1 Introduction

The OMG IDL for CORBA security is split into modules as follows:

• A module containing the common data types used by all other security modules.

• A module for application interfaces for each Security Functionality Levels 1 and 2.
(Note that security-ready ORBs provide no real security functionality. Since they
provide only one operation, and that is proposed to be on the ORB, they are
included in Appendix B, Summary of CORBA 2 Core Changes, not here.)

• A module for Security Level 2 security policy administration.

• A module for non-repudiation, including the non-repudiation policy administratio
interface. This is the optional non-repudiation service.

• A module for the replaceable implementation Security Service, as described in
Section 15.7, Implementor’s Security Interfaces.

In addition, a number of extensions to existing CORBA modules are proposed for:

• Finding details of services in general, and in particular the security implementation.

• ORB Service/interceptor interfaces.

• The Object and Current interfaces for handling security (and management)
information.

• Extensions for domain and policy handling.

• Secure interoperability using GIOP and DCE-CIOP.

• Core management-related interfaces.

The IDL changes for these modules are defined in Appendix B, Summary of CORBA
Core Changes.

A minimal security Management module is also included in Appendix B.

A.2 General Security Data Module

This subsection defines the OMG IDL for security data types common to the other
security modules, which is the module Security. This module must be available with any
ORB that claims to be Security Ready. The Security module depends on the Time module.

module Security {

typedef string security_name;
typedef sequence <octet> Opaque;
15-196 CORBAservices: Common Object Services Specification

15

// extensible families for standard data types

struct ExtensibleFamily {
unsigned short family_definer;
unsigned short family;

};

// security association mechanism type

typedef string MechanismType;
struct SecurityMechandName {

MechanismType mech_type;
SecurityName security_name;

};

typedef sequence<MechanismType> MechanismTypeList;
typedef sequence<SecurityMechandName> SecurityMechandNameList;

// security attributes

typedef unsigned long SecurityAttributeType;

// identity attributes; family = 0

const SecurityAttributeType AuditId = 1;
const SecurityAttributeType AccountingId = 2;
const SecurityAttributeType NonRepudiationId = 3;

// privilege attributes; family = 1

const SecurityAttributeType Public = 1;
const SecurityAttributeType AccessId = 2;
const SecurityAttributeType PrimaryGroupId = 3;
const SecurityAttributeType GroupId = 4;
const SecurityAttributeType Role = 5;
const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType Clearance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
ExtensibleFamily attribute_family;
SecurityAttributeType attribute_type;

};
typedef sequence<AttributeType> AttributeTypeList;

struct SecAttribute {
Attri buteType attribute_type;
Opaque defining_authority;

 Opaque value;
// the value of this attribute; can be

 // interpreted only with knowledge of type
};

typedef sequence<SecAttribute> AttributeList;
Security Service: v1.0 November 1996 15-197

15

// Authentication return status

enum AuthenticationStatus {
SecAuthSuccess,
SecAuthFailure,
SecAuthContinue,
SecAuthExpired

};

// Association return status

enum AssociationStatus {
SecAssocSuccess,
SecAssocFailure,
SecAssocContinue

};

// Authentication method
typedef unsigned long AuthenticationMethod;

// Credential types which can be set as Current default

enum CredentialType {
SecInvocationCredentials,
SecOwnCredentials,
SecNRCredentials

};

// Declarations related to Rights
struct Right {

ExtensibleFamily rights_family;
string right;

};

typedef sequence <Right> RightsList;

enum RightsCombinator {
SecAllRights,
SecAnyRight

};

// Delegation related
enum DelegationState {

SecInitiator,
SecDelegate

};

// pick up from TimeBase
typedef TimeBase::UtcT UtcT;
typedef TimeBase::IntervalT IntervalT;
typedef TimeBase::TimeT TimeT;
15-198 CORBAservices: Common Object Services Specification

15

// Security features available on credentials.
enum SecurityFeature {

SecNoDelegation,
SecSimpleDelegation,
SecCompositeDelegation,
SecNoProtection,
SecIntegrity,
SecConfidentiality,
SecIntegrityAndConfidentiality,
SecDetectReplay,
SecDetectMisordering,
SecEstablishTrustInTarget

};

// Security feature-value
struct SecurityFeatureValue {

SecurityFeature feature;
boolean value;

};

typedef sequence<SecurityFeatureValue>
SecurityFeatureValueList;

// Quality of protection which can be specified
// for an object reference and used to protect messages
enum QOP {

SecQOPNoProtection,
SecQOPIntegrity,
SecQOPConfidentiality,
SecQOPIntegrityAndConfidentiality

};

// Association options which can be administered
// on secure invocation policy and used to
// initialize security context

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity= 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay= 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;

// Flag to indicate whether association options being
// administered are the “required” or “supported” set

enum RequiresSupports {
SecRequires,
SecSupports

};
Security Service: v1.0 November 1996 15-199

15

// Direction of communication for which
// secure invocation policy applies
enum CommunicationDirection {

SecDirectionBoth,
SecDirectionRequest,
SecDirectionReply

};

// AssociationOptions-Direction pair
struct OptionsDirectionPair {

AssociationOptions options;
CommunicationDirection direction;

};

typedef sequence<OptionsDirectionPair>
OptionsDirectionPairList;

// Delegation mode which can be administered
enum DelegationMode {

SecDelModeNoDelegation, // i.e. use own credentials
SecDelModeSimpleDelegation, // delegate received

credentials
SecDelModeCompositeDelegation// delegate both;

};

// Association options supported by a given mech type

struct MechandOptions {
MechanismType mechanism_type;
AssociationOptions options_supported;

};

typedef sequence<MechandOptions> MechandOptionsList;

// Audit

struct AuditEventType {
ExtensibleFamily event_family;
unsigned short event_type;

};

typedef sequence<AuditEventType> AuditEventTypeList;

typedef unsigned long SelectorType;

const SelectorType InterfaceRef = 1;
const SelectorType ObjectRef = 2;
const SelectorType Operation = 3;
const SelectorType Initiator = 4;
const SelectorType SuccessFailure = 5;
const SelectorType Time = 6;
15-200 CORBAservices: Common Object Services Specification

15

// values defined for audit_needed and audit_write are:
// InterfaceRef: object reference
// ObjectRef: object reference
// Operation: op_name
// Initiator: Credentials
// SuccessFailure: boolean
// Time: utc time on audit_write; time picked up from
// environment in audit_needed if required

struct SelectorValue {
SelectorType selector;
any value;

};

typedef sequence<SelectorValue> SelectorValueList;
};

A.3 Application Interfaces - Security Functionality Level 1

This subsection defines those interfaces available to application objects using only
Security Functionality Level 1, and consists of a single module, SecurityLevel1. This
module depends on the CORBA module, and on the Security and Time module. The
interface Current is implemented by the ORB. Its interface is defined by the following
PIDL.

module SecurityLevel1 {
interface Current : CORBA::Current { // PIDL

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);
};

};

A.4 Application Interfaces - Security Functionality Level 2

This subsection defines the addition interfaces available to application objects using
Security Functionality Level 2. There is one module, SecurityLevel2. This module
depends on CORBA and Security. The interfaces are described in Section 15.5,
Application Developer’s Interfaces.

module SecurityLevel2 {
// Forward declaration of interfaces
interface PrincipalAuthenticator;
interface Credentials;
interface Object;
interface Current;
Security Service: v1.0 November 1996 15-201

15

// Interface PrincipalAuthenticator
interface PrincipalAuthenticator {

Security::AuthenticationStatus authenticate (
in Security::AuthenticationMethod method,
in string security_name,
in Security::Opaque auth_data,
in Security::AttributeList privileges,
out Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data

);

Security::AuthenticationStatus continue_authentication (
in Security::Opaque response_data,
inout Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data

);
};

// Interface Credentials
interface Credentials {

Credentials copy ();

void set_security_features (
in Security::CommunicationDirection direction,
in Security::SecurityFeatureValueList security_features

);

Security::SecurityFeatureValueList
get_security_features (
in Security::CommunicationDirection

direction
);

boolean set_privileges (
in boolean force_commit,
in Security::AttributeList requested_privileges,
out Security::AttributeList actual_privileges

);

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);
boolean is_valid (

out Security::UtcT expiry_time
);

boolean refresh();
};

typedef sequence <Credentials> CredentialsList;
15-202 CORBAservices: Common Object Services Specification

15

// RequiredRights Interface

interface RequiredRights{
void get_required_rights(

in Object obj,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out Security::RightsList rights,
out Security::RightsCombinator rights_combinator

);

void set_required_rights(
 in string operation_name,
 in CORBA::RepositoryId interface_name,
 in Security::RightsList rights,

in Security::RightsCombinator rights_combinator
);

};

// Interface Object derived from Object
// providing additional operations on objref at this
// security level.

interface Object : CORBA::Object { // PIDL

void override_default_credentials (
in Credentials creds

);

void override_default_QOP (
in Security::QOP qop

);

Security::SecurityFeatureValueList get_security_features (
in Security::CommunicationDirection direction

);

Credentials get_active_credentials();

Security::MechanismTypeList get_security_mechanisms();

void override_default_mechanism(
in Security::MechanismType mechanism_type

);

Security::SecurityMechandNameList get_security_names ();
};
Security Service: v1.0 November 1996 15-203

15

// Interface Current derived from SecurityLevel1::Current
// providing additional operations on Current at this
// security level. This is implemented by the ORB

interface Current : SecurityLevel1::Current { //PIDL

void set_credentials (
in Security::CredentialType cred_type,
in Credentials creds

);

Credentials get_credentials (
in Security::CredentialType cred_type

);

readonly attribute CredentialsList received_credentials;

readonly attribute Security::SecurityFeatureValueList
received_security_features;

CORBA::Policy get_policy (
in CORBA::PolicyType policy_type

);

readonly attribute RequiredRights required_rights_object;
readonly attribute PrincipalAuthenticator principal_authenticator;

};

// interface audit channel
interface AuditChannel {

void audit_write (
in Security::AuditEventType event_type,
in CredentialsList creds,
in Security::UtcT time,
in Security::SelectorValueList descriptors,
in Security::Opaque event_specific_data

);
};
// interface for Audit Decision

interface AuditDecision {
boolean audit_needed (

in Security::AuditEventType event_type,
in Security::SelectorValueList value_list

);

readonly attribute AuditChannel audit_channel;
};

};
15-204 CORBAservices: Common Object Services Specification

15

d
A.5 Security Administration Interfaces

This section covers interfaces concerned with querying and modifying security policies,
and comprises the module SecurityAdmin. The SecurityAdmin module depends on
CORBA, Security, and SecurityLevel2. The interfaces are described in Section 15.6,
Administrator’s Interfaces. There are related interfaces for finding domain managers an
policies. Since they are not security specific, they are included in Appendix B, Summary
of CORBA 2 Core Changes, not here.

module SecurityAdmin {

// interface AccessPolicy
interface AccessPolicy : CORBA::Policy {

Security::RightsList get_effective_rights (
in SecurityLevel2::CredentialsList cred_list,
in Security::ExtensibleFamily rights_family

);
};

// interface DomainAccessPolicy
interface DomainAccessPolicy : AccessPolicy {

void grant_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family,
in Security::RightsList rights

);

void revoke_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family,
in Security::RightsList rights

);
void replace_rights (

in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family,
in Security::RightsList rights

);
Security::RightsList get_rights (

in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family

);
 };
Security Service: v1.0 November 1996 15-205

15

// interface AuditPolicy

interface AuditPolicy : CORBA::Policy {
void set_audit_selectors (

in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors

);

void clear_audit_selectors (
in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events

);

void replace_audit_selectors (
in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors

);

Security::SelectorValueList get_audit_selectors (
in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors

);

void set_audit_channel (
in SecurityLevel2::AuditChannel audit_channel

);
};

// interface SecureInvocationPolicy
interface SecureInvocationPolicy : CORBA::Policy {

void set_association_options(
in CORBA::InterfaceDef object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirection direction,
in Security::AssociationOptions options

);

Security::AssociationOptions get_association_options(
in CORBA::InterfaceDef object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirection direction

);
};

// interface DelegationPolicy
interface DelegationPolicy : CORBA::Policy {

void set_delegation_mode(
in CORBA::InterfaceDef object_type,
in Security::DelegationMode mode

);
15-206 CORBAservices: Common Object Services Specification

15

Security::DelegationMode get_delegation_mode(
in CORBA::InterfaceDef object_type

);
};

};

A.6 Application Interfaces for Non-repudiation

This subsection defines the optional application interface for non-repudiation. This
module depends on Security and CORBA. The interfaces are described in Section 15.5,
Application Developer’s Interfaces.

module NRservice {
typedef Security::MechanismType NRmech;
typedef Security::ExtensibleFamily NRPolicyId;

enum EvidenceType {
SecProofofCreation,

 SecProofofReceipt,
 SecProofofApproval,

 SecProofofRetrieval,
 SecProofofOrigin,
 SecProofofDelivery,

SecNoEvidence // used when request-only token desired
};

enum NRVerificationResult {
SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};

// the following are used for evidence validity duration
typedef unsigned long DurationInMinutes;

const DurationInMinutes DurationHour = 60;
const DurationInMinutes DurationDay = 1440;
const DurationInMinutes DurationWeek = 10080;
const DurationInMinutes DurationMonth = 43200;// 30 days
const DurationInMinutes DurationYear = 525600;//365 days

typedef long TimeOffsetInMinutes;

struct NRPolicyFeatures {
 NRPolicyId policy_id;
 unsigned long policy_version;
 NRmech mechanism;
};

typedef sequence<NRPolicyFeatures> NRPolicyFeaturesList;
Security Service: v1.0 November 1996 15-207

15

// features used when generating requests
struct RequestFeatures {

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

};

struct EvidenceDescriptor {
 EvidenceType evidence_type;
 DurationInMinutes evidence_validity_duration;
 boolean must_use_trusted_time;
 };

typedef sequence<EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name;
string authority_role;
TimeOffsetInMi nutes last_revocation_check_offset;

 // may be >0 or <0; add this to evid. gen. time to
 // get latest time at which mech. will check to see
 // if this authority’s key has been revoked.

 };

typedef sequence<AuthorityDescriptor> AuthorityDescriptorList;

struct MechanismDescriptor {
 NRmech mech_type;
 AuthorityDescriptorList authority_list;
 TimeOffsetInMi nutes max_time_skew;

 // max permissible difference between evid. gen. time
// and time of time service countersignature

 // ignored if trusted time not reqd.
 };

typedef sequence<MechanismDescriptor> MechanismDescriptorList;

interface NRCredentials {

boolean set_NR_features (
 in NRPolicyFeaturesList requested_features,

 out NRPolicyFeaturesList actual_features
);

NRPolicyFeaturesList get_NR_features ();

void generate_token (
in Security::Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,
15-208 CORBAservices: Common Object Services Specification

15

in boolean input_buffer_complete,
out Security::Opaque nr_token,
out Security::Opaque evidence_check

);

NRVerificationResult verify_evidence (
 in Security::Opaque input_token_buffer,
 in Security::Opaque evidence_check,
 in boolean form_complete_evidence,
 in boolean token_buffer_complete,
 out Security::Opaque output_token,
 out Security::Opaque data_included_in_token,
 out boolean evidence_is_complete,

 out boolean trusted_time_used,
 out Security::TimeT complete_evidence_before,
 out Security::TimeT complete_evidence_after

);

void get_token_details (
 in Security::Opaque token_buffer,
 in boolean token_buffer_complete,
 out string token_generator_name,
 out NRPolicyFeatures policy_features,
 out EvidenceType evidence_type,
 out Security::UtcT evidence_generation_time,

out Security::UtcT evidence_valid_start_time,
 out DurationInMinutes evidence_validity_duration,
 out boolean data_included_in_token,

out boolean request_included_in_token,
out RequestFeatures request_features

);

boolean form_complete_evidence (
in Security::Opaque input_token,
out Security::Opaque output_token,
out boolean trusted_time_used,
out Security::TimeT complete_evidence_before,
out Security::TimeT complete_evidence_after

);
};

interface NRPolicy {

void get_NR_policy_info (
 out Security::ExtensibleFamily NR_policy_id,

out unsigned long policy_version,
 out Security::TimeT policy_effective_time,
 out Security::TimeT policy_expiry_time,

out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList supported_mechanisms

);
Security Service: v1.0 November 1996 15-209

15

boolean set_NR_policy_info (
in MechanismDescriptorList requested_mechanisms,
out MechanismDescriptorList actual_mechanisms

);
};

};

A.7 Security Replaceable Service Interfaces

This section defines the IDL interfaces to the Security objects, which should be replaced if
there is a requirement to replace the Security services used for security associations (i.e.
the Vault and Security Contexts, Access Decision, and Audit Decision). This section
comprises the module SecurityReplaceable. This module depends on the CORBA,
Security, and SecurityLevel2 modules. The interfaces are described in Section 15.7,
Implementor’s Security Interfaces.

module SecurityReplacable {

// Forward ref of Security Context object

interface SecurityContext ;

interface Vault {
Security::AssociationStatus init_security_context (

in SecurityLevel2::CredentialsList
creds_list,

in Security::SecurityName target_security_name,
in Object target,
in Security::DelegationMode delegation_mode,
in Security::OptionsDirectionPairList association_options,
in Security::MechanismType mechanism,
in Security::Opaque mech_data, //from IOR
in Security::Opaque chan_binding,
out Security::Opaque security_token,
out SecurityContext security_context

);

Security::AssociationStatus accept_security_context (
in SecurityLevel2::CredentialsList

creds_list,
in Security::Opaque chan_bindings,
in Security::Opaque in_token,
out Security::Opaque out_token

);

Security::MechandOptionsList get_supported_mechs ();
};
15-210 CORBAservices: Common Object Services Specification

15

interface SecurityContext {

readonly attribute SecurityLevel2::CredentialsList
 received_credentials;

readonly attribute Security::SecurityFeatureValueList
security_features ;

Security::AssociationStatus continue_security_context (
in Security::Opaque in_token,
out Security::Opaque out_token

);

void protect_message (
in Security::Opaque message,
in Security::QOP qop,
out Security::Opaque text_buffer,
out Security::Opaque token

);
boolean reclaim_message (

in Security::Opaque text_buffer,
in Security::Opaque token,
out Security::QOP qop,
out Security::Opaque message

);

boolean is_valid (
out Security::UtcT expiry_time

);

boolean refresh ();
};

interface AccessDecision {

boolean access_allowed (
in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);
};

};

The interfaces for interceptors are considered as CORBA core extensions, so the IDL for
these is summarized in Appendix B, Summary of CORBA 2 Core Changes, not here.
Security Service: v1.0 November 1996 15-211

15

lds in
A.8 Secure Inter-ORB Protocol (SECIOP)

The SECIOP module holds structure declarations related to the layout of message fie
the secure inter-ORB protocol. This module does not depend on any other module.

module SECIOP {

const IOP::ComponentId TAG_GENERIC_SEC_MECH = 12;

const IOP::ComponentId TAG_ASSOCIATION_OPTIONS = 13;

const IOP::ComponentId TAG_SEC_NAME = 14;

struct TargetAssociationOptions{
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;

};

struct GenericMechanismInfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <IOP::TaggedComponent> components;

};

enum MsgType {
MTEstablishContext,
MTCompleteEstablishContext,

 MTContinueEstablishContext,
MTDiscardContext,

 MTMessageError,
MTMessageInContext

};

struct ulonglong {
unsigned long low;
unsigned long high;

};

typedef ulonglong ContextId;

enum ContextIdDefn {
Client,
Peer,
Sender

};

struct EstablishContext {
ContextId client_context_id;
sequence <octet> initial_context_token;

};
15-212 CORBAservices: Common Object Services Specification

15

u

struct CompleteEstablishContext {
ContextId client_context_id;
boolean target_context_id_valid;
ContextId target_context_id;
sequence <octet> final_context_token;

};

struct ContinueEstablishContext {
ContextId client_context_id;
sequence <octet> continuation_context_token;

};

struct DiscardContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
sequence <octet> discard_context_token;

};

struct MessageError {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
long major_status;
long minor_status;

};

enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC

};

struct MessageInContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
ContextTokenType message_context_type;
sequence <octet> message_protection_token;

};
};

A.9 Values for Standard Data Types

A number of data types in this specification allow an extensible set of values, so the ser
can add values as required to meet his own security policies. However, if all users defined
their own values, portability and interoperability would be seriously restricted.

