1B

or it will be the identifier associated with the reegiof the message (i.e. the request
target for request or request fragment messages or the request client for reply or
fragment nessages). The value must equal Client if the value of

target_context_id_valid in the CompleteEstablishContext was false, or the
message has not yet been exchanged. It must Bgealf the value of
target_context_id_valid in the CompleteEstablishContext was true. The us

peer identifiers allows thecipient of the ressage to more efficiently find its security
context. The values are defined as:

® Client. The context id is that of the association’s client.
® Peer. The context id is that of the recipient of thessage.

® Sender. The context id is that of the sender of the message. This is only us
the DiscardContext message when the sender of the DiscardContext messag
context and has received a message that it cannoggs0

Message Definitions

MTEstablishContext
Thismessage is passed by the client to the target when a new association is to b
established. Its definition is:
struct EstablishContext {
Contextld client_context_id;
sequence <octet> initial_context_token;
3

® client_context_id . This is the client’s identifier for the securigsociation
It is passed by the target to the clisvith subsequent messages within the
association. It enables the client to link thessage with the appropriadecurity
context.

® initial_context_token . This is the token required by the target to estal
the securityassociation. It contains a mechanism version number, mech type
identifier, and mechanisrapecific informatiorrequired by the target to establish
the context. It may be sent with a protected message (for example, if thedobss
not wish to authenticate the target).

MTCompleteEstablishCotext

Thismessage is returned by the target to indicate that the association has beenreels
It is sent as a reply to an establish context or continue establish context. It may be
with a GIOP reply or reply fragment. Its definition is:

struct CompleteEstablishContext {

Contextld client_context_id;
boolean target_context_id_valid;
Contextld target_context_id;

sequence <octet> final_context_token;

h

SecurityService:v1.0 NovemhE996 15-179

15

15-180

® client_context_id . This is the client’s idenfiiér for thesecurityassociation
It is returned by the target to the client to enable the client to link gssage witl
the appropriatsecurity context.

® target context id valid . This indicates whether the target has supplie
target_context_id for use by the clienfTRUEindicates that the following
field is valid.

® target_context_id . The targets ideniiér for the association. It is passed |

the client to the target with subsequent messayf enables thearget toassociate
local identifier with the context to allow the targetidentify the context efficientl

® final_context_token . This is the token required by the client to complete
establishment of the security association. It may be zero length.

MTContinueEstablishContext

This message is used by the client or target during context establishipass farther
messages tits peer as part of establishing the context. It may be the response to &
establish context or to another continue establish context and is defined as:

struct ContinueEstablishContext {
Contextld client_context_id;
sequence <octet> continuation_context_token;
3
® client_context_id . The client’s identifer for the association. It is used by
both client and target to identify tlassociion during theestablishment sequen

® continuation_context_token . This is the security information required
continue establishment of tlsecurityassociation.

MTDiscardContext

This message is used talicate to the raxver that the safer of the message has
discarded the identified context. Once the message has been sent, the sender will
further messages within the context. The message is used as a hint to enable cont
closed tidily. Its definition is:

struct DiscardContext {
ContextldDefn message_context_id_defn;
Contextld message_context_id;
sequence<octet> discard_context_token;
3
® message_context_id_defn . The type of context identifier pplied in the
message_context_id field.

®* message_context id . The context identifier to be used by tleeipient of the
message to identify the context to which the message applies.

CORBAservices: Common Obj&arvices Specification

15

® discard_context_token . A token to be used by threcipient of the rassage
to identify which context @eds to be discarded. Not aélcurity mechanisms em
such tokens; in case no token is available, a zero-lengthstdbag should be sed

MTMessageError

Thismessage is used to indicate an error detected in attempeisigbdish an associati
either due to a message ool error or a context créan error. The message is also u
to indicate errors in use of the context.

struct MessageError {

ContextldDefn message_context_id_defn;
Contextld message_context_id;
long major_status;
long minor_status;
3
® message_context_id_defn . The type of context identifier pplied in the

message_context_id field.

® message _context id . The context identiér to be used by theecipient of the
message to identify the context to which the messag éaplilis either the client
identifier for the context (type client) or tmeceiver of the messages identifier (t
peer).

® major_status . The reason forejecting the context. Thealues ged are those
defined by the GSS API (RFC 1508) for fatal error codes.

® minor_status . This field allows mechanismpecific error status to further
define the reason faejecting the context. It is not defined further here.

MTMessaelnContext

Once established messages are sent within the context using the MessagelnCont
message. Its definition is:

enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC

struct MessagelnContext {
ContextldDefn message_context_id_defn;
Contextld message_context_id;
ContextTokenType message_context_type;
sequence <octet> message_protection_token;

SecurityService:v1.0 NovemhE996 15-181

15

15-182

® message_context_id_defn
message_context_id field.

. The type of context identifier pplied in the

® message_context id . The context identifier to be used by tleeipient of the
message to identify the context to which the message applies.

® message_context type . An indicator on whether the protection token is ¢
"Wrap" token (which incldes the protected message text and is ordinarily us
provide conidentiality protection) or an "MIC" token (whictioes not include the
protected message text and is used to provide only integritgqticot).

® message_protection_token . The Wrap or MIC token for the message. T
is a self-defining token which indicates how the message is protected. If the
message is not protected, the tokéi be zero length.

For unprotected and integrity-protected messages, the token will be an MIC token,
MessagelnContext message will be followed by the hitgved protocol nessage, whic
is being protected by the security context (i.e. GIOP message or message fragme
this case, the length of the higher level protocol message idé@ucin the
message_size field of the MessagelnContext message’s SECI&Rlbr.

For confidetiality -protected messages, the protected message text will be include
message_protection_token (which will be a Wrap token) of the
MessagelnContext message, and no hidgneatprotocol messages will be transmittec
within the security context described by the MessagelnContessage. In this case, tl
value in themessage_size field of the MessagelnContext message’s SECIOBédre
will represent the length of the MessagelnContext message only.

SECIOP Protocol State Tables

Note that some mechanisms may start in state S3.

Table 15-11 Client State Table

No context (SO)

Context being
created Message

Context being
created Message

Context created
(S3)

allowed (S1) not allowed (S2)

request context createcontext

establish (client send etablish

auth) contextS1

request context createcontext

establish (target or | send etblish

mutual auth) contextS2

receive message send discard contex8O discard contex8O discard contex8O

error

DiscardContext
with the message
sender’s
context idSO

CORBAservices: Common Obj&arvices Specification

15

No context (SO)

Context being
created Message
allowed (S1)

Context being
created Message
not allowed (S2)

Context created
(S3)

receive continue
establish context
message

send
DiscardContext
with the message
sender’s

context idSO

update ontext state
if ok
send continue
establish context
S2
else
send mesage error
SO

receive complete
establish context
message

send
DiscardContext
with the message
sender’s
context_idSO

complete context
with target's context
id
if ok
S3
else
delete context
send mesage
errorSO

complete context
with target's context
id
if ok
S3
else
delete context
send mesage
errorS0O

request to send
message inantext

send message in
context with client
context idS1

send message in
xontext with client
or targetcontext id
S3

receive message in
context

send
DiscardContext
with the message
sender’s

context idSO

processmessage
if ok

S1
else

if message decode

error send messag
errorS1
else
send mesage error
SO

processmessage
if ok
S3
else
if message decode
error send messag
errorS3
else
send mesage error
SO

D

request to send
discard context
message

send discardontext
message delete
contextS0O

send discardontext
message delete
contextS0O

send discard contex{
message delete
contextS0O

receive dscard
contextmessage

delete contex80

delete contex80

delete contex80

See Table 15-12 for the Tardgtiate information.

SecurityService: v1.0

NovembEd96

15-183

15

15-184

Table 15-12 Target State Table

No context (SO)

Context being
created Message
allowed (S1)

Context being
created Message
not allowed (S2)

Context created
(S3)

receive establish
context message
(client auth)

createcontext

if ok
send complete
establish context
S3

else
send message
errorSO
receive extablish createcontext
context message if ok

(target or mutual
auth)

if continuation
send continue
S2
else
sendcomplete
establisS3
else
send message
error delete
contextS0O

receive message
error

send
DiscardContext
with the message
sender’s
context_idSO

delete contex80

delete contex80

receivecontinue
establish context
message

send
DiscardContext
with the message
sender’s
context idSO

updatecontext

if ok
if continuation
send continuation
S2

else
send complete
establishs3

else
send message errg
contextS0O

request to send
message in context

send masage in
xontext with peer
context idS3

CORBAservices: Common Obj&arvices Specification

15

No context (SO)

Context being
created Message

Context being
created Message

Context created
(S3)

allowed (S1) not allowed (S2)
receive message in| send processmessage processmessage
context DiscardContext if ok if ok
with the message | S1 S3
sender’s else else

context idSO

if message decode
error send messag

if message decode
error send messag

1%

errorS1 errorS3
else else

send mesage error send mesage error
SO SO

request to send
discard context
message

send discard contexf
message delete
contextS0O

send discardontext
message delete
contextS0O

receive dscard
contextmessage

delete contex80 delete contex80

15.8.5 DCE-CIOP with Security

This sectiondescribes how to provide securgéeiroperaility between GQRBs, which use
the DCE Common Inter-ORB Protocol IB-CIOP). Itdescrbes how the DCE-CIOP
transport layer should handéecurity (for example, how it should interpret the secur
components of the IOR profile when selecting DCE 8gc$ervices for a request anc
secure invocation).

Goals of Secure DE-CIOP

The original goals of DCE-CIOP, documented in the CORBA 2.0 specificatien,
maintained and enhanced by Secure DCE-CIOP:

® Support multivendor, missiocritical, enterprise-widesecure ORBbased
applications.

® |everageservices provided by DCE wherever appropriate.
* Allow efficient and straightforard inplementation using falic DCE APIs.

®* Preserve ORB iplementation freedom.

Secure DCE-CIOP achies these gals by takingadvantage of the integrated security
services proded by DCE Authenticated RPC. It is not a goal of the Secure DCE-C
specification to support the usearbitrary sectity mechanisms for protection of DCE
CIOP messages.

SecurityService:v1.0 NovemhE996 15-185

15

15-186

Secure DCE-CIOP Overview

Secure iteroperdility between GRBs using the DCE-CIOP traport relies on the DCE
Security Serices and the DCE Authenticated RPC-tinme that utizes thoseservices.

The DCE Security Seices (specified in the X/Open Preliminary Specificatidpen
DCE: Authenticatiorand SecurityService} as employed by the DCE Authenticated F
run-time (specified in th&¥/OPEN CAE Specification C308nd the OSRES/Distrbuted
Computing RPC Voluneprovide the followingsecurity features:

® Cryptograplically secured mutual autheéoation of a client and target

® Ability to pass client identity and authorization credentials to the target as pa
request

® Protection against undetected, unauthorizexdlification of request dta.
® Cryptographic privacy of data
® Protection againgteplay of requests and data

The RPC run-time provides the communication conduit for exchanging security
credentials between communicating pestilt protects its communications from threa
such asmessage replaygssage mofication, andeavesdspping.

The DCE-CIOP ges DCE RPC APIs to request security features for a given client-
communication binding. Subsequent DCE-CIOP messages on that Hlodirayer RPC
and thus are pretted at the requestél/els.

This Secure DCE-CIOBpecification defines the IOR Profile components required t
supportSecure DCE-CIOP. Each component is identified by a unique tag, and the
encoding and semantics of the associatedponent_data are specified. Client secu
association requirements, as indicated by clientysidiey and targesecureassociation
requirements, aspecified in the target IOR Profig@curity components are mapped t
DCE Security Setices. Findl, the use of DCE APIs tprotect DCE-CIOP rassages is
described.

IOR Security @mponents for DCE-CIOP

The information neessary to invoksecure operations on objects usingBCIOP is
encoded in an IOR in a profile idéfired by TAG_MULTIPLE_ COMPONENTS. The
profile_data for this profile is a CDR empsulation (see “CDR Transfer Syntax”
Section 12.3 of the CORBA 2.0 speciéiion) of the MultipleComponeRtofile type,
which is a sequence of TaggedComponent structureseliipes are described in Cha
3 of CORBA 2.0.

The Multiple ComponerRrofile contains the tagged components required to suppo
DCE-CIOP,described in Chapter 13 of the CORBA 2.0 specification, as well as the
components reqrad to support sedty for DCE-CIOP. The general security compone
are deschied in Security Components in the IOR un8ection 15.8.4, CORBA
Interoperable Object Reference with Security. The DCE-specific security compone
semantics for the common security componeanésdescribed here.

CORBAservices: Common Obj&arvices Specification

15

Although a conforming implementation of Securél >CIOP is only requéd to generat
and recognize the components defined here and in Chapter 13 of CORBA Rrofilke
may also contain components used by other kinds of ORB transpoleaiabs.

Im plementations should be prepared to encounter profiles identified by
TAG_MULTIPLE_COMPONENTS that do not support DCE-CIOP. Unrecognized
components should be preserved but ignored. Although an implementation may ct
order the components in a profile in a particulayvother implementations are not
required to preserve that order. Implementations must be preparedite pafiles
whose componentgppear in any order.

TAG_DCE_SEC_MECH

For a profile to support Secure DCE-CIOP, it must include exactly one
TAG_DCE_SEC_MECH component. Presence of this component indicaiesrstor
the [non-GSSAPI] “DCE Security witkerberos V5 with [ES” mechanism fge. The
component_data field contains an authorization service identifier andptional
sequence of tagged components.

Future versions of DCE Security that require different information than whaivislpd
by thecomponent_data structure shown next aregected to be supported with a n
component tag, rather than wigvisions to thelata structure assiated with the
TAG_DCE_SEC_MECH tag.

The DCE Security Mechanism component is defined by the following OMG IDL:

moduleDCE_CIOP {

const |OP::Componentld TAG_DCE_SEC_MECH =103

/I CORBA IDL doesn't (yet) support const octet

I

/I const octet DCEAuthorizationNone = 0;

/I const octet DCEAuthorizationName = 1;

/I const octet DCEAuthorizationDCE = 2;

struct DCESecurityMechanisminfo {
octet authorization_service;
sequence<TaggedComponent> components;

h

A TaggedComponent structure is built for the D8&curity mechanism component by
setting the tag memberto TAGAE_FC MECH, and setting theomponent_data
member to a CDR encapsulation of a DCESecurityMechanismInfo structure.

SecurityService:v1.0 NovemhE996 15-187

15

15-188

authorization_service Field

Theauthorization_service field is used to indicate what authorizatioargice is
requred by the target, and therefore must hgpsuted by the authenticated RPC-time
for invocations on this IOR. Two authorizatiorodels are guported:

® DCEAuthorizationName and DCEAuihzationDCE, with a tind identifier.

®* DCEAuthorizationNone, to indicate that no amihation is reqired.

See DCE RCP Authorization ServicesSaction 15.8.6, DCE-CIOP wit&ecurity, for
details.

Components field

The components field contains a sequence of zermoe tagged com ponents, none ¢
which may appear more than once, from the following list of common security 10R
components: TAG_ASSOCIATION_OPTIONS, and TAG_SEC_NAME.

Each of these components, defined in Security Components of the IOR in S&c8igh
CORBA Interopeable Object Reference wiBecurity, may be present either in the
components field of the ©CESecurityMechanismInfo structure, or at tbp level of the
IOR profile. When one of these components appears at the top levepobfites its date
may be shared by other security mechanisms in the profile. When d@rappéhe neste
components field of DESecurityMechanismInfats data is @ailable only to the DCE
Security mechanism araverrides the data of adertically-tagged component, if prese
at the top level of the prdé.

TAG_ASSOCIATION_OPTIONS

The assciation options component, slrbed in Security Components of the IOR in
Section 15.8.4, CORBA Ietoperable ObjedReference with Security, contains flags
indicating which protection and authenticationveses thetarget spports, and which it
requires. This component is optional for Secu@HCIOP; defaultare used when the
component is not present.

The way in which association optioase interpreted for use with DCE satuis
reflected in Table 15-13, which shows how an association option is mapped to a D(
protection level and authentication service.

CORBAservices: Common Obj&arvices Specification

15

Table 15-13 Association Option Mapping to DCE Security

Association Option DCE RPC DCE RPC
Protection Level Authentication Service
NoProtection rpc_c_protect_level _none rpc_c_authn_none

rpc_c_protect_level_pkt_integrity rpc_c_authre dsecret

Confidentiality

rpc_c_protect_level_pkprivacy rpc_c_authn_dc secret

DetectReplay rpc_c_protect_level pkt rpc_c_autha_decret
DetectMisordering pc_c_protect_level_pkt rpc_c_authnedsecret
EstablishTrustinTarget| rpc_c_protect_level_connect rpc_c_autbnselcret
EstablishTrustinClient | rpc_c_protect_level _connect rpc_c_autensdcret
tag not present rpc_c_protect_level_default rpc_c_authre deecret

If the TAG_ASSOCIATION_OPTIONS component is not present, then the target is
assumed both to support and to requicec_protect_level default and
rpc_c_authn_dce_secret . (The value ofpc_c_protect_level default

is defined by the DCE implementation or by a site adnratist) See Befvior When
TAG_ASSOCIATION_OPTIONS Not Preselater in this section, for a description of
how DCE security parameters asdested when this component is natgent.

See DCE RPC Protection Levels and DCE RPC Authentic&eownices later in this
section, for more details on the protection provided by the DCE authenticated RP
services.

target_supports field

When an association option is set in thiget_supports field of the
TAG_ASSOCIATION_OPTIONSomponent_data , it indicates that the target
supports irvocations which use Secure DCE-CIOP with the protectival land
authentication service thabrrespond to the selectegdtion, as shown in Table 15-13.
Any or all of the association options may be set intdéinget _supports field. The
options set in thearget_supports field will be compared with client-side policy
required options to determine if the target can support the clientseempnts.

Although, for the DCE secity mechanism, a single selected option may impjypsut
for several other options (e.g., selection of the itiegption implies spport for
DetectReplay, DetectMordering, and EstablishTrustIinClignit is ecommended that
every supported option be explicitly set in taeget_supports field to faciitate
comparison with client regeements.

SecurityService:v1.0 NovemhE996 15-189

15

15-190

target_requires field

When an association option is set in theget_requires field of the
TAG_ASSOCIATION_OPTIONSomponent_data , it indicates that the target
requires invocations seed with at éast the protectioreVel and autheitation rvice
that correspond to the selected option, as shown in Table 15-13. Since DCE RPC
a range of protection\els,each of whichprovides all thgrotection of thedvel below it
and also some additional protection, selectingiplaltarget_requires options
does not make sense. For DCE, no more than one omé@mlre selected in the
target_requires field.

If a TAG_ASSOCIATION_OPTIONS component is contained within the
DCESecuritylechanisminfastructure, thearget_requires field may conform to
the DCE semantics (i.e. no more than one option selected). If other security mech
are sharing the TAG_ASSOCIATION_OPTIONS component,pertiaps using differel
rules for interpreting thearget_requires field, then ti@rget_requires field may
have several options seledt The DCEAssociation Options Reduction algorithm,
described later in thisection, hadles both cases and is used to select the appropriate
secure invocatioservces given a set of refjed association options.

The EstablishTrustinTargeption in thetarget_requires field is meaningdss, anc
is therefore ignored.

TAG_SEC_NAME

The security name component contains the DCE principal name of the targaial@er
this is a global principal name that indés the name of the cell in which the target
principal’saccount resides. If a cellative pringpal name (i.e., the cell prefix does n
appear) is specified, the local cell is assumed. Cell-relative principal names are or
appropiate foruse in IORs that are consumed by clients in the sathia which the
target resides. When an IOR taining a cellrelativeprindpal name in the
TAG_SEC_NAME component csses a cell bowary, the cell-relative primgal name
should be replaced with a globalname.

The format of a “human-friendly” DCE principal name is describeBdation 1.13 of th
X/Open DCE: Authenticatioand Security Seisesspecification [hereafter referred to
X/Open DCE Securilylt is a string containing a concatgrd cell name and cell-relati
principal name thdboks like:

/...Icell-name/celtelative-principalname

For example, the praipal with the cell-relative name “ptiserver” in the
“mis.prettybank.com” cell has theadalprincipal name:

/.../mis.prettybank.com/printserver

Thecomponent_data member of the TAGSEC_NAME component is set to the str
value of the DCE principal name. Th&ing is representedrdctly in the sequence of
octets, including the terminating NUL.

Ifthe TAG_SEC_NAME component is nptesent, then a value of NUL is assumed,
indicating that the client will depend on the DCE authenticated RP@merto retreve

CORBAservices: Common Obj&arvices Specification

15

the DCE principal name of the target, identified in the IOR by tB&{ZIOP string
binding and binding name com ponents. Tdase indicates that the client is not intere
in authentication of the target identity.

DCE RPC Security Services

This sectiorprovides detailabout the protection provided by DCE Authenticated RF
authorization services, pegtion evels, and authentication sems$. See the
rpc_binding_set_auth_info() man page in th&SF DCE 1.1 Applation
Development Referent@ more informatiorabout using these protectiparameters to
secure an assodiah between a client and target.

DCE RPC Authaization Services

This sectiordescribes the DCE authorization serviagidgated by the
authorization_service member of the DCESecurityMechanismInfo structure
thecomponent_data field of the TAG_DCE_SEC_MECH component.

DCEAuthorizationName indicates that the target performs authorization based on
client security name. The DCE RPC authorizationise DCEAuthorizationNameassert:
the principal name (without cpyographic protection if the association option
NoProtection is chosen, or with cryptographic protection otherwise).

DCEAuthorizationDCE indicates that the target performs authorization using the cl
Privilege Attribute Certificate (for OSF DCE 1.0.3 or previous vesgioar the client's
Extended Privilege Attribute Céitate (for DCE 1.1). The authorization gie
DCEAuthorizationDCE asserts the principal name appropriate authorization data
(without cryptographic protection if the as&dion optionNoProtection is chosen, or
with cryptogaphic protection othense).

DCEAuthorizationNone indicates that the target performs no authorization based «
privilege information cared by the RPC run-time. This is valid only if thesasiation
option NoProtection is chosen.

Theauthorization_service identifiers defined here for Secure DCE-CIOP
correspond to DCE RPC authorization service identifiersaadefined to havidentical
values.

Table 15-14 Relationship between Identifiers

Secure DCE-CIOP DCE RPC Shared
authorization_service Authorization Service Value
DCEAuthorizationNone rpc_c_authz_none 0
DCEAuthorizationName rpc_c_authz_name 1
DCEAuthorizationDCE rpc_c_authz_dce 2

SecurityService:v1.0 NovemhE996 15-191

15

15-192

DCE RPE Protection Levels

The meanings of the DCE RPC protection levels referenced in Table 15-14 are de
next. For the purposes efaluating the protection levels, it is interesting to remembe
a single DCE-CIOP message is transfeoeer the wire in the body of one or more D!
RPC PDUs.

®* rpc_c_protect_level_nonedndicates that no authentication or message ptiorecs
to be performed, regaels of the authentication serviceoshn. Depending on
target policy, the client may be granted access as an unauthenticated princi|

®* rpc_c_protect_level_connecindicates that the client and server idges are
exchanged and cryptographlly verified at the time the binding is set up betw
them. Strong mutual authentication and replay detedtiothe binding setup onl
is provided. There are mrotectionservices per DCE RPC PDU.

® rpc_c_protect_level pktindicates that thepc_c_protect level connectservices
are provided plus detection of misordering qulag of DCE RPC PDUs. ®re is
no protection against PDU modification.

® rpc_c_protect_level_pkt_integrity offers therpc_c_protect_level_pktservices
plus detection of DCE RPC PDU modition.

® rpc_c_protect_level _rkt privacy offers therpc_c_protect_level pkt_integrity
services plus privacy of RPC arguments, which means the DCE-CE38age in
its entirety is privacy protected.

® rpc_c_protect_level_defaultindicates the default protectidavel, as defined by
the DCE implementation or by a site adistrator (should be one of the above
defined vales).

DCE RPCAuthentication Serices

The meanings of the DCE RPC authenticatianises referenced in Table 15-14 are
descibed next.

®* rpc_c_authn_noneindicates no authentication. If this is selected, then no
authorization, DCEAuthorizationNone, must be chosewels

®* rpc_c_authn_dce_secreindicates the DCE shared-secret key authentication
service.

Secure DCE-CIOP Operational Semantics

This section describes how th€B-CIOP trangort layer shoulghrovide sectity for
invocation and locate requests.

During a request invocation, if the IOR components indicate sufgpdhte DCE-CIOP
transport and the TAG_DEE SEC_MECH component jgesent, then a Secure DCE-
CIOP request can beade.

CORBAservices: Common Obj&arvices Specification

15

Deriving DCE Security Paraneters fromAssociation Options

The client-side secure invocation policy andtdrget-&de policy expressed in the
TAG_ASSOCIATION_OPTIONS component are used to derive the actual options
the method described indBermining Assciation Options in Section 15.8.4, CORBA
Interoperable Object Reference with Security. These options are then reduced to |
required_option using the algorithm described in DCEsasiation Options
Reduction Algorithm, next. The resultarequired_option is used to select a DCE
RPC protection level and authenticati@mvice using Table 15-13, Association Optiot
Mapping to DCE Security. The derived protectiemel and authenticationrséce are
used to secure the associatiia therpc_binding_set_auth_info() call (see
Securing the Binding Handle to the Target, further in this section).

DCE AssociatiorOptions Redation Algorithm

The DCE Association ftions Reduction algorithm is used toestla single associatiol
option,required_option , given the value required by client and target derived
described in Determining Associatiorptibns in Section 15.8.3, CORBAtkroperable
Object Reference with Serity. The resultantequired_option indicates, via Table
15-13, the DCE protection level and authenticationiseto use for mocations.

The association option names used in the following algorithm refer to options in th
negotiated-required options set.

The DCE Association ftions Reduction algorithm is exgased as follows.
If Confidentiality is set, then required_option = Confidentiality;
else if Integrity is set, then required_option = Integrity;
else if DetectReplay is set, OR

if DetectMisordering is set,

then required_option = DetectReplay;

(altematively, the same results are obtained with:

then required_option = DetectMisordering;)
else if EstablishTrustInClient is set,

then required_option = EstablishTrustInClient;

else required_option = NoProtection.

BehaviorWhen TAG_ASSOCIATION_OPTIONS Nd?resent

As describedalier, if the TAG ASSOCIATION_OPTIONS component is not preser
then the target is assumed to support and requiree_protect_level default
andrpc_c_authn_dce_secret . Since these protection parameters are rressec
as association options, the usual method of deriving a siegléred_option by
combining client and target policy (see Determining AssociatiptioB®s in Section
15.8.3, CORBA Interoperable Object Reference with Security, and D €&chations
Options Reduction Algorithm, above) cannot be used. As an alternative, use the fo
method to derive the required DCE RPC protection level and awhgéoti serice:

SecurityService:v1.0 NovemhE996 15-193

15

15-194

* Translate the client-sideecure invocation policy from a set of client supportec
association options to a singiéent_supported_option and from a set o
client requred association options to a singtéient_required_option ,
using in eactcase the algorithm described in DCE Association Options Riedu
Algorithm.

® Using Table 15-13, Association Option Mapping to DCE @gcuranslate the
client_supported_option andclient_required_option to
corresponding “suported” and “required” DCE RPC protém level/authenticatiot
service pairs.

® If the targetprincipal is a member of the local cell,tdemine the targetequred

protection level imlied by rpc_c_protect_level default by calling
roc_mgmt_ing_dflt_protect_level() passing
rpc_c_authn_dce_secret as theauthn_svc parameter. If the target

principal is not a member of the local cell or if it'sfaifilt to determine, then
assume a target required protectievel of
rpc_c_protect_level pkt_integrity

® |f the client supportspc_c_authn_dce_secret , then choose the strongest
protectionlevel that both the client and targefpgort and that does not exceed
strongest protection Vel required by either theclient or target. If the client does
not supportrpc_c_authn_dce_secret , then choosepc_c_authn_none
andrpc_c_protect_level_none . Use the protection \el and authenticatio
service thus derived tsecure thessociation between this client and target.

Securing the Binding Hanlle to the Target

The DCE-CIOP praicol engineacquires ampc_binding_handle to the target usin
its normal procedure. The DCE_CIOP sets authentication and authorization inforn
on that binding handle with threc_binding_set_auth_info() call using data
from the IOR profile security components in the following way:

® The target security name string from the TAG_SEC_NAME component (or NLU
the component is not present) is passerpto binding_set_auth_info()
via theserver_princ_name parameter.

® |f the TAG_ASSOCIATION_OPTIONS component is present in the IOR, see
Deriving DCESecurity Paramets from Association Options above to select a [
RPC protectiorevel and authentication service for this acation.

If the TAG_ASSOCIATION_OPTIONS component is not present in the IOR,
Behavior When TAG_ASSOCIATIONOPTIONS Not Preserabove to select a
DCE RPC protectiotevel and authentication service for this invocation.

The selected ptection level ispassed tapc_binding_set_auth_info()
via theprotect_level parameter. The selected authenticasenvice is passe
via theauthn_svc parameter topc_binding_set_auth_info()

® Theauth_identity parameter is set to NUL to use the DCE default login
context.

CORBAservices: Common Obj&arvices Specification

15

®* The authorization service identifisEom theauthorization_service field of
the DCESecurityMechanismInfmomponent_data is mapped to the
corresponding DCE RPC authorizatisarviceidentifier, which is therpassed via
theauthz_svc parameter.

After a successful call tgpc_binding_set_auth_info (), the authenticated
binding handle will be used by the DCE-CIOP poatieengine to make secure reques

SecurityService:v1.0 NovemhE996 15-195

15

Appendix A Consolidated OMG IDL

Al

Introduction

The OMG IDL for CORBA security is split into modulesfaows:

A module containing the common data types used by all sdgwirity modies.

A module for application interfaces feach Security Functionality kels 1 and 2
(Note that security-ready ORBsovide no reasecurity functionality. Since they
provide only one opetmn, and that is proposed to be on the ORB, they are
included in Appendix B, Summary of CORBA 2 Core Changes, not here.)

A module for Security Leel 2 security policy administration.

A module for non-repudiation, including the non-repudiation policy administr:
interface. This is the optional non-repation service.

A module for the replaceable ptementation Securitye3vice, as described in
Section 15.7, liplementor’s Security Inteaces.

In addition, a number of extensions tostixig CORBA modies are proposed for:

Finding details of services in general, angarticular the security iplem entation
ORB Servicelinterceptor interfaces.

The Object and Current interfaces for handkegurity (and management)
information.

Extensions for domain and policy handling.
Secure interoperability using GIOP and DCE-CIOP.

Core management-related interfaces.

The IDL changes for these modules are defined in Appendix B, Summary of COR
Core Changes.

A minimal security Management module is also included in Appendix B.

A.2 General Securitipata Module

This subsection defines the OMG IDL for security data types common to the other
security modwds, which is the modul8ecurity.This module must be available with ar
ORB that claims to be Security RiyaTheSecuritynodule depends on tAHémem odule

15-196

module Security {

typedef string secusi_name;
typedef sequence <octet> Opaque;

CORBAservices: Common Obj&arvices Specification

15

/I extensible families for standard data types

struct ExensibleFamily {
unsigned short family_definer;
unsigned short family;

b

Il security associatiomechanisntype

typedef string MechanismType;

struct SecurtyMechandName {
MechanismType mech_type;
SecurtyName securty_name;

h

typedef sequence<MechanismType> MechanigmeTist;
typedef sequence<SecurityMechandName> SecurityMechandNamelList;

/I security attributes
typedefunsigned long Security&ributeType;

/l identity attrbutesfamily =0

const SecurityAttribute Type Auditld = 1;
const SecurityAttribute Type Acountingld = 2;
const SecurityAttribute Type NonRepudiatnld = 3;

I/ privilege attributesfamily = 1

const SecurityAttribute Type Public = 1;
const SecurityAttribute Type Accessld = 2;
const SecurityAttribute Type PrnaryGroupld = 3;
const SecurityAttribute Type Groupld = 4;
const SecurityAttribute Type Role = 5;
const SecurityAttribute Type AtributeSet = 6;
const SecurityAttribute Type Clearance = 7,
const SecurityAttribute Type Capability = 8;
struct AttributeType {
ExtensibleFamily attbute_family;
SecurityAttribute Type attribute_type;

h
typedefsequence<#iributeType> AttributeTypeList;

struct SecAtribute {

AttributeType attribute_type;
Opaque defining_authotty;
Opaque value;

/I the value of thisttribute; can be
Il interpreted only witknowledge otype

h

typedef sequence<SettAbute> AttributeList;

SecurityService:v1.0 NovemhE996 15-197

15

15-198

/I Authenticatiorreturn status

enum AuthentiationStatus {
SecAuthSuccess,
SecAuthFailure,
SecAuthContinue,
SecAuthExped

k
/I Associatiorreturn status

enum AssociatinStatus {
SecAssocSuccess,
SecAssocFailure,
SecAssocContinue

h

/I Authenticatiormethod
typedef unsigned long AuthentiationMethod;

/I Credential types whictan be set as Curreafault

enum Credentialjipe {
SeclnvocationCredentials,
SecOwnCrdentials,
SecNRCredntials

h

I/l Declaratons related to Rights

struct Right {
ExtensibleFamily @hts_family;
string right;

b

typedef sequence <Ritr RightsList;

enum RightsComipiator {
SecAllRights,
SecAnyRight

h

/I Delegation related

enum DelegationState {
Seclnitiator,
SecDelegate

|3
/I pick up from TmeBase
typedef TmeBaseUtcT UtcT;
typedef TmeBase::Interval T IntervalT;
typedef TmeBase:: TimeT TimeT;

CORBAservices: Common Obj&arvices Specification

15

/] Securityfeaturesavailable orcredentials.
enum EcurityFeature {

SecNoDelegation,
SecSimpleDelegation,
SecCompositeDelegation,
SecNolpotection,
Seclntegrity,
SecConfidentiality,
SeclntegrityAndConfidentiality,
SecDetectReplay,
SecDetectMisordering,
SecEstablishilistinTarget

b

/I Security feature-value

struct ®curityFeatureValue {
SecurtyFeature feature;
boolean value;

b

typedef sequence<SecurityFeatureValue>
SecurityFeatureVakList;

// Quality of protection whiclkan bespecified
/ for an object reference and used to prateessages
enum QOP {
SecQOPNo#tection,
SecQOMmtegrity,
SecQORonfidentiality,
SecQOmMtegrityAndConfidentiality
3

// Association optins which can badministered
/I on securerivocation policyand used to
[/l initialize security context

typedefunsigned short AsociationOpbns;
const AssociationOptins Nofotection = 1;

const AssociationOptinsintegrity= 2;

const AssociationOptinsConfidentiality = 4;

const AssociationOptionBetectReplay= 8;

const AssociationOptinsDetectMisordering = 16;

const AssociationOptinsEstablishTustinTarget = 32;
const AssociationOpbtinsEstablishTrustinCknt = 64;

I/l Flag to indicate whethassociation optins being
/l adminstered are the “required” or “supported” set

enum RquiresSupports {

SecRequies,
SecSupports

SecurityService:v1.0 NovemhE996 15-199

15

/I Direction ofcommuncationfor which

/I securenivocation policy applies

enum CommurdationDirection {
SecDirectioBoth,
SecDirectionRequest,
SecDirectionReply

h

/I AssociationOptions-Direction pair

struct OptonsDirectionPair {
AssociationOptions optins;
CommunicationDirection direction;

h

typedef sequence<OptisDirectionPair>
OptionsDirectionPairList;

I/l Delegation mode whicban beadministered
enum DelegationMode {

SecDelModeNoDelegation, I/l i.ese owrcredentials
SecDelModeSimpleDelegation, // detégreceved
credentials

SecDelModeCompositeDelegation// dedegboth;
3

/I Association optins supported by a given mech type

struct MechandOptins {
MechanismType mechanism_type;
AssociationOptions opti@n supported;

h

typedef sequence<MechandOptions> MechandDpliist;

/I Audit
struct AudiEventType {
ExtensibleFamily evert_family;
unsigned short event_type;
h
typedef sequence<AuttiventType> AuditEventjpeList;
typedef unsiged long Selectowipe;
const SetctorType InterfaceRef = 1;
const SetctorType ObjectRef = 2;
const SetctorType Operation = 3;
const SetctorType Initiator = 4;
const SetctorType SuccessFailre = 5;
const SetctorType Time = 6;

15-200 CORBAservices: Common Obj&srvices Specification

15

I/l values defiedfor audit_needed and adidivrite are:
Il IntefaceRef.object reference

/I ObjedRef: object reference

// Operation: op_name

/I Initiator: Credentials

/I SuccesFailureboolean

/I Time: utc time oraudit_write; time ptked up from
I/l environment iraudit_needed ifequired

struct SekctorValue {
SelectorType selctor;
any value;

h

typedef sequence<SmitorValue> SelectorVakList;

A.3 Application Interfaces - Security Functionality Level 1

This subsection definesdbke interfaces available to ajsption objects using only
Security Functionality evel 1, and consists of a gie modue, SecurityLevel1This
module depends on tI@ORBAmModule, and on th8ecurityandTimemodule. The
interfaceCurrentis implemented by the ORB. Its interfaceléfined by the following
PIDL.

module SecurityLevell {
interface Current CORBA::Current { /I PIDL
Security::AttributeList @t_attrbutes (
in Security::AttrbuteTypeList attrbutes

A.4 Application Interfaces - Security Functionality Level 2

This subsection defines tlagldition irterfacesavailable toapplication olgcts using
Security Functionality evel 2. There is one modulgecurityLevel2This module
depends ot ORBAandSecurity The interfaces are describedSaction 15.5,
Application Developer’s Interfaces.

module SecurityLevel2 {
/I Forward dedration of nterfaces
interface Principal Athenticator;
interfaceCredentials;
interface Object;
interface Current;

SecurityService:v1.0 NovemhE996 15201

15

I/l Interface Principal&thenticator
interface Principal Athentiator {

Security:AuthenticatonStatus authenticate (
in Security::AuthenticatinMethod
in string
in Security:Opaque
in Security::AttributeList
outCredentials
outSecurity:Opaque
outSecurity:Opaque

)i

method,

secuty _name,
auth_data,
privileges,

creds,

continuaton_data,
auth_specific_data

Security:AuthenticationStatus continue_authecdtion (

in Security:Opaque
inoutCredentials
outSecurity:Opaque
outSecurity:Opaque

h

/I InterfaceCredentials
interface Credentials {

Credentialsopy ();

void set_security_features (
in Security::CommunicationDirection
in Security::SecurityFeatureMagList

);

Security:SecurityFeatureVakeList
get_security_features (
in Security::CommunicationDirection

);

booleanset_privileges (
in boolean
in Security::AttributeList
out Security::AttributeList

);

Security:AttributeList get_atthutes (
in Security::AttrbuteTypeList

);

boolean &_valid (
out Security:UtcT

);

boolean refresh();

h

typedef sequenceCredentials> CredentialsList;

15-202 CORBAservices: Common Obj&srvices Specification

response_data,
creds,
continuaton_data,

auth_specific_data

direction,
secuty_features

direction

force_commit,
requested_privileges,
actual_privileges

attrbutes

expiry_time

15

/I RequiredRights Interface

interfaceRequiredRigts{
void get_required_ghts(

in Object obj,
in CORBA::Identifier operatin_name,
in CORBA::Reposioryld interface_name,
outSecurity::RightsList rigts,
outSecurity::RightsComiiator rights_combinator
)i
void set_required_ghts(
in string operatn_name,
in CORBA::Repogbryld interface_name,
in Security::RightsList rigts,
in Security::RightsComipiator ridits_combinator

3

I Interface Objeatlerived from Object

// providing additonal operatins on objref at this
I/ security bvel.

interface Object CORBA::Object{ // PIDL

void override_default_credentials (

in Credentials creds
);
void override_defaul QOP (

in Security::QOP qop
);

Security::SecurityFeatureMatList get_security features (
in Security::CommunicationDirection direction

)i
Credentials get_active_credentials();
Security::MechanismTypelList get_security_mechkars();

void override_default_mechanism(
in Security::Mechanismypemechanism_type

);

Security::SecurityMechandNamelList get_segumames ();

SecurityService:v1.0 NovemhE996 15203

15

15-204

/I Interface Current derivefdlom SecurityLevel1:=Current
I/ providingadditionaloperations on Current at this
Il security evel. This is implemented by the ORB

interface Current : Securitgvel1: Current { //PIDL

h

void set_credentials (
in Security::Credentidlype cred_type,
in Credentials creds

);

Credentials get_credentials (
in Security::Credentidlype cred_type
)i

readonly attibuteCredentialsList received_credentials;

readonly attfbuteSecurity::SecurityFeatureMabList
received_secuty_features;

CORBA::Palicy get_policy (
in CORBA::PolicyType policy_type
)i

readonly attfbuteRequiredRghts required_rghts_object;
readonly attibute Principal Aithenticator principal_authenticator;

/I interfaceauditchannel
interface AuditChannel {

h

void audit_write (

in Security::AudiEventType event_type,
in CredentialsList creds,

in Security:UtcT time,

in Security::SelectorValueList desptors,

in Security:Opaque event_specific_data

);

/I interfacefor Audit Decision

interface AudiDecision {

boolean audi_needed (
in Security::AudtEventType event_type,
in Security::SelectorValueList value_list
)i

readonly attfbute AudiChannel audit_channel;

CORBAservices: Common Obj&arvices Specification

15

A.5 Security Administration Interfaces

This sectiorcovers ilerfaces concerned with querying and modifying security jesljic
and comprises the modu$ecurityAdminTheSecurityAdmimodule depends on
CORBA Security,andSecurityLevel2The interfaes are desdred in Section 15.6,
Administrator’s Interfaces. Theexe elated interfaces for finding domain managers
policies. Since they are not secusfyecific, they are included inppendix B, Summan
of CORBA 2 Core Changes, natfe.

module SecurityAdmin {

Il interface AccessPolicy
interface AccessPolicyCORBA::Palicy {

h

Security::RightsList get_effective_rights (
in SecurityLevel2::CredentialsList

in Security::

ExtensibleFamily

[/l interface Domain&cessPolicy

interfaceDomainAccessPolicy : AccessPalicy {

void grant_rights
in Security::
in Security::
in Security::
in Security::

);

void revoke_rights(

in Security::
in Security::
in Security::
in Security::

);

void replace_ripts (

SecurityService: v1.0

in Security::
in Security::
in Security::
in Security::

);