Therefore, some standard values for certain data types are defined. These include the
values that identify:

• Security attributes (privilege and other attribute types)

• Rights families

• Audit event families and types

• Security mechanism types as used in the IOR (and Vault, etc.)
Security Service: v1.0 November 1996 15-213

15

Rights families and audit event families are defined as an ExtensibleFamily type. This has
a family definer value registered with OMG and a family id defined by the family definer.
Security attribute types also have family definers. Family definers with values 0 - 7 are
reserved for OMG. The family value 0 is used for defining standard types (e.g., of security
attributes).

A.9.1 Attribute Types

 Section 15.5, Application Developer’s Interfaces, defines an attribute structure for
privilege and other attributes. This includes:

• A family, as previously described.

• An attribute type. Users may add new attribute types. Two standard OMG families
are defined: the family of privilege attributes (family = 1), and the family of other
attributes (family = 0). Types in these families are listed in the following table.

• An optional defining authority. This indicates the authority responsible for defining
the value within the attribute type. Some policies demand that multiple sources of
values for a given attribute type be supported (e.g. a policy accepting attribute
values defined outside the security domain). These policies give rise to a risk of
value clashes. The defining authority field is used to separate these values. When
not present (i.e. length = 0), the value defaults to the name of the authority that
issued the attribute.

• An attribute value. The attribute value is defined as a sequence<octet>, which
someone who understands that attribute type can decipher.

Table A-1 Attribute Values

Attr ibute Type Value Meaning

Privilege Attributes (family = 1) All privilege attribu tes are used for access control

Public 1 The principal has no authenticated identity

AccessId 2 The identity of the principal used for access control

PrimaryGroupId 3 The primary group to which the principal belongs

GroupId 4 A group to which the principal belongs

Role 5 A role the principal takes

AttributeSet 6 An identifier for a set of related attributes, which a
user or appl ication can obtain

Clearance 7 The principal’s security clearance

Capability 8 A capability

Other Attributes (family = 0)

Audi tId 1 The identity of the principal used for auditing

AccountingId 2 The id of the account to be charged for resource use

NonRepudiationId 3 The id of the principal used for non-repudiation
15-214 CORBAservices: Common Object Services Specification

15

.

G
A.9.2 Rights Families and Values

Administration is simplified by defining rights that provide access to a set of operations,
so the administrator only needs to know what rights are required, rather than the semantics
of particular operations.

Rights are grouped into families. Only one rights family is defined in this specification
The family definer is OMG (value 0) and the family id is CORBA (value 1). Other
families may be added by vendors or users.

Three values are specified for the standard CORBA rights family.

Table A-2 CORBA Rights Family Values

A.9.3 Audit Event Families and Types

Events, like rights, are grouped into families as defined in Section 15.5, Application
Developer’s Interfaces.

Only one event family is defined in this specification. This has a family definer of OM
(value 0) and family of SYSTEM (value 1) and is used for auditing system events. All
events of this type are audited by the object security services, or the underlying security
services they use. Some of these events must be audited by secure object systems
conforming to SecurityFunctionality Level 1 (though in some cases, the event may be
audited by underlying security services). Other event types are identified so that, if
produced, a standard record is generated, so that audit trails from different systems can
more easily be combined. System audit events are specified in Table A-3.

Right Meaning

get Used for any operation on the object that does not change its state

set For operations on an object that changes its state

manage For operations on the attributes of the object, not its state
Security Service: v1.0 November 1996 15-215

15

.
lt.

s
Table A-3 System Audit Events

Application audit policies are expected to use application audit families.

A.9.4 Security Mechanisms

The security specification allows use of different mechanisms for security associations
These are used in the Interoperable Object Reference and also on the interface to the Vau

No values for these are defined in this version of the specification. However, value
will be defined in response to the Out-of-the-Box Interoperability RFP. Values will be
registered by OMG as described in Appendix H, Interoperability Guidelines.

Event Type
Whether
Mandatory Meaning and Event Specific Data

Principal authentication Yes Authentication of principals, either via the
principal authentication interface or underlying
security services

Session authentication Yes Security association/peer authentication

Authorization Yes Authorization of an object invocation (normally
using an Access Decision object)

Invocation No Object invocation (i.e. the request/reply)

Security environment
state change

No Change to the security environment for this client
or object (e.g. set_security_features,
override_default_credentials)

Pol icy change Yes Change to a security policy (using the
administrative interfaces in Section 15.6,
Administrator’s Interfaces)

Object creation No Creation of an object

Object destruction No Destruction of an object

Non-repudiation No Generation or verification of evidence
15-216 CORBAservices: Common Object Services Specification

15

o
Appendix B Summary of CORBA 2 Core Changes

B.1 Introduction

In a secure object environment, security must be pervasive and automatically enforced, so
that it cannot be bypassed. Both clients (which may or may not be objects) and target
objects require a secure environment in which security policies will be enforced.

The CORBA security specification requires a number of changes to the CORBA Core t
provide this security. Where possible, the changes proposed are made general, so future
services can make use of them, rather than being specific to security.

This appendix describes the changes needed to the CORBA Core. It also specifies one
change to the Transaction Service to have it use a general mechanism for obtaining the
initial reference to the Current pseudo-object.

B.2 Finding What Security Facilit ies Are Supported

This specification provides an operation, get_service_information , which can be
used to find what security facilities are supported by this implementation (i.e. what
security functionality level and options), and also some details about the mechanism and
policy options.

The get_service_information operation could be used for information about
other CORBA facilities and services, so is not security-specific, though only security
details are specified.

The specific changes required in the CORBA module appear in Section B.9.1, CORBA
Module Changes to Support Security Level 1.

B.3 Extension to the Use of Current

The Transaction Service introduced a Current interface to allow an application to
demarcate and manage the transaction associated with the current thread of activity (i.e.
the execution context of the client or target object).

This specification generalizes this use of Current so it can be used to handle other
information associated with the execution context at both client and target objects. In
particular, it associates security information, such as credentials, with Current and
provides means for accessing it.

The Current object in the environment may provide both Transaction and Security
operations, depending on the implementation.

For security, there are two new interfaces: SecurityLevel1::Current and
SecurityLevel2::Current , which the Current pseudo-object in a secure object
system supports. The pseudo-OMG IDL for these are presented in Appendix A,
Consolidate OMG IDL.
Security Service: v1.0 November 1996 15-217

15

n
he

 not

n
rs,

urity-

ity

ent or
The mechanism for obtaining a reference to the Current object is provided by the new
get_current operation of the ORB. The details of changes that need to be made to
CORBA and CosTransactions to incorporate this general mechanism are in Sectio
B.9.4, Changes to Support the Current Pseudo-Object. A single operation is added to t
ORB interface:

Current get_current ();

Return Value

An object reference to the Current pseudo-object.

B.4 Extensions to Object Interfaces for Security

In a similar manner, a secure object system extends the existing CORBA::Object
interface which is implicitly supported by all objects, with the operations in the
SecurityLevel1::Object and SecurityLevel2::Object interface. As
with most of the operations in the existing CORBA::Object interface, the additional
security functions operate locally on the object reference and are not implemented as
invocations on the target. See Interfaces in Section 15.5.5, Object Reference, for details of
operations provided by SecurityLevel1::Object and
SecurityLevel2::Object.

Note that at a client in a secure environment, the object reference of objects that are
themselves in a secure environment will still contain the SecurityLevel1::Object
or SecurityLevel2::Object operations (depending on the level of security
supported by the ORB), since object reference operations are implemented by the client
ORB. Security-aware applications will access these security-specific operations by using
the SecurityLevel1::Object or the SecurityLevel2::Object interface
instead of the vanilla CORBA::Object interface. Others will transparently continue to
use the usual CORBA::Object interface, and still be provided the level of security
appropriate for security-unaware applications.

B.5 Extensions to CORBA for Domains and Policies

In a secure object system, all objects should be subject to policy. The CORBA security
specification therefore specifies policy domains, where each domain has a domain
manager and a number of associated security policies.

Both the applications and ORB need to be able to find what policies apply so they ca
enforce them. Administrative applications need to be able to find the domain manage
and hence the policy objects, so they can administer the policies.

Domain managers, and the way of finding policies associated with them, are not sec
specific. Therefore, the get_policy and get_domain_managers operations
needed to support this (see Section 15.6, Administrator’s Interfaces) are proposed as
extensions to the standard CORBA Object interface, rather than as part of the secur
service specific Object interfaces. (Note that this specification does not specify interfaces
for managing membership of domains, as this is assumed to be done by a Managem
Collections service.)
15-218 CORBAservices: Common Object Services Specification

15

,

 so

fic to

el

d a
Ensuring that all objects are subject to security policy also affects the way objects are
created. When objects are created, they must automatically be made members of domains
and so subject to the security policies for those domains.

Many applications, even those that create other objects, are often unaware of security,
these applications should not have to take any special action to ensure that the newly
created object is subject to policy.

Therefore, BOA::create must be extended as described in the Implementor’s View of
Secure Object Creation in Section 15.4.5, Security Object Models. This change does not
affect the definition of the BOA::create interface; rather it has implications for its
implementation. As previously noted, domains and policy mechanisms are not speci
security. The specific changes to the CORBA module are in Section B.9.2, CORBA
Module Changes to Support Security Level 2.

B.6 Further Definit ion of ORB Services

This section gives an enhanced definition of the ORB Services, which were introduced to
CORBA 2 as part of the Interoperability specification. This enhanced definition is
required to support the ORB Services replaceability conformance option and covers the
Interceptor interfaces used to implement security functions during invocation. It does not
specify how ORB service implementations are registered with the ORB, nor their
relationship with specific object adaptors, since this can and should be addressed by the
generic ORB technology adoption process.

B.6.1 ORB Core and ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB which
provides the basic representation of objects and the communication of requests.” ORB
Services, such as the Security Services, are built on this core and extend the basic
functions with additional qualities or transparencies, thereby presenting a higher-lev
ORB environment to the application.

The function of an ORB service is specified as a transformation of a given message (a
request, reply, or derivation thereof). A client may generate an object request, which
necessitates some transformation of that request by ORB services (for example, Security
Services may protect the message in transit by encrypting it).

B.6.2 Interceptors

An interceptor is responsible for the execution of one or more ORB services. Logically, an
interceptor is interposed in the invocation (and response) path(s) between a client an
target object. When several ORB services are required, several interceptors may be used.

Two types of interceptors are defined in this specification:

• Request-level interceptors, which execute the given request.

• Message-level interceptors, which send and receive messages (unstructured buffers)
derived from the requests and replies.
Security Service: v1.0 November 1996 15-219

15

ration

lso

ed

y

g
Interceptors provide a highly flexible means of adding portable ORB Services to a CORB-
compliant object system. The flexibility derives from the capacity of a binding between
client and target object to be extended and specialized to reflect the mutual requirements
of client and target. The portability derives from the definition of the interceptor interface
in OMG IDL.

The kinds of interceptors available are known to the ORB. Interceptors are created by the
ORB as necessary during binding, as described next.

B.6.3 Client-Target Binding

The Security architecture builds upon the ORB Interoperability architecture in considering
the selection of ORB Services as part of the process of establishing a binding between a
client and a target object.

A binding provides the context for a client communicating with a target object via a
particular object reference. The binding determines the mechanisms that will be involved
in interactions such that compatible mechanisms are chosen and client and target policies
are enforced. Some requirements, such as auditing or access control, may be satisfied by
mechanisms in one environment, while others, such as authentication, require coope
between client and target. Binding may also involve reserving resources in order to
guarantee the particular qualities of service demanded.

Although resolution of mechanisms and policies involves negotiation between the two
parties, this need not always involve physical interactions between the parties as
information about the target can be encoded in the object reference, allowing resolution of
the client and target requirements to take place in the client. The outcome of the
negotiation can then be sent with the request, for example, in the GIOP service context.
Where there is an issue of trust, however, the target must still check that this outcome is
valid.

The binding between client and target at the application level can generally be
decomposed into bindings between lower-level objects. For example, the agreement on
transport protocol is an agreement between two communications endpoints, which will
generally not have a one-to-one correspondence to application objects. The overall
binding therefore includes a set of related sub-bindings which may be shared, and a
potentially distributed among different entities at different locations.

B.6.4 Binding Model

No object representing the binding is made explicitly visible since the lifetime of such an
object is not under the control of the application, an existing binding potentially being
discarded, and a new one made without the application being aware of the fact.

Instead, operations that will affect how a client will interact with a target are provid
on the Object interface and allow a client to determine how it will interact with the
target denoted by that object reference. On the target side, the binding to the client ma
be accessed through the Current interface. This indirect arrangement permits a wide
range of implementations that trade-off the communication and retention of bindin
information in different ways.
15-220 CORBAservices: Common Object Services Specification

15

n

lled

s
Figure B-1 Binding Model

The action of establishing a binding is generally implicit, occurring no later than the first
invocation between client and target. It may be necessary for a client to establish more
than one binding to the same target object, each with different attributes (for example,
different security features). In this case, the client can make a copy of the object reference
using Object::duplicate and subsequently specify different attributes for that
reference.

The scope of attributes associated with an object reference is that of the object
reference instance, i.e. the attributes are not copied if the object reference is used as a
argument to another operation or copied using Object::duplicate . If an object
reference is an inout argument, the attributes will still be associated with the object
reference after the call if the reference still denotes the same object, but not otherwise.

B.6.5 Establishing the Binding and Interceptors

An ORB maintains a list of interceptors, which it supports, and when these are called.
Note that at the client, when handling the request, the request-level interceptors are always
called before the message level ones, while at the target the message-level ones are ca
first.

When the ORB needs to bind an object reference, it refers to the characteristics of the
target object and relates this to the types of interceptor it supports. From this it determine
the appropriate type of interceptor to handle the request and creates it, passing the object
reference in the call. (No separate interceptor initialization operation is used. The
client_invoke/target_invoke or send_message/receive_message
calls are used both for the first invocation and for subsequent ones.)

Client Target
Object

ORB Core

Interceptors Interceptors

Binding Binding

target obj ref
Current
Security Service: v1.0 November 1996 15-221

15

cure

(for

t as

When an interceptor is created, it performs its bind time functions. These may involve
getting the policies that apply to the client (and have not been overridden by the client)
and to the target. This could involve communicating with the target, for example, a se
invocation interceptor setting up a security association. Note that the ORB Core itself is
unaware of service-specific policies. In addition to performing its specific functions, the
interceptor must continue the request by invoking object(s) derived from the given object
reference.

The interceptors themselves maintain per-binding information relevant to the function
they perform. This information will be derived from:

• The policies that apply to the client and target object because of the domains to
which they belong, for example the access policies, default quality of protection.

• Other static properties of the client and target object such as the security
mechanisms and protocols supported.

• Dynamic attributes, associated with a particular execution context or invocation
example, whether a request must be protected for confidentiality).

If the relevant client or target environment changes, part or all of a binding may need to be
reestablished. For example, the secure invocation interceptor may detect that the
invocation credentials have changed and therefore needs to establish a new security
association using the new credentials. If the binding cannot be reestablished, an exception
is raised to the application, indicating the cause of the problem.

Similarly, at the target, the ORB will create an instance of each interceptor needed there. A
single interceptor handles both requests and replies at the client (or target), as these share
context information.

B.6.6 Using Interceptors

When a client performs an object request, the ORB Core uses the binding information to
decide which interceptors provide the required ORB Services for this client and targe
described in Section 15.7.3, Security Interceptors.

Request-Level Interceptors

Request-level interceptors could be used for services such as transaction management,
access control, or replication. Services at this level process the request in some way. For
example, they may transform the request into one or more lower-level invocations or
make checks that the request is permitted. The request-level interceptors, after performing
whatever action is needed at the client (or target), reinvoke the (transformed) request using
the Dynamic Invocation Interface (DII) CORBA::Request::invoke . The interceptor
is then stacked until the invocation completes, when it has an opportunity to perform
further actions, taking into account the response before returning.
15-222 CORBAservices: Common Object Services Specification

15

d in

lt of
r

 in

 may
ng
ation

 send

ext

ns
Interceptors can find details of the request using the operations on the request as define
the Dynamic Skeleton interface in CORBA 2. This allows the interceptor to find the target
object1, operation name, context, parameters, and (when complete) the result.

If the interceptor decides not to forward the request, for example, the access control
interceptor determines that access is not permitted, it indicates the appropriate exception
and returns.

When the interceptor resumes after an inner request is complete, it can find the resu
the operation using the result operation on the Request pseudo-object, and check fo
exceptions using the exception operation, etc. before returning.