(
SecAtthute

DelegatinState
ExtensibleFamily
RightsList

SecAttibute
DelegatinState
ExtensibleFamily
RightsList

SecAttibute
DelegatinState
ExtensibleFamily
RightsList

Security::RightsList get_rigs (

in Security::
in Security::
in Security::

SecAtthute
DelegatinState
ExtensibleFamily

NovembEd96

cred_list,
rights_family

priv_attr,
del_state,

rights_family,
ghts

priv_attr,
del_state,

rights_family,
ghts

priv_attr,
del_state,
rights_family,
ghts

priv_attr,
del_state,
rights_family

15-20¢

15

15-206

[l interface AuditPalicy

interface AuditPolicy CORBA::Poalicy {
void set_audit_sektors (

in CORBA::InterfaceDef object_type,
in Security::AudiEventTypelList events,
in Security::SelectorValueList sattors

)i

void clear_audit_sektors (
in CORBA::InterfaceDef object_type,
in Security::AudiEventTypelList events

)i

void replace_audit_settors (
in CORBA::InterfaceDef object_type,
in Security::AudtEventTypeList events,
in Security::SelectorValueList sattors

)i

Security::SelectorValueList get_audit_esefors (
in CORBA::InterfaceDef object_type,
in Security::AudiEventTypelList events,
in Security::SelectorValueList sattors

)i

void set_audit_channel (
in SecurityLevel2::AuditChannel audichannel
)i
|3

Il interface SecurelnvocationPolicy
interface SecurelnvocationPolicCORBA::Policy {

void set_association_options(

in CORBA::InterfaceDef object_type,
in Security::RequiesSupports requires_supports,
in Security::CommunicationDirection direction,
in Security::AssociationOptions opiis
)i
Security:AssociatonOptions get_association_aptis(
in CORBA::InterfaceDef object_type,
in Security::RequiesSupports requires_supports,
in Security::CommunicationDirection direction

h

I/l interface DelegationPolicy
interface DelegationPolicyCORBA::Poalicy {
void set_delegation_mode(
in CORBA::InterfaceDef object_type,
in Security::DelegatinMode mode

CORBAservices: Common Obj&arvices Specification

15

Security::DelegationMode get_delegati mode(
in CORBA::InterfaceDef object_type

A.6 Application Interfacefor Non-repudiation

This subsection defines the optioapblication irterface for non-repudiation. This
module depends dBecurityandCORBA The interfaces are described in Section 15.
Application Developer’s Interfaces.

module NRservice {
typedefSecurity::Mechanismyipe NRmech;
typedefSecurity: :ExtensibleFamily NRRoyld;

enum EvidenceType {
SeckPoofofCreation,
SecPoofofReceipt,
SeckoofofApproval,
SeclroofofRetrieval,
SecPoofofOrigin,
SeckoofofDelivery,
SecNoEvdence // used wheaquest-only token desired

h

enum NRVerifcationResult {
SecNRInvalid,
SecNRValid,

SecNRConditnallyValid
3

/I the following are usefibr evidence validity duration
typedefunsigned long DurationinMiutes;

const DurationInMinutes DurationHour = 60;

const DurationinMinutes DurationDay = 1440;

const DurationinMinutes DurationWeek = 10080;

const DurationinMinutes DurationMonth = 43200;// 30 days
const DurationInMinutes DurationYear = 525600;//365 days

typedeflong TimeOffsetinMinutes;

struct NRPolicyFeatures {

NRPolicyld polcy_id;
unsigned long policy_version;
NRmech mechanism;

b

typedef sequence<NRPoalicyFeatures> NRPolicyFeaturesList;

SecurityService:v1.0 NovemhE996 15207

15

15-208

/I features used whergerating requests
struct RequestFeatures {
NRPolicyFeatures requested_policy;

EvidenceType requested_aence;
string requested_evidencengrators;
string requested_elnce_recipients;
boolean inalde_this_token_in_eglence;
|3
struct EvidenceDesgtor {
EvidenceType edence_type;
DuratoninMinutes evidence_validity_duration;
boolean must_use_trusted_time;

typedef sequence<EvidenceDescriptor> EvidenceD#scrist;

struct AuthorityDescptor {

string authority_name;
string authority_role;
TimeOffselnMi nutes lastevocation_check_offset;

/ may be >0 or <@dd this to evid. gen. time to

I/l get latest time at whiaiech. will check to see

/I if this authority’s key halseen revoked.
typedef sequence<AuthorityDesutor> AuthorityDescriptorList;

struct MechanismDescriptor {

NRmech mech_type;
AuthorityDescriptorList authority_Bt;
TimeOffseinMi nutes max_time_skew;

/I max permissible ffierence between evideg. time
/l and time of timeservice countersignature
/l'ignored if trusted time not reqd.

typedef sequence<MechanismDescriptor> MechanismDescriptorList;
interface NRCredentials {
boolean set_NR_features (

in NRPolicyFeaturesList requested_features,
out NRPolicyFeaturesList actudkatures

);
NRPolicyFeaturesList get_NR_features ();

void generate_token (

in Security:Opaque input_buffer,

in EvidenceType generate_evdence_type,
in boolean incluel_data_m_token,
in boolean generate_request,

in RequestFeatures request_features,

CORBAservices: Common Obj&arvices Specification

15

);

in
out
out

boolean nput_buffer_commite,
Security:Opaque nr_token,
Security:Opaque evidence_check

NRVerificationResult verify_ewence (

);

Security:Opaque input_token_buffer,
Security:Opaque evidence_check,

boolean form_complete_ewence,
boolean token_buffer_comgte,
Security:zOpaque output_token,
Security:Opaque data_included ni_token,
boolean evidence_is_coraf#,
boolean trusted_time_used,
Security:-TimeT complete_edence_before,
Security:-TimeT complete_evdence_after

void get_token_details (

);

in

in

out
out
out
out
out
out
out
out
out

Security:Opaque
boolean

string
NRPolicyFeatures
EvidenceType
Security:UtcT
Security:UtcT
DurationinMnutes
bookan

boolean
RequestFeatures

booleanform_complete_ewence (

J%

n

out
out
out
out

Security:Opaque
Security:Opaque
boolean
Security:TimeT
Security:-TimeT

interface NRPolicy {

void get_NR_policy mfo (

out
out
out
out
out
out

Security: :ExtensibleFamily
unsiged long
Security:TimeT
Security:TimeT
EvidenceDescriptorList
MechanismDesqpitorList

SecurityService:v1.0 NovemhE996

token_buffer,
token_buffecompkte,
token_geamador_name,
policy_features,
alence_type,
evilence_generation_time,
evidence_valid_start_time,
evidence_valigi_duration,
data_includedri_token,
request_includedni_token,
request_features

input_token,

output_token,
trusted_timeused,
compkte_evidence_before,
compkte_evidence_after

NR_policy_id,
poley_version,
policy_effective_time,
policy_expiry_time,

supported_dence_types,
supported_mechanisms

15-20¢

15

booleanset_NR_poky_info (
in MechanismDescriptorList requested_mechars,
out MechanismDescriptorList actual_mechanisms

A.7 Security Replaceable Service Interfaces

This section defines the IDL interfaces to the Secwbjgcts, which should beplaced if
there is a requirement teplace the Security servicesad for security a®ciations (k.
the Vault and Security Contexts, @ass Decision, and Alit Decision). This section
comprises the modueecurityReplaceabl@his module depends on tG©RBA
SecurityandSecurityLevel2Znodules. The iirfaces are described in Sectih 7,
Implementor’s Security lerfaces.

module SecurityReplacable {
/I Forward ref oSecurity Contexbbject
interface SecurityContext ;
interface Vault {

Security:AssociationStatus init_security_context (
in SecurityLevel2::CredentialsList

creds_list,
in Security::SecutyName target_secutly _name,
in Object target,
in Security::DelegatinMode delegation_mode,
in Security::OptionsDirectionPairList association_ops,
in Security::MechanismType mechanism,
in Security:Opaque mech_data, //from IOR
in Security:Opaque chan_binding,
outSecurity:Opaque securty_token,
outSecurityContext security_context

);

Security:AssociationStatus accept_security _context (
in SecurityLevel2::CredentialsList

creds_list,
in Security:Opaque chan_bindings,
in Security:Opaque in_token,
outSecurity:Opaque out_token

);

Security::MechandOptionsLisieg supported_mechs ();

15-210 CORBAservices: Common Obj&srvices Specification

15

I3

interfaceSecurityContext {

h

readonly attfbuteSecurityLevel2::CredentialsList

received_credentials;

readonly attibuteSecurity::SecurityFeature\iaList

securty _features ;

Security::AssociatinStatus continueesurity_context (

);

in Security:Opaque
out Security:Opaque

void protect_message (

);

in Security:Opaque
in Security::QOP

out Security:=Opaque
out Security:Opaque

boolean reclaim_message (

);

in Security:Opaque
in Security:Opaque
out Security::QOP

out Security:Opaque

boolean is_valid (

);

outSecurity:UtcT

boolean refresh ();

interface AccessDecision {

boolean access_allowed (

in SecurityLevel2::CredentialsList

in Object
in CORBA::Identifier
in CORBA::Identifier

in_token,
out_token

message,

qop,
text_buffer,
token

text_buffer,
token,
qop,
message

expiry_time

cred_list,
target,
operain_name,
target riterface_name

The interfaces for interceptoasse considered as CORBA core exsiens, so the IDL fo
these is summarized inppendix B, Summary of CORBA 2 Core Changes, not here

SecurityService:v1.0 NovemhE996

15-211

15

A.8 Secure Inter-ORB Protocol (SECIOP)

15-212

moduleSECIOP {

The SECIOP module holds structure declarations related to the layout of message
the secure inter-ORB protocol. This module does not depend on any other module

const IOP::Componentid TAG_GENERIC_SEC_MECH =12;
const IOP::Componentld TAG 3SOCIATION_OPTIONS =13;
const IOP::Componentld TAG_SEC_NAME = 14;

struct TargetAsociationOptions{
Security: :AssociationOptins
Security: :AssociationOptions

h

struct GenericMechanismfo {
sequence <octet>
sequence <octet>

target_supports;
target_rerps;

security_mechasim_type;
mech_specific_data;

sequence&lOP.:: TaggedComponent> components;
3
enum MsgTpe {
MTEstablishContext,
MTCompleteEstablishContext,
MTContinueEstablishContext,
MTDiscardContext,
MTMessagError,
MTMessagelnContext
|3
struct ulonglong {
unsigned long low;
unsigned long high;
3
typedef ulonglong Contébd;
enum ContextldDefn {
Client,
Peer,
Sender
|3
struct EstablishContext {
Contextld client_context_id;
sequence <octet> initiatontex_token;

CORBAservices: Common Obj&arvices Specification

15

struct @mpleteEstablishContext {
Contextld
boolean
Contextld
sequence <octet>

b

struct @ntinueEstablishContext {
Contextld
sequence <octet>

h

struct DiscardContext {
ContexldDefn
Contextld

sequence <octet>

kh

struct MessagError {
ContexldDefn
Contextld
long
long

b

enum @ntextTokenType {
SecTokenypeWrap,
SecTokenypeMIC

|3

struct MessagelnContext {
ContextldDefn
Contextld
ContextkenType

sequence <octet>

A.9 Values for Standard Data Types

client_context_id;

targt_context_id_valid;

tar@t_context_id;
finatontext_token;

client_context_id;
continuation_contex token;

message_contextidefn;
message_context_id;
discard_context_token;

message_contextidefn;
message_context_id;
major_status;
minor_status;

message_contextdidefn;
message_context_id;
message_contéxtype;
message_protectn_token;

A number of data types in this specification allow an extensible set of values, seittl
can add values as reged to meet his owsecuritypolicies. However, if all users defin
their own values, portability and interopbility would be seriously restrietl.

Therefore, somstandard valuef®r certain data types are defoh Trese include the

values that identify:

® Security attibutes(privilege and other attribute types)

® Rights families

® Audit event familes and types

® Security mechanism types as used in the IOR (and Vaalj, et

SecurityService:v1.0 NovemhE996

15-21C

15

15-214

Rights families and audit event faied are defined as &xtensibéFamilytype. This ha
a family definer value registered with OMG and a family id defined by the fatefigper.
Security attribute typesso have family definers. Family definers with values @re7

reserved for OMG. The family value 0 is used for defining standard (gmesof securit

attributes).

A.9.1 Attribute Types

Section 15.5, Application Deloper’s Interfaces, defines an attribute strucfore
privilege and other attributes. This includes:

* A family, as previouslydescribed.

* An attribute type. Users may add newriatite types. Two standard OMG fdias

are defined: the family of privilege attrites (family = 1), and the family of othe
attributes (family = 0). Types in these filies are listed in the following table.

An optional defining authority. This indicates the arity responsible for definin
the value within the attribute type. Sopelicies demand that multiple sources
values for a given attribute type be supported (e.g. a policy accepting attribu
values defined outside trsecurity domain). Tése policies give rise toresk of
value clasks. The defining authmity field is uised to separate thegalues. When
not presenfi.e. length = 0), thealue defaults to the name of the authority tha
issued the attribute.

An attribute value. The attribute value is defined as a seguemtet>, which
someone who understands that attribute type can decipher.

Table A-1 Attribute Values

Attr ibute Type Value | Meaning

Privilege Attributes (family = 1) All privilege attribu tes areused for access control

Public 1 The principal has no d@nticated identity

Accessld 2 The identity of the principal used for access contrc

PrimaryGroupld 3 The primary group to which the principal belongs

Groupld 4 A group to which the principal belongs

Role 5 A role the principal takes

Attribute Set 6 An identifier for a set of relatattributes, which a
user orapplication can obtain

Clearance 7 The principal’s serity clearance

Capability 8 Acapablity

Other Attributes (family = 0)

Auditld 1 The identity of the principal used for auditing

Accountingld 2 The id ofthe account to behargedfor resource use

NonRepudiationld 3 The id ofhe principal used for non-repudiation

CORBAservices: Common Obj&arvices Specification

15

A.9.2 Rights Families and Values

Administration is simplified by defining rights thatovide access toset of operations,
so the administrator only needs to know what rightseagered,rather than the semtics
of particularoperations.

Rights are grouped into families. Only one rights family is defined in this specificat
The family definer is OMG (value 0) and the family id is CORBA (value 1). Other
families may be added by véors or users.

Three valuesre specified for the standard CORBA rights family.

Table A-2 CORBA Rights Family Values

Right Meaning

get Used for any ogration on the bject that does nathange its ate
set For operations on an object that changes its state

manage For operations on the attributes of the object, not its state

A.9.3 Audit Event Families and Types

Everts, like rights, are grouped into families as defined in Section 15.5, Applicatior
Developer’s Interfaces.

Only one event family is defined in this specification. This has a family definer of C
(value 0) and family of SSTEM (value 1) and is used for auditing system events. A
events of this type are audited by the object secueityices, or the uderlying security
services they use. Some of these events mustditedly securebject sytems
conforming to SeaityFunctionality Level 1 (though in some cases, gventmay be
audited by underlying securigervces). Other event pgs are identified so that, if
produced, a statard record is generd, so that audirails fromdifferent systems can
more easily be combd. System audit events a@ecified in Table A-3.

SecurityService:v1.0 NovemhE996 15215

15

15-216

Table A-3 System Audit Events

Whether
Event Type Mandatory

Meaning and Event Specific Data

Principal authentication Yes

Session authentication Yes

Authorization Yes

Invocation No

Securityenvironment ~ No
state change

Policy change Yes
Objectcreation No
Object destruction No
Non-repudiation No

Authentication of principals, either via the
principal authentication ietface or underlying
security services

Security association/peleatication

Authorization of an objectiocation(normally
using an AccesBecisionobject)

Object invocation .@. the equestreply)

Change tdhe security environment for this client
or object (e.g. set_security_features,
override_cfault credentials)

Change to a smirity policy (usingthe
administrativeinterfaces in Sectiot5.6,
Administrator’s Interfaces)

Creation of an object
Desiction of an ofect

Geneation or verification of evidence

Application audit policies are gected to usapplication audit families.

A.9.4 Security Mechanisms

The securityspecification abbws use of different mechanisms for security associatio
These are used in the Interoperable ObjeceiRaice and also on the interface to the Vv

No values for tiese are defined in this version of the specification. However, va
will be defined in response to the tf-the-Box Ineroperability RFP. Values will b
registered by OMG as described ippgendix H, Ineroperability Guidelines.

CORBAservices: Common Obj&arvices Specification

15

Appendix B Summary o€EORBA 2 Core Changes

B.1

Introduction

In a secure object environment, security mustdrggsive and automatically femced, sc
that it cannot be bypaed. Both clients (which may or may not be objects) and targe
objects require a secure environment in which security policies will be enforced.

The CORBA security specificatiaequires a number of changes to the CORBA Cot
provide this security. Where pdsi®, the changesroposed are made gaal, so future
services can make use of them, rather tlangspecific to security.

This appendix d&rbes the changes needed to the CORBA Core. Isplsoifies one
change to the Transaction Service &vé it use a general mechanism for obtaining tt
initial reference to th€urrent pseudo-object.

B.2 Finding What Securifyacilities Are Supported

This specification provides an operatiget_service_information , Which can b
used to find what security facilitiese spported by this irplementationi(e. what
security functionality level and options), and also satetailsabout the mechanism ar
policy options.

Theget_service_information operation could be used for infortisam about
other CORBA facilities and services, so is seturityspecifc, though only security
details are specified.

The specific changes required in the CORBA modyeear in SectioB.9.1, CORBA
Module Changes to Support Securitguel 1.

B.3 Extensiontothe Use of Current

The Transaction Service introducedarent interface to allow amapplication to
demarcate and manage the tratisa assciated with the current thread of ayi (i.e.
the execution context of the clienttargetobject).

This specification generalizes this useCafrent so it can be used to handle other
information associated with the ex¢ion context at both client and targsdjects. In
particular, it associates security information, suchredettials, withCurrent and
provides means for accessing it.

The Current object in the environment may provide both TransactioBeanutity
operationsgdepending on the implementation.

For security, there are two new interfacgscurityLevell::Current and
SecurityLevel2::Current , which theCurrent pseudo-object in secure objec
system supports. The pseudo-OMG IDL faegh are presented irppendix A,
Consolidate OMG IDL.

SecurityService:v1.0 NovemhE996 15217

15

The mechanism for obtaining a reference toGerent object is provded by the new
get_current operation of the ORB. The details of changes tikeatirto be made to
CORBA andCosTransactions to incorporate this general mechanism are in Se
B.9.4, Changes to $port the Current Pseudo-Object. A single operation is added t
ORB interface:

Current get_current ();
Return Value

An object reference to tHeurrent pseudo-object.

B.4 Extensionsto Object Interfaces for Security

In a similar manner, a secure objectteyn extends the existittORBA::Object
interface which is implicitly spported by all objects, with the operations in the
SecurityLevell::Object andSecurityLevel2::0Object interface. As
with most of the operations in the stitng CORBA::Object interface, the additional
security function®perate locally on thebject reference and are notglemented as
invocations on the target. See Interfaces in Section 15.5.5, Object Refdmrdetails o
operations proded bySecurityLevell::Object and

SecurityLevel2::Object.

Note that at a client in a secure environment, the object reference of objects that «
themselves in secure environment widltill contain theSecurityLevell::0Object

or SecurityLevel2::0bject operations (depending on thevel of security
supported by the ORB), since objectereince operations are implentehby the client
ORB. Securityawareapplcations will access #se seaity -specific operations by usin
theSecurityLevell::Object or theSecurityLevel2::0bject interface
instead of the vanillEORBA::Object interface. Others will transparently continue
use the usudlORBA::Object interface, andtill be povided thdevel of secuty
appropiate for security-unaware applications.

B.5 Extensionsto CORBA for Domains &udicies

15-218

In a secure object system, all objects should be subjectity.pidie CORBA security
specification therefore specifies policy domains, where each domain has a domair
manager and a number of associated security policies.

Both the applications and ORB need to be able to find what policies apply so they
enforce them. Administrative applications need to be able to find the domain man:
and hence the policy objects, so they can administeydhices.

Domain managers, and the way of finding policies associated with them, are not s
specific. Trerefore, theyet policy andget_domain_managers operations
needed to support this (see Section 15.6, Administrator’s Inésiface proposed as
extensions to the standard CORBA Object interface, rather than as part of the sec
service specific Object interfaces.qfd that thisspecification does napecify interface:
formanaging membership of domains, as this is assumed to be done by a Manag
Collections service.)

CORBAservices: Common Obj&arvices Specification

15

Ensuring that all objects are subject to secyniilicy also afects the wayobjects are
created. When objects areated, they must autatically be made members of domal
and so subject to ttemcuritypolicies for those domains.

Many applications, even dise that create other objects, are often unaware of secur
these apptations should not have to take anycakaction to ensure that the newly
created object is subject to policy.

ThereforeBOA::create must be extended as described inlthplementor’s View o
Secure Object Creation in SectibB.4.5, Security Object Models. This charmges not
affect the definition of th&OA::create interface; rather it hasiplications for its
implem entation. As previously noted, domains and policy mechanisms are not spe
security. The specific changes to the CORBA module are in Section B.9.2, CORB
Module Changes to Support Securitgvel 2.

B.6 Further Deinition of ORB Services

This section gives an enhanced definition of the ORB Sesyighich were introdred to
CORBA 2 as part of the Intgperability speification. This enhanced definition is
required to support the ORB Services replaceabilityaronance option andovers the
Interceptor interfaces used toptement security functions duringviocation. It does no
specify how ORB seice implementations are registered with the ORB, nor their
relationship with specific object adaptors, since this can and should besaddrgshe
generic ORB technology adoptipmocess.

B.6.1 ORB Core and ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB whi
provides thébasic repesentation obbjects and the communication of requests.” ORI
Services, such as ttsecurity Serices, are built on this core and extendhbhasic
functions with additional qualities or transparencies, thereby presenting a higher-I
ORB environment to the ajpqhtion.

The function of an ORB service is specified dsaasformation of a given message (a
request, reply, or derivation thereof). A client may generatebfatt request, which
necessiites some transformation of that request by GBBices (for example, Sety
Services mayrotect the message in transit by encrypting it).

B.6.2 Interceptors

An interceptor is respoitde for the execution of one orare ORB services. Logally, an
interceptor is interposed in the invocation (and response) path(s) between a client
target object. When several ORB services are required, sevieraéjptors may be use

Two types of interceptomre defined in this specification:
®* Request-level interceptors, which execute the given request.

®* Message-level intercepts, which send and receiveessages (wstructured btfers)
derivedfrom therequests andeplies.

SecurityService:v1.0 NovemhE996 15219

15

15-220

Interceptors provide a highfiexible means ofddingportable ORB Services to a COR
compliant object system. The flexibiligerives from thecapacity of a binding between
client and target object to be extended gratilized taeflect the mutual requirement
of client and target. The portability dezs from the definition of the interceptor interf:
in OMG IDL.

The kinds of interceptors available are known to tfRBOInteceptors are created by t
ORB as necessary during binding, as desdrnext.

B.6.3 Client-TargeBinding

The Security architecture builds upon the ORB Interoperability aathite in coridering
the selection of ORB Services as part of tleegss of estdishing a bindingetween a
client and a target object.

A binding provides the context for a client communicating with a target object via ¢
particular object reference. The binding determines the mechanisms that wibbledr
in interactions such that cqmatible mechanisms areasen and client and targadlicies
are enforced. Some requirements, such as auditingessacontrol, may be satisfied k
mechanisms in one environment, while others, such as authentication, require coo
between client and target. Binding may also involvemasgresouces in order to
guarantee the particular qiteds of sevice demanded.

Although resolution of mechanisms and policies imgslnegotiation between the two
parties, this need not always involve plegsinteactionsbetween the parties as
informationabout the target can beamtled in the object reference, allowirggolution of
the client and target requirements to take place in the client. The outcome of the
negotiation can then be sent with the request, for plaarm the GIOP service context
Where there is an issue of trust, lewer, the target must still check that thiscome is
valid.

The binding between client and target at theiaafibn kvel can generally be
decomposed into bindings between éovievel objects. For exante, the agreement on
transport protocol is an egpment betweetwvo communications etpoints, which will
generally not have a one-to-onerrespondence tapplication objects. The ovall
binding therefore includes a set of related sub-bindings which may be shared, anc
potentially distribtied among different eities at different locations.

B.6.4 Binding Model

No object repesenting the binding is made explicithysiile since thefetime of such ar
object is not under the control of the application, an existing binding potentially be
discarded, and a new one made without the applichdorg aware of the fact.

Instead, operations that will affect how a client will interact with a target are pro
on the Object intedce and allow a client to teemine how it will ineractwith the
target denoted by that object referenOn the target side, the binding to the client |
be accessed through the Current interface. This indirect arrangpereits a wide
range of implementations that trade-off the communication and retention of bin
information in different ways.

CORBAservices: Common Obj&arvices Specification

15

target obj ref]

Interceptor Interceptor

ORB Core

Figure B-1 Binding Model

The action of estdishing a binding is gendhaimplicit, occurring no later than thigrst
invocation between client and target. Itmay beessary for a client to establish more
than one binding to the same target object, each with different attributes (fgplexanr
different security features). In this case, the client can make a copyaifjéoe referenc
usingObject::duplicate and subsequently specify differentritutes for that
reference.

The scope of étibutesassociated with an object exénce is that of the object
reference instance, i.e. the attribuaesnot copied if the object reference is used a:
argument to another operation or copied ushbigct::duplicate . If an object
reference is aimnout argument, the attributes will still be associavéth the object
reference after the call if the s¥Ence still denotes the same object, but natretise

B.6.5 Establishing thBinding and hterceptors

An ORB maintains a list of interceptors, which it supports, and when éhesmlled.
Note that at the client, when handling the request, the rebpuesdinterceptors are alwa
called before the messalgeel ones, while at the target the message-level ones are
first.

When the ORB needs to bind an object reference, it refers todinacttistics of the
target object and relates this to the types tarzeptor it supports. From this it determi
the appropriate type oftierceptor to handle the request and createsdising the objec
reference in the call. (No separate interceptor initialization operaticseds The
client_invoke/target_invoke orsend_message/receive_message

calls are used both for the first invocation and farssquent oes.)

SecurityService:v1.0 NovemhE996 15221

15

15-222

When an interceptor is created, it performs its bind tim e functioreselimay involve
getting the policies that apply to the client (and have not eenidden by the client)
and to the target. This could involve communicating with the target, for example, a
invocation interceptor setting up a secuagsociation. Note that the ORB Core itself
unaware of service-specific polksi. In addition to performing its specific functions, t
interceptor must continue the rexgt by invoking olgct(s) derived from the given obje
reference.

The interceptors themselves maintain per-binding in&ion relevant to the function
they perform. This information will be derived from:

® The policies that apply to thdient and target object because of the domains t
which they belong, for example the access policies, default qualfiyotéction.

® Other static properties of the client and target object such aedueity
mechanisms and prtols sypported.

* Dynamic attributes, associated with a particular execution context or invocatic
example, whether equest must be protected for confidentiality).

If the relevant client or target environment changas or all of a binding may need to
reestablished. For example, the secure invocation interceptor may detect that the
invocation credentialsdve changed and therefore needs tdbistea new security
association using the new credentials. If the binding cannegisélalished, an exceptio
is raised to the apphtion, indicating the cause of the problem.

Similarly, at the target, the ORB willeate an instance of eactidrceptor needed there.
single interceptor haties both requests and replies at the client (oetpras these ahe
context information.

B.6.6 Using Interceptors

When a client performs awbject request, the ORBore uses the binding information 1
decide which interceptors provide the required ORB Services for this client and tal
described in Sectioh5.7.3, Security Interceptors.

Request-Level Interceptors

Request-level interceptors could be used for swisuch as transaction managemen
access control, or raphtion. Sevices at this level pcess the request in some way. F
example, they may transform the request into one or more lewgrinvocations or
make checks that the reegt is permied. The reqgest-level interceptors, after performi
whatever action is needed at the client (or target), reinvoke the (transfoeeeedt usin
the Dynamic Invocation Inteate (DII)CORBA::Request::invoke . The intercepto
is then stacked until the invocation completes, when it has an opportunity to perfo
further actions, taking into account the responserbekturning.

CORBAservices: Common Obj&arvices Specification

15

Interceptors can findetails of theequest using the operations on the request as defil
the Dynamic Skeleton intexte in CORBA 2. This allows the inteptor to find the targ
object', operation name, context, parameters, and (when complete) the result.

If the interceptor dedes not to forward the request, for example abeess control
interceptor determines thatcess is not permitted, idicates theppropiate exception
and returns.

When the interceptor resumes after an inner request is complete, it can find the re
the operation using thresult ~ operation on the Request pseudo-object, and check
exceptions using thexception operation, etc. before returning.

Message-Level Interceptors

When remote invocation is required, the ORB will gfanm therequest into a messag:
that can be sent over the network. Message-level interceptors operate on messag
general without understanding how these messatgts te requests (for example, the
message could be just a fragment of a request). Note that the message intercepto
achieve their purpose not by (jusgnsforming the given message, but by communic
using their own message (for example, to establish a secure association). Fragme
and messaggrotection are possible messagedl interceptors.

send_message is always used when sending a message, so is used by the client
a request (or part ofraquest), and by the target to serrealy.

When a client messagdevel interceptor is activated to perfornsand_message
operation, it transforms the message as requand calls aend operation to pass th
message on to the ORB and hence to its target. Unlike invoke operaéaods,
operations may return to the caller without completingoiheration. The inteeptor can
then perform other operations if required before exiting. The client interceptor may
be called either usingend_message to process another outgoing message, or usi
receive_message to process an incoming message.

A target message-level inteptor also supportend_message and
receive_message operations, though these are obviously called infardiftorder
from the clientside.

B.6.7 Interceptor Interfaces

Two interceptor interfaces arpexified, both used only by the ORB:

® Requestinterceptor for operations on reast-level interceptors. Two operation:
are suported:
« client_invoke for invoking a request-iel interceptor at the client.
* target_invoke for invoking a request-ieel interceptor at the target.

® Messagelnterceptorfor operations on message-level interceptors. Two opera
are suported:

1.ltis assumed that the target object reference is available, as this isetkstthe C++ mpping for 05l, thoug|
notyetinthe OMG IDL.

SecurityService:v1.0 NovemhE996 15223

15

15-224

» send_message for sending a message from the client to the target or the
to the client.

» receive_message for receiving a message.

Reqlest-level interceptorgperate on a representation of the reqiteslf as used in the
CORBA Dynamic Invocation and Skeleton interfaces. (It is assumed that the Requ
pseudo-object defined in the Dynamic Invocation istesfis compatible with the
ServeRequest psalo-object in the Dynamic Skeleton énface, and so supports
operations such ag_name, which returns the name of tlperation being invoked.)

Client and Target Invoke

These invoke sequestievel interceptor at the client or target. Both operations have
identical parameters ameturn values.

interface Requestinterceptor: Interceptor // PIDL

{
void client_invoke (
inout Request request);
void target_invoke (
inout Request request);
K
Parameters
request The request being invoked. This is agseabgct as defined in the

Dynamic Invocation Interface. After invocation, output parameters ar
associated result and exceptions may have been updated.

Send and Receive Message

These invoke a nssagedevel interceptor to send and receivessags. Bothoperations
have identical parameters aredurn vales.

interface Messagelnterceptor: Interceptor

{
void send_message (
in Object target,
in Message msg);
void receive_message (
in Object target,
in Message msg,);
h

CORBAservices: Common Obj&arvices Specification

15

Parameters

target The target object refecen
Note: The target here may not be the same as seen appheation. For
example, a relation requestevel interceptor may send tihequest to
more than one wterlying object.

msg The message to be handled by this interceptor.

B.6.8 Interface Changes Required for Interceptors

Use of binding and interceptors requires exttarfiaces on the target object reference
get components (e.g. from the multicomponent [@sfin the IQR). It is assumed that
these will be specified by the CORBA 2 (revisitégk force, since this group is
developing the generfdrm of the multicomponent profile structure.

B.7 Further Deihition of ORB Interoperability

This specification desdres the use of and extensions to the CORBAiInteroperability
protocol and Interopable Object Reference (IOR) to allow secure interopligabi
between ®Bs. Additional tags are defined in IOR Security Com ponents of the DC
CIOP in Section 15.8.5, DCE-CIOP with Security, for security information in the IC
Extra messages are added to tbE/IIOPprotocol for proected nessages and replies ¢
are defined in Section 15.8.4, SecureifORB Protoco{SECIOP). Thesare @signed
to be able to fit with GIOP fragmentation proposals also beingiderd. These securi
extensions can be used with a range of different security mechanisms for security
associations.

This submission describes TAGs gacurity for use in multicom poneptofiles.
Modifications to the CORBAR.0 IOR specification to support this are being discusse
the Interopability Revision Task Force, and have dbgen discased with the security
submitters.

Appendix |, Further ORB Interoperability, containdescription of possible odifications
to CORBA 2 for this, but the definitive v@on of such changes will confrem the
Revision Task Force.

The security submigrs therefore require the Interoperability Revision Task Force tc
define the modifications needed. This should result in multicomponenleprofihich
will be used both by IIOP- or IIOP-derivedotocols and DCE-CIOP.

This specifcation maintains strict message format patibility with the 110 Pprotocol as
defined in CORBA 2.0. lalso maintains com patibility with existing unseed
implem entations of DCE-CIOP.

SecurityService:v1.0 NovemhE996 15225

15

B.8 Implicatons of Assurance

The ORB must function correctly, enforcing secupitlicy onobject invocation, object
creation, etc. as defined in this specification. It must do this to the level of assuran
specified in its Conformance&@émen{see Appendix F, Conformance Statement). It
must also meet other assurance requirements defined there puehesding interferenc
between obijects to the required extent.

B.9 Enhancements to the CORBA Module

The enhancements to the CORBA Core previously discussed requires the followir
modifications to the CORBA module.

B.9.1 CORBA Module Changes to Support Security Level 1
The following additions and changes to the CORBA modtdenecesary for the Securit
Level 1 conformance point
New Data Types Added to the CORBA Module

The following data types need to be inserted into the CORBA m pdededing the
declaation of the ORB interface.

module CORBA {
typedef unsigned short ServiceType ;

const ServiceType Security =1 ;
/] other Service types to be defined

typedef unsigned long ServiceOption ;

const ServiceOption SecurityLevell =1;

const ServiceOption SecurityLevel2 = 2;

const ServiceOption NonRepudiation = 3;

const ServiceOption SecurityORBServiceReady = 4;
const ServiceOption SecurityServiceReady = 5;

const ServiceOption ReplaceORBServices =6 ;

const ServiceOption ReplaceSecurityServices = 7;
const ServiceOption StandardSecurelnteropability = 8;
const ServiceOption DCESecurelnteroperability = 9;

/I Service details supported by the implementation
typedef unsigned long ServiceDetailType;
/I security mech type(s) supported for secure associations

const ServiceDetailType SecurityMechanismType =1;

15-226 CORBAservices: Common Obj&srvices Specification

15

/I privilege types supported in standard access policy
const ServiceDetailType SecurityAttribute = 2;

struct ServiceDetail {
ServiceDetailType service_detail type;
sequence <octet> service_detail;

h

struct Servicelnformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

Extensions to the ORB Interface

The operatiorget_service_information needs to be appended to the list of
operations in the ORB iarface.

module CORBA {
interface ORB {
boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

The specific change consists of adding the lines

boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

)

to the list of operations in the definition of the ORB interface on gagé CORBA V2.
July 1995 The associated addition of datpdg and integces must precede the
declaration of the ORB interface in the CORBA module.

B.9.2 CORBA Module Changes to Support Security Level 2

The following additions and changes to the CORBA module are necémstmgSecurity
Level 2 conformance point.

New Data Types Added to the CORBA Module

The following data tpes need to be added to the CORBA module for thifoomnce
level.

SecurityService:v1.0 NovemhE996 15227

15

module CORBA {
enum PolicyType {

SecClientlnvocationAccess,
SecTargetlnvocationAccess,
SecApplicationAccess,

SecClientinvocationAudit,
SecTargetinvocationAudit,
SecApplicationAudit,
SecDelegation,
SecClientSecurelnvocation,
SecTargetSecurelnvocation,
SecNonRepudiation,
SecConstruction

New Interfaces Added to the CORBA Module

The following segment of OMG IDL needs to be inserted into the CORBA module
preeding the definition of the Object interface.

module CORBA
{

Il Interfaces to support the basic management infrastructure
interface Policy {
/I Features common to all Palicies

3
interface DomainManager {

/I get policies for objects in this domain
Policy get_domain_poalicy (
in PolicyType policy_type
)
typedef sequence<DomainManager> DomainManagerList;
|3
interface ConstructionPolicy : Policy{

void make_domain_manager(
in InterfaceDef object_type

Extensions to the Object Intades

The operations in the OMG IDL block shown next need tagpended to the list of
operations in the definition of the Objectarface in the CORBA module.

15-228 CORBAservices: Common Obj&srvices Specification

15

module CORBA {
interface Object {
I/ operations to facilitate basic management infrastructure

Policy get_policy (
in PolicyType policy_type
);

DomainManagerList get_domain_managers();

3

The specific changes are on page 7-80RBA V2.0 July 199%ppend the following
lines to the list of operations in the definition of Object interface.

Policy get_policy (
in PolicyType policy_type
);

DomainManagerList get_domain_managers();

Add the correspondindocumentation for these operations from Section 15.6.2 of th
document to page-3 of CORBA V2.0 July 1995

B.9.3 CORBA Module Changes for Replaceability Conformance

The following additions and changes to the CORBA module egessary for quporting
the Interceptor mechanism to satisfy the ORB $es/Replaceability conformance
option.

New Interfaces Added to the CORBAdUte

The following new interfaces need to be added to the CORBA module to support 1
conformance option.

The message-level interceptor has a Message param eter, whiggeid@object (see th
Request pseudo-object used on the message interface). This pseudo-objede®amp
ordered sequence ottets. The operatiorfer accessing it should be aligned with the
operations fooperating on collections as expected to be defined for the Collection:
Service technology adoptig@rocess.

module CORBA {
interface Interceptor { // PIDL
/I Generic interceptor operations (management etc.)

b

interface Requestinterceptor: Interceptor { // PIDL
void client_invoke (
inout Request request
);
void target_invoke (
inout Request request

)

SecurityService:v1.0 NovemhE996 15229

15

interface Messagelnterceptor: Interceptor { // PIDL
void send_message (

in Object target,
in Message msg
)
void receive_message (
in Object target,
in Message msg
)

h

Add corresponding documentation forghe operations from Secti@n6, Further
Definition of ORB Services, to thepropriate section cCORBA V2.0 July 1995

B.9.4 Changes to Support the Current Pse@tbject

The CORBA module changes and additidescrbed here are necessary fopporting
SecurityReplaceallity and Security level 2. The changes to Transaction service are
necesaryfrom the pespective of meeting any seity requirements, but is highly
recommended for maintaining iformity of mechanisms and ietfaces.

New Interface Added to the CORBA Module

module CORBA
{

Il interface for the Current pseudo-object
interface Current { /I PIDL

h

Extensions to the ORB Interfaces

The following extension needs to be made to the ORB auerf

module CORBA {
interface ORB {
Current get_current ();

h
b

The specific change consists of adding
Current get_current ();

to the definition of the ORB interface on page 7-ZORBA V2.0 July 1995 he
associated addition of data types and imizas must precede the deatn of the ORB
interface in the CORBA module.

15-230 CORBAservices: Common Obj&srvices Specification

15

TransactionService Ganges

The following change @eds to be made to the Transac®rvice to make it compatib
with and able to use th@RB::get_current operation. The change isto be made
CORBAservices: Comon Obgct Services Specificati, Rev. Ed. March 31, 1995, ON
Document Number 95-3-31
On page 10-19, change the first line of the OMG IDL in the box from

interface Current {

to
interface Current: CORBA::ORB::Current {

B.9.5 CORBA Module Deprecated Interfaces

SecurityLevel2::Credentials is the prefaed interface for reteving
information about the identity of callers in CORBA Securityfoomant ORB
implem entations; the use GIORBA::get_principal is deprecated, and it is
anticipated that this terface will be eliminated in a future CORBAvision.

SecurityService:v1.0 NovemhE996 15231

15

Appendix C Reladnship to Other Serees

Cl

Introduction

This appendix deerbes the relationship betwe&bject Services and Commeéiacilities
and the security architecture components, if tr@yto participate in a comsgent, secure
object system.

C.2 General Rlationship to Object Services and Commaicikties

In general, Object Services and Common Facilities, like anycafiph objects, may be
unaware obecurity, and rely on the security ended automatically on objectiacations
As for applicationobjects, access to their operations can bérobed by access policie
as described in Section 15.3, Security Referenocdeél] Section 15.5, Application
Developer’s Interfags, and elsevére.

An Object Service or Common Facility needs to be aware of security if it needs to
security itself. For exaple, it may reed to controhccess to functions améta at a finer
granularity than at object invocation, or need to audit such activities. The way it ca
this is deschied in Section 15.&ecurity Architecture. Existing Odxjt Sevices should b
reviewed to see if such access control and auditing is required.

If an Object Service or Common Facility is required to be part of a more secure sy
some assurance of isrrect functioning, ibecurity elevant, is Beded, even ff it is not
responsible for enforcing sedy itself. See Appendix E, Gdelines for a Trustworthy
System, for gidelines on this matter.

Where an Obiject Service is called by an OfeBrice as part of object invocation in a
secure sgtem, tlere is a need to enswsecurity of all the information vrolved in the
invocation. This requires ORB Services to be called irotiderrequired to provide the
specified quality oprotection. For exapile, the Transaction Service must be invoked
to obtain the transaction context information before the whole messagpteisted for
integrity and/or confidetiality.

In the following sections, we provide an initégtimation of theelationship between
Security Serice and other gsting sevices and facilities.

C.3 Relationship with Specific Object Services

15-232

C.3.1 Transactio®ervice

This specification builds on the definition of Current introduced by the Transaction
Service to provide informatioabout the current execution context. It alpecifies a
general ORB operation for applications to get hold of an object reference to the Ci
pseudosbject (see ppendix B, Summary of CORBA 2 Core Changes).

In order to have the Transaction Service use the proposed mechanidefinitien of the
CosTransactions::Current interface needs to be modified so that desived

CORBAservices: Common Obj&arvices Specification

15

from CORBA::ORB::Current . The necessary change is presented in Sectid B
Changes to Support the Current Pseudo-Obiject.

C.3.2 Naming Service

For security, the object must be correctly identified wherever it is withidistibuted
object system. The Naming S&re must do this successfully in an environment whel
object name is unique within a naming context, and name spaces are federated. (!
to provide theequiedproof of identity,objects, and/or the gatekeepers which give a
to them will be authenticated using a separate Authenticatimc8&See Section E.6.
Basis of Trust, fordditional information about the relationship between security an
names.