Message-Level Interceptors

When remote invocation is required, the ORB will transform the request into a message
that can be sent over the network. Message-level interceptors operate on messages
general without understanding how these messages relate to requests (for example, the
message could be just a fragment of a request). Note that the message interceptors
achieve their purpose not by (just) transforming the given message, but by communicati
using their own message (for example, to establish a secure association). Fragment
and message protection are possible message-level interceptors.

send_message is always used when sending a message, so is used by the client to
a request (or part of a request), and by the target to send a reply.

When a client message-level interceptor is activated to perform a send_message
operation, it transforms the message as required, and calls a send operation to pass the
message on to the ORB and hence to its target. Unlike invoke operations, send
operations may return to the caller without completing the operation. The interceptor can
then perform other operations if required before exiting. The client interceptor may n
be called either using send_message to process another outgoing message, or using
receive_message to process an incoming message.

A target message-level interceptor also supports send_message and
receive_message operations, though these are obviously called in a different order
from the client side.

B.6.7 Interceptor Interfaces

Two interceptor interfaces are specified, both used only by the ORB:

• RequestInterceptor for operations on request-level interceptors. Two operations
are supported:

• client_invoke for invoking a request-level interceptor at the client.

• target_invoke for invoking a request-level interceptor at the target.

• MessageInterceptor for operations on message-level interceptors. Two operatio
are supported:

1.It is assumed that the target object reference is avai lable, as this is described in the C++ mapping for DSI, though
not yet in the OMG IDL.
Security Service: v1.0 November 1996 15-223

15

get

t

the
• send_message for sending a message from the client to the target or the tar
to the client.

• receive_message for receiving a message.

Request-level interceptors operate on a representation of the request itself as used in the
CORBA Dynamic Invocation and Skeleton interfaces. (It is assumed that the Reques
pseudo-object defined in the Dynamic Invocation interface is compatible with the
ServerRequest pseudo-object in the Dynamic Skeleton interface, and so supports
operations such as op_name, which returns the name of the operation being invoked.)

Client and Target Invoke

These invoke a request-level interceptor at the client or target. Both operations have
identical parameters and return values.

interface RequestInterceptor: Interceptor // PIDL
{

void client_invoke (
inout Request request);

void target_invoke (
inout Request request);

};

Parameters

request The request being invoked. This is a pseudo-object as defined in the
Dynamic Invocation Interface. After invocation, output parameters and
associated result and exceptions may have been updated.

Send and Receive Message

These invoke a message-level interceptor to send and receive messages. Both operations
have identical parameters and return values.

interface MessageInterceptor: Interceptor
{

void send_message (
in Object target,
in Message msg);

void receive_message (
in Object target,
in Message msg,);

};
15-224 CORBAservices: Common Object Services Specification

15

.

by
Parameters

target The target object reference.

Note: The target here may not be the same as seen by the application. For
example, a replication request-level interceptor may send the request to
more than one underlying object.

msg The message to be handled by this interceptor.

B.6.8 Interface Changes Required for Interceptors

Use of binding and interceptors requires extra interfaces on the target object reference to
get components (e.g. from the multicomponent profiles in the IOR). It is assumed that
these will be specified by the CORBA 2 (revision) task force, since this group is
developing the general form of the multicomponent profile structure.

B.7 Further Definit ion of ORB Interoperability

This specification describes the use of and extensions to the CORBA 2.0 interoperability
protocol and Interoperable Object Reference (IOR) to allow secure interoperability
between ORBs. Additional tags are defined in IOR Security Components of the DCE-
CIOP in Section 15.8.5, DCE-CIOP with Security, for security information in the IOR
Extra messages are added to the IOP/IIOP protocol for protected messages and replies and
are defined in Section 15.8.4, Secure Inter-ORB Protocol (SECIOP). These are designed
to be able to fit with GIOP fragmentation proposals also being considered. These security
extensions can be used with a range of different security mechanisms for security
associations.

This submission describes TAGs for security for use in multicomponent profiles.
Modifications to the CORBA 2.0 IOR specification to support this are being discussed
the Interoperability Revision Task Force, and have also been discussed with the security
submitters.

Appendix I, Further ORB Interoperability, contains a description of possible modifications
to CORBA 2 for this, but the definitive version of such changes will come from the
Revision Task Force.

The security submitters therefore require the Interoperability Revision Task Force to
define the modifications needed. This should result in multicomponent profiles, which
will be used both by IIOP- or IIOP-derived protocols and DCE-CIOP.

This specification maintains strict message format compatibility with the IIOP protocol as
defined in CORBA 2.0. It also maintains compatibility with existing unsecured
implementations of DCE-CIOP.
Security Service: v1.0 November 1996 15-225

15

B.8 Implications of Assurance

The ORB must function correctly, enforcing security policy on object invocation, object
creation, etc. as defined in this specification. It must do this to the level of assurance
specified in its Conformance Statement (see Appendix F, Conformance Statement). It
must also meet other assurance requirements defined there such as preventing interference
between objects to the required extent.

B.9 Enhancements to the CORBA Module

The enhancements to the CORBA Core previously discussed requires the following
modifications to the CORBA module.

B.9.1 CORBA Module Changes to Support Security Level 1

The following additions and changes to the CORBA module are necessary for the Security
Level 1 conformance point

New Data Types Added to the CORBA Module

The following data types need to be inserted into the CORBA module preceding the
declaration of the ORB interface.

module CORBA {

typedef unsigned short ServiceType ;

const ServiceType Security = 1 ;
// other Service types to be defined

typedef unsigned long ServiceOption ;

const ServiceOption SecurityLevel1 = 1;
const ServiceOption SecurityLevel2 = 2;
const ServiceOption NonRepudiation = 3;
const ServiceOption SecurityORBServiceReady = 4;
const ServiceOption SecurityServiceReady = 5;
const ServiceOption ReplaceORBServices = 6 ;
const ServiceOption ReplaceSecurityServices = 7;
const ServiceOption StandardSecureInteropability = 8;
const ServiceOption DCESecureInteroperability = 9;

// Service details supported by the implementation

typedef unsigned long ServiceDetailType;

// security mech type(s) supported for secure associations

const ServiceDetailType SecurityMechanismType = 1;
15-226 CORBAservices: Common Object Services Specification

15

// privilege types supported in standard access policy

const ServiceDetailType SecurityAttribute = 2;

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;

 };

struct ServiceInformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

};
};

Extensions to the ORB Interface

The operation get_service_information needs to be appended to the list of
operations in the ORB interface.

module CORBA {
interface ORB {

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);
};

};

The specific change consists of adding the lines

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);

to the list of operations in the definition of the ORB interface on page 7-2 in CORBA V2.0
July 1995. The associated addition of data types and interfaces must precede the
declaration of the ORB interface in the CORBA module.

B.9.2 CORBA Module Changes to Support Security Level 2

The following additions and changes to the CORBA module are necessary for the Security
Level 2 conformance point.

New Data Types Added to the CORBA Module

The following data types need to be added to the CORBA module for this conformance
level.
Security Service: v1.0 November 1996 15-227

15

module CORBA {
enum PolicyType {

SecClientInvocationAccess,
SecTargetInvocationAccess,
SecApplicationAccess,

 SecClientInvocationAudit,
SecTargetInvocationAudit,
SecApplicationAudit,
SecDelegation,

 SecClientSecureInvocation,
SecTargetSecureInvocation,
SecNonRepudiation,
SecConstruction

};
};

New Interfaces Added to the CORBA Module

The following segment of OMG IDL needs to be inserted into the CORBA module
preceding the definition of the Object interface.

module CORBA
{

// Interfaces to support the basic management infrastructure
interface Policy {
// Features common to all Policies
};

interface DomainManager {

// get policies for objects in this domain
Policy get_domain_policy (

in PolicyType policy_type
);

typedef sequence<DomainManager> DomainManagerList;
};

interface ConstructionPolicy : Policy{
void make_domain_manager(

in InterfaceDef object_type
);

};
};

Extensions to the Object Interfaces

The operations in the OMG IDL block shown next need to be appended to the list of
operations in the definition of the Object interface in the CORBA module.
15-228 CORBAservices: Common Object Services Specification

15

module CORBA {
interface Object {
// operations to facilitate basic management infrastructure

Policy get_policy (
in PolicyType policy_type

);
DomainManagerList get_domain_managers();

};
};

The specific changes are on page 7-3 of CORBA V2.0 July 1995. Append the following
lines to the list of operations in the definition of Object interface.

Policy get_policy (
in PolicyType policy_type

);
DomainManagerList get_domain_managers();

Add the corresponding documentation for these operations from Section 15.6.2 of this
document to page 7-3 of CORBA V2.0 July 1995.

B.9.3 CORBA Module Changes for Replaceability Conformance

The following additions and changes to the CORBA module are necessary for supporting
the Interceptor mechanism to satisfy the ORB Services Replaceability conformance
option.

New Interfaces Added to the CORBA Module

The following new interfaces need to be added to the CORBA module to support this
conformance option.

The message-level interceptor has a Message parameter, which is a pseudo-object (see the
Request pseudo-object used on the message interface). This pseudo-object comprises an
ordered sequence of octets. The operations for accessing it should be aligned with the
operations for operating on collections as expected to be defined for the Collections
Service technology adoption process.

module CORBA {
interface Interceptor { // PIDL

// Generic interceptor operations (management etc.)
};

interface RequestInterceptor: Interceptor { // PIDL
void client_invoke (

inout Request request
);
void target_invoke (

inout Request request
);

};
Security Service: v1.0 November 1996 15-229

15

ot
interface MessageInterceptor: Interceptor { // PIDL
void send_message (

in Object target,
in Message msg

);
void receive_message (

in Object target,
in Message msg

);
};

};

Add corresponding documentation for these operations from Section B.6, Further
Definition of ORB Services, to the appropriate section of CORBA V2.0 July 1995.

B.9.4 Changes to Support the Current Pseudo-Object

The CORBA module changes and additions described here are necessary for supporting
Security Replaceability and Security Level 2. The changes to Transaction service are n
necessary from the perspective of meeting any security requirements, but is highly
recommended for maintaining uniformity of mechanisms and interfaces.

New Interface Added to the CORBA Module

module CORBA
{
 // interface for the Current pseudo-object

interface Current { // PIDL
};

};

Extensions to the ORB Interfaces

The following extension needs to be made to the ORB interface.

module CORBA {
interface ORB {

Current get_current ();
};

};

The specific change consists of adding

Current get_current ();

to the definition of the ORB interface on page 7-2 in CORBA V2.0 July 1995. The
associated addition of data types and interfaces must precede the declaration of the ORB
interface in the CORBA module.
15-230 CORBAservices: Common Object Services Specification

15

Transaction Service Changes

The following change needs to be made to the Transaction Service to make it compatible
with and able to use the ORB::get_current operation. The change is to be made in
CORBAservices: Common Object Services Specification, Rev. Ed. March 31, 1995, OMG
Document Number 95-3-31.

On page 10-19, change the first line of the OMG IDL in the box from

interface Current {

to

interface Current : CORBA::ORB::Current {

B.9.5 CORBA Module Deprecated Interfaces

SecurityLevel2::Credentials is the preferred interface for retrieving
information about the identity of callers in CORBA Security conformant ORB
implementations; the use of CORBA::get_principal is deprecated, and it is
anticipated that this interface will be eliminated in a future CORBA revision.
Security Service: v1.0 November 1996 15-231

15

force

do

m,

t

ent
Appendix C Relationship to Other Services

C.1 Introduction

This appendix describes the relationship between Object Services and Common Facilities
and the security architecture components, if they are to participate in a consistent, secure
object system.

C.2 General Relationship to Object Services and Common Facilities

In general, Object Services and Common Facilities, like any application objects, may be
unaware of security, and rely on the security enforced automatically on object invocations.
As for application objects, access to their operations can be controlled by access policies
as described in Section 15.3, Security Reference Model, Section 15.5, Application
Developer’s Interfaces, and elsewhere.

An Object Service or Common Facility needs to be aware of security if it needs to en
security itself. For example, it may need to control access to functions and data at a finer
granularity than at object invocation, or need to audit such activities. The way it can
this is described in Section 15.4, Security Architecture. Existing Object Services should be
reviewed to see if such access control and auditing is required.

If an Object Service or Common Facility is required to be part of a more secure syste
some assurance of its correct functioning, if security relevant, is needed, even if it is not
responsible for enforcing security itself. See Appendix E, Guidelines for a Trustworthy
System, for guidelines on this matter.

Where an Object Service is called by an ORB service as part of object invocation in a
secure system, there is a need to ensure security of all the information involved in the
invocation. This requires ORB Services to be called in the order required to provide the
specified quality of protection. For example, the Transaction Service must be invoked firs
to obtain the transaction context information before the whole message is protected for
integrity and/or confidentiality.

In the following sections, we provide an initial estimation of the relationship between
Security Service and other existing services and facilities.

C.3 Relationship with Specific Object Services

C.3.1 Transaction Service

This specification builds on the definition of Current introduced by the Transaction
Service to provide information about the current execution context. It also specifies a
general ORB operation for applications to get hold of an object reference to the Curr
pseudo-object (see Appendix B, Summary of CORBA 2 Core Changes).

In order to have the Transaction Service use the proposed mechanism, the definition of the
CosTransactions::Current interface needs to be modified so that it is derived
15-232 CORBAservices: Common Object Services Specification

15

an
wever,
ss

on if

ed in

ned

on of
from CORBA::ORB::Current . The necessary change is presented in Section B.9.4,
Changes to Support the Current Pseudo-Object.

C.3.2 Naming Service

For security, the object must be correctly identified wherever it is within the distributed
object system. The Naming Service must do this successfully in an environment where
object name is unique within a naming context, and name spaces are federated. (Ho
to provide the required proof of identity, objects, and/or the gatekeepers which give acce
to them will be authenticated using a separate Authentication Service.) See Section E.6.2,
Basis of Trust, for additional information about the relationship between security and
names.

C.3.3 Event Service

The implementation of a Security Audit Service may involve the use of Event Service
objects for the routing of both audits and alarms.

However, this is only possible if the Event Service itself is secure in that it protects the
audit trail from modification and deletion. It must also be able to guard against recursi
it audits its own activities.

C.3.4 Persistent Object Service

No explicit use is made of this service. Audit trails may be saved using this service, in
which case the implementation of the Persistent Object Service must ensure that data
stored and retrieved through it is not tampered with by unauthorized entities. If it is us
the implementation of Security Service or by a secure application, it must follow the
guidelines in Appendix E, Guidelines for a Trustworthy System.

C.3.5 Time Service

The Security Service uses the data types for time, timestamps, and time intervals as
defined by the Time Service, so that applications can readily use the Time Service defi
interfaces to manipulate the time data that the Security Service uses. The interfaces of
Security Service do not explicitly pass any interfaces defined in the Time Service.

C.3.6 Other Services

The other services are not used explicitly. If any of them are used in the implementati
Security Service or by a secure application, it must be verified that the service used
follows the guidelines in Appendix E, Guidelines for a Trustworthy System.
Security Service: v1.0 November 1996 15-233

15

tified
C.4 Relationship with Common Facilities

Because Management Services have been identified as Common Facilities in the Object
Management Architecture, only minimal, security-specific administration interfaces are
specified here. When Common Facilities Management services are specified, they will
need to take into account the need for security management and administration iden
in this specification. Also, such management services will themselves need to be secure.

This specification adds certain basic interfaces to CORBA, which form the basis for the
minimal policy administration related interfaces and functionality that has been provided.
Future management facilities are expected to build upon this foundation.
15-234 CORBAservices: Common Object Services Specification

15

and

 to

ll
n

o
Appendix D Conformance Details

D.1 Introduction

Conformance to CORBA Security covers:

• Main security functionality . There are two possible levels.

• Level 1: This provides a first level of security for applications unaware of
security, and for those that have limited requirements to enforce their own
security in terms of access controls and auditing.

• Level 2: This provides more security facilities, and allows applications to control
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

• Security Functionality Options. These are functions expected to be required in
several ORBs, so are worth including in th is specification, but are not generally
required enough to form part of one of the main security functionality levels
previously specified. There is only one such option in the specification.

• Non-Repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

• Security Replaceability. This specification is designed to allow security policies to
be replaced. The additional policies must also conform to this specification. This
includes, for example, new Access Polices. Security Replaceability specifies if
how the ORB fits with different security services. There are two possibilities.

• ORB Services replaceability: The ORB uses interceptor interfaces to call on
object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conforming
this does not include any significant security-specific code, as that is in the
interceptors.

• Security Service replaceability: The ORB may or may not use interceptors, but a
calls on security services are made via the replaceability interfaces specified i
Section 15.7, Implementor’s Security Interfaces. These interfaces are positioned
so that the security services do not need to understand how the ORB works, s
they can be replaced independently of that knowledge.

An ORB that supports one or both of these replaceability options may be Security
Ready (i.e. support no security functionality itself, but be ready to have security
added, or may support Security Functionality Level 1 or 2).

Note: Some replaceability of the security mechanism used for secure associations
may still be provided if the implementation uses some standard generic interface for
security services such as GSS-API.

• Secure Interoperability: Possibilities are

• Secure Interoperability - Standard: An ORB supporting th is can generate/use
security information in the IOR and can send/receive secure requests to/from
other ORBs using the GIOP/IIOP protocol with the security (SECIOP)
Security Service: v1.0 November 1996 15-235

15

or

ain

s
enhancements defined in Section 15.8, Security and Interoperability, providing
they can both use the same underlying security mechanism and algorithms f
security associations.

• Standard plus DCE-CIOP Option: As for Standard, but secure DCE-CIOP is also
supported.

If the ORB does not conform to one of these, it will not use the GIOP security
enhancements, and so will interoperate securely only in an environment-specific
way.

The conformance statement required for a CORBA Security conformant implementation
is defined in Appendix F, Conformance Statement. Appendix F includes a checklist,
which can be completed to show what the ORB conforms to; it is reproduced next. A m
security functionality level must always be specified. Functional Options, Security
Replaceability, and Security Interoperability should be indicated by checking the boxe
corresponding to the function supported by the ORB.

D.2 Security Functionality Level 1

Security Functionality Level 1 is the level to which all OMG-compliant security
implementations must conform. It provides:

• A level of security functionality available to applications unaware of security. (It
will, of course, also provide this functionality to applications aware of security.)
This level includes security of the invocation between client and target object,
simple delegation of client security attributes to targets, ORB-enforced access
control checks, and auditing of security-relevant system events.

• An interface through which a security-aware application can retrieve security
attributes, which it may use to enforce its own security policies (e.g. to control
access to its own attributes and operations).

D.2.1 Security Functionality Required

An ORB supporting Level 1 security functionality must provide the following security
features for all applications, whether they are security-aware or not.

Main
Functionality
 Level

Functional
Options Security Replaceability

Security
Interoperability

1 2 Non
Repudiation

ORB
Services

Security
Services

Security
Ready -
ORB
Services

Security
Ready -
Security
Services

Standard Standard
+ DCE-
CIOP
15-236 CORBAservices: Common Object Services Specification

15

trols
• Allow users and other principals to be authenticated, though this may be done
outside the object system.

• Provide security of the invocation between client and target object including:

• Establishment of trust between them, where needed. At Level 1, this may be
supported by ORB level security services or can be achieved in any other secure
way. For example, it could use secure lower-layer communications. Mutual
authentication need not be supported.

• Integrity and/or confidentiality of requests and responses between them.

• Control of whether this client can access this object. At this level, access con
can be based on "sets" of subjects and "sets" of objects. Details of the Access
Policy and how this is administered are not specified.

• At an intermediate object in a chain of calls, the ability to be able to either delegate
the incoming credentials or use those of the intermediate object itself.

• Auditing of the mandatory set of system’s security-relevant events specified in
Appendix A, Consolidated OMG IDL. In some cases, the events to be audited may
occur, and be audited, outside the object system (for example, in underlying
security services). In this case, the conformance statement must identify the product
responsible for generating the record of such an event (or choice of product, for
example, when the ORB is portable to different authentication services).

At th is level, auditing of object invocations need not be selectable. However, it
must be possible to ensure that certain events are audited (see Section A.9, Values
for Standard Data Types, for the list of mandatory events).

For security aware applications, it must also:

• Make the privileges of authenticated principals available to applications for use in
application access control decisions.

These facilities require the ORB and security services to be initialized correctly. For
example, the Current object at the client must be initialized with a reference to a
credentials object for the appropriate principal.

D.2.2 Security Interfaces Supported

Security interfaces available to applications may be limited to:

• get_service_information providing security options and details (see
Section 15.5.2, Finding Security Features).

• get_attributes on Current (see Interfaces under Section 15.5.6, Security
Operations on Current).

No administrative interfaces are mandatory at this level.
Security Service: v1.0 November 1996 15-237

15

D.2.3 Other Security Conformance

An ORB providing Security Functionality Level 1 may also conform to other security
options. For example, it may also:

• Support some of the Security Functionality Options specified in Section D.4,
Security Functionality Options.

• Provide security replaceability using either of the replaceability options.

• Provide secure interoperability, though in this case, will need to provide security
associations at the ORB level (not lower-layer communications) as the protocol
assumes security tokens are at this level.

D.3 Security Functionality Level 2

This is the functionality level that supports most of the application interfaces defined in
Section 15.5, Application Developer’s Interfaces, and the administrative interfaces
defined in Section 15.6, Administrator’s Interfaces. It provides a competitive level of
security functionality for most situations.

D.3.1 Security Functionality Required

An ORB that supports Security Functionality Level 2 supports the functionality in
Security Level 1 previously defined, and also:

• Principals can be authenticated outside or inside the object system.

• Security of the invocation between client and target objects is enhanced.

• Establishment of trust and message protection can be done at the ORB level, so
security below this (for example, in the lower layer communications) is not
required (though may be used for some functions).

• Further integrity options can be requested (e.g. replay protection and detection of
messages out of sequence) but need not be supported.

• The standard DomainAccessPolicy is supported for control of access to
operations on objects.

• Selective auditing of methods on objects is supported.

• Applications can control the options used on secure invocations. It can:

• Choose the quality of protection of messages required (subject to policy controls).

• Change the privileges in credentials.

• Choose which credentials are to be used for object invocation.

• Specify whether these can just be used at the target (e.g. for access control) or
whether they can also be delegated to further objects.
15-238 CORBAservices: Common Object Services Specification

15

• No further delegation facilities are mandatory, but the application can request

"composite" delegation, and the target can obtain all credentials passed, in systems
that support th is. Note that "composite" here just specifies that both received
credentials and the intermediate’s own credentials should be used. It does not
specify whether this is done by combining the credentials or linking them.

• Administrators can specify security policies using domain managers and policy
objects as specified in Section 15.6, Administrator’s Interfaces. The security policy
types supported at Level 2 are all those defined in Section 15.6 except non-
repudiation. The standard policy management interfaces for each of the Level 2
policies is supported.

• Applications can find out what security policies apply to them. This includes
policies they enforce themselves (e.g. which events types to audit) and some
policies the ORB enforces for them (e.g. default qop, delegation mode).

• ORBs (and ORB Services, if supported) can find out what security policies apply to
them. They can then use these policy objects to make decisions about what security
is needed (check if access is permitted, check if auditing is required) or get the
information needed to enforce policy (get QOP, delegation mode, etc.) depending
on policy type.

As at Level 1, these facilities require the ORB and security services to be initialized
correctly.

D.3.2 Security Interfaces Supported

Interfaces supported at this level are:

• All application interfaces defined in Section 15.5, Application Developer’s
Interfaces (except those in Section 15.5.11, Non-repudiation).

• All security policy administration interfaces defined in Section 15.6,
Administrator’s Interfaces (except those for the non-repudiation policy).

Note that some of these interfaces may return a NO-IMPLEMENT exception, as not
ORBs conforming to Level 2 Security need implement all possible values of all
parameters. This will happen when:

• A privilege attribute is requested of a type that is not supported (attribute types
supported are defined in Appendix A, Consolidated OMG IDL).

• A delegation mode is requested, which is not supported.

• A communication direction for association options is requested, which is not
supported.
Security Service: v1.0 November 1996 15-239

15

D.3.3 Other Security Conformance

An ORB providing Security Functionality Level 2 may also conform to other security
options. For example, it may also:

• Support some of the Security Functionality Options specified in Section D.5,
Security Replaceability.

• Provide security replaceability, using either of the replaceability options.

• Provide secure interoperability.

D.4 Security Functionality Options

An ORB may also conform to optional security functionality defined in this specification.
Only one optional facilities is specified: non-repudiation.

Also, some requirements on conformance of additional facilities are specified.

D.4.1 Non-repudiation

Security Functionality

An ORB conforming to this must support the non-repudiation facilities for generating
and verify ing evidence described in The Model as Seen by Applications in Section
15.4.5, Security Object Models. Note that these use NRCredentials, which may be the
same as the credentials used for other security facilities. Where non-repudiation is
supported, the credentials acquired from the environment or generated by the
authenticate operation must be able to support non-repudiation.

Security Interfaces Supported

The following interfaces must be supported. All are available to applications. They are:

• set_/get_NR_features as defined in Section 15.5.11, Non-repudiation.

• generate_token , verify_evidence , form complete evidence and get token
details as defined in Section 15.5.11.

• Use of set/get_credentials on Current specifying the type of credentials to
be used is NRCredentials.

• NR policy object with associated interfaces as in Section 15.6.7, Non-repudiation
Policy Management.
15-240 CORBAservices: Common Object Services Specification

15

o a

by

.4,

r

licy.

he
e
Fit with Other Security Conformance

Non-repudiation requires use of credentials; thus it can only be used with ORBs, which
support some of the interfaces defined in Security Functionality level 2. However,
conformance to all of Security Functionality Level 2 is not a prerequisite for conformance
to the non-repudiation security functionality option.

Secure interoperability as defined in Section D.6, Secure Interoperability, is not affected
by non-repudiation. The evidence may be passed on an invocation as a parameter t
request, but the ORB need not be aware of this.

The current specification does not specify interoperability of evidence (i.e. one non-
repudiation service handling evidence generated by another).

D.4.2 Conformance of Additional Policies

This specification is designed to allow security policies to be replaced. The additional
policies must also conform to some of the interfaces in this specification if they are used to
replace the standard policies automatically enforced on object invocation.

The case described next is for the addition of a new Access Policy which can be used for
controlling access to objects automatically, replacing the standard DomainAccessPolicy.

Clearly, other policies can be replaced. For example, the audit policy could be replaced
one that used different selectors, or the delegation policy could be replaced by one that
supported more advanced features.

Additional Access Policies

A new Access Policy, which is to be enforced automatically at invocation time, should be
supported by providing a new Access Policy object. This must support the
access_allowed operation defined in Access Decision Object under Section 15.7
Implementation-Level Security Object Interfaces, so that it can be called automatically by
the ORB to check if access is allowed.

This policy object should be associated with a domain, and be specified as a client o
target policy as for the standard Access Policy. The policy object should include
administrative interfaces to allow the policy to be administered, but this need not
(normally cannot) conform to the administrative interface defined for the standard po

D.5 Security Replaceability

This specifies how an ORB can fit with security services, which may not come from t
same vendor as the ORB. As explained above, there are two levels where this can be don
(apart from any underlying APIs used by an implementation).
Security Service: v1.0 November 1996 15-241

15

n

D.5.1 Security Features Replaceability

Conformance to this allows security features to be replaced.

If it is provided without conformance to the ORB Service replaceability option (see
Section D.5.2, ORB Services Replaceability), it requires the ORB to have a reasonable
understanding of security, handling credentials, etc. and knowing when and how to call o
the right security services.

Support for this replaceability option requires an ORB (or the ORB Services it uses) to
use the implementation-level security interfaces as defined in Section 15.7, Implementor’s
Security Interfaces. This includes:

• The Vault, Security Context, Access Decision, Audit and Principal Authentication
objects defined in Section 15.7.4, Implementation-Level Security Object Interfaces.

• This also includes the CORBA changes defined in Appendix B, Summary of
CORBA 2 Core Changes.

D.5.2 ORB Services Replaceability

Conformance to this allows an ORB to know little about security except which
interceptors to call in what order. This is intended for ORBs, which may use different
ORB services from different vendors, and require these to fit together. It therefore
provides a generic way of calling a variety of ORB Services, not just security ones. It also
assumes that any of these services may have associated policies, which control some of
their actions.

Support for this replaceability option requires an ORB to:

• Use the Interceptor interfaces defined in Section B.6 to call security interceptors
defined in Section 15.7.3, Security Interceptors, in the order defined there.

• Use the get_policy interfaces (and the associated security policy interfaces such
as access_allowed , audit_needed defined in Section 15.7.4,
Implementation-Level Security Object Interfaces, for access control and audit and
also get_association_options and get_delegation_mode defined in
Section 15.6.6, Secure Invocation and Delegation Policies, for association options,
quality of protection of messages, and delegation).

D.5.3 Security Ready for Replaceability

An ORB is Security Ready for Replaceability if it does not provide any security
functionality itself, but does support one of the security replaceability options.

Security Functionality Required

An ORB that is Security Ready does not have to provide any security functionality, though
must correctly respond to a request for the security features supported.
15-242 CORBAservices: Common Object Services Specification

15

but

.

s,

Security Interfaces Supported

• get_service_information operation providing security options and details
(see Section 15.5.2, Finding Security Features).

• get_current operation to obtain the Current object for the execution context
(see Section B.3, Extension to the Use of Current).

Other Security Conformance

An ORB that is Security Ready for replaceability supports one of the replaceability
options. This should be done in such a way that the ORB can work without security,
can take advantage of security services when they become available. So it calls on the
replaceability interfaces correctly (using dummy routines to replace security services
when these are needed, but not available).

The ORB may also conform to secure interoperability, meaning it can transmit security
tokens and handle protected messages returned by security interceptors and/or services in
accordance with the secure interoperability security conformance option.

D.6 Secure Interoperability

The definition of secure interoperability in this document specifies that a conformant ORB
can:

• Generate, and take appropriate action on, Interoperable Object References (IORs),
which include security tags as specified in Section 15.8, Security and
Interoperability.

• Transmit and receive the security tokens needed to establish security associations,
and also the protected messages used for protected requests and responses once the
association has been established according to the protocol defined in Section 15.8

Note that a Security Ready ORB (i.e. with no built-in security functionality) may, by
additions of appropriate security services, conform to secure interoperability.

The current security specification does not mandate a particular security mechanism for
security associations (or the associated set of cryptographic algorithms they use), so for
ORBs to interoperate securely, they must choose to use the same mechanism, algorithm
etc. (or use a bridge between them, if available). A future specification is expected to
cover standard security mechanisms and algorithms.

D.6.1 Secure Interoperability - Standard

An ORB that conforms to this must support the security-enhanced IOR defined in Section
15.8, Security and Interoperability, and also GIOP/IIOP protocol with the SECIOP
enhancements as defined in Section 15.8. (This is in line with CORBA 2 interoperability,
where all interoperable ORBs must support the IOR and GIOP/IIOP.)
Security Service: v1.0 November 1996 15-243

15

er,
y
As for CORBA 2, th is may be done by immediate bridges or half bridges. (Howev
use of half bridges implies more complex trust relationships, which some systems ma
not be able to support.) This allows a large range of security mechanisms to be used.

D.6.2 Secure Interoperability with DCE-CIOP Option

An ORB that conforms to this must conform to Standard Secure Interoperability using
GIOP/IIOP as described in Section D.6.1, and also support secure interoperability using
DCE-CIOP as defined in Section 15.8, Security and Interoperability.

The only security mechanism supported is DCE Security. Any version of DCE up to and
including DCE 1.1 is supported; the DCE interfaces and protocols are specified in X/Open
Application Environment Specification for Distributed Computing.
15-244 CORBAservices: Common Object Services Specification

15

 h

e

s

stem.
Appendix E Guidelines for a Trustworthy System

E.1 Introduction

This appendix provides some general guidelines for helping ORB implementors produce a
trustworthy system. The intention is to have all information related to trustworthiness and
assurance in this appendix, to explain how the specification has taken into account the
requirements for assurance, and also to show how conformant implementations canave
different levels of assurance.

The remainder of the introduction first provides the rationale for including these
guidelines in the specification, and then gives some background on trustworthiness and
assurance. Section E.2, Protecting Against Threats, describes the threats and
countermeasures relevant to a CORBA security implementation. Sections E.3 through E.6
provide the architecture and implementation guidelines for each security object model
described in Section 15.4, Security Architecture.

E.1.1 Purpose of Guidelines

The security standards proposed in this specification have been deliberately chosen to
allow flexibility in the security features, which can be provided. The specification can
support significantly different security policies and mechanisms for security functions
such as access control, audit and authentication. However, there is an overall security
model which applies whatever the security policy. This is described in the earlier sections
of the document.

There is also flexibility in the level of security assurance, which can be provided,
conforming to this model and these standards. This appendix describes the trustworthiness
issues underlying the security model and interfaces described earlier in the document, and
provides implementation guidance on what components of the architecture need to b
trusted and why. Note that trust requirements assume conformance to all of the security
models, including the implementor’s view, as the implementation affects trustworthiness.
If a CORBA security implementation conforms to the security features replaceability
level, but not the ORB services one, any requirements on ORB services will apply to the
ORB. Trustworthiness will also depend on several other implementation choices, such a
the particular security technology used.

E.1.2 Trustworthiness

Before an enterprise places valuable business assets within an IT system, enterprise
management must decide whether the assets will be adequately protected by the sy
Management must be convinced that the particular system configuration is sufficiently
trustworthy to meet the security needs of the enterprise environment. Security
trustworthiness is thus the ability of a system to protect resources from exposure to misuse
through malicious or inadvertent means.

The basis for trust in distributed systems differs from host-centric stand-alone systems
largely for two reasons. First, the assignment of trust in a distributed system is not isolated
Security Service: v1.0 November 1996 15-245

15

t

RBA

t of

f
to a single global system mechanism. Second, the degree of trust in elements of distributed
systems (particularly distributed object systems) may change dynamically over time,
whereas in host-centric systems trustworthiness is typically static. In many cases, trust in
distributed systems must be seen in the context of mutual suspicion.

E.1.3 Assurance

Assurance is a qualitative measure of trustworthiness; assurance is the confidence that a
system meets enterprise security needs. The qualitative nature of assurance means tha
enterprises may have different assurance guidelines for an equivalent level of confidence
in security. Some organizations may need extensive evaluation criteria, while other
organizations need very little evidence of trustworthiness.

It is necessary to set a context by which CORBA developers and end-users of the CO
Security specification may evaluate the level of security to meet their needs. A single
overall trust model that underlies the security reference model and architecture (as
described elsewhere in this specification) can set this context for closed systems, but it is
unlikely that a single trust model exists for the diversity of open distributed systems likely
to populate the distributed object technology world.

To support a balanced approach, assurance arguments should be assembled from a se
system building blocks. Concepts of system composition and integration should allow the
assurance analysis to be tailored to specific user requirements. Assurance evidence should
be carefully packaged to best support enterprise decision-makers during the security trade-
off process.

The security object models defined by the CORBA Security specification are the basis for
the necessary building blocks. The trust guidelines described in Section, Guidelines for
Structural Model, provide constraints on how these components may relate.

The relationship between assurance and security provides the foundation for the overall
security model. The key characteristic is balance. Balanced assurance promotes the use o
assurance arguments and evidence appropriate to the level of risk in the system
components.

Basic system building blocks, such as those in the CORBA Security specification
previously noted, are critical to developing balanced assurance. For example,
confidentiality is of most importance to a classified intelligence or military system,
whereas data integrity may be of more importance in a computer patient record system.
The former relies on assurance in the underlying operating system, where the latter
focuses security in application software.

E.2 Protecting Against Threats

An enterprise needs to protect its assets against perceived threats using appropriate
security measures. This document addresses security in distributed object systems, so
focuses on the threats to assets, software, and data, in such systems.

An enterprise may want to assess the risk of a security breach occurring, against the
damage which will be done if it does occur. The enterprise can then decide the best trade-
15-246 CORBAservices: Common Object Services Specification

15

el

, and

f

e

-

off between the cost of providing protection from such threats and any performance
degradation this causes, against the probability of loss of assets. This specification allows
options in how security is provided to counter the threats. However, it is expected that
many enterprises will not undertake a formal risk assessment, but rely on a standard lev
of protection for most of their assets, as identified by industry or government criteria. This
section describes CORBA-specific security goals, the main distributed system threats
protection against them. The discussion does not emphasize generic issues of threats and
countermeasures, but instead concentrates on issues that are unique to the CORBA
security architecture.

E.2.1 Goals of CORBA Security

The overall goals of the CORBA security architecture were described in Section 15.1,
Introduction to Security. CORBA security is based on the four fundamental objectives o
any secure system:

• Maintain confidentiality of data and/or system resources.

• Preserve data and/or system integrity.

• Maintain accountability.

• Assure data/system availability.