C.3.3 Event Service

The implementation of a Security Audervice may involve the use Bffent Service
objects for the routing of both audits and alarms.

However, this is only po#de if theEvent Sevice itself issecure in that it protects the
audit trail from modification and deletion. It must also be able to guard against recu
it audits its own activities.

C.3.4 Persistent Object Service

No explicit use is made of this service. Audit trails may be saved using tises@r
which case the implementation of the PesntObject Service must ensure tlata
stored and retrieved through it is not tampered with by unauthorized entities. If it is
the implementation of Securi§ervice or by aecureapplication, it must follow the
guidelines in Apendix E, Gudelines for a Trustarthy System.

C.3.5 Time Swice

The Security Swice uses the data types for time, @stanps, and time itervals as
defined by the Tim&ervice, so that applications can readily use the Time Service d
interfaces to manipulate the tirdata that the Securitgervice uses. The interfaces of
Security Service do not explicitpass any intesices defined in the Time Service.

C.3.6 Other Sevices

The other services are not used explicitly. If any of them are used in the implement
Security Service or by a secure apgtion, it must be verified that the service used
follows the guidelines idppendix E, Gudelinesfor a Trustworthy Sgtem.

SecurityService:v1.0 NovemhE996 15233

15

C.4 Relationship with Common Facilities

Because ManagemesBervces have been identified as Comnfartilities in the Olgct

Management Architecture, only minimal, secuspecific admirstration interfaces are
specified lere. When CommokRacilities Management services are specified, they w
need to take into account the need for security management and administration id
in this specification. Also, such management services will them sedegisto be secure

This specification adds certain basic indeds to CORBA, which form the basis for th
minimal policy administration related interfaces and functionality that hasfregited.
Future management facilities argpegted to build upon this foundation.

15-234 CORBAservices: Common Obj&srvices Specification

15

Appendix D Conformance Details

D.1 Introduction

Conformance to CORBA Securitpwers:

® Main security functionality. There are two possible levels.

» Level 1 This provides a firstevel of security for applications wware of
security, and for thse that have limited refgiaments to erdrce their own
security interms of &cess controls and auditing.

» Level 2 This provides morsecurity fcilities, and allowspplications to contrc
the security provided at object invocation. It also includes admatitst of
security policy, allowing pplications adminigtring policy to be posdble.

® Security Functionality Options. These are functions prcted to be redred in
several ORBs, so amgorth including in this specification, bate not generally
requred enough to fornpart of one of the main security functionality levels
previously specified. Tére is only one such option in the specifima.

» Non-RepudiationThis provides genetian and checking of evidence so that
actions cannot be repudiated.

® Security Replaceability This specification is designed atlow security pokies to
be replaced. The additional policies must also conform tcsgigsification. This
includes, for example, new Access Polices. Security Replaceability specifies
how the ORB fits with different securiservices. There are twmossibilities.

* ORB Services replaceabilitfhe ORB uses interceptor interfaces to call on
object services, including security ones. It must use the specified intercept
interfaces and call the interceptors in the specified order. An ORB conform
this does not include any significant secuspecific code, as that is in the
interceptors.

» Security Service replaceabilitf he ORB may or may not use interceptors, bu
calls onsecurity services are made via the replaceability interfaces specifie
Section 15.7, Iplementor’s Security Inteates. These interfaces are positior
so that the securitgervices do not need to understand how the ORB works
they can be replaced independently of that knowledge.

An ORB that supports one or both of theeplaceability options may b®ecurity
Ready (i.e. spport no security functionalitytself, but be ready to haweecurity
added, or may support Seity Functiorality Level 1 or 2).

Note: Some replaceability of treecurity mechanismsed forsecureassociations
may still be provided if the iplementation ses some staard generic intedice for
securityservices such as GSS-API.

® Secure Interoperability: Possibilities are

» Secure Interoperability - Standarédkn ORB supporting this can generate/use
security information in the IOR and can saedéivesecure requests/from
other ORBs using the GIOP/IIOP protocol with gexurity (SECIOP)

SecurityService:v1.0 NovemhE996 15235

15

enhancements defined in SectibB.8,Security and Irdroperability, providing
they can both use the same underlying security mechanism and algorithm:
security associations.

» Standard plus DCE-CIOP Optioms for Standard, budecure DCE-CIOP ialso
supported.

If the ORB does not conform to one of these, it will not use the GkaRBrity
enhancements, and so willénoperatesecurely only in an environment-specific
way.

The conformance statemeequired for a CORBA Security conformant im plem entat
is defined in Appendix F, Conformanceag@mentAppendix F includes a checklist,
which can be completed to show what the ORB conforms to; it is reproduced next.
security functionalityevel must always bescified. Fuitional Options, Security
Replacability, and Security Interoperability should be indicated by checking the bo
corresponding to the function pported by the ORB.

Main
Functionality | Functional Security
Level Options Security Replaceability Interoperability
1 2 Non ORB Security | Security Security Standard| Standard
Repudiation | Services | Services | Ready - Ready - + DCE-
ORB Security CIOP

Services Services

D.2 Security Functionality Level 1

Security Functionality evel 1 is the level to which all O8compliant security
implementations must conform.gtovides:

® A level of security functionality available to applications unawarseaiurity. (It
will, of course, also provide this functionality to applications awargeotirity.)
This level includesecurity of the invocation between client and target object,
simpledelegation of client security attributestargets, ORB-emrced access
control checks, and auditing sécurity-relevant system events.

* An interface through which a security-aware &mgilon can retrieveecurity
attributes, which it may use to enforce its osaturity polcies (e.g. to control
access to its own taibutes and operations).

D.2.1 Security Functionality Required

An ORB supporting kvel 1 security functionality mustgiride the following security
features for all applications, whether they are security-aware or not.

15-236 CORBAservices: Common Obj&srvices Specification

15

® Allow users and other principals to be autheated, though this may be done
outside the object system.

®* Providesecurity of the invocation between client and target object including:

» Establishment of trust between them,emh needed. At Level 1, this may be
supported by ORB level securigervices or can be achieved in any oteaure
way. For example, it could usesecure lowr-layer communications. Mutual
authentication need not be supported.

* Integrity and/or confidemality of requests and respses between them.

» Control of whether this client can access this object. At this level, access c
can be based disets" of subjects and "sets" of objects. Details of ticeeas
Policy and how this is administered are not specified.

® At an intermediate object in a chain of calls, #idlity to be able to eithedelegate
the incoming credentials or use those of the intermediate object itself.

* Auditing of the mandatory set of system’s securtievantevents spcified in
Appendix A, Conslidated OMG IDL. In some cases, theents to be udited may
occur, and be audited, aide the object system (for example, inderlying
securityservices). In this case, the conformanateshent must identify thgrodu ct
resporsible for gemrating the record of such an evéat choice ofproduct, for
example, when the ORB fmrtable to different authenticati@ervices).

At this level, auditing of object invocations need not be saldet However, it
must be possible to ensure that cerementsare audited (seSection A.9, Values
for Standard Data Types, for the list of mandatory events).

For security aware applications, it must also:

* Make the privileges of authdénated principalsavailable to applications for use
application access contrdécisions.

These facilitiesequire the ORB and securitgrsgices to be initialized correctly. For
example, the Current object at the clientmust be initialized witfiesence to a
credentials object for theppropriate principal.

D.2.2 Security Interfaces Supported

Security interfaces avable toapplications may be liited to:

® get_service_information providing security options and details (see
Section 15.5.2, Findin§ecurity Featres).

® get_attributes on Currenf(see Interfaces undee&ion 15.5.6, Secity
Operations on Current).

No administrative interfacese mandatory at thisvel.

SecurityService:v1.0 NovemhE996 15237

15

D.2.3 Other Security Conformance

An ORB providingSecurity Functionality Level 1 majso conform to other sefity
options. For example, it may also:

® Support some of th8ecurity Functionality Ojions specified in Section D.4,
Security Functionality Options.

® Providesecurityreplaceability using either of the replaceability options.

®* Providesecure inrgroperability, though in this casejlwneed to providesecurity
associations at the ORB level (fotver-layer commuigations) as the protocol
assumes security tokease at this level.

D.3 Security Functionality Level 2

15-238

This is the functionality level that pports most of thapplcation interbces defined in
Section 15.5, Application Delagper’s Interfaces, and the administrativeeifaces
defined in Section 15.6, Administrator’s Int&eks. It provides a com petitive level of
security functionality for most situations.

D.3.1 Security Functionality Required

An ORB that supports Security Functionality L evel pports the funtonality in
Security Level 1 previously defined, and also:

® Principals can be authengited ouside or inside the object system.

® Security of the invocation between client aadyet objects is enhanced.

» Establishment of trust andassage protection can be done at the @R8I, so
security below this (for example, in the lower layer commation s) is not
required (though may be used for some functions).

» Further integrity options can be requested (e.g. replay protectionedediah of
messages out of seque) but need not be pported.

e The standard DomainAccessPolicy is supported forrobof access to
operations on objects.

» Selective auditing of methods on objects is supported.

® Applications can control the options useds@ture invocations. It can:
» Choose the quality girotection of messages repd (subject tqolicy contols).
» Change the privileges in credentials.
» Choose which credeials are to be used fabject invocdion.

» Specify whether these can just be used atatget (e.g. fomaccess comol) or
whether they can also be delegated to further objects.

CORBAservices: Common Obj&arvices Specification

15

®* No further delegation facilitieare mandatry, but theapplication carrequest
"composite" delegation, and the target can obadlicredentials passed, in syste
that support this. Note th&tomposite" here just spedifs that both received
credenials and the intermediate’s own credentials shoulddsel.ult does not
specify whether this is done by combining the credentials or linking them.

® Administrators can gxify securitypolicies using domain managers goalicy
objects as specified in Section 15.6, Administratortsriaces. Thesecurity policy
types supported at Level 2 are all those define8dation 15.6 except non-
repudiation. Thestardard policy management interfaces éach of the Level 2
policies is suppded.

* Applications can find out whatecuritypolicies gply to them. This incldes
policies they enforce themselvgsg. which events types to audit) and some
policies the ORB enforces for thefa.g. default qop, delegation mode).

®* ORBs (and ORB Services, if supped) can find out whatecurity polgies apply tc
them. They can then use these policy objects to make decadons what securit
is needed (check if accesspermitted, check if auditing is remad) or get the
information needed to enforce policy (get Q@Elegation mode, ef) depending
on policy type.

As at Level 1, these facilities require the ORB and securitsicesrto be initialized
correctly.

D.3.2 Security Interfaces Supported

Interfaces spported at thisdvel are:

® All application interbices defined in Section 15.5, Application Developer’s
Interfaces (egept those in Séion 15.5.11, Non-repudiation).

® All security policy administration inteaces @fined in Sectiornl5.6,
Administrator’s Interfaces (evept tlose for the non-repudian policy).

Note that some of these interfaces may retur@adMPLEMENT exception, as not
ORBs conforming to Level 2 Security needolement allpossiblevalues of all
parameters. This will happen when:

® A privilege attribute is requested of a type that is ngpsuted (attribute types
supportedare defined in Appendix A, Consolidated OMG IDL).

® A delegation mode is request, which is not supported.

®* A communication direction for association optionsequested, which is not
supported.

SecurityService:v1.0 NovemhE996 15239

15

D.3.3 Other Security Conformance

An ORB providingSecurity Functionality Level 2 majso conform to other sefity
options. For example, it may also:

® Support some of th8ecurity Functionality Ojions specified in Section D.5,
Security Replaceability.

* Providesecurityreplaceability, using either of the replaceability options.

®* Providesecure ingroperability.

D.4 Security Functionality Options

An ORB may also conform to optional security functionality defined ingégification
Only one optional facilities ispgcified: non-repdiation.

Also, some requirements on conformance of additional facilitiesperefied.
D.4.1 Non-repudiation

Security Functioality

An ORB conforming to this must support the non-repudiatamilifies for generating
and verifying evidencdescribed in The Model as Seen by Applications in Sectior
15.4.5,Security (hject Models. Note that these use NRCreddstiwhich may be the
same as the credentials used for other security facilities. Where non-repudiation
supported, the credentials acquired from the environment or generated by the
authenticate opetian must be able to gyport non-repudiation.

Security Interfaces Supported

The following interfaces must be supported. All are labde toapplications. They are:
®* set /get NR_features as defined in Section 15.5.11, Non-repudiation.

® generate_token , verify evidence , form complete evidence and get tok
details as dfined in Sectionl5.5.11.

® Use ofset/get_credentials on Current specifying the type of credential
be used is NRredenials.

®* NR policy object with associated interfaces as3ection 15.6.7, Non-repudiatior
Policy Management.

15-240 CORBAservices: Common Obj&srvices Specification

15

Fit with Other Security Conformance

Non-repudiation requires use of cretlals; thus it can only be used with ORBs, whic
support some of thetarfaces defined in Security Functionaligvel 2. However,
conformance to all dbecurity Functionality Leel 2 is not a mrequisite for coformance
to the non-repudiation security functionality option.

Secure iteropeability as defined in Section.B, Secure Inteperdility, is not affected
by non-repudiation. The evidence may be passed on an invocation as a paramete
request, but the ORB need not be aware of this.

The current specification does not Gfyeinteroperability ofevidencei.e. one non-
repudiation sevice handlingevidence generated by another).

D.4.2 Conformance of Additional Policies

This specification is designed to allow setyupolicies to be replad. The additional
policies must also cdorm to some of the inteates in thisgecification if theyare used t
replace thetardard policies automatically enforced on objestication.

The case desbed next is for the addition of a nékecess Policy which can be used
controlling access to objects automatically, aeplg the standard DomainéessPadty.

Clearly, other policies can be raped. For example, the audit policy could be replace
one that used differenekectors, or the delegation policy could be aeptl by one that
supported more adveed features.

Additional Access Policies

A new Access Paty, which is to be enforced autartically at irvocation time, should b
supported by providing a new Access Policy object. This mpgiostithe
access_allowed operation defined in Access Decision Object under Section 1!
Im plementation-Level Security Object Interésc so that it can lmalled autonatically by
the ORB to check if access is allowed.

This policy object should be associated with a domain, and be specified as a clien
target policy as for the stdard Access Policy. The poliopject should include
administrative interfaces to allow the policy to be adstérid, but this need not
(normally cannot) conform to the administrative interface defined for the standard

D.5 Security Replaceability

This specifies how an ORB can fit with security services, which may not come fror
same vendor as theRB. As explained above, thesiee two levels where this can be d
(apart from any uderlying APIs used by an ipementation).

SecurityService:v1.0 NovemhE996 15241

15

15-242

D.5.1 Security Features Replaceability

Conformance to this allows security features todmaced.

If it is provided without coformance to the ORBervice replaceability option (see
Section D.5.2, ORB $eces Replacddlity), it requires the ORB to have a reasonabl
understanding of senty, handling credenais, etc. and knowing when and how to cal
the right securityservices.

Support for thigeplaceability optiomequires an ORB (or the ORBervices it uses) to
use the implem entation-level security intexés as defined Bection 15.7, Implementor
Security Interhces. Thisncludes:

®* The Vault, Security Context, &ess Decision, Audit anflrincipal Authentication
objects defined in Section 15.7.4,plementation-Level Security Object Intaces

® This also includes the CORBA changes defined in Appendix B, Summary of
CORBA 2 Core Changes.

D.5.2 ORB Services Replacdéip

Conformance to this allows an ORB to know little about security except which
interceptors to call in what order. This is intended for ORBs, which may use differe
ORB services frondifferent vendors, and require these to fit together. It tbezef
provides a generic way of calling a iedy of ORBServi@s, not just security ones. It a
assumes that any of these services neaetassociated policies, which control some
their actions.

Support for thigeplaceability optiomequires an ORB to:

® Use the Interceptor interfaces defined ectton B.6 tocall security interceprs
defined in Section 15.7.3, Security Interceptors, in the order defireed. th

® Use theget_policy interfaces (and the associatgeturitypolicy interfaces suc
asaccess_allowed , audit needed defined in Section 15.7.4,
Implementation-Level Securit@bject Interfaces, foaccess control and audit ar
alsoget_association_options andget_delegation_mode defined in
Section 15.6.6, Secure Invocation and DelegaHoticies, for associationptions,
guality of protection of messages, and delegation).

D.5.3 Security Ready for Replaceability

An ORB is Security Readfpr Replaeability if it does not mvide any security
functionality itself, but does guport one of the securityeplaceability options.

Security Functiaality Required

An ORB that is Security Readioes not have to provide any securitydiimnality, thougt
must correctly respond to a request for the secuwgityufes syported.

CORBAservices: Common Obj&arvices Specification

15

Security Interfaces Spprted

® get_service_information operation providingecurity options and dails
(see Section 15.5.2, Finding Secufitgatues).

® get _current operation to obtain the Current object for the etienucontext
(see Section B.3, Extension to the Use of Current).

Other Security Conformance

An ORB that is Security Ready fagplaceability spports one of theeplaceability
options. This should be done in such a way that the ORB can work without securit
can take advantage of securityvdees when theppecomeavailable. So italls on the
replaceability interfaces correctly (using dummy routinegpdace securitgervices
when these are needed, but not available).

The ORB may also conform to secure interopditphineaning it can transméecurity
tokens and handle protected messages returned by security interceptarsearvices i
accordance with the secure interoperability security conformance option.

D.6 Secure Interoperability

The definition of secure interoaility in this documentpecifies that a conformant OF
can:

®* Generate, and take appropriate action on, Interoperable ObjezeRefs (IORS),
which include security tags as specifiedSaction 15.8, Secity and
Interoperability.

®* Transmit andeceive thesecurity tokens @eded to establisbecurityassociations,
and also therotected messages used for protected requests andsesporce th
association habeen establishedccording to the protocol defined in Section 1°

Note that a Security Ready ORBe(iwith no built-in security furtionality) may, by
additions of appropriate security services, conform to secure interoperability.

The current security specificati@ibesnotmandate a particular security mechanism 1
security associations (or tlassociated set of qojographic algorithms theyse), so for
ORBs to interoperate securely, they musiage to use the same mechanism, algorit|
etc. (oruse a bridge between them, if available). A future specification is expectec
coverstardard sectity mechanisms and algorithms.

D.6.1 Secure InteroperabilityStandard

An ORB that conforms to this must support the sgcenhanced IOR defined in Secti
15.8, Security and Interoility, and also GI®/IIOP protocol with the SECIOP
enhancements as defined in Section 15.8. (This is in line with CORBAr@patability,
where all interoperable ORBs must support the IOR af@FBIOP.)

SecurityService:v1.0 NovemhE996 15243

15

As for CORBA 2, this may be done by immediate bridges or half bridges. (How
use of half bridges implies ane conplex trust relationships, which some systemsi
not be able to support.) Thid@ks a large range afecurity mechanisms to be use

D.6.2 Secure Interoperability with DCE-CIQBption

An ORB that conforms to this must conform to $iard Secure Interopaility using
GIOP/IIOP as described in Section D.6.1, and also support secure irdbéiliyarsing
DCE-CIOP as defined in Sectid®.8, Security and Interopabiity.

The only security mechanism supported is D&&feurity. Any version of DCE up to an
including DCE 1.1 is suppatl; the DCE interf@es and protocols are specifiedifOpen
ApplicationEnvironment Specgationfor Distributed Computing

15-244 CORBAservices: Common Obj&srvices Specification

15

Appendix E Guidelindsr a Trustworthy System

E.1l

Introduction

This appendiprovides some general geilines for helping ORB implemtars produce
trustworthy system. The intention is to have dthimation related to trustovthiness an
assurance in this appendix, to explain how the specification has takendotmtthe
requirements for assurance, and also to show how conformant implementatioagec
differentlevels of assurance.

The remainder of the introdtion first provides the rationale for includingdle
guidelines in thespeciftation, and theniges some background on trustithiness and
assurance. Section E.2, Ruting Against Threats, de#mes the theats and
counterneasuresalevant to a CORBAecurity implementation. Sectios3 through E.{
provide the archéicture and implementation glelines foreach security object adel
described in Section 15.4, Security Architecture.

E.1.1 Purpose dbuidelines

The security stastards proposed in this specificaticave been ddderately closen to
allow flexibility in the security éatues, which can be praled. Thespecification can
supportt sigificantly different securitypolicies and mechanisms for security functions
such as access cooltraudit and authentication. However, there isaerall sectity
model which applies whatever the security policy. This is described in the sachi®ns
of the document.

There is also flexibility in the level of security assurance, which can be provided,
conforming to this radel and these standards. This appendix describes thedtigtes:
issues underlying the security model and interfaces described earliedoctireent, an
provides implementation guidance on what components of the architecture need t
trusted and why. Note that trust requirements assunferaoence to all of the security
models, including the implementor’s view, as th@liamentation affects taiworthiness
If a CORBA security implementation conforms to seeurity atues replaceability
level, but not the ORB services one, any iEgments on ORB seices willapply to the
ORB. Trustworthiness will alsdepend on seval other implementation choices, such
the particular security technologged.

E.1.2 Trustworthiness

Before an enterprise places valuable business assets within an IT system, enterp
management must decide whether the assets will be adequately protected by the
Management must be convinced that the particulstesy configuration is sfi€iently
trustworthyto meet the security needs of théegprise environment. Setty
trustworthiness is thus theility of a system to protect resoces from eposure to misus
through malicious or iadvertent means.

The basis for trust in distributed systedif§ers from host-centric stahalone systems
largely for two reasons. First, thgsignment of trust in a distributeds®m is not islated

SecurityService:v1.0 NovemhE996 15245

15

to a single global stem mechanisngecond, the degree of trust in elementistributed
systemgparticlarly distributedobjectsystems) may change dynamicaitier time,
whereas in bst-certric systems trgtworthiness is typally static. In many cases, trust
distributed systems must be seen in the context of mutual suspicion.

E.1.3 Assurance

Assurances a qualitative measure of trusitthiness; assurance is the confidence th:
system neets entgrise sectity needs. The qualitative nature of assurance means tl
enterprises may have differeasurance gdelines for an equivalent level of confiden
in security. Some organizations may need extensive evaluation criteria, while othe
organizations need very little evidence of trustworthiness.

It is necessary to set a context by which CORBA developers and end-users of the |
Security pecification may evaluate tHevel of security to reet their meds. A single
overall trust model that underlies the secur@ference mdel andarchitecture (as
described lsewhere in thispecification) can set this context foogtd systems, but it |
unlikely that a single trust model exists for the diversitppén distributed systems like
to populate the distributed object technologyria.

To support a balanced appch, assurance arguments should be assembled from a
system building blocks. Caepts of system copwmsition and integation should kow the
assurance analysis to be tailored to specific user requitendesurance evidence shol
be carefully packaged to best suppoteeprise decision-makers during tdecurity trade
off process.

The security object models defined by the CORBurity pecificationare the basis fc
the necessary building blocks. The trust guidelines destm Section, Gdelines for
Structural Model, provide constraints on how these components may relate.

The relationship between assurance and securityga®tie foundation for tleverall
security model. The key charadggic is balance. Balancedsurance promotes the use
assurance arguments and evidesygeropriate to the level of risk in thestgm
components.

Basic system building blocks, such as those in the COB&drity pecification
previously noted, are critical to developing bakth assurance. For example,
confidentiality is of nost importance to aassified intelligence or military system,
whereas data integrity may be of more importance in a computer patiend system.
The former relies on assurance in the underlgipgrating system, vee the latter
focuses security iapplication software.

E.2 Protecting Against Threats

15-246

An enterprise aeds to protect its assets against perceived threatsapgimpriate
security measures. This documadtresses security distributed object systems, so
focuses on the threats to assets, software, and data, in stesh sy

An enterprise may want to &ss the risk of a securibreach occurring, against the
damage which will be done if it does occur. The garise can therlecide the best trad

CORBAservices: Common Obj&arvices Specification

15

off between the cost of providimgotection from such threats and any performance
degradation this causes, againstghabability of loss of assets. This specificatithowss
options in how security iprovided to couter the threats. Hosver, it is epected that
many enterprises will not ulertake a formal riseassessment, but rely on a standard |
of protection for most of their assets, as id@d by industry or government criteria. Thi
section describes CORBA-specific security goals, the main distributed system thre
protection against them. The discussitmes not emphsize generic issues of threats ¢
counterneasures, but instead concentrates on issues that are unique to the CORE
security architecture.

E.2.1 Goals of CORBA Security

The overall goals of the CORBgecurity architecture weescribed irBection 15.1,
Introduction to Security. CORBA securitybased on the four fundamental objectives
any secure system:

® Maintain confidentiality of data afior systenresouces.
® Preserve data and/orsgm integrity.
® Maintain accourability.

® Assure data/systeravailability.

Many of the goals destyed in Section 15.1 are eghnt to any IT system that is targe
at large-scale applications. However, some security goals described are specific t
CORBA security architecture. These gaddserve special attiéon because they dgace
potential threats that may not be encountered in typical aechites. CORBA-specific
security goals include:

® Providingsecurityacross a herogeneous system wtedifferent verdors may
supply different ORBs.

® Providing purely object-orienteskcurity interéces.

® Using encapsulation to promote system integrity andde the complexity of
security mechanisms der simple iterfaces.

* Allowing polymorphic implementations of objects based onedéfit underlying
mechanisms.

® Ensuring object invocations apeotected as redped by thesecurity policy.

®* Ensuring that the reqeeid access control and auditing isrfformed on object
invocation.

The discussion of the architecture and im plementatiotiedjoes in Sectiot.3,
Guidelines for Structural Modedddresses the mechanisnssdito ensure these CORE
specific secrity goals, as well as many other genesgcurity issues.

SecurityService:v1.0 NovemhE996 15247

15

E.2.2 Threats

The CORBA security model needs to take into accoupoédhtial threats to a distribut
object system. It must be ilsle toset a securitpolicy and choose security services
mechanisms that can protect against the threats to thedguéled by a particular
enterprise.

A securitythreatis a potential system misuse that could lead to a failure in achievir
system security goafsreviously deschbied. Section 15.1, troduction to Security,
provided anoveriew of sectuity threats in a distributed objectgtgm. Tlese threats an
related attacks include:

* Information compromise - the deliterate or accidental disclosure of confidaht
data (e.g., rasqierading, spoofing, eavesdropping).

® Integrity violations - the malicious or inadvertent modification or destruction
data or system resmes(e.g., tapdoor, virus).

® Denial of service- the curtaiment or removal of system resources from autho
users (&9., network flooding).

® Repudiation of some action- failure to verify the actual identity of an authoriz
user and to provide a method for recording the fad., audit modification).

® Malicious or inadvertent misuse- active or passive bypassing of controls by
either authorized or unauthorized us@rg ., browsing, inferaae, harassment).

The threats destx@d above give rise to a wide variety dheks. Most if not all the
threats that pertain to host-centric systems are pertinent to distributed systems.
Furthermore, it appears likely that the wide distributionesburces and mediation in
truly distributed sgtems will not only exaerbate the strain on host-¢teasecurity
services and mechanisms in usddy on client/server systems, laldo engender new
forms of threat.

Threats may be of ddfrent strength$:or example, accidental misuse of ateyn is eder
to protect against than malicious attacks by a skilled hackersphéfication does not
attempt to counter all threats to a distributed system. Those that should be counte
measures outside the scope of this specification include:

® Denial of service, which may be md by flooding the communications with
traffic. It is assumed that the underlying communications softwasds with this
threat.

* Traffic analysis.

® |nclusion of rogue code in the system, whidlieg access to sensitive informatic
(This affects the build and change control process.)

E.2.3 Vulnerabilities of Distribted Objet-Oriented Systems

Vulnerabilitiesare system weaknesses that leave tistesy open to one orare of the
threats previously desbid. Information systems are subject to a wide range of
vulnerabilities, a number of which are compounded in distributed systems. These

15-248 CORBAservices: Common Obj&srvices Specification

15

vulnerabilities ofterresult from deliberate or unintéonal radeoffs made in system
design and implementation, usually to achieve othamendesirable goals such as
increasegerformance oadditional functionality.

Classes of vulnabilities include:

An authorized ser of the system gaining access to some indtion which shoulc
be hidden from that user, but has not been properly protéeiggaccess control
have notbeenproperly set up or the stomecyied by one object has not been
cleared out when another reuses the space).

A user masgerading as someone else, and so obtaining access to whatevaet
is authorized to do, resulting in actions being attributed to the wrong person
distributed system, a user may delegate his rights to other objects, so they
on his behalf. This adds the threat of righ¢sng delegated too widely, again,
causing a threat of unauthorized access.

Controls that enforceecurity being byassed.
Eavesdropping on a communication line giving access téideortial data.

Tam pering with communication between objects: modifying, inserting, and de
items.

Lack of accourability due, for exarple, to inadequatientification of sers.

System data as well as business data mustdbected. For example:

If a principal’s credentialsare successfully obtained by an unawihed user, they
could be used to maserade as thatrincipal.

If the security sensitive information in the security context between client and
object is available to an unauthorized user, idamftial messages can be read, ar
may be possible to adify and resend integrity-protected messages or sasd f
messages without this being detected.

As describedalier, system threats and vulnerabilities are comgediby the
complexities of distributed object-basedt®yms. Some of the inherenbehcteristics of
distributed object sstems that make them particularly verable include:

Dynamic Systems-- Distributed object systemeye always changing. New
components are constantly being added, deleted, and mod#edrity poicies
also may be dynamically adified as enterprises change. Dynamic systems alt
inherently complex, and thus security may be difficult to endtoe example, in
large distributed object system iillabe difficult to update a securitpolicy
atomically. While an administrator irsdts a new policy on somearts of the
system, other parts of the system still may be using the osibweof the policy.
These potential incaistencies in policy eofcement couldead to asecurity
failure.

Mutual Suspicion -- In a large distributed system, some system compomnétits
not trust others. Mistrust could occur at manyelasywithin thearchitecture:
principals, objets, administratrs, ORBs, and operating systems may all have
varying degees of trustworthiness. In this environment, there is always the

SecurityService:v1.0 NovemhE996 15249

15

15-250

potential to inadvertently place unjustified trust in some system component,

exposing a vulnerability. Although ¢éhe are many mechanisnfesg., cryptographi
authentication) to ensure the identity of a remote component, the system se
architecture must be carefully structured to ensure tresetithecks are always

performed.

Multiple Policy Domains -- Distributed object systems that interconnect many
enterprises are likely to require many dint security policy domainsach one
enforcing the security regriements of its organization. €ne is no singlsecurity
policy and enforcement mechanism that is appropriatalfdusinesses. As a
result, security paties must be able to addresseiictionsacross policy domain
boundaries. Defining the appropriate policies to enforce across domains may
difficult job. Mismatched policies could lead to vulnerabilities.

Layering of Security Mechanisms-- Distributed object sstemsare highly
layered, and theecurity mechanisms fordbhe systems will be layered as well.
Complex, potentially nondeterministic interactions at the bann of the lagrs is
another area for vuerabilities to occur. A hardware error, for example, could c:
security checking code in the ORB to bephgsed, thus violating the policy. Th
complexity of the layering is further compounded in systemsresecurity
enforcement is widely distributed; thiat there is no cleagecurity perimeter
containing only a small amount of simple funcadty.

Complex Administration -- Finally, large geograptally distributed object
systems may be difficult to administer. Security administrationiresguhe
cooperation ofll the administrators, who even may be waliy suspicious. All of
the issues listed above lead to complex, gorone admiistration. An inrocent
change to a pricipal's access rights, for example, coulgpese aserious
vulnerability.

E.2.4 Countermeasures

Some threats are common across most distributed seateensy so should be counte
by stardard security features of any @ivcompliant secure sgtems. Howver, the level
of protection against these threats may vary. Complete protection is alnpostibie to
achieve. Most entprises will want a balandgetween a level ofrptection against threa
which are important to them, and the cost in performance and use of other resour
providing that ével of protection.

A number of measuresiskfor couniering or nitigating the efécts of the above
threats/attacks. Cotaering these threats requires the use of the sealhjgct nodels
described in this specificatioRelevant éatures of the objectodels include the
following:

Authentication of principals proves who they are, so itdssible to check what
they should be able to do. This check can be performed at both client and t:
object, as the client praipal’s credenials can be passed to the server.

Authentication between clients and target objatisvs them to check that they &
communicating with the right enits.

CORBAservices: Common Obj&arvices Specification

15

® Securityassociions canprotect the integrity of the security information in tsar
between client anthrgetobject (e.g., credentials, keys) to prevent theft and re
and keep the keys used for protecting bessdata confidential.

® Business data can be integrity-protected in transit so any tampering is detec
using the message protection OR&vices. (This includes detecting extra or
missing messages, and messages oséaiiene.)

® Unauthorized access to objects istpobed usingaccess controls.
® Misuse of the system can be detected using auditing.

® Segregating (groups of) applications fraach other and securigervices from
applications can prevent unauthorized access between them.

® Bypassing of seaity controls is detrred by use of a Tated Computing Base
(TCB), wheresecurity is automataly enforced during object invotan.

Assurance arguments and evidence are frequently founded on the concept of a Tt
which mediates security by segregatinggbeurityrelevant functions into security
kermel or reference monitor.

A traditional monolithic TCB app&ach is not suitable for the open, multiuser, multip!
environment situations in which most CORBA users reside. In roaggs, for example
secure interoperability of CORBApplications and ORBs may lbased on mutual
suspicion. TCB scability issues also argue against typical T&iproaches. Given the
complexity of distributed systems, it is not clear whether cen¢@dlaccess mediation i
possible in the presence of distribd data and program logic.

Traditional TCB appmaches also do not adequatatidress apjmation security
requirements, particularly for many commereipplications. Apptiations common to tt
CORBA world such as general purpose D88/ financial accounting, electronic
commerce, or horizontal commdecilities will have many securityequrements in
addition to tlose that can be enforced by a central underlying TCB.

Despite the limitations of the traditional TCB, we use thecephof adistributedTCBIn
the assurance discussions of the next section. The concept of a distributed TCB i
collection of objects and mechanisms that must be trusted so that end-to-end seci
between client and target object is ntained. However, note that depending on the
assurance requirements of a particular CORBA security architecture, sensitive da
still be hanlled by “untrusted” ORB code. Thus, our informal use of the distributed
concept may not correspond to other existirogleis for network TCBs, patrticularly fo
minimal assurance commercial CORBA securjiplaations.

E.3 Guidelinedor Structural Model

This sectiornprovides architecture and implementation guidelioethe structural radel
of the CORBA security architectudescribed irSection 15.4, Security Architecture. T
security functions provided in the model and the Hasitrust are desibed.

SecurityService:v1.0 NovemhE996 15251

15

15-252

E.3.1 Security Functions

Figure E-1 outlines interactions during a normal use of teesy. It gves a simple cas
where theapplication is unaware of securitye@pt for calling a security sece such as
audit. The security interactions include those seen bycatiphobjects angecure objec
system implementors.

object reference

RN
Target
Object

non repud
audit etc.

Application View

System
Impementor’s View

security tokens
transformed request

Figure E-1 Normal System Inteactions

This diagram is the basis for the discussions of security functions in each of the se
object models derbed next.

E.3.2 Basis of Trust

Enterprise management is respbitesfor setting the overall security policies and ensu
system erdrcement of the policies.

The system deveper and sgtems integrators mugtovide a system that pports the
requred level of assurance in the ceexurity functionality. Gemally application
developers cannot be expected to be aware of all thatstio which the sfem will be
subject, and to put the right counteasures in pize.

Higher levels of seaity may require the code enforcing it to be formally evaluated
according tcsecurity citeria such as tse of the US TSEC or Ewopean ITSEC.

CORBAservices: Common Obj&arvices Specification

15

Distributed Trusted Computirgase

The key security functionality in the stgm is eforced trarsparently to the application
objects so that it can be provided for application objects, which are secuantam This
key functionality is contained in the distributed TGBhe system. It is therefore
responsible for ensuring that:

Users cannot invoke objects unless they have been agttedt (unless the
security policy supports unauthenticated, guestas for some services).

Security polcies on access control, audit, asaturity association are em€ed on
object invocation. This inclles policies for ressage protection, both
confidentiality (ensuring confidential data cannotrbad) and intedty (ensuring
any corruption of data in transit is detected).

A principal’s credentialsare automaticallfransirred on object inacation if
regured, so the access control and otbecurity pokies can be enforced at the
server object.

Application objects which do not trusach other cannot interfewith each other
The security policy betweedifferent security policy domains is suitably media
The security mechanisms theglves cannot be tampered with.

The security policy data cannot be changed except by authorized adnongstre

The system cannot be put into an undefined or insecure state as a result of
operation of nonprivileged code.

The distributed TCB also needs to provide theireglinformdion so thatpplications
can effiorce their own securitgolicies in a way that is consistent with the donsasiourity

policy.

SecurityService:v1.0 NovemhE996 15253

15

(Applicationé
\ -

e H - - - - — — _ _]

-
I (Distributed) Trused Computing Base

ORB

Binding Services

Core ORBs and OAS

lower layer
communicationsg

SecurityObjects
(Principal AuthenticationCredertials, Security policies,
Vault, Security Contexthccess Decision)
|

External Security Seices

Operating System, Hardware

Figure E-2 Distributed TCB

The TCB in an OMA-compliant secure system is normally distributed andiesclu
components as follows.

®* The distributed core ORBs and associated Objeltpters
Core ORBs are trusted to function correctly aadl the ORBSecurity ®rvices
correctly in the right order, but do not need to understand what these do.
Object Adapers are trusted to utilize the eqating systemdcilities toprovide the
requred prdection boudaries baveen components in line with the security po

® The associated ORB Services
ORB Services other than security arested sinilarly to the ORB. ORB Security
Services are used to provide tregured security on object invocation.

* Related objects
ORB Services use objects such as the binding ame@uo find which security i
requied.

® Security objects
Security objects include those available to applications such as Principal
Authentication and Credéials and those called tsecurity intercepirs (Vault,

15-254 CORBAservices: Common Obj&srvices Specification

15

Security ContextAccess Decision, and Seady Audit). These are tsted to
function correctly to enforcsecurity in line with the securitgolicy and other
requirements.

®* Any external securitpervices used by the securdigrvices, as part of enforcing t
security policy.

®* The supporting operating systems.
These are trusted to ensure that objects (in different trust domains) cannot i
with each other (using protection domains). The security services should also
that the security information driving the security policy (such agith@entials an
security contexts) is adequately protected fromapplication objects using suct
features.

® Optionally, lower layer communications software. However, this does not gen
need to be particularlgecure (at least for normal com it security) as
protection of data in transit is done by the security association and message
protection interceptrs, which are independent of the underlying communicatic
software.

A distributed system may be split into domains, which have differentityepolicies.
These domains may include ORBs and ORB Services with different levels of trust
between domains needs to be establisland an interdomapolicy between them
enforced. The ORB security s&res (and eternalsecurity srvices that these call) to
provide this inerdomain working are part of the distributed TCB. Note, therefore, th
parts of this TCB in different domains may have different levels of trust.

Note that application objects may ende their owrsecurity paktes, if these are
consistent with the policy of the security dom &towever, failure to enforce these
securely will affect only thapplications concerned and any other applicatlgects tha
trusted them to perform this function.

Protection Boundaries

The generalgproach is to establighrotection boundariesaround groups of one or mc
components, which are said to belong to asspondingprotection domain.
Components belonging to a protection donmeaim assumed to trust each other, and
interactions between them need not be protected from each other, whereas intera
across boundaries may be subject to controls. Protection Boundaries and Domain
lower level corept than Environment Domains; they are the fundamental protectio
mechanism on which higher levels arelbui

At a minimum, it must be possible to create protection Havasbetween:
* Application components that do not trust each other.
®* Components that support securigrvices and other components.

® Components that support securigrvices aneach other.

SecurityService:v1.0 NovemhE996 15255

15

Controlled Communications

As well as providingrotection boudaries, it is necessary poovide a contilled means
of allowing particular com ponents to interact across protectiondaoigs(for example,
an appkation invoking a Security Object (explicitly), or an interceptor (implicitly).

Itmust not be possible for ajgations to bpasssecurity sevices which eforce security
policies. It is tlerefore necessary to ensure that the components suppoadsegstbrvice
are always invoked when required. This is achieved by using both protection besir
and contrded communications to ensure that client requests (and serversespane
routed viathe components (interceptors and Security Objects), which implement t
securityservices.

Figure E-3 illustates the segregation of components implementing securnigeginto
separat@rotection domains frorapplication components; the only means of
communication between components is via controlled conoation paths.

Logical Object Request
-

|
‘ Security Services
|
\
\
\
\
|

>
L

Base Protection & Communications

Figure E-3 Base Pratction and Communications

In implementation terms, components could, for example, be execlidefdamate
processes, with process boundaaieting as protection boundaries. Altatively,security
services could be executed in-process with (i.e. in the same address space as)
corresponding client angerver application com pontn prosided that they are adegigly
protectedrom each other for exanple, by hardware-@ported mitilevel access contre
mechanisms).

Figure E-4 shows two exantes ofprotection boudares. In the first example, the
boundaries between components might be process boasdarthe second example,
ORB and security components might be protefitad applications by memory
protection mechanisms (e.g. kernel asdnspaces) and client and server componen
might be protected from each other by physical separation.

15-256 CORBAservices: Common Obj&srvices Specification

H

Q

\
\
OO
: Security etc.

rdware and Operating System””

Server) Applications

ORB

Figure E-4 Protection Boundaries

E.3.3 Construction Options

For some systems, the TCB in domains of the distributst@rsymay red to meet
security evaluation criteria for both functionality and assurance (in the correctness
effectiveness of theecurity functionality) as defined in TCSETIEC, or other securi
evaluation criteria.

The splitinto components previously debed albws a choice over the way thessym is
constructed to meet different requirements for assurance and performance.

This sectiondescribes three options for how theteyn may be catructed, as follows:
* A commercial sgtem wlere all applications are generated using trusted tools.
* A commercial sgtem with limitedsecurity reqirements.

® A higher security sgtem.

Note: These are just exates to show the type of flexibility provided by the security
model. It is not expected that any implem entation pviblvide all theoptions implied by
these.

Example Using Trusted Generation Tools and ORBs

If all appications are generated using trust@ols, applications can be sied not to
interfere with other components in the same environment. Theretmeithno eed to
provide proection boundaes betweenlifferent applicatiorobjects or between
application olgcts and the underlying ORB.