Many of the goals described in Section 15.1 are relevant to any IT system that is targeted
at large-scale applications. However, some security goals described are specific to th
CORBA security architecture. These goals deserve special attention because they surface
potential threats that may not be encountered in typical architectures. CORBA-specific
security goals include:

• Providing security across a heterogeneous system where different vendors may
supply different ORBs.

• Providing purely object-oriented security interfaces.

• Using encapsulation to promote system integrity and to hide the complexity of
security mechanisms under simple interfaces.

• Allowing polymorphic implementations of objects based on different underlying
mechanisms.

• Ensuring object invocations are protected as required by the security policy.

• Ensuring that the required access control and auditing is performed on object
invocation.

The discussion of the architecture and implementation guidelines in Section E.3,
Guidelines for Structural Model, addresses the mechanisms used to ensure these CORBA
specific security goals, as well as many other generic security issues.
Security Service: v1.0 November 1996 15-247

15

d

the

ed

d by

.
E.2.2 Threats

The CORBA security model needs to take into account all potential threats to a distributed
object system. It must be possible to set a security policy and choose security services an
mechanisms that can protect against the threats to the level required by a particular
enterprise.

A security threat is a potential system misuse that could lead to a failure in achieving
system security goals previously described. Section 15.1, Introduction to Security,
provided an overview of security threats in a distributed object system. These threats and
related attacks include:

• Information compromise - the deliberate or accidental disclosure of confidential
data (e.g., masquerading, spoofing, eavesdropping).

• Integrity violations - the malicious or inadvertent modification or destruction of
data or system resources (e.g., trapdoor, virus).

• Denial of service - the curtailment or removal of system resources from authoriz
users (e.g., network flooding).

• Repudiation of some action - failure to verify the actual identity of an authorized
user and to provide a method for recording the fact (e.g., audit modification).

• Malicious or inadvertent misuse - active or passive bypassing of controls by
either authorized or unauthorized users (e.g., browsing, inference, harassment).

The threats described above give rise to a wide variety of attacks. Most if not all the
threats that pertain to host-centric systems are pertinent to distributed systems.
Furthermore, it appears likely that the wide distribution of resources and mediation in
truly distributed systems will not only exacerbate the strain on host-centric security
services and mechanisms in use today on client/server systems, but also engender new
forms of threat.

Threats may be of different strengths. For example, accidental misuse of a system is easier
to protect against than malicious attacks by a skilled hacker. This specification does not
attempt to counter all threats to a distributed system. Those that should be countere
measures outside the scope of this specification include:

• Denial of service, which may be caused by flooding the communications with
traffic. It is assumed that the underlying communications software deals with th is
threat.

• Traffic analysis.

• Inclusion of rogue code in the system, which gives access to sensitive information
(This affects the build and change control process.)

E.2.3 Vulnerabilities of Distributed Object-Oriented Systems

Vulnerabilities are system weaknesses that leave the system open to one or more of the
threats previously described. Information systems are subject to a wide range of
vulnerabilities, a number of which are compounded in distributed systems. These
15-248 CORBAservices: Common Object Services Specification

15

t u
 a

n act

ing

rget
 it
vulnerabilities often result from deliberate or unintentional trade-offs made in system
design and implementation, usually to achieve other more desirable goals such as
increased performance or additional functionality.

Classes of vulnerabilities include:

• An authorized user of the system gaining access to some information which should
be hidden from that user, but has not been properly protected (e.g., access controls
have not been properly set up or the store occupied by one object has not been
cleared out when another reuses the space).

• A user masquerading as someone else, and so obtaining access to whatever thaser
is authorized to do, resulting in actions being attributed to the wrong person. In
distributed system, a user may delegate his rights to other objects, so they ca
on his behalf. This adds the threat of rights being delegated too widely, again,
causing a threat of unauthorized access.

• Controls that enforce security being bypassed.

• Eavesdropping on a communication line giving access to confidential data.

• Tampering with communication between objects: modifying, inserting, and delet
items.

• Lack of accountability due, for example, to inadequate identification of users.

System data as well as business data must be protected. For example:

• If a principal’s credentials are successfully obtained by an unauthorized user, they
could be used to masquerade as that principal.

• If the security sensitive information in the security context between client and ta
object is available to an unauthorized user, confidential messages can be read, and
may be possible to modify and resend integrity-protected messages or send false
messages without this being detected.

As described earlier, system threats and vulnerabilities are compounded by the
complexities of distributed object-based systems. Some of the inherent characteristics of
distributed object systems that make them particularly vulnerable include:

• Dynamic Systems -- Distributed object systems are always changing. New
components are constantly being added, deleted, and modified. Security policies
also may be dynamically modified as enterprises change. Dynamic systems are
inherently complex, and thus security may be difficult to ensure. For example, in a
large distributed object system it will be difficult to update a security policy
atomically. While an administrator installs a new policy on some parts of the
system, other parts of the system still may be using the old version of the policy.
These potential inconsistencies in policy enforcement could lead to a security
failure.

• Mutual Suspicion -- In a large distributed system, some system components will
not trust others. Mistrust could occur at many layers within the architecture:
principals, objects, administrators, ORBs, and operating systems may all have
varying degrees of trustworthiness. In this environment, there is always the
Security Service: v1.0 November 1996 15-249

15

s

rity

e a

se

 of

et

potential to inadvertently place unjustified trust in some system component, thu
exposing a vulnerability. Although there are many mechanisms (e.g., cryptographic
authentication) to ensure the identity of a remote component, the system secu
architecture must be carefully structured to ensure that these checks are always
performed.

• Multiple Policy Domains -- Distributed object systems that interconnect many
enterprises are likely to require many different security policy domains, each one
enforcing the security requirements of its organization. There is no single security
policy and enforcement mechanism that is appropriate for all businesses. As a
result, security policies must be able to address interactions across policy domain
boundaries. Defining the appropriate policies to enforce across domains may b
difficult job. Mismatched policies could lead to vulnerabilities.

• Layering of Security Mechanisms -- Distributed object systems are highly
layered, and the security mechanisms for those systems will be layered as well.
Complex, potentially nondeterministic interactions at the boundary of the layers is
another area for vulnerabilities to occur. A hardware error, for example, could cau
security checking code in the ORB to be bypassed, thus violating the policy. The
complexity of the layering is further compounded in systems where security
enforcement is widely distributed; that is, there is no clear security perimeter
containing only a small amount of simple functionality.

• Complex Administration -- Finally, large geographically distributed object
systems may be difficult to administer. Security administration requires the
cooperation of all the administrators, who even may be mutually suspicious. All of
the issues listed above lead to complex, error-prone administration. An innocent
change to a principal’s access rights, for example, could expose a serious
vulnerability.

E.2.4 Countermeasures

Some threats are common across most distributed secure systems, so should be countered
by standard security features of any OMA-compliant secure systems. However, the level
of protection against these threats may vary. Complete protection is almost impossible to
achieve. Most enterprises will want a balance between a level of protection against threats
which are important to them, and the cost in performance and use of other resources
providing that level of protection.

A number of measures exist for countering or mitigating the effects of the above
threats/attacks. Countering these threats requires the use of the security object models
described in this specification. Relevant features of the object models include the
following:

• Authentication of principals proves who they are, so it is possible to check what
they should be able to do. This check can be performed at both client and targ
object, as the client principal’s credentials can be passed to the server.

• Authentication between clients and target objects allows them to check that they are
communicating with the right entities.
15-250 CORBAservices: Common Object Services Specification

15

y,

d

,

e
ty

may
B

• Security associations can protect the integrity of the security information in transit
between client and target object (e.g., credentials, keys) to prevent theft and repla
and keep the keys used for protecting business data confidential.

• Business data can be integrity-protected in transit so any tampering is detecte
using the message protection ORB services. (This includes detecting extra or
missing messages, and messages out of sequence.)

• Unauthorized access to objects is protected using access controls.

• Misuse of the system can be detected using auditing.

• Segregating (groups of) applications from each other and security services from
applications can prevent unauthorized access between them.

• Bypassing of security controls is deterred by use of a Trusted Computing Base
(TCB), where security is automatically enforced during object invocation.

Assurance arguments and evidence are frequently founded on the concept of a TCB
which mediates security by segregating the security-relevant functions into a security
kernel or reference monitor.

A traditional monolithic TCB approach is not suitable for the open, multiuser, multiple
environment situations in which most CORBA users reside. In many cases, for example,
secure interoperability of CORBA applications and ORBs may be based on mutual
suspicion. TCB scalability issues also argue against typical TCB approaches. Given the
complexity of distributed systems, it is not clear whether centralized access mediation is
possible in the presence of distributed data and program logic.

Traditional TCB approaches also do not adequately address application security
requirements, particularly for many commercial applications. Applications common to the
CORBA world such as general purpose DBMSs, financial accounting, electronic
commerce, or horizontal common facilities will have many security requirements in
addition to those that can be enforced by a central underlying TCB.

Despite the limitations of the traditional TCB, we use the concept of a distributed TCB in
the assurance discussions of the next section. The concept of a distributed TCB is th
collection of objects and mechanisms that must be trusted so that end-to-end securi
between client and target object is maintained. However, note that depending on the
assurance requirements of a particular CORBA security architecture, sensitive data
still be handled by “untrusted” ORB code. Thus, our informal use of the distributed TC
concept may not correspond to other existing models for network TCBs, particularly for
minimal assurance commercial CORBA security applications.

E.3 Guidelines for Structural Model

This section provides architecture and implementation guidelines for the structural model
of the CORBA security architecture described in Section 15.4, Security Architecture. The
security functions provided in the model and the basis for trust are described.
Security Service: v1.0 November 1996 15-251

15

rity

g
E.3.1 Security Functions

Figure E-1 outlines interactions during a normal use of the system. It gives a simple case,
where the application is unaware of security except for calling a security service such as
audit. The security interactions include those seen by application objects and secure object
system implementors.

Figure E-1 Normal System Interactions

This diagram is the basis for the discussions of security functions in each of the secu
object models described next.

E.3.2 Basis of Trust

Enterprise management is responsible for setting the overall security policies and ensurin
system enforcement of the policies.

The system developer and systems integrators must provide a system that supports the
required level of assurance in the core security functionality. Generally application
developers cannot be expected to be aware of all the threats to which the system will be
subject, and to put the right countermeasures in place.

Higher levels of security may require the code enforcing it to be formally evaluated
according to security criteria such as those of the US TCSEC or European ITSEC.

System
Impementor’s View

ORB

object reference

security tokens
transformed request

Application View

Target
ObjectClient

CurrentObj RefCredential s

non repud
audit etc.

Security
ORB

Services

Security
ORB

Services

user
15-252 CORBAservices: Common Object Services Specification

15

.

e
Distributed Trusted Computing Base

The key security functionality in the system is enforced transparently to the application
objects so that it can be provided for application objects, which are security unaware. This
key functionality is contained in the distributed TCB of the system. It is therefore
responsible for ensuring that:

• Users cannot invoke objects unless they have been authenticated (unless the
security policy supports unauthenticated, guest access for some services).

• Security policies on access control, audit, and security association are enforced on
object invocation. This includes policies for message protection, both
confidentiality (ensuring confidential data cannot be read) and integrity (ensuring
any corruption of data in transit is detected).

• A principal’s credentials are automatically transferred on object invocation if
required, so the access control and other security policies can be enforced at the
server object.

• Application objects which do not trust each other cannot interfere with each other.

• The security policy between different security policy domains is suitably mediated

• The security mechanisms themselves cannot be tampered with.

• The security policy data cannot be changed except by authorized administrators.

• The system cannot be put into an undefined or insecure state as a result of th
operation of nonprivileged code.

The distributed TCB also needs to provide the required information so that applications
can enforce their own security policies in a way that is consistent with the domain security
policy.
Security Service: v1.0 November 1996 15-253

15

.

Figure E-2 Distributed TCB

The TCB in an OMA-compliant secure system is normally distributed and includes
components as follows.

• The distributed core ORBs and associated Object Adapters
Core ORBs are trusted to function correctly and call the ORB Security Services
correctly in the right order, but do not need to understand what these do.
Object Adapters are trusted to utilize the operating system facilities to provide the
required protection boundaries between components in line with the security policy

• The associated ORB Services
ORB Services other than security are trusted similarly to the ORB. ORB Security
Services are used to provide the required security on object invocation.

• Related objects
ORB Services use objects such as the binding and Current to find which security is
required.

• Security objects
Security objects include those available to applications such as Principal
Authentication and Credentials and those called by security interceptors (Vault,

(Distributed) Trusted Computing Base

Core ORBs and OAs

ORB
Services

Application

lower layer
communications

Current

Binding

Security Objects
(Principal Authentication, Credentials, Security policies,

Vault, Security Context, Access Decision)

External Security Services

Operating System, Hardware
15-254 CORBAservices: Common Object Services Specification

15

rfere
sure

ally

rust

the

ons
are a
Security Context, Access Decision, and Security Audit). These are trusted to
function correctly to enforce security in line with the security policy and other
requirements.

• Any external security services used by the security services, as part of enforcing the
security policy.

• The supporting operating systems.
These are trusted to ensure that objects (in different trust domains) cannot inte
with each other (using protection domains). The security services should also en
that the security information driving the security policy (such as the credentials and
security contexts) is adequately protected from the application objects using such
features.

• Optionally, lower layer communications software. However, th is does not gener
need to be particularly secure (at least for normal commercial security) as
protection of data in transit is done by the security association and message
protection interceptors, which are independent of the underlying communication
software.

A distributed system may be split into domains, which have different security policies.
These domains may include ORBs and ORB Services with different levels of trust. T
between domains needs to be established, and an interdomain policy between them
enforced. The ORB security services (and external security services that these call) to
provide this interdomain working are part of the distributed TCB. Note, therefore, that
parts of this TCB in different domains may have different levels of trust.

Note that application objects may enforce their own security polices, if these are
consistent with the policy of the security domain. However, failure to enforce these
securely will affect only the applications concerned and any other application objects that
trusted them to perform this function.

Protection Boundaries

The general approach is to establish protection boundaries around groups of one or more
components, which are said to belong to a corresponding protection domain.
Components belonging to a protection domain are assumed to trust each other, and
interactions between them need not be protected from each other, whereas interacti
across boundaries may be subject to controls. Protection Boundaries and Domains
lower level concept than Environment Domains; they are the fundamental protection
mechanism on which higher levels are built.

At a minimum, it must be possible to create protection boundaries between:

• Application components that do not trust each other.

• Components that support security services and other components.

• Components that support security services and each other.
Security Service: v1.0 November 1996 15-255

15

r

Controlled Communications

As well as providing protection boundaries, it is necessary to provide a controlled means
of allowing particular components to interact across protection boundaries (for example,
an application invoking a Security Object (explicitly), or an interceptor (implicitly).

It must not be possible for applications to bypass security services which enforce security
policies. It is therefore necessary to ensure that the components supporting those services
are always invoked when required. This is achieved by using both protection boundaies
and controlled communications to ensure that client requests (and server responses) are
routed via the components (interceptors and Security Objects), which implement the
security services.

Figure E-3 illustrates the segregation of components implementing security services into
separate protection domains from application components; the only means of
communication between components is via controlled communication paths.

Figure E-3 Base Protection and Communications

In implementation terms, components could, for example, be executed in separate
processes, with process boundaries acting as protection boundaries. Alternatively, security
services could be executed in-process with (i.e. in the same address space as)
corresponding client and server application components, provided that they are adequately
protected from each other -- for example, by hardware-supported multilevel access control
mechanisms).

Figure E-4 shows two examples of protection boundaries. In the first example, the
boundaries between components might be process boundaries. In the second example,
ORB and security components might be protected from applications by memory
protection mechanisms (e.g. kernel and user spaces) and client and server components
might be protected from each other by physical separation.

Client Server

Base Protection & Communications

Securi ty Services

Logical Object Request
15-256 CORBAservices: Common Object Services Specification

15

d
Figure E-4 Protection Boundaries

E.3.3 Construction Options

For some systems, the TCB in domains of the distributed system may need to meet
security evaluation criteria for both functionality and assurance (in the correctness an
effectiveness of the security functionality) as defined in TCSEC, ITSEC, or other security
evaluation criteria.

The split into components previously described allows a choice over the way the system is
constructed to meet different requirements for assurance and performance.

This section describes three options for how the system may be constructed, as follows:

• A commercial system where all applications are generated using trusted tools.

• A commercial system with limited security requirements.

• A higher security system.

Note: These are just examples to show the type of flexibility provided by the security
model. It is not expected that any implementation will provide all the options implied by
these.

Example Using Trusted Generation Tools and ORBs

If all applications are generated using trusted tools, applications can be trusted not to
interfere with other components in the same environment. Therefore there is no need to
provide protection boundaries between different application objects or between
application objects and the underlying ORB.

If the ORB and ORB Services are also trusted, there may need be no need to provide a
protection boundary between the ORB and the underlying security services and objects. It
may well be acceptable to run them all in the same process, relying on the trust between
the components, rather than more rigidly enforced boundaries.

Cl ient Server

Hardware and Operating System

Cl ient Server

Hardware and Operating System

Applications

Security etc.

ORB
Security Service: v1.0 November 1996 15-257

15

r

e

 a
upt.

der
However, if the application generation tools and the ORB are less trusted than the security
services, then there may need to be a protection boundary to prevent access to security-
sensitive information in the Credentials, Security Context, and Vault objects.

Commercial System with Limited Security Requirements

Some systems may not contain very sensitive business information, so enterprises may not
be prepared to pay for a high level of security. They may also know that the probability of
serious malicious attempts to break the system is low, and decide that protecting against
such attempts is not worth the cost. They may also choose not to sacrifice performance fo
better levels of security.

In many systems, applications are generated using tools that are not particularly trusted.
For example, using a C compiler, it would be possible to write an application that can
read, or even alter, any information within the same protection domain. Theoretically,
providing good security implies putting protection boundaries between each application
object, and between applications and the ORB and Security Services.

The security model allows environment domains to be defined, where enforcement of
policy can be achieved by means local to the environment. For example, objects in the
same identity domain can share a security identity. Applications belonging to environment
domains may trust each other not to interfere with each other, and so can be put in th
same protection domain.

It may also be acceptable to run (part of) the ORB in the same protection domain as the
application objects. This assumes that an interface boundary between applications and the
ORB is sufficient protection from accidental damage (the probability of an application
corrupting an ORB being low in a commercial system). Even if the application does
corrupt the ORB, damage is limited, as the ORB does not handle security-sensitive data.

In some commercial systems, it may also be acceptable to run some of the security
services in the same protection domain as the application and ORB. The chance of these
being accidentally (or maliciously) corrupted may be low, so it may be acceptable to risk
failure to enforce the access control policy because the Access Decision object is corr

However, it will often be desirable to protect the state information of security objects,
which contain very sensitive security information from the applications.