If the ORB and ORB Services are alscstad, there may need be no need twide a
protection boundarpetween the ORB and the underlying sigisewrices and olgcts. It
may well be acceptable to run them all in the same gsocelying on the trust betwee
the components, rather than more rigidly eoddrboudaries.

SecurityService:v1.0 NovemhE996 15257

15

15-258

However, if the appdation generation tools and the ORB assltrusted than tlsecurity
services, then #tre may need to be a protection boundary to preaegdss to seaty-
sensitive information in the €dentials, Security Context, and Vaolifjects.

Commercial System withmited Security Requirements

Some systems may nhot contain verys#ive business iiormation, so eterprises may nc
be prepared to pay for a high levebketurity. They may also know that thebability of
serious malicious attem pts to break the system is lowgaoide thaprotecting against
such attempts is not worth the cost. They nag ehoose not to sacrifice performance
better évels of sectity.

In many systemspplications are g@mated using tools that are not particularly truste
For example, using a C cquiter, it would bepossible to wite anapplication that can
read, or even alter, any infoation within the samprotection domain. Theoretically,
providing good security implies puttingotection boundaries between eagplication
object, and between applications and the ORBZewlirity Sarices.

The security nodel allows emironment domains to be deéd, where enforcement of
policy can be adeved by means local to the environment. For example, objects in
same identity domain can share a security idemjtplications belonging to environme
domains may trust each other not to interfere with each other, and so can be put i
same protection domain.

Itmay also be aeptable to rufpart of) the ORB in the same peotion domain as the
applcation objects. This assumes that an imtegfboudary betweerapplcations and th
ORB is sufficient protection from accidental damage (tlobalility of an apjtation
corrupting an ORBeing low in a commercial system). Even if tqgplication does
corrupt the @B, damage is limited, as the ORB does not haselterrity-sensitive data

In some commercial sfems, it may also kecceptable to run some of the ségu
services in the sammotection domain as th@plication and ®&B. The chance of #se
being accidetally (or malciously)corrupted may be low, so it may be acceptable tor
failure to enforce thaccess control policy because the Access Decision object is c

However, it will often be desirable to protect the state information ofigeabjects,
which contain very sensitive security information from dipglications.

Higher Security System

In a security sgtem requiring high assurem, different securitypolicies may be used. F
example, label-based access coistmay be used and these may be mandatory (set
administrator’s controls) and not changeable byieajibn objects.

Stronger protection boundes are also likely to be needed, allowing:

® Individual applications to be protected frarach other. Even if environment
domains are used, the size of the domain is likely to adlem

®* The ORB and ORB Services to pmtected from the application.

CORBAservices: Common Obj&arvices Specification

15

® The core security objects, which contain security-sensitive information such &
to be protected from applications and ORBSs, etc.

® Particdar secure bjects(e.g. the Access Decision objects) to beasage from
others, as they may have been written by someone less trusted than those
wrote, for example, th8ecurity Context objects.

E.3.4 Integrity of Identities (Trojan Horse Protection)

In traditional procedtal systems, potecting the integrity of an identity is
straightbrward; programsare stored in files, which apgotected against modificatic
by operating system access aohimechanisms. When invell, programs run igide a
process whose address spacprigected by operating siem memory proteion
mechanisms. Programi@ad code in fairly predictable ways.

Since this specification does not mandate which iesttiavedentities, implemenors
have a wide vdety of choices; identies may be associd, for example, with the
following:

® Object irstances
® Servers
® Object adaptors

® Address spaces

If identities are associated witlbject instarces, precaionsare necessary forevent
object instance code from being modified by other code (which raag hoidenity,
or a different identity) in the instance’s addrepace.

Servers mayermit dynamic instatiation of previously unknowilasses into their
address spaces. This makedifticult to determine whatode is running under an
identity if identiies are associated with servers; this in turn makeifitult to
determine whether a server identity can be “trusted.” Identified servers reustoiie
be provided with some way of controlling whaide can run under ¢lir identties.

Observing the following guidelines will help to ensure integritydehities.

® Code running under one identity must notpeemitted to nadify code running
under another identity without passing an authorization check.

® |t must be possible for an ideri&fl “entity” to control which code runs within t
scope of its identity.

E.4 Guidelinedor Application Interface Model

This sectiorprovides architecture and implementation guidelfioetheapplication
interface nodel of the CORBA security architectutescribed in Sectioh5.4, Security
Architectue. The security functionsrovided in the model and the bafsistrust are
described.

SecurityService:v1.0 NovemhE996 15259

15

15-260

E.4.1 Security Functions

Logging onto the System

When a user or other principal wants to useaure object stem, it authenticatétself
and obtains credéials. These camin its certifieddentity and(optionally) privilege
attributes, and also controls where and when they can be used. Ttiisgbimiorm ation
is integrity-protected and it should pessible to ascertain whsgcurity serviceertified
them.

Walkthrough of Secure Object Invocation

The following is a walkthrough of what happens when a client invokes a target obj

®* The client invokes the object using its object reference. The ORBiyeSarvices
are trargsparent to the client angaplication object and use the security informati
with the object reference and the security policylégide on theecurity facilites
required. There are separate ORB Servicessémurityassociations, message
protection, and aess control ombject invocéion, but the audiservice can be
called by any or none of these according to security policy.

The client and target objeestablish the redred level of trust ineach otler,
transmitting security tokens to each other to provide the required degpeaobf
For example, they may or may metjuire mutual authentication. It is expected
most security mechanisms will provide options here, though the details of ho
do this, and the form of tokens used, is mechanism dependent.

The prircipal’s credenials are norrally passed from client to target object
transparently. Tése should berotected in transit from theft and replay as well
for integrity of the information itself (though sonsecurity mechanisms may no
support this). The Vault objegtill validate trese, checking that it trusts who
certified them, as well as whether they are still intact.

Different ORBservices may be called at the target end. For exarapdess contrc
is normally called at theerver, rather than the client.

® Once the security association has bestablished between client and target obj
the request can be passed using the message protection interceptor to protec
should be able to provide integrity and/or ddehtiality protection. It shouldlso
be able to provide continuous authentication, as the messages will be protec
using keys only known to this client and server (or the trust group for the tai
object).

® The application object may alsall securityservices for access control and aut
These will use theecurity informatioravailable from the environment tdentify
the initiating prircipal and its privileges.

CORBAservices: Common Obj&arvices Specification

15

®* This application object may now act as a client, aaltlfurtherobjects. It may
delegate the client’s credentials or use its own (or use both). Howesrer,rtiay be
constraints on whether the client’s credentials can be delegated. Fgrlexam
particdar principal’s credentials may be conained to particular groups of obje

E.4.2 Basis of Trust

Users have some trustamplication objects, and applicatiobjects have some trust in
other objects. Both may:

® Trust application objects to perform the besia funtions.

® Have limited trust in some applications, or domains of the distributed systemn
restrict which of their privilege attributese available to these objects.

® Want to restrict the extent that their credentials can be propagated at all.

® Have to prove thir identity to the system so it can ende access on their beha
unless they are only going to access publicigilable services.

Both users and applications trust thelarlying system to dorce the sgtem security
policy, and therefore protectehr information from unauthozied access and corruptior

E.5 Guideline$or Administration Model

This sectiorprovides architecture and implementation guidelioethe administration
model of the CORBA security architectutescribed in Sectiob5.4, Security
Architectue. The security function@ovided in the model and the bafsistrust are
described.

E.5.1 Security Functions

Object and Object Reference Creation

When an object is created in a secure object system, the security attribo¢cegedsvith
it depend on the securipolicies associated witits domain and object type, though th
object may be permitted to change some of these. These attributes control wiitgtis
enforced on object invocatidor example, whether access control is needed asal, the
Access Decision object to be used; the minimum quality of protectéried).

The object reference for a such an object is extended to includessouréy ifformation.
For example, it may cdain:

®* An extended identity. This includes the object identity as normal in an objec
reference. ldwever, it will also contain thiglentity of the trust domain, if the obje
belongs to one. Small objects, which are dynamically created and do not nee
protected from each other, will normally share a trust domaiateThould also be
node idenity.

SecurityService:v1.0 NovemhE996 15261

15

® Security policy attributes reded by the object when invoked by a client such
the minimum quality of prection of data in transit.

®* The security technology it supports. It malgo corain some mechanisrspecific
information such as its plib key, if public key technology is beinged, and
particdar algorithms used.

Much of the information is just “hints” about which security is required, and will be
verified by the ORB services supporting the taggéect, so does not need poting.

E.5.2 Basis of Trust

Authorization Policy Information

Domain objects may store policy infortiom inside tkeir own encapdation
boundaries, or they may store it elsewhere (for @lamauthorization policy
information could be encapsulated in the state data of the protected objects ther
or it could be stored in a procedural Access Control Manager whose inteafaces
accessible to Domain objects). Wherever authorizgbmlity information is stored, |
must be protected against modification by unauthorizetsu

Authorization policy ifiormation must be moddble only by authorized administrator

Audit Policylnformation and Audit Logs

Audit policy information is security sensie and must berotected against
unauthorized modification. Audit logaresecurity sensite and may contain private
information; they should be viewed and changed only byosizthd audibors.

® Audit policy information must be modifiable only by authorized audit
administrators.

® Audit logs must be protected against unauthorized exdminand modikcation.

E.6 Guidelnes for Security Object Implementation Model

15-262

This section provides architecture anglementation guielines for the security objec
implementation nodel of the CORBAsecurity architecturdescribed in Section 15.4,
Security Architecture. The security functigprevided in the model and the bafsistrust
are described.

E.6.1 Security Functions

The distributed core ORBSs, object adapters, GB&irity srvices, and securitgbjects
provide the uderlying implementation to support thpg@alication and adminisdtion
interfaces.

CORBAservices: Common Obj&arvices Specification

15

E.6.2 Basis of Trust

Target Object Identities

CORBA objects do notdve unique identities; for this reason, wioéjects that are not
associated with a human user authenticate themselves in a secure CORBA systel
use “security nams.” Sucessful authentication to a target object indicates that it
possesses the authenticatitata (perhaps a gojographic key), which is presumed to |
known only to the legitimate owner of the security name. Aratlsjsecuty name may
be included in references to that object as a “hint.” The question “h@pgications
know that the security-name hint is reli@®l naturally ases.

The answer is as follows:

* |f the EstablishTrustinTargetecurity feature ispecified, then theecurityservices
defined in this specification i authentcate the targesecurity name found in th
target object referae. The semantics of this authentioca operation include an
assumption that the security name in the reference corresponds to an identi
the user is willing to trust to provide the target object’plémentation. Tare is nc
way for the security services to test tassumption.

® If your implementatiorprovides a trusted source of objecterefces, then
everything vill work properly. If you do not have a source of trusted object
refererces, the specification providesgat_security_names operation on th
object reference through which applications canee¢ the target'security name
and perform any tests, which maglf satisfy them of its validity.

CORBA object refereres can circulate veryidely; for example, they can be
“stringified” and then (potentiallyyopied onto a piece of paper. Implementations wit
very high integrity requirements could ensure that refergare trustworthy by providir
a trustworthy service that generates refeesrand cryptograptally signs the contes,
including the target security name.

Assumptions about Security Association Mechanisms

Im plementation of a secure CORBA system requires use of security mechanisms
enforce the security with the required degree of protection against ¢agstHror
example, cryptographic keys are normally used in implementing security, for funct
such as authenticating users amotecting data in transit between objects. ldogy,
different security mechanisms may use different types of cryptographic technology
secret or public key) and may use it in different ways when, for example, protectin
in transit. Trese crptographic keys hve to be managed, and again, the way this is d
mechanism specific.

A full analysis of how well an implementation counters thredls requis knowledge ¢
the security mechanisms used. However, shicification does not dictate that a
particular mechanism is used.

It does assume that the setyumechanisms used for authentication and security
associations can provide the relevant ggcaountermeases listed in Section 2.4,

SecurityService:v1.0 NovemhE996 15263

15

15-264

Countermeasures. These arpented to be provided by a numbeseturity
mechanisms, which will be available for protecting sealject sytems. Therefore, th
analysis of threats and the trust model assume this facility level.

It would be possile to use a security mechanism that does not provide some of the
facilities (for example, mutual authentication, or even to switch this off poowe
performance in systems that canopde it). However, if such a system isused, it will
vulnerable to rore threats.

Invoking Special Ojects

Some of the objects described in tihicument are “pselo” objects, which byass the
normal invocatiorprocess and therefore are not subject to the secufdyced by the
ORB services. Th€urrentobject (usd, for example, by the target object to obtain
security information about the client) is of thipéy Protection of these objects isyaded
by other means, for example, using protection Hauies previously desbed.

Isolating Security Mechanisms

Figure E-5 depicts hosecurity functionality and trust distributed throughout the
architecture.

Application
may be seurity unaware
may enforce apjmation security policy

core ORB and OA
must function coectlye.g.
invoke required interceptors
in right order

ORB security iterceptors
must function coectly
ensure safrity enforced

5 -must enforce segurity
— Non- |
Audit repudiation

The split of securitypbjects is designed to redu@s much as peible) the amount of
security-senfive information, which must be sible toapplications and &Bs.

Decision

Security Access
Context

Figure E-5 Distribution of Security Functionalitgnd Trust

® Only log-in applications (where provided) need to handle secrets such as pas
and then only briefly during authenaiton .

CORBAservices: Common Obj&arvices Specification

15

® Cryptographic keys and other security-sémsiinformationaboutprincipals are
held with Credentials objects. feeences to Cedentials objectare visible to
applications so they can invoke operations on them to, for exareplece
privileges in the credentials e calling an object. However, nperations on th
Credentals provide visibility ofsecurity information such as keys.

® Security information used forotect application data in transit between objects
held in Security Context obj&s which are notisible to applicions atall. (Target
applications can ask fortebutesassociated with an incoming ine@tion using th
Current object.)

Securityobjects such as €dentials, Security Context, andd®ss Degsion objectsare
also not used directly by there ORB, only by the security interceptors. Therefore t|
core ORB needs to be trusted to call the interceptors correctly in the right order, b
not need to understand security avh access to treecurity-serisive information in
them.

The split also is intended to isolate components which m agfdteced to change seity
policy or security mechanisms. For examplagpace the aess contrgbolicy, the
Access Decision objects need to be changed.eiderythe access control interceptor
remain responsible for finding and invoking the rigltic&ss Decisioobject. To replace
the security mechanisms for security association, only the Vault andiagdSecurity
Context objects need to be replaced.

Integrity of the ORB and Security Service Objects

Security in a CORBA erironment depends on the correct operation of the ORB
Security Services. lorder for these mechanisms to operate correctly,ahheniing
rules must be followed.

® The ORB and Vault code must not be modifiable by unauthorized users or
processes.

®* The ORB must protect all messages, according to policy, using the message
protection interéces.

®* The ORB must always check the client’s authatitm bebre dispatching a client
message to a protected object.

Safeguarding the Object Environment

To guard against unauthorizeddification of the ORB andecurityservices,
implemenbrs should use Operating Systgmotection mechanisms tsolate the ORE
and SecurityService objects from untrusted applications and user code.

Note that some modifi¢@ns of ORB or Vaulicode may not copromise system
integrity. For example, in a CORBA pplementation, whichelies on tird-party
authentication and does not share Vault or ORB objecigeletprocesses, corruptic
of the client-side Vault (or ORB) by user-written code may notpromise system
security. (This is because thkent-side ORB and Vault in a third-party-based sys

SecurityService:v1.0 NovemhE996 15265

15

15-266

may, depending upon the implementation, contain only information thatstrasu
entitled to know and change anyway. In tbése, nothing the user can do to
information on his machine will enable him to deceive the thadypautheritation
server about higlentity and crederwls.)

Safeguarding the Dispatching Mechanism

To ensure that the ORB always checks the client’s authorization before dispatc
client’s message to a protected object, ORBl@menbrs should follow one of the
following rules.

® Eliminate “direct dispatching” mechanisms (whiparmit clients to dispatch
messages directly timrget objects without going through the ORB).

* Permit “direct dispatching” only after checking authorization and issuing “rest!
object references” to client objects. A “restricted object reference” is one that
access only to those methods of the target object, which the client is authori
invoke.

Safeguarding Information in Shared Vault Objects

Vault objects encapsulate identity-specific, security-sensitive information (forpes
cryptographic keys associated with Security Context objects). If code owned by
principal can penetrate a Vault object and examine adify another pricipal’s
information, security can be cqromised.

In an implementation thatogs not permit sharing of Vault objects by multiple
identities, this problentoes not arise. However, if Vault objects are asibéssto anc
encapsulate information about multiple idelett the following guidelines should b
observed:

* Do not permit a Vault object, which encapsulates one princifalsirity Contexts
to exist in the same address space as code running und@&rendiprincipal's
identity.

® |f a Vault object contains Security Contexts for tdiffierent principals, ensure th
no principal is able to obtain or use anotipeincipal’'s Security Contexts.

CORBAservices: Common Obj&arvices Specification

15

Appendix F

F1

Introduction

Conformance Statement

A secure object stem, like anysecure system, should not oplovidesecurity
functionality, but should also provide somssurance of the correctness and effectiss
of that functionality.

Each OMG-corpliant secure or security ready plementation must #refore include in
its documentation a conformance statendascribing:

® The product’'s supported security functionalgyels and optionssecurity
replaceability, and security interoperability, asd@ed in Apendix D,
Conformance Details.

® The vendor’'s assurance argument that demonstrates how effectivlgothect
provides its specifie@ecurity functionality and security poies.

® Constraints on the use of the product to ensure security conformance.

The vendor prodes the coformance statement so that a potamproduct user can mal
an informed desion on whether a productappropiate for a particulaapplcation.
Ordinary descriptivelocumentation is not required as part of an OMG-com pieottu ct.
However, because the CORBA secusipecification provides a general security
framework rather than a single model, there are marigrdiit kinds of secure ORB
implem entations that conform to the framork.For example, some stems may ave
greater flexibility and spport cilstomized sectity policies, while other systems may
come with a single built-in paly. Some systems mayrive for a high level of security
assurance, while othersopide minimal assurance. The conformanegeshent will lelp
the user understand the security featpresided by the product.

Some prodats willundergo an independent fornsakturity evaluation (such as ones
meeting the ITSEC or TCSEC). The OMG security conformance statement does r
the place of a formal evaluation, but may refdiotmal assurance documentation, if i
exists. When formal evaluations are not required (oftecdlse in commeral systems),
it is expected that the product’s security conformanaterstentilong with supporting
product documentation will provide an adequate description of security functionali
assurance.

SecurityService:v1.0 NovemhE996 15267

15

F.2 Conformance Template Overview

15-268

The following template specifies the contents for CORBA security conformance
statements. Gdelines for using this tepfate are provided in Section, Gormance
Guidelines.

1.

CORBA Security Conformancedement

<date>
<product identification>
<vendor identification>

Introduction

1.1 Summary ddecurity Conformance
1.2 Scope of Product

1.3 Security Overview

Security Conforrance

2.1 Main Security Functionality Level
2.2 Security Functionality Options
2.3 Security Replaceability

2.4 Secure Interoperability

Assurance
3.1 Philosophy of Protection
3.2 Threats
3.3 Security Policies
3.4 Security Protection Mechanisms
3.5 Environmental Support
3.6 Configuraibn Constraints
3.7 Security Policy Extensions

4. Supplemental Product Information

CORBAservices: Common Obj&arvices Specification

15

F.3 Conformance Guidelines

The guidelines in this section are indenl to help the ORB implementor determine wi
information belongs in each section of the conformarateratent. The statement will
often be accompanied by product documentationdwige some of the information

needed.

1. Introduction

1.1 Summary of Securiyonformance

This section shouldige a summary of theecurity conformancgrovided by the produc
The summary is in the form oftable with boxes that are ticked to show thevaht

conformance.
Main
Functionality || Functional Security
Level Options Security Replaceability Interop erability
1 2 Non- ORB Secuiity | Security Security Standard| Stadard
repudiation || Services| Services | Ready - Ready - + DCE-
ORB Secuiity CIOP
Services | Services

For the mairsecurity functionalitydvel, one of the boxes must be selectitiér Level 1
orLevel 2), though note that an ORB can be just Security Ready, so does not sup
either of the main security functionaligviels. Fossecurity functionality options, secur
replaceability, andecure interopability, the gpropriate boxes should be selected.

1.2 Scope of Product

This section should define what security com ponents this product offers. Example

®* ORSB plus all securitygervices neged to support it plus other objesrvices fitting

with it and meeting the assuranadteria.

® Securityready ORB.

® Security Services, which can bead with asecurity-ready ORB.

1.3 Security Overview

This section should give anewiew of the product’security features.

SecurityService: v1.0

NovembEd96

15-26€

15

15-270

2. Security Conforrance

2.1

2.2

2.3

2.4

Main Security Functionality Level

This section should define which main security functionality level this product supj
Level 1 or Level 2.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specifiion and how it is suppad, any bells an
whistles around the fmlished irterfaces, and any limitations on support for thisel.

As in the conformance level descriptions, the description should lediiito:
® The security functionalitprovided by theproduct
®* The application developer’s terfaces

®* The administrative interfaces
Security Functionality Options

This section should define which functionality opti@ms provided, iparticular the
support for non-repdiation.

For non-repudiation, as this is a publisheéiiféce in this specification, it should be
accompanied by a qualification statementeiéded, as for the main security functione
level.

Security Replaceability

This section should define whether the product supports replaceabdéguofity
services, ORB services, cegither.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security spec#iion and how it is suppad, any bells an
whistles around the flished irterfaces, and any limitations on support for this
conformance option.