Higher Security System

In a security system requiring high assurance, different security policies may be used. For
example, label-based access controls may be used and these may be mandatory (set un
administrator’s controls) and not changeable by application objects.

Stronger protection boundaries are also likely to be needed, allowing:

• Individual applications to be protected from each other. Even if environment
domains are used, the size of the domain is likely to be smaller.

• The ORB and ORB Services to be protected from the application.
15-258 CORBAservices: Common Object Services Specification

15

keys

o
• The core security objects, which contain security-sensitive information such as
to be protected from applications and ORBs, etc.

• Particular secure objects (e.g. the Access Decision objects) to be separate from
others, as they may have been written by someone less trusted than those wh
wrote, for example, the Security Context objects.

E.3.4 Integrity of Identities (Trojan Horse Protection)

In traditional procedural systems, protecting the integrity of an identity is
straightforward; programs are stored in files, which are protected against modification
by operating system access control mechanisms. When invoked, programs run inside a
process whose address space is protected by operating system memory protection
mechanisms. Programs load code in fairly predictable ways.

Since this specification does not mandate which entities have identities, implementors
have a wide variety of choices; identities may be associated, for example, with the
following:

• Object instances

• Servers

• Object adaptors

• Address spaces

If identities are associated with object instances, precautions are necessary to prevent
object instance code from being modified by other code (which may have no identity,
or a different identity) in the instance’s address space.

Servers may permit dynamic instantiation of previously unknown classes into their
address spaces. This makes it difficult to determine what code is running under an
identity if identities are associated with servers; this in turn makes it difficult to
determine whether a server identity can be “trusted.” Identified servers must therefore
be provided with some way of controlling what code can run under their identities.

Observing the following guidelines will help to ensure integrity of identities.

• Code running under one identity must not be permitted to modify code running
under another identity without passing an authorization check.

• It must be possible for an identified “entity” to control which code runs within the
scope of its identity.

E.4 Guidelines for Application Interface Model

This section provides architecture and implementation guidelines for the application
interface model of the CORBA security architecture described in Section 15.4, Security
Architecture. The security functions provided in the model and the basis for trust are
described.
Security Service: v1.0 November 1996 15-259

15

t.

t
hey

s

t,
t. This

d
t

.
E.4.1 Security Functions

Logging onto the System

When a user or other principal wants to use a secure object system, it authenticates itself
and obtains credentials. These contain its certified identity and (optionally) privilege
attributes, and also controls where and when they can be used. This principal information
is integrity-protected and it should be possible to ascertain what security service certified
them.

Walkthrough of Secure Object Invocation

The following is a walkthrough of what happens when a client invokes a target objec

• The client invokes the object using its object reference. The ORB Security Services
are transparent to the client and application object and use the security information
with the object reference and the security policy to decide on the security facilities
required. There are separate ORB Services for security associations, message
protection, and access control on object invocation, but the audit service can be
called by any or none of these according to security policy.

The client and target object establish the required level of trust in each other,
transmitting security tokens to each other to provide the required degree of proof.
For example, they may or may not require mutual authentication. It is expected tha
most security mechanisms will provide options here, though the details of how t
do this, and the form of tokens used, is mechanism dependent.

The principal’s credentials are normally passed from client to target object
transparently. These should be protected in transit from theft and replay as well a
for integrity of the information itself (though some security mechanisms may not
support this). The Vault object will validate these, checking that it trusts who
certified them, as well as whether they are still intact.

Different ORB services may be called at the target end. For example, access control
is normally called at the server, rather than the client.

• Once the security association has been established between client and target objec
the request can be passed using the message protection interceptor to protect i
should be able to provide integrity and/or confidentiality protection. It should also
be able to provide continuous authentication, as the messages will be protecte
using keys only known to this client and server (or the trust group for the targe
object).

• The application object may also call security services for access control and audit
These will use the security information available from the environment to identify
the initiating principal and its privileges.
15-260 CORBAservices: Common Object Services Specification

15

.

o

to be
• This application object may now act as a client, and call further objects. It may
delegate the client’s credentials or use its own (or use both). However, there may be
constraints on whether the client’s credentials can be delegated. For example, a
particular principal’s credentials may be constrained to particular groups of objects

E.4.2 Basis of Trust

Users have some trust in application objects, and application objects have some trust in
other objects. Both may:

• Trust application objects to perform the business functions.

• Have limited trust in some applications, or domains of the distributed system, s
restrict which of their privilege attributes are available to these objects.

• Want to restrict the extent that their credentials can be propagated at all.

• Have to prove their identity to the system so it can enforce access on their behalf,
unless they are only going to access publicly available services.

Both users and applications trust the underlying system to enforce the system security
policy, and therefore protect their information from unauthorized access and corruption.

E.5 Guidelines for Administration Model

This section provides architecture and implementation guidelines for the administration
model of the CORBA security architecture described in Section 15.4, Security
Architecture. The security functions provided in the model and the basis for trust are
described.

E.5.1 Security Functions

Object and Object Reference Creation

When an object is created in a secure object system, the security attributes associated with
it depend on the security policies associated with its domain and object type, though the
object may be permitted to change some of these. These attributes control what security is
enforced on object invocation (or example, whether access control is needed and, if so, the
Access Decision object to be used; the minimum quality of protection required).

The object reference for a such an object is extended to include some security information.
For example, it may contain:

• An extended identity. This includes the object identity as normal in an object
reference. However, it will also contain the identity of the trust domain, if the object
belongs to one. Small objects, which are dynamically created and do not need
protected from each other, will normally share a trust domain. There could also be a
node identity.
Security Service: v1.0 November 1996 15-261

15

elves,
• Security policy attributes required by the object when invoked by a client such as
the minimum quality of protection of data in transit.

• The security technology it supports. It may also contain some mechanism-specific
information such as its public key, if public key technology is being used, and
particular algorithms used.

Much of the information is just “hints” about which security is required, and will be
verified by the ORB services supporting the target object, so does not need protecting.

E.5.2 Basis of Trust

Authorization Policy Information

Domain objects may store policy information inside their own encapsulation
boundaries, or they may store it elsewhere (for example, authorization policy
information could be encapsulated in the state data of the protected objects thems
or it could be stored in a procedural Access Control Manager whose interfaces are
accessible to Domain objects). Wherever authorization policy information is stored, it
must be protected against modification by unauthorized users.

Authorization policy information must be modifiable only by authorized administrators.

Audit Policy Information and Audit Logs

Audit policy information is security sensitive and must be protected against
unauthorized modification. Audit logs are security sensitive and may contain private
information; they should be viewed and changed only by authorized auditors.

• Audit policy information must be modifiable only by authorized audit
administrators.

• Audit logs must be protected against unauthorized examination and modification.

E.6 Guidelines for Security Object Implementation Model

This section provides architecture and implementation guidelines for the security object
implementation model of the CORBA security architecture described in Section 15.4,
Security Architecture. The security functions provided in the model and the basis for trust
are described.

E.6.1 Security Functions

The distributed core ORBs, object adapters, ORB security services, and security objects
provide the underlying implementation to support the application and administration
interfaces.
15-262 CORBAservices: Common Object Services Specification

15

 they

that

s

.g.
ata

e is
E.6.2 Basis of Trust

Target Object Identities

CORBA objects do not have unique identities; for this reason, when objects that are not
associated with a human user authenticate themselves in a secure CORBA system,
use “security names.” Successful authentication to a target object indicates that it
possesses the authentication data (perhaps a cryptographic key), which is presumed to be
known only to the legitimate owner of the security name. An object’s security name may
be included in references to that object as a “hint.” The question “how do applications
know that the security-name hint is reliable?” naturally arises.

The answer is as follows:

• If the EstablishTrustinTarget security feature is specified, then the security services
defined in th is specification will authenticate the target security name found in the
target object reference. The semantics of this authentication operation include an
assumption that the security name in the reference corresponds to an identity
the user is willing to trust to provide the target object’s implementation. There is no
way for the security services to test this assumption.

• If your implementation provides a trusted source of object references, then
everything will work properly. If you do not have a source of trusted object
references, the specification provides a get_security_names operation on the
object reference through which applications can retrieve the target’s security name
and perform any tests, which may help satisfy them of its validity.

CORBA object references can circulate very widely; for example, they can be
“stringified” and then (potentially) copied onto a piece of paper. Implementations with
very high integrity requirements could ensure that references are trustworthy by providing
a trustworthy service that generates references and cryptographically signs the contents,
including the target security name.

Assumptions about Security Association Mechanisms

Implementation of a secure CORBA system requires use of security mechanisms to
enforce the security with the required degree of protection against the threats. For
example, cryptographic keys are normally used in implementing security, for function
such as authenticating users and protecting data in transit between objects. However,
different security mechanisms may use different types of cryptographic technology (e
secret or public key) and may use it in different ways when, for example, protecting d
in transit. These cryptographic keys have to be managed, and again, the way this is don
mechanism specific.

A full analysis of how well an implementation counters the threats requires knowledge of
the security mechanisms used. However, this specification does not dictate that a
particular mechanism is used.

It does assume that the security mechanisms used for authentication and security
associations can provide the relevant security countermeasures listed in Section E.2.4,
Security Service: v1.0 November 1996 15-263

15

ords,
Countermeasures. These are expected to be provided by a number of security
mechanisms, which will be available for protecting secure object systems. Therefore, the
analysis of threats and the trust model assume this facility level.

It would be possible to use a security mechanism that does not provide some of these
facilities (for example, mutual authentication, or even to switch this off to improve
performance in systems that can provide it). However, if such a system is used, it will be
vulnerable to more threats.

Invoking Special Objects

Some of the objects described in this document are “pseudo” objects, which bypass the
normal invocation process and therefore are not subject to the security enforced by the
ORB services. The Current object (used, for example, by the target object to obtain
security information about the client) is of this type. Protection of these objects is provided
by other means, for example, using protection boundaries previously described.

Isolating Security Mechanisms

Figure E-5 depicts how security functionality and trust is distributed throughout the
architecture.

Figure E-5 Distribution of Security Functionality and Trust

The split of security objects is designed to reduce (as much as possible) the amount of
security-sensitive information, which must be visible to applications and ORBs.

• Only log-in applications (where provided) need to handle secrets such as passw
and then only briefly during authentication.

Application
may be security unaware

may enforce application security policy

core ORB and OA
must function correctly e.g.

 invoke required interceptors
in right order

ORB security interceptors
must function correctly

ensure security enforced

Core Security Objects - must enforce security

Security
ContextVaultCredentials

Principal
Authentication

Access
Decision

Audit
Non-

repudiation
15-264 CORBAservices: Common Object Services Specification

15

does

l

d

• Cryptographic keys and other security-sensitive information about principals are
held with Credentials objects. References to Credentials objects are visible to
applications so they can invoke operations on them to, for example, reduce
privileges in the credentials before calling an object. However, no operations on the
Credentials provide visibility of security information such as keys.

• Security information used to protect application data in transit between objects is
held in Security Context objects, which are not visible to applications at all. (Target
applications can ask for attributes associated with an incoming invocation using the
Current object.)

Security objects such as Credentials, Security Context, and Access Decision objects are
also not used directly by the core ORB, only by the security interceptors. Therefore the
core ORB needs to be trusted to call the interceptors correctly in the right order, but
not need to understand security or have access to the security-sensitive information in
them.

The split also is intended to isolate components which may be replaced to change security
policy or security mechanisms. For example, to replace the access control policy, the
Access Decision objects need to be changed. However, the access control interceptor wil
remain responsible for finding and invoking the right Access Decision object. To replace
the security mechanisms for security association, only the Vault and associated Security
Context objects need to be replaced.

Integrity of the ORB and Security Service Objects

Security in a CORBA environment depends on the correct operation of the ORB an
Security Services. In order for these mechanisms to operate correctly, the following
rules must be followed.

• The ORB and Vault code must not be modifiable by unauthorized users or
processes.

• The ORB must protect all messages, according to policy, using the message
protection interfaces.

• The ORB must always check the client’s authorization before dispatching a client’s
message to a protected object.

Safeguarding the Object Environment

To guard against unauthorized modification of the ORB and security services,
implementors should use Operating System protection mechanisms to isolate the ORB
and Security Service objects from untrusted applications and user code.

Note that some modifications of ORB or Vault code may not compromise system
integrity. For example, in a CORBA implementation, which relies on third-party
authentication and does not share Vault or ORB objects between processes, corruption
of the client-side Vault (or ORB) by user-written code may not compromise system
security. (This is because the client-side ORB and Vault in a th ird-party-based system
Security Service: v1.0 November 1996 15-265

15

g a

ted
ants
d to

ne
may, depending upon the implementation, contain only information that the user is
entitled to know and change anyway. In this case, nothing the user can do to
information on his machine will enable him to deceive the third-party authentication
server about his identity and credentials.)

Safeguarding the Dispatching Mechanism

To ensure that the ORB always checks the client’s authorization before dispatchin
client’s message to a protected object, ORB implementors should follow one of the
following rules.

• Eliminate “direct dispatching” mechanisms (which permit clients to dispatch
messages directly to target objects without going through the ORB).

• Permit “direct dispatching” only after checking authorization and issuing “restric
object references” to client objects. A “restricted object reference” is one that gr
access only to those methods of the target object, which the client is authorize
invoke.

Safeguarding Information in Shared Vault Objects

Vault objects encapsulate identity-specific, security-sensitive information (for example,
cryptographic keys associated with Security Context objects). If code owned by o
principal can penetrate a Vault object and examine or modify another principal’s
information, security can be compromised.

In an implementation that does not permit sharing of Vault objects by multiple
identities, th is problem does not arise. However, if Vault objects are accessible to and
encapsulate information about multiple identities, the following guidelines should be
observed:

• Do not permit a Vault object, which encapsulates one principal’s Security Contexts,
to exist in the same address space as code running under a different principal’s
identity.

• If a Vault object contains Security Contexts for two different principals, ensure that
no principal is able to obtain or use another principal’s Security Contexts.
15-266 CORBAservices: Common Object Services Specification

15

 take

and
Appendix F Conformance Statement

F.1 Introduction

A secure object system, like any secure system, should not only provide security
functionality, but should also provide some assurance of the correctness and effectiveness
of that functionality.

Each OMG-compliant secure or security ready implementation must therefore include in
its documentation a conformance statement describing:

• The product’s supported security functionality levels and options, security
replaceability, and security interoperability, as described in Appendix D,
Conformance Details.

• The vendor’s assurance argument that demonstrates how effectively the product
provides its specified security functionality and security policies.

• Constraints on the use of the product to ensure security conformance.

The vendor provides the conformance statement so that a potential product user can make
an informed decision on whether a product is appropriate for a particular application.
Ordinary descriptive documentation is not required as part of an OMG-compliant product.
However, because the CORBA security specification provides a general security
framework rather than a single model, there are many different kinds of secure ORB
implementations that conform to the framework. For example, some systems may have
greater flexibility and support customized security policies, while other systems may
come with a single built-in policy. Some systems may strive for a high level of security
assurance, while others provide minimal assurance. The conformance statement will help
the user understand the security features provided by the product.

Some products will undergo an independent formal security evaluation (such as ones
meeting the ITSEC or TCSEC). The OMG security conformance statement does not
the place of a formal evaluation, but may refer to formal assurance documentation, if it
exists. When formal evaluations are not required (often the case in commercial systems),
it is expected that the product’s security conformance statement along with supporting
product documentation will provide an adequate description of security functionality
assurance.
Security Service: v1.0 November 1996 15-267

15

F.2 Conformance Template Overview

The following template specifies the contents for CORBA security conformance
statements. Guidelines for using this template are provided in Section, Conformance
Guidelines.

CORBA Security Conformance Statement
<date>

<product identification>
<vendor identification>

1. Introduction

1.1 Summary of Security Conformance

1.2 Scope of Product

1.3 Security Overview

2. Security Conformance

2.1 Main Security Functionality Level

2.2 Security Functionality Options

2.3 Security Replaceability

2.4 Secure Interoperability

3. Assurance

3.1 Philosophy of Protection

3.2 Threats

3.3 Security Policies

3.4 Security Protection Mechanisms

3.5 Environmental Support

3.6 Configuration Constraints

3.7 Security Policy Extensions

4. Supplemental Product Information
15-268 CORBAservices: Common Object Services Specification

15

h

rt

re:
F.3 Conformance Guidelines

The guidelines in this section are intended to help the ORB implementor determine whic
information belongs in each section of the conformance statement. The statement will
often be accompanied by product documentation to provide some of the information
needed.

1. Introduction

1.1 Summary of Security Conformance

This section should give a summary of the security conformance provided by the product.
The summary is in the form of a table with boxes that are ticked to show the relevant
conformance.

For the main security functionality level, one of the boxes must be selected (either Level 1
or Level 2), though note that an ORB can be just Security Ready, so does not suppo
either of the main security functionality levels. For security functionality options, security
replaceability, and secure interoperability, the appropriate boxes should be selected.

1.2 Scope of Product

This section should define what security components this product offers. Examples a

• ORB plus all security services needed to support it plus other object services fitting
with it and meeting the assurance criteria.

• Security-ready ORB.

• Security Services, which can be used with a security-ready ORB.

1.3 Security Overview

This section should give an overview of the product’s security features.

Main
Functionality
 Level

Functional
Options Security Replaceability

Security
Interoperability

1 2 Non-
repudiation

ORB
Services

Securi ty
Services

Securi ty
Ready -
ORB
Services

Securi ty
Ready -
Securi ty
Services

Standard Standard
+ DCE-
CIOP
Security Service: v1.0 November 1996 15-269

15

ts,

s

r
2. Security Conformance

2.1 Main Security Functionality Level

This section should define which main security functionality level this product suppor
Level 1 or Level 2.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any bells and
whistles around the published interfaces, and any limitations on support for this level.

As in the conformance level descriptions, the description should be divided into:

• The security functionality provided by the product

• The application developer’s interfaces

• The administrative interfaces

2.2 Security Functionality Options

This section should define which functionality options are provided, in particular the
support for non-repudiation.

For non-repudiation, as this is a published interface in this specification, it should be
accompanied by a qualification statement if needed, as for the main security functionality
level.

2.3 Security Replaceability

This section should define whether the product supports replaceability of security
services, ORB services, or neither.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any bells and
whistles around the published interfaces, and any limitations on support for this
conformance option.