Secure Interoperability

This section should define whether the product supportdatdrsecure interoperability
standard and DCE-CIOP interoperability, or neither. As with theéiqure sections,
gualifications of the spport, interpretations of the CORBA specification, and limitati
should be included as needed.

3. Assurance

If the product already has supporting assurance documentation (fqulexamcause it |
being formally evaluatd), much of this section may be satisfied bygnmefices to such
documentation. Appendix E, @lelines for a Trustworthy Sgem, povides general
discussions of many of the topics describeteh particularly the basis of trust needed
each of the architegte object models.

CORBAservices: Common Obj&arvices Specification

15

3.1 Philosophy of Protection

Overview of supported securipolicies, security mechanisms angbparting
mechanisms.

3.2 Threats

Desciption of specific threats intended to &ddressed by the systamcuritypolicy, as
well as those not addressed.

3.3 Security Policies

Desciption of any predefinegolicies, including

Classes of entities (such as clients, objects) controllesetyrity policy

Modes of accesgonditions that allow active entfs to accessbjects)

Use of domains (policy, trust, technology)

Requirements for authanation of principal, client and target objects
Requirements for trusted path between principals, clients, ORBsaayad object
Delegation model

Security of commuigations

Accountbility requirements (audit, non-re@iation)

Environmental assumptions of the policy (e.g. classeseaisy LAN/WAN,
physical protetion)

3.4 Security Protection Méanisms

Rationale forapproach

Identification of components, which must functiproperly forsecurity policies to
be enforced

Description of mechanismsed to enforce security policy
How protection mechanismese distibuted in the architecture

Why security mechanisms (such ascess control) are always invoked and tar
proof

3.5 Envionmental Support

How the underlying environment (such as operating systems, generation toc
hardware, ptwork sentes, time servicesecurity technologyare used in
providing assurance

How installation tools ensurgecure configuration

How security management and adiiration maintains secure configuration

SecurityService:v1.0 NovemhE996 15271

15

15-272

3.6 Configuraibn Constraints
Constraints to ensure that system security assurancesevpd, for example:
® Requirements on use and developmentlidnts, target objects, legacy softwar
® Limitations on interoperability

®* Required software and hardware configuration

3.7 Security Policy Extensions
® Supported securitpolicy extersions, ifapplicable
® Limitations of extensions
® Requirements imposed on devedws to ensure trustworthiness of policy extens

® Supported interactions and com positionseturitypolicies

4. Supplemental Product Information

Supplemental product information is included at thedegis discretion. It can besed to
descibe, for exanple:

® Additional security featus, not covered by the CORB®ecurityspecification

® The impact of security mechanisms on existing i@pibns

CORBAservices: Common Obj&arvices Specification

15

Appendix G

G.1

Introduction

Facilities Not ifthis Specitation

Security in CORBA systems is a big subject, whicle@® many parts of tHebject
Management Architecture. It was therefdexided to phase the specification in line v
the priorities agreed g@mrt of the security evaluation cri@by the Security Working
Group pior to the production of this specification.

This specification therefore includes tl@e security facilities and the security
architecture to allow further facilities to be added. Priorityliesn given to thse
requirements mostaeded by comercial systemsEven with these limitations, the size
the specification is larger than desirable for OMG members to review eakilywendors
to implement.

Some of the facilities omitted from thépecification are agreed to be raggdliin some
secure CORBA systems, and so are expected talded later, using the usual OMG
process of RFPs to request their specification.

This appendix lists isesecurityfacilities which are not included in trspecifcation, bu
left to later specifications, which may be in response to further RFPs for ObjecteSe
or Common Facilities.

G.2 Interoperability Limitations between Unlikeiains

Secure iteropeability is included in this specification. This allows apations running
under different ORBs in different domains tceirdperate providing that:

® Both support and can use the same security mechanisms (and algorithjrfer e
authentication andecure associations (an ORB may mup a choice of security
mechanisms).

® Use of these &tween the domains will not contravene any government regule
on the use of cryptography.

®* The security policies they support are consistent -- for example, use the sam
for privileges which can be understood in both places.

Limitations in thespecification which affect this type of interopbility are:

®* The standard policies defined do not includecHying differentpolicies when a
client communicates witbifferent domains (though it igossible to define specif
policies to do this).

®* There is no specification of the mappipglicies required to tralate attributes
when crossing a domain boundary where these policies aresistert, and how
these must be positioned, for example, tovaldeleg &on of the napped dtibutes.
Again, such mapping policies are not prevented.

® In general, there is ngpecificdaion of how tderatedolicies are implemented.

SecurityService:v1.0 NovemhE996 15273

15

® There is no specification of gatays to hadle interoperability betweesecurity
mechanisms. It is expected that only limited interoperability between darticu
security mechanismwill ever be provided, so this is notpected to be the subje
of an RFP in the foreseeable future.

G.3 Nonsession-Oriented SECIOP @l

The SECIOP protocol defined $ection 15.8, Security and Interopkility, assumes the
all underlying security mechanisms are sessigented. The currentpecification does
not support security mechanisms, which encapsulate key digintand other security
context management information in a singlessagalong with the data being protect
(examples of such mechanisms include those accessed through the projeoset in
IDUP-GSS-API interfag). Changes to the SECIOP protocol woulddsgired to suppor
non-session-oriented protocols.

G.4 Mandatory Security Mechanisms

The current specification does not mandate any partisatarrity mechanism which al
secure ORBs must implement. This is because the submitters did not think it was |
to specify out-of-the-box inteperabiity adequately in the timscale of this submg®n.

G.5 Specific Security Policies

This specification includes some standard types of sequoityies for sectity
functionality such aaccess control, dit, and security of invocations. €ke are aimed
general commercial users. Som ¢egpises may require otherggs of policies, for
example, support of mandatory access controls. Where there is a sufficientforasleh
policies, new policies may be definedoyiding they fit with the replacédity interfaces
defined in this specification.

G.6 OtherAudit Services

15-274

This specification only contains limited audit fides, which allow audit records of
security relevant events to bellected. It does not include:

® Filtering of records after generation to further reduce the size of the eaitlit t

®* Routing audit records to a catkion point for consatlation and analysis or routir
some as alarms to security adminigirat (However, routing may be done using
OMG EventService, if that issecure enough.)

® Audit reporting or analgis tools to use the audiails totrack down problems.

CORBAservices: Common Obj&arvices Specification

15

G.7 Management

This specification contains only the management interfaces, which are essential f
security policy management. It specifies how to obtain and use security policy obj
However, it does not contain:

® All facilities for hardling domainspolicies other than thogequred for security
policy administration. This is to avoid unnecessary conflict withtey
Management proposals.

® Management of some aspects of secufity. example, it does not specify how
create and install permanent keys, as this gémentation specific.

G.8 Reference Restriction

This specifcation requires the avement of azdentials to delegatecess rights from or
object to another. Another technique of access rigitgation restricts the use of an
object reference according teet of criteria. Thigpproach, know as reference
restriction, is under study by a number of vendors, but is not ready fdastization at
this time. The criteria used to restrict references could include:

®* Whether an object has the right to assert certain privileges, such as act on b
a principal, act on behalf of a grouppfncipals, act in a articular role,act with a
particdar clearance, etc.

®* Whether the object reference Haeen linited to use within a given time interva

®* Whether a particular method can be used by an object holding the obgehoe

Various techniques for restricting object references have deerbped. Some use
cryptographic methods, while others stoadesin theobject associated with the restric
reference, allowing thebject to decide if a method request meets the restricted refe
use criteria.

It is anticipated that vendors will ptore this type oaccess rights delegation and moy
towards the standardization of aterface spporting it in a submission to a future RF

G.9 Target Control of Message Protection

In the current specification, messagetection can be specified Ipplicy administration
at both the client and the targsject.

Requesting anperation on anbject mayresult in many other objects being invoked.
CORBA security specifation in this document allows anténm eliate object in such a
chain of objects to delegate received credentials to the next object in the chain (st
policy). However, the current specification does not allow the application to contro
and where theseaderials are usd. A laterspecification may provide such controls t
ride the default quality of protection selectively. Therefore, it could cause some me
to have different qualities of protection during a secuadigociation.

SecurityService:v1.0 NovemhE996 15275

15

The target has no equivalent interface to request the quality of protection for a par
response. Tére are cases where this could beful.

A future security specification should codet alding control of quality of protection b
the target for individual sporses.

G.10 Advanced Delegation Features

Requesting an operation on abject may result in many other objects being invol
The CORBA securitypecification in this document allows an intermediate objec
such a chain of objects to delegateeived credentials to the next object in the cl
(subject to policy).

However, the current specifiten does not abw the applicséion to contol when anc
where these credentials are used.

A later specification may provide such controls.

If so, it is expected thatset_controls operation on the Credentiabject will be
added to eable the apjdation to set the cdrols, and a matchinget_controls
operation to enable it to see what controls apply (seseth@rivileges and
get_attributes operations defined in Interfacesdem Section 15.5.4, Credentials

Theset_controls operation would allow the application tpesify a set of requéd
control values such as delegation mode (allowing for richer forms ofateley
restrictions on where the credentials may sediand/or deleged, andralidity period.

Note: These operations were not included in the specification because of caboern
portability of appkations using them. Current delegatiorplementations use aide
variety of delegation cordls, and some use similar controls in semantiadifferent
ways. Furtherimplementation experience and investigation may make it posdibiie &
a portable, standard set.

G.11 Reconciling Blicy for Overlapping and Hierarhical Domains

15-276

This specification does not requirggwrt foroverlapping or hierardéhal securitypolicy
domains. However, it is psible to implement both using the interfaces piteui

Recall fromSection 15.6, Admistrator’s Interfaces, that the DomainAccessPolicy f
each domain defines which rights grantedto subjects when they attempt to access
objects in the domain. In order to make an accessidecthe AcessDecision logic als
needs to know which rights arequiredto execute the operations of an object, which
member of the relevant domain. TRequiredRights interfaqarovides this iformation;

the AccessDecision object will probably use this interface in most implementation:

A RequiredRights instance can besged to determine which rights a user must t
granted in order to be allowed to invoke an object’s operations. The intended u
DomainAccessPolicy anRequiredRights objects by thecéess@cisionobject is
illustrated next, in Figure G-1.

CORBAservices: Common Obj&arvices Specification

15

DomainAccessPolicy RequiredRights

W
get_effectve_rights get_requied_rights

access_allowed .
- AccessDecision

Figure G-1 Intended Use by AccessDecision

AccessDecision retrieves the relevant policy object by calling
get_domain_managers on the target object refence, and theaalling
get_domain_policy(access) on the returned domain managassuming for
purposes of this example that there is only one). It then calls
get_effective_rights on the returned policy object. DomainAccessPotialls
get_required_rights on RequiredRights and compares the returned lisf
requred rightswith the effective rights. If all required rightave been grargd, it
grants the access.

Figure G-2 illustrates how the specification could be impleeateto sypport overlapping
access policy domains (i.e. to allowarject to be a member of more than one domz
such that each domain hasamtess policy and all domains’ access policies are app
In the diagram, the AccessDecisimbject must have logic to combine the policies
asserted by the various Aes®olicy objects (which may involveaduating which
AccessPolicy object’s policy takesggedence over the others). Note that the
AccessDecision object knows tteegetobject reference, because it is passed as an
parameter to thaccess_allowed operation.

SecurityService:v1.0 NovemhE996 15277

15

I‘ AccessPolicy
get_domainpolicy(access)
/
get_effectve_rights /
Target RequiredRights
1

get_domain_manag e\

access_allowed .
> AccessDecision

get_required_rights

Figure G-2 Supporting Ovedpping Access Policipomains

Hierarchcal domains can be handled in a similar way as illustrated in Figure G-3 (
that once again the AccessDecision object’s implem entati@spemdile forreconciling

the various retrieved policies).

15-278 CORBAservices: Common Obj&srvices Specification

15

AccessPolicy -

AccessPolicy 8

A

get_superior_domain_managers

e
Targe/t
e
. . RequiedRights
get_efective_rights get_domain policy (access) < g g >

4

get_required_rights

ain_manage

access_|pbwed .
- AccessDecision

Figure G-3 Hierarchical Domains

G.12 Capability-Based Aess Control

Capability-based stems storaccess policy information in tokens, which are passe
from serder to receiver along with a messagher than inables associated with targ
objects or domains. In such systems, the Do#aiessPolicy object will generally not
used in resolving target-side access control check®dd, a Capability AccessPolicy
object might be returned fromcall toobject::get_policies in a capability-base
system. This object could retrieve the granted rights froncdipality (which will be
associated with the requester’s credentials), illustrated in Figure G-4.

SecurityService:v1.0 NovemhE996 15279

15

Capability

get_granted_rights

RequredRights

get_efective_rights get_required_rights

access |bbwed

> AccessDecision

Figure G-4 RetrievingGranted Rights

Note that neither the Capétyi AccessPolicy interfaces nor the Capability interfaces
defined in this specification (thget_granted_rights call to the capality in the
previous diagram is priad in italics, to indicate that no IDL jgovided for it in this
specification). The diagram assumes that Capability AccessPoliajténthe
get_effective_rights operation fromAccessPolicy

G.13 Non-repudiation Services

15-280

This specification caiains Non-repudiation ®éces forevidence handling. It is
anticipated that future service offerings could include gettection processing and th
specification of a delivery sdce. In addition, it is expected thablicy processing
interfaces will emerge to cover theolhd range of non-repudiation policy coverage wi
the service.

It is anticipated that the data protection andveey service functions will beeaching a
level of matuity within other standards domains (such as IETF and38Q7), which
should allow a richer definition of these services to be enabled in future revisions
specification.

The absence of these services in this spatiin means that applicationriters and
manipulators will need to consutidal implementation practice for the cect course of
action to be taken when writing or porting their software.

This specification also does not include a standard format of evidence token for
interopeability. In the future, a token format based on public key certificates may be
specified.

CORBAservices: Common Obj&arvices Specification

15

Appendix H

H.1

Introduction

Interoperability Guidelines

This appendix includes:

® Guidelines for defining Secity Mechanism TAGs in Inteqmerable Object

Refererces (IORS)

®* Examples of the secure inter-ORB protocol, SECIOP

H.2 Guidelinedor Mechanism TAG DOmition in IORS

Section 15.8, Security andtamopeability, defined grototype TAG definition for
security association mechanisms. This appendix providdslgies thaspecifiers of
mechanism TAGs (called authors here) should follow.

In addition to registering TAGs with the OMG, authors must lodge a document tha
explains how the mechanism (and its associapgions) is mapped to this standard. It
document should:

® |dentify the "security mechanism tagged component" bdieggribed. It may be

either:

* A new component TAG for the mechanism with a set of options it can hav
example, a separate TAG feach combination of mechanism andaaithm),

or

» Use TAG_GENERIC_SEC_MECH and specify the mechanism OID (for us
the security_mechanism_type field) being described by this spedifation.

It may not be both.

Specify thescope implied by the above mechanism identifier. This should no
exceed:

e Securityassociation mechanism

* Negotiation protocols

» Cryptographic algorithms

» Authentication method (e.g. public key)

For the first example under thiest bullet, desdbe the format, contents, and

encoding of theeomponent_data field for the TAG-specific components. Fo

the second example under tlirest bullet, describe the format, contents, and

encoding of the data in thmech_specific_data and components fields of

TAG specific components. In eaclse, this may include:

« Allocating new component TAGs and describing the format, contents, and
encoding of their data.

» Specifying the use of these new tagged componentsethasvothepredefined
tagged components within TAG-specific components.

SecurityService:v1.0 NovemhE996 15281

15

» Specifying the use of these new tagged components, as well as other pre
tagged components that may or should appear at the top level of the
multicomponenprofile.

® Describe a model that should be followed when defining future sxiesn or
variations using the same mechanism.

® The author must define either by reference to anatbeument, or eulicitly, the
format of the context tokens used by the mechanism in the SECIQstqrot

H.3 SECIOP Examples

15-282

H.3.1 Mutual Authentication

In this example, the client wishes to authenticate the identity of the target (in addit
the targets reqrement to authenticate the client) before firispared to send a reques
the target.

The client sends an EstablishContext message to the target containing the client’s
id for the association, and the token required by the target to authenticate it and de
options chosen by the client for the association. The taggiétes the client’s token anc
generates the token required by the client to authenticate the target. The target se
token (along with the client’s context id for tassociation and its own) to the client in
CompleteEstablishContext message. When the clienvesctiis message, it
authenticates the target using the token supplied by the target and establishes the
part of the context.

Having completed the establishment of the context, the client sends the request as
MessagelnContext message, which idelsithe target’s context identifier and the intec
token for the message. When the targetives the nesage, it identifies the context by
identifier, checks the integrity of the message with the token, and passes the mes
GIOP. When the reply is retued, it is sealed for integrity and returned to the client i
SECIOP MessagelnContext with the client idéer for the context and the generated
integrity token.

CORBAservices: Common Obj&arvices Specification

15

Client establishes
contextobject id=
c_id_1 token=token_1 EstablisiContext (c_id_1,token_1)

[
|

Target establishes
contextobject
id=c_id_69
token=token_2

CompleteEstablishGuext(c_id_1,c_id_69,toke 2)

-
%

Client completes
contextand transmits
signed GIOP rquest

with sign=ms_1 \jessaginContext(peer.c_id_69,ms_1)(GIOP request)

-

Target checks

sign and processes
request signs reply
and transmits reply
with sigh=ms_2

Messag&Context (peer,c_id_1,ms2)(GI0&ply)

-
-

Client checks
sign and processes

reply

Figure H-1 Mutual Authentication

H.3.2 nfidential Message with Context Establishment

This example describes how context establishment is combined with the transmis:
confidertiality protected nessage when the client does not wish to authenticate the
before passing it a message.

The client establishes its context object with identifier c_id_1. This identifier is incl
with the token (tokenl) in an EstablishContextessage. The GIOP request is
transformed into the essageeal (ms_1) and sent with the client’s context identifier
MessagelnContext.

When the target receives the messadesttproceses the EsidishContext message,
authenticating the client and allowing the target to ciégatmntext object. It then spals
the message inms_1 andges it to GIOP.

When GIOP sends the reply, SECIOP adds a ComfpdeablishContext message to th
MessagelnContext essage, whicprotects the reply, to a@ble thaarget to returits
context identifier to the client. When the client receives the message, it first compl
view of the context (adding the targets id to the state for the context). It can tleahthe
reply from ms_2 angasses the reply message up the protocol stack.

SecurityService:v1.0 NovemhE996 15283

15

15-284

Client establishes
contextobject id=

c _id_1 token=token_1
SealsGIOPrequest into
seakFms_1

EstablshContext(c_id_1,token_1) MessagelnContext(
client,c_id_1,ms_1)
g
Target establishes
contextobject
id=c_id_69
Target unseals anc
processes request
seals reply and
transmits reply in
seal=ms_2
CompleteEstabishContex(c_id_1c_id_69,nul) MessagInContext (
peer,c_id_1,ms2)
-
Client unseals
and processes
reply

Figure H-2 Confidential Message with Context Estabtistnt

H.3.3 Fragmented GIOP Request with Context Establishment

In this example, the security context is established as part of the processing of a
fragmented GIOP request (note that the current Gi@Bcol does not support
fragmentation, but this example indicates the independence of SECIOP from the «
GIOP protocol and explains how tB&CIOP protocol would handle a fragmented G|
request). The sequence described reflects the requirement of the target to authen
client’s privileges.

The client establishes its contettject (with id ¢_id_1) and passes this identifier with
authentication token in an EstablishContexssage. As the client does not require
authenticating the target, this message is sent witesshfjelnContext message with
integrity sign (ms_1) and the Gl@Rgment (as the message field of the
MessagelnContext).

When the target recads the messag, it authenticates the client using tokenit then
creates a context object with ¢c_id_69, and then processes the MessagelnContext,
the integrity of the message using sign ms_1. Having checkedetseage, ipasses the
fragment up the protocol stack.

The client sends the final fragment as a MessagelnContext with signms_2, but as
target has not yet passed its identifier for the context to the client, the client usesi
identifier for the context.

CORBAservices: Common Obj&arvices Specification

15

The target finds its context object from the client’s identifteiid_1) and checks the
integrity of the message. It then passes the final fragment up the protocol stack to

GIOP now has a complete request and can invoke the object (subject tcetdge acc
decision function).

GIOP generates a single fragmesyly, which is passed to tts=CIOP prabcol machine
The reply is sent within a BssagelnContext with sign m3 In addition, a
CompleteEstablishContext message is generated to allow the target to pass its ids
for the contex{c_id_69) to the client for use in future messages.

The client receies the message anpdates its context adijt to record the target’s
context identifier. It then checks the integrity of the MessagelnContext and passes
reply up the protocol stack (to GIOP).

Client establishes
contextobject id=
c_id_1 token=token_1
Cleint signs GIOP

fragment with sign= EstablshContex{c_id_1token_1) MessagelnContext(

client,c_d_1,ms_1)(GIORragment)

ms_1 -
Target establishes
_ ' contextobject
Client signs final id=c_id_69 and
fragment with sign= chec_ks_théragment
ms_2

MessagInContex(client,c_d_1,ms_2)(GIORragment) sign

-
L

Target checks
sign and processes
request signs reply
and ransmits reply
CompleteEstablishContefc_id_1,c_id_69,nul) with sign=ms_2
Messag@InContext (peer,c_id_1,ms2)(GI®&