2.4 Secure Interoperability

This section should define whether the product supports standard secure interoperability,
standard and DCE-CIOP interoperability, or neither. As with the previous sections,
qualifications of the support, interpretations of the CORBA specification, and limitation
should be included as needed.

3. Assurance

If the product already has supporting assurance documentation (for example, because it is
being formally evaluated), much of this section may be satisfied by references to such
documentation. Appendix E, Guidelines for a Trustworthy System, provides general
discussions of many of the topics described here, particularly the basis of trust needed fo
each of the architecture object models.
15-270 CORBAservices: Common Object Services Specification

15

r-

,
3.1 Philosophy of Protection

Overview of supported security policies, security mechanisms and supporting
mechanisms.

3.2 Threats

Description of specific threats intended to be addressed by the system security policy, as
well as those not addressed.

3.3 Security Policies

Description of any predefined policies, including

• Classes of entities (such as clients, objects) controlled by security policy

• Modes of access (conditions that allow active entities to access objects)

• Use of domains (policy, trust, technology)

• Requirements for authentication of principal, client and target objects

• Requirements for trusted path between principals, clients, ORBs, and target objects

• Delegation model

• Security of communications

• Accountability requirements (audit, non-repudiation)

• Environmental assumptions of the policy (e.g. classes of users, LAN/WAN,
physical protection)

3.4 Security Protection Mechanisms

• Rationale for approach

• Identification of components, which must function properly for security policies to
be enforced

• Description of mechanisms used to enforce security policy

• How protection mechanisms are distributed in the architecture

• Why security mechanisms (such as access control) are always invoked and tampe
proof

3.5 Environmental Support

• How the underlying environment (such as operating systems, generation tools
hardware, network services, time services, security technology) are used in
providing assurance

• How installation tools ensure secure configuration

• How security management and administration maintains secure configuration
Security Service: v1.0 November 1996 15-271

15

ns
3.6 Configuration Constraints

Constraints to ensure that system security assurance is preserved, for example:

• Requirements on use and development of: clients, target objects, legacy software

• Limitations on interoperability

• Required software and hardware configuration

3.7 Security Policy Extensions

• Supported security policy extensions, if applicable

• Limitations of extensions

• Requirements imposed on developers to ensure trustworthiness of policy extensio

• Supported interactions and compositions of security policies

4. Supplemental Product Information

Supplemental product information is included at the vendor’s discretion. It can be used to
describe, for example:

• Additional security features, not covered by the CORBA Security specification

• The impact of security mechanisms on existing applications
15-272 CORBAservices: Common Object Services Specification

15

h

ns

types
Appendix G Facilities Not in This Specification

G.1 Introduction

Security in CORBA systems is a big subject, which affects many parts of the Object
Management Architecture. It was therefore decided to phase the specification in line wit
the priorities agreed as part of the security evaluation criteria by the Security Working
Group prior to the production of this specification.

This specification therefore includes the core security facilities and the security
architecture to allow further facilities to be added. Priority has been given to those
requirements most needed by commercial systems. Even with these limitations, the size of
the specification is larger than desirable for OMG members to review easily or for vendors
to implement.

Some of the facilities omitted from this specification are agreed to be required in some
secure CORBA systems, and so are expected to be added later, using the usual OMG
process of RFPs to request their specification.

This appendix lists those security facilities which are not included in the specification, but
left to later specifications, which may be in response to further RFPs for Object Services
or Common Facilities.

G.2 Interoperability Limitations between Unlike Domains

Secure interoperability is included in this specification. This allows applications running
under different ORBs in different domains to interoperate providing that:

• Both support and can use the same security mechanisms (and algorithms, etc.) for
authentication and secure associations (an ORB may support a choice of security
mechanisms).

• Use of these between the domains will not contravene any government regulatio
on the use of cryptography.

• The security policies they support are consistent -- for example, use the same
for privileges which can be understood in both places.

Limitations in the specification which affect this type of interoperability are:

• The standard policies defined do not include specify ing different policies when a
client communicates with different domains (though it is possible to define specific
policies to do this).

• There is no specification of the mapping policies required to translate attributes
when crossing a domain boundary where these policies are inconsistent, and how
these must be positioned, for example, to allow delegation of the mapped attributes.
Again, such mapping policies are not prevented.

• In general, there is no specification of how federated policies are implemented.
Security Service: v1.0 November 1996 15-273

15

ssible

e
• There is no specification of gateways to handle interoperability between security
mechanisms. It is expected that only limited interoperability between particular
security mechanisms will ever be provided, so this is not expected to be the subject
of an RFP in the foreseeable future.

G.3 Nonsession-Oriented SECIOP Protocol

The SECIOP protocol defined in Section 15.8, Security and Interoperability, assumes that
all underlying security mechanisms are session-oriented. The current specification does
not support security mechanisms, which encapsulate key distribution and other security
context management information in a single message along with the data being protected
(examples of such mechanisms include those accessed through the proposed internet
IDUP-GSS-API interface). Changes to the SECIOP protocol would be required to support
non-session-oriented protocols.

G.4 Mandatory Security Mechanisms

The current specification does not mandate any particular security mechanism which all
secure ORBs must implement. This is because the submitters did not think it was po
to specify out-of-the-box interoperability adequately in the timescale of this submission.

G.5 Specific Security Policies

This specification includes some standard types of security policies for security
functionality such as access control, audit, and security of invocations. These are aimed at
general commercial users. Some enterprises may require other types of policies, for
example, support of mandatory access controls. Where there is a sufficient market for such
policies, new policies may be defined, providing they fit with the replaceability interfaces
defined in this specification.

G.6 Other Audit Services

This specification only contains limited audit facilities, which allow audit records of
security relevant events to be collected. It does not include:

• Filtering of records after generation to further reduce the size of the audit trail.

• Routing audit records to a collection point for consolidation and analysis or routing
some as alarms to security administrators. (However, routing may be done using th
OMG Event Service, if that is secure enough.)

• Audit reporting or analysis tools to use the audit trails to track down problems.
15-274 CORBAservices: Common Object Services Specification

15

s.

alf of

nce

e

ect to
hen

ages
G.7 Management

This specification contains only the management interfaces, which are essential for
security policy management. It specifies how to obtain and use security policy object
However, it does not contain:

• All facilities for handling domains, policies other than those required for security
policy administration. This is to avoid unnecessary conflict with System
Management proposals.

• Management of some aspects of security. For example, it does not specify how to
create and install permanent keys, as this is implementation specific.

G.8 Reference Restriction

This specification requires the movement of credentials to delegate access rights from one
object to another. Another technique of access rights delegation restricts the use of an
object reference according to a set of criteria. This approach, know as reference
restriction, is under study by a number of vendors, but is not ready for standardization at
this time. The criteria used to restrict references could include:

• Whether an object has the right to assert certain privileges, such as act on beh
a principal, act on behalf of a group of principals, act in a particular role, act with a
particular clearance, etc.

• Whether the object reference has been limited to use within a given time interval.

• Whether a particular method can be used by an object holding the object reference.

Various techniques for restricting object references have been developed. Some use
cryptographic methods, while others store state in the object associated with the restricted
reference, allowing the object to decide if a method request meets the restricted refere
use criteria.

It is anticipated that vendors will explore this type of access rights delegation and move
towards the standardization of an interface supporting it in a submission to a future RFP.

G.9 Target Control of Message Protection

In the current specification, message protection can be specified by policy administration
at both the client and the target object.

Requesting an operation on an object may result in many other objects being invoked. Th
CORBA security specification in this document allows an intermediate object in such a
chain of objects to delegate received credentials to the next object in the chain (subj
policy). However, the current specification does not allow the application to control w
and where these credentials are used. A later specification may provide such controls to
ride the default quality of protection selectively. Therefore, it could cause some mess
to have different qualities of protection during a security association.
Security Service: v1.0 November 1996 15-275

15

ular

d.
n
in

 a

 of
The target has no equivalent interface to request the quality of protection for a partic
response. There are cases where this could be useful.

A future security specification should consider adding control of quality of protection by
the target for individual responses.

G.10 Advanced Delegation Features

Requesting an operation on an object may result in many other objects being invoke
The CORBA security specification in this document allows an intermediate object i
such a chain of objects to delegate received credentials to the next object in the cha
(subject to policy).

However, the current specification does not allow the application to control when and
where these credentials are used.

A later specification may provide such controls.

If so, it is expected that a set_controls operation on the Credentials object will be
added to enable the application to set the controls, and a matching get_controls
operation to enable it to see what controls apply (see the set_privileges and
get_attributes operations defined in Interfaces under Section 15.5.4, Credentials).

The set_controls operation would allow the application to specify a set of required
control values such as delegation mode (allowing for richer forms of delegation),
restrictions on where the credentials may be used and/or delegated, and validity period.

Note: These operations were not included in the specification because of concerns about
portability of applications using them. Current delegation implementations use a wide
variety of delegation controls, and some use similar controls in semantically different
ways. Further implementation experience and investigation may make it possible to define
a portable, standard set.

G.11 Reconciling Policy for Overlapping and Hierarchical Domains

This specification does not require support for overlapping or hierarchical security policy
domains. However, it is possible to implement both using the interfaces provided.

Recall from Section 15.6, Administrator’s Interfaces, that the DomainAccessPolicy for
each domain defines which rights are granted to subjects when they attempt to access
objects in the domain. In order to make an access decision, the AccessDecision logic also
needs to know which rights are required to execute the operations of an object, which is
member of the relevant domain. The RequiredRights interface provides this information;
the AccessDecision object will probably use this interface in most implementations.

A RequiredRights instance can be queried to determine which rights a user must be
granted in order to be allowed to invoke an object’s operations. The intended use
DomainAccessPolicy and RequiredRights objects by the AccessDecision object is
illustrated next, in Figure G-1.
15-276 CORBAservices: Common Object Services Specification

15

f

,
d).

ut
Figure G-1 Intended Use by AccessDecision

AccessDecision retrieves the relevant policy object by calling
get_domain_managers on the target object reference, and then calling
get_domain_policy(access) on the returned domain manager (assuming for
purposes of this example that there is only one). It then calls
get_effective_rights on the returned policy object. DomainAccessPolicy calls
get_required_rights on RequiredRights and compares the returned list o
required rights with the effective rights. If all required rights have been granted, it
grants the access.

Figure G-2 illustrates how the specification could be implemented to support overlapping
access policy domains (i.e. to allow an object to be a member of more than one domain
such that each domain has an access policy and all domains’ access policies are applie
In the diagram, the AccessDecision object must have logic to combine the policies
asserted by the various AccessPolicy objects (which may involve evaluating which
AccessPolicy object’s policy takes precedence over the others). Note that the
AccessDecision object knows the target object reference, because it is passed as an inp
parameter to the access_allowed operation.

AccessDecision

RequiredRights

access_allowed

DomainAccessPolicy

get_effective_rights get_required_rights
Security Service: v1.0 November 1996 15-277

15

te
Figure G-2 Supporting Overlapping Access Policy Domains

Hierarchical domains can be handled in a similar way as illustrated in Figure G-3 (no
that once again the AccessDecision object’s implementation is responsible for reconciling
the various retrieved policies).

AccessDecision

RequiredRights

access_allowed

get_required_rights

 AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers
15-278 CORBAservices: Common Object Services Specification

15

Figure G-3 Hierarchical Domains

G.12 Capability-Based Access Control

Capability-based systems store access policy information in tokens, which are passed
from sender to receiver along with a message, rather than in tables associated with target
objects or domains. In such systems, the DomainAccessPolicy object will generally not be
used in resolving target-side access control checks. Instead, a CapabilityAccessPolicy
object might be returned from a call to object::get_policies in a capability-based
system. This object could retrieve the granted rights from the capability (which will be
associated with the requester’s credentials), illustrated in Figure G-4.

AccessDecision

RequiredRights

access_allowed

get_required_rights

 AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers

DomainManager AccessPolicy

get_superior_domain_managers
Security Service: v1.0 November 1996 15-279

15

n

this
Figure G-4 Retrieving Granted Rights

Note that neither the Capability AccessPolicy interfaces nor the Capability interfaces are
defined in this specification (the get_granted_rights call to the capability in the
previous diagram is printed in italics, to indicate that no IDL is provided for it in this
specification). The diagram assumes that CapabilityAccessPolicy inherits the
get_effective_rights operation from AccessPolicy .

G.13 Non-repudiation Services

This specification contains Non-repudiation Services for evidence handling. It is
anticipated that future service offerings could include data protection processing and the
specification of a delivery service. In addition, it is expected that policy processing
interfaces will emerge to cover the broad range of non-repudiation policy coverage withi
the service.

It is anticipated that the data protection and delivery service functions will be reaching a
level of maturity within other standards domains (such as IETF and ISO SC27), which
should allow a richer definition of these services to be enabled in future revisions of
specification.

The absence of these services in this specification means that application writers and
manipulators will need to consult local implementation practice for the correct course of
action to be taken when writing or porting their software.

This specification also does not include a standard format of evidence token for
interoperability. In the future, a token format based on public key certificates may be
specified.

AccessDecision

RequiredRights

access_allowed

get_required_rights

CapabilityAccessPolicy

get_effective_rights

Capability

get_granted_rights
15-280 CORBAservices: Common Object Services Specification

15

for

n

Appendix H Interoperability Guidelines

H.1 Introduction

This appendix includes:

• Guidelines for defining Security Mechanism TAGs in Interoperable Object
References (IORs)

• Examples of the secure inter-ORB protocol, SECIOP

H.2 Guidelines for Mechanism TAG Definition in IORs

Section 15.8, Security and Interoperability, defined a prototype TAG definition for
security association mechanisms. This appendix provides guidelines that specifiers of
mechanism TAGs (called authors here) should follow.

In addition to registering TAGs with the OMG, authors must lodge a document that
explains how the mechanism (and its associated options) is mapped to this standard. Its
document should:

• Identify the "security mechanism tagged component" being described. It may be
either:

• A new component TAG for the mechanism with a set of options it can have (
example, a separate TAG for each combination of mechanism and algorithm),

or

• Use TAG_GENERIC_SEC_MECH and specify the mechanism OID (for use i
the security_mechanism_type field) being described by this specification.

It may not be both.

• Specify the scope implied by the above mechanism identifier. This should not
exceed:

• Security association mechanism

• Negotiation protocols

• Cryptographic algorithms

• Authentication method (e.g. public key)

• For the first example under the first bullet, describe the format, contents, and
encoding of the component_data field for the TAG-specific components. For
the second example under the first bullet, describe the format, contents, and
encoding of the data in the mech_specific_data and components fields of the
TAG specific components. In each case, this may include:

• Allocating new component TAGs and describing the format, contents, and
encoding of their data.

• Specifying the use of these new tagged components, as well as other predefined
tagged components within TAG-specific components.
Security Service: v1.0 November 1996 15-281

15

ined

 to

ntext
e the

s this

er id as

rt of a
y

e to

• Specifying the use of these new tagged components, as well as other predef
tagged components that may or should appear at the top level of the
multicomponent profile.

• Describe a model that should be followed when defining future extensions or
variations using the same mechanism.

• The author must define either by reference to another document, or explicitly, the
format of the context tokens used by the mechanism in the SECIOP protocol.

H.3 SECIOP Examples

H.3.1 Mutual Authentication

In this example, the client wishes to authenticate the identity of the target (in addition
the targets requirement to authenticate the client) before it is prepared to send a request to
the target.

The client sends an EstablishContext message to the target containing the client’s co
id for the association, and the token required by the target to authenticate it and defin
options chosen by the client for the association. The target verifies the client’s token and
generates the token required by the client to authenticate the target. The target send
token (along with the client’s context id for the association and its own) to the client in a
CompleteEstablishContext message. When the client receives this message, it
authenticates the target using the token supplied by the target and establishes the pe
part of the context.

Having completed the establishment of the context, the client sends the request as pa
MessageInContext message, which includes the target’s context identifier and the integrit
token for the message. When the target receives the message, it identifies the context by its
identifier, checks the integrity of the message with the token, and passes the messag
GIOP. When the reply is returned, it is sealed for integrity and returned to the client in a
SECIOP MessageInContext with the client identifier for the context and the generated
integrity token.
15-282 CORBAservices: Common Object Services Specification

15

n of a
rget

ed

a

s its
Figure H-1 Mutual Authentication

H.3.2 Confidential Message with Context Establishment

This example describes how context establishment is combined with the transmissio
confidentiality protected message when the client does not wish to authenticate the ta
before passing it a message.

The client establishes its context object with identifier c_id_1. This identifier is includ
with the token (token_1) in an EstablishContext message. The GIOP request is
transformed into the message seal (ms_1) and sent with the client’s context identifier in
MessageInContext.

When the target receives the message, it first processes the EstablishContext message,
authenticating the client and allowing the target to create its context object. It then unseals
the message in ms_1 and passes it to GIOP.

When GIOP sends the reply, SECIOP adds a CompleteEstablishContext message to the
MessageInContext message, which protects the reply, to enable the target to return its
context identifier to the client. When the client receives the message, it first complete
view of the context (adding the targets id to the state for the context). It can then unseal the
reply from ms_2 and passes the reply message up the protocol stack.

EstablishContext (c_id_1,token_1)

CompleteEstablishContext(c_id_1,c_id_69,token_2)

MessageInContext(peer,c_id_69,ms_1)(GIOP request)

MessageInContext (peer,c_id_1,ms2)(GIOP reply)

Cl ient establishes
context object id=
c_id_1 token=token_1

Target establishes
context object
id=c_id_69
token=token_2

Cl ient completes
context and transmits
signed GIOP request
wi th sign=ms_1

Target checks
sign and processes
request signs reply
and transmi ts reply
wi th sign= ms_2

Cl ient checks
sign and processes
reply
Security Service: v1.0 November 1996 15-283

15

rent

ate the

e

ecking

e
own

Figure H-2 Confidential Message with Context Establishment

H.3.3 Fragmented GIOP Request with Context Establishment

In this example, the security context is established as part of the processing of a
fragmented GIOP request (note that the current GIOP protocol does not support
fragmentation, but this example indicates the independence of SECIOP from the cur
GIOP protocol and explains how the SECIOP protocol would handle a fragmented GIOP
request). The sequence described reflects the requirement of the target to authentic
client’s privileges.

The client establishes its context object (with id c_id_1) and passes this identifier with th
authentication token in an EstablishContext message. As the client does not require
authenticating the target, this message is sent with a MessageInContext message with the
integrity sign (ms_1) and the GIOP fragment (as the message field of the
MessageInContext).

When the target receives the messages, it authenticates the client using token_1. It then
creates a context object with c_id_69, and then processes the MessageInContext, ch
the integrity of the message using sign ms_1. Having checked the message, it passes the
fragment up the protocol stack.

The client sends the final fragment as a MessageInContext with sign ms_2, but as th
target has not yet passed its identifier for the context to the client, the client uses its
identifier for the context.

CompleteEstablishContext(c_id_1,c_id_69,nul) MessageInContext (
peer,c_id_1,ms2)

EstablishContext (c_id_1,token_1) MessageInContext(
client,c_id_1,ms_1)

Client establishes
context object id=
c_id_1 token=token_1
Seals GIOP request into
seal=ms_1

Target establishes
context object
id=c_id_69
Target unseals and
processes request
seals reply and
transmits reply in
seal= ms_2

Client unseals
and processes
reply
15-284 CORBAservices: Common Object Services Specification

15

IOP.

tifier

e
The target finds its context object from the client’s identifier (c_id_1) and checks the
integrity of the message. It then passes the final fragment up the protocol stack to G

GIOP now has a complete request and can invoke the object (subject to the access
decision function).

GIOP generates a single fragment reply, which is passed to the SECIOP protocol machine.
The reply is sent within a MessageInContext with sign ms_3. In addition, a
CompleteEstablishContext message is generated to allow the target to pass its iden
for the context (c_id_69) to the client for use in future messages.

The client receives the message and updates its context object to record the target’s
context identifier. It then checks the integrity of the MessageInContext and passes th
reply up the protocol stack (to GIOP).

Figure H-3 Fragmented GIOP Request with Context Establishment

EstablishContext (c_id_1,token_1) MessageInContext(
client,c_id_1,ms_1)(GIOP fragment)

CompleteEstablishContext(c_id_1,c_id_69,nul)
MessageInContext (peer,c_id_1,ms2)(GIOP reply)

MessageInContext(client,c_id_1,ms_2)(GIOP fragment)

Client establishes
context object id=
c_id_1 token=token_1
Cleint signs GIOP
fragment with sign=
ms_1

Target establishes
context object
id=c_id_69 and
checks the fragment
sign

Target checks
sign and processes
request signs reply
and transmits reply
with sign= ms_2

Client checks
sign and processes
reply

Client signs final
fragment with sign=
ms_2
Security Service: v1.0 November 1996 15-285

15

ty

n

 be
Appendix I Glossary

I.1 Definitions

absolute time: Time accurate within a known margin of error.

access control: The restriction of access to resources to prevent its unauthorized use.

access control information (ACI): Information about the initiator of a resource access
request, used to make an access control enforcement decision.

access control list: A list of entities, together with their access rights, which are
authorized to have access to a resource.

access decision function: The function which is evaluated in order to make an access
control enforcement decision. The inputs to an access decision function include the
requester’s access control information (q.v.), the resource’s control information, and
context data.

ADO: Access Decision Object: The CORBA security object which implements access
decision functions.

accountability: The property that ensures that the action of an entity may be traced
uniquely to the entity.

active threat: The threat of a deliberate unauthorized change to the state of a system.

adjudicator: An authority that resolves disputes among parties in accordance with a
policy. In CORBA security, an adjudicator evaluates non-repudiation evidence in order to
resolve disputes.

anonymous user: A user of the system operating under a distinguished "public" identi
corresponding to no specific user.

assurance: 1. Justified confidence in the security of a system. 2. Development,
documentation, testing, procedural, and operational activities carried out to ensure that a
system’s security services do in fact provide the claimed level of protection.

asymmetric key: One half of a key pair used in an asymmetric ("public-key") encryptio
system. Asymmetric encryption systems have two important properties: (i) the key used
for encryption is different from the one used for decryption (ii) neither key can feasibly
derived from the other.

audit: See security audit.

audit event: The data collected about a system event for inclusion in the system audit log.

audit trail: See security audit trail.

authentication: The verification of a claimant’s entitlement to use a claimed identity
and/or privilege set.

authentication information: Information used to establish a claimant’s entitlement to a
claimed identity (a common example of authentication information is a password).
15-286 CORBAservices: Common Object Services Specification

15

 on

 keys.

pted

he

an

 a
(q.v.)

y

n
authorization: The granting of authority, which includes the granting of access based
access rights.

availability: The property of being of being accessible and usable upon demand by an
authorized user.

call chain: The series of client to target object calls required to complete an operation.
Used in this specification in conjunction with delegation.

certification authority: A party trusted to vouch for the binding between names or
identities and public keys. In some systems, certification authorities generate public

ciphertext: The result of applying encryption to input data; encrypted text.

cleartext: Intelligible data; text which has not been encrypted or which has been decry
using the correct key. Also known as "plaintext".

confidentiality : The property that information is not made available or disclosed to
unauthorized individuals, entities, or processes.

conformance level: A graduated sequence of defined sets of functionality defined by t
CORBA Security specification. An implementation must implement at least one of these
defined sets of functionality in order to claim conformance to CORBA Security.

conformance option: A defined set of functionality which implementations may
optionally provide in order to claim CORBA Security conformant functionality over and
above the minimum required by the defined conformance levels.

conformance statement: A written document describing the conformance levels and
conformance options to which an implementation of the OMG CORBA Security
specification conforms.

control attributes: The set of characteristics which restrict when and where privileges c
be invoked or delegated.

counter-measures: Action taken in response to perceived threats.

credentials: Information describing the security attributes (identity and/or privileges) of
user or other principal. Credentials are claimed through authentication or delegation
and used by access control (q.v.).

current object: An object representing the current execution context; CORBA Securit
associates security state information, including the credentials of the active principal, with
the current object.

DAC: Discretionary Access Control - an access control policy regime wherein the creator
of a resource is permitted to manage its access control policy information.

data integrity: The property that data has not been undetectably altered or destroyed in a
unauthorized manner or by unauthorized users.

DCE: Distributed Computing Environment (of OSF).

DCE CIOP:DCE Common Inter-ORB Protocol - the protocol specified in the OMG
CORBA 2.0/ Interoperability specification which uses the DCE RPC for interoperability.
Security Service: v1.0 November 1996 15-287

15

er or

t of

/

ce.

s

.

decipherment: Generation of cleartext from ciphertext by application of a cryptographic
algorithm with the correct key.

decryption: See decipherment.

delegation: The act whereby one user or principal authorizes another to use his (or h
its) identity or privileges, perhaps with restrictions.

denial of service: The prevention of authorized access to resources or the delaying of
time-critical operations.

digital signature: Data appended to, or a cryptographic transformation of. a data unit that
allows a recipient of the data unit to prove the source and integrity of the data against
forgery, e.g. by the recipient.

domain: A set of objects sharing a common characteristic or abiding by a common se
rules. CORBA Security defines several types of domains, including security policy
domains, security environment domains, and security technology domains.

domain manager: A CORBA Security object through whose interfaces the characteristics
of a security policy domain are administered.

encipherment: Generation of ciphertext from corresponding cleartext by application of a
cryptographic algorithm and a key.

encryption: See encipherment.

ESIOP: Environment-Specific Inter-ORB Protocol (specified in the OMG CORBA 2.0
Interoperability specification).

evidence: Data generated by the CORBA Security Non-Repudiation service to prove that
a specific principal initiated a specific action.

evidence token: A data structure containing CORBA Security Non-Repudiation eviden

federated domains: Separate domains whose policy authorities have agreed to a set of
shared policies governing access by users from one domain to resources in another.

GSS-API: Generic Security Services- Application Programming Interface - specified by
RFC 1508 issued by the Internet IETF. An update to this interface is near completion a
this is written, and it is anticipated that RFC 1508 will be superseded by a revised
specification soon.

GIOP: General Inter-ORB Protocol (specified in the OMG CORBA 2.0/ Interoperability
specification.)

group: A CORBA Security privilege attribute. Many users (and other principals) may be
assigned the same group attribute; this allows administrators to simplify security
administration by granting rights to groups rather than to individual principals.

granularity: The relative fineness or coarseness by which a mechanism may be adjusted

hierarchical domains: A set of domains together with a precedence hierarchy defining the
relationships among their policies.
15-288 CORBAservices: Common Object Services Specification

15

s,
identity: A security attribute with the property of uniqueness; no two principals’ identities
may be identical. Principals may have several different kinds of identities, each unique
(for example, a principal may have both a unique audit identity and a unique access
identity). Other security attributes (e.g. groups, roles, etc...) need not be unique.

immediate invoker: In a delegated call chain, the client from which an object directly
receives a call.

impersonation: The act whereby one principal assumes the identity and privileges of
another principal without restrictions and without any indication visible to recipients of
the impersonator’s calls that delegation has taken place.

initiator: The first principal in a delegation “call chain”; the only participant in the call
chain which is not the recipient of a call.

integrity: In security terms, the property that a system always faithfully and effectively
enforces all of its stated security policies.

interceptor: An object which provides one or more specialized services, at the ORB
invocation boundary, based upon the context of the object request,. The OMG
CORBASecurity specification define the security interceptors.

intermediate: An object in a delegation “call chain” which is neither the initiator or the
ultimate (final) target.

IETF : Internet Engineering Task Force. Reviews an issues Internet standards.

IIOP : Internet Interoperable Object Protocol (specified in the OMG CORBA 2.0/
Interoperability specification).

IOR: Interoperable Object Reference - a data structure specified in the OMG CORBA 2.0/
Interoperability specification.

ITSEC: Information Technology Security Evaluation Criteria (of ECSC-EEC-EAEC).
Harmonized Criteria.

MAC: Mandatory Access Control - an access control regime wherein resource access
control policy information is always managed by a designated authority, regardless of who
creates the resources.

mechanism: A specific implementation of security services, using particular algorithm
data structures, and protocols.

message protection: Security protection applied to a message to protect it against
unauthorized access or modification in transit between a client and a target.

mutual authentication: The process whereby each of two communicating principals
authenticates the other’s identity. Frequently this is a prerequisite for the establishment of
a secure association between a client and a target.

Non-Repudiation: The provision of evidence which will prevent a participant in an action
from convincingly denying his responsibility for the action.

ORB Core: The functionality provide by the CORBA Object Request Broker which
provides the basic representations of objects and the communication of requests.
Security Service: v1.0 November 1996 15-289

15

the

.

s

 been

 has
ORB Services: Elements of functionality provided transparently to applications by the
CORBA Object Request Broker in response to the implicit context of an object request.

ORB technology domain: A set of objects or entities that share a common ORB
implementation technology.

originator: The entity in an object request which creates the request.

passive threat: The threat of unauthorized disclosure of information without changing
state of the system.

physical security: The measures used to provide physical protection of resources against
deliberate and accidental threats.

POSIX: Portable Open System Interfaces (for) UNIX - A set of standardized interfaces to
UNIX systems specified by IEEE Standard 1003.

principal: A user or programmatic entity with the ability to use the resources of a system

privacy: 1. See confidentiality. 2. The right of individuals to control or influence what
information related to them may be collected and stored and by whom that information
may be disclosed.

private key: In a public-key (asymmetric) cryptosystem, the component of a key pair
which is not divulged by its owner.

privilege: A security attribute (q.v.) which need not have the property of uniqueness, and
which thus may be shared by many users and other principals. Examples of privileges
include groups, roles, and clearances.

proof of delivery: Non-repudiation evidence demonstrating that a message or data ha
been delivered.

proof of origin: Non-repudiation evidence identifying the originator of a message or data.

proof of receipt: Non-repudiation evidence demonstrating that a message or data has
received by a particular party.

protection boundary: The domain boundary within which security services provide a
known level of protection against threats.

PDU: Protocol Data Unit. The data fields of a protocol message, as distinguished from the
protocol header and trailer fields.

proof of submission: Non-repudiation evidence demonstrating that a message or data
been submitted to a particular principal or service.

public key: In a public-key (asymmetric) cryptosystem, the component of a key pair
which is revealed.

public-key cryptosystem: An encryption system which uses an asymmetric-key (q.v.)
cryptographic algorithm.

QOP: Quality of Protection. The type and strength of protection provided by a message-
protection service.
15-290 CORBAservices: Common Object Services Specification

15

in

ed to a

en

 of
RPC: Remote Procedure Call.

replaceability: The quality of an implementation which permits substitution of one
security service for another semantically similar service.

repudiation: Denial by one of the entities involved in an action of having participated
all or part of the action.

RFP: Request for Proposal. An OMG procedure for soliciting technology from OMG
members.

right: A named value conferring the ability to perform actions in a system. Access control
policies grant rights to principals (on the basis of their security attributes); in order to
make an access control decision, access decision functions compare the rights grant
principal against the rights required to perform an operation.

rights type: A defined set of rights.

role: A privilege attribute representing the position or function a user represents in
seeking security authentication. A given human being may play multiple roles and
therefore require multiple role privilege attributes.

RSA: An asymmetric encryption algorithm invented by Ron Rivest, Adi Shamir, and L
Adelman.

seal: To encrypt data for the purpose of providing confidentiality protection.

secret-key cryptosystem: A cryptosystem which uses a symmetric-key (q.v.)
cryptographic algorithm.

secure time: A reliable Time service that has not been compromised, and whose messages
can be authenticated by their recipients.

security association: The shared security state information which permits secure
communication between two entities.

security attributes: Characteristics of a subject (user or principal) which form the basis
the system’s policies governing that subject.

security audit: The facility of a secure system which records information about security-
relevant events in a tamper-resistant log. Often used to facilitate an independent review
and examination of system records and activities in order to test for adequacy of system
controls, to ensure compliance with established policy and operational procedures, to
detect breaches in security, and to recommend changes in control, policy and procedures.

 security features: Operational information which controls the security protection applied
to requests and responses in a CORBA Security conformant system.

security context: The CORBA Security object which encapsulates the shared state
information representing a security association.

security policy: The data which defines what protection a system’s security services must
provide. There are many kinds of security policy, including access control policy, audit
policy, message protection policy, non-repudiation policy, etc.
Security Service: v1.0 November 1996 15-291

15

all

ide
ain

e
security policy domain: A domain whose objects are all governed by the same security
policy. There are several types of security policy domain, including access control policy
domains and audit policy domains.

security service: Code that implements a defined set of security functionality. Security
services include Access Control, Audit, Non-repudiation, and others.

security technology domain: A set of objects or entities whose security services are all
implemented using the same technology.

subject: An active entity in the system; either a human user principal or a programmatic
principal.

symmetric key: The key used in a symmetric ("secret-key") encryption system. In such
systems, the same key is used for encryption and decryption.

tagged profile: The data element in an IOR which provides the profile information for
each protocol supported.

target: The final recipient in a delegation “call chain.” The only participant in such a c
chain which is not the originator of a call.

target ACI: The Access Control Information for the target object.

target object: The recipient of a CORBA request message.

threat: A potential violation of security.

traced delegation: Delegation wherein information about the initiator and all intervening
intermediates is available to each recipient in the call chain, or to the authorization
subsystem controlling access to each recipient.

trust model: A description of which components of the system and which entities outs
the system must be trusted, and what they must be trusted for, if the system is to rem
secure.

trusted code: Code assumed to always perform some specified set of operations correctly.

TCB: Trusted Computing Base. The portion of a system which must function correctly in
order for the system to remain secure. A TCB should be tamper-proof and its enforcement
of policy should be noncircumventable. Ideally a system’s TCB should also be as small as
possible, to facilitate analysis of its integrity.

TCSEC: Trusted Computer System Evaluation Criteria (a U.S. Department of Defens
Standard specifying requirements for secure systems).

unauthenticated principal: A user or other principal who has not authenticated any
identity or privilege.

UNO: Universal Networked Objects (an OMG Specification, now obsolete).

UTC: Coordinated Universal Time.

unsecure time: Time obtained from an unsecure time services.

UTO: Universal Time Object.
15-292 CORBAservices: Common Object Services Specification

15

,

er
user: A human being using the system to issue requests to objects in order to get them to
perform functions in the system on his behalf.

user sponsor: The interactive user interface to the system which acts as the authenticating
authority (e.g. validating passwords) which validate the identity of a user.

vault: The CORBA Security object which creates security context objects.

X/Open: X/Open Company Ltd., U.K.

I.2 References

The following sources were used in the preparation of this glossary:

Applied Cryptography, 2nd edition by Bruce Schneier, John Wiley and Sons, New York
1996.

ISO Standard 7498-2, “Information Processing Systems -- Open Systems Interconnection
-- Basic Reference Model -- Part 2:Security Architecture”, International Standards
Organization,1989.

ECMA TR/46 “Security in Open Systems: A Security Framework”, European Comput
Manufacturers Association, 1988.

ITSEC “Information Technology Security Evaluation Criteria" European Commission,
1991.

DoD Standard 5200.28-STD “Department of Defense Trusted Computer System
Evaluation Criteria”, US Department of Defense, 1985.

X/Open Snapshot: “Distri buted Security Framework: Company Review Draft”, X/Open
Company Ltd.,U.K. 1994.

Computer Related Risks: Peter G. Neuman, The ACM Press, 1995
Security Service: v1.0 November 1996 15-293

15

15-294 CORBAservices: Common Object Services Specification

	Message Definitions
	MTEstablishContext
	MTCompleteEstablishContext
	MTContinueEstablishContext
	MTDiscardContext
	MTMessageError
	MTMessageInContext

	SECIOP Protocol State Tables
	15.8.5 DCE-CIOP with Security
	Goals of Secure DCE-CIOP
	Secure DCE-CIOP Overview
	IOR Security Components for DCE-CIOP
	TAG_DCE_SEC_MECH
	TAG_ASSOCIATION_OPTIONS
	TAG_SEC_NAME

	DCE RPC Security Services
	DCE RPC Authorization Services
	DCE RPC Authentication Services

	Secure DCE-CIOP Operational Semantics
	Deriving DCE Security Parameters from Association ...
	DCE Association Options Reduction Algorithm
	Behavior When TAG_ASSOCIATION_OPTIONS Not Present
	Securing the Binding Handle to the Target

	Request-Level Interceptors
	Message-Level Interceptors
	Distributed Trusted Computing Base
	Protection Boundaries
	Controlled Communications
	Example Using Trusted Generation Tools and ORBs
	Commercial System with Limited Security Requiremen...
	Higher Security System
	Logging onto the System
	Walkthrough of Secure Object Invocation
	Object and Object Reference Creation
	Authorization Policy Information
	Audit Policy Information and Audit Logs
	Target Object Identities
	Assumptions about Security Association Mechanisms
	Invoking Special Objects
	Integrity of the ORB and Security Service Objects
	Safeguarding the Object Environment
	Safeguarding the Dispatching Mechanism
	Safeguarding Information in Shared Vault Objects

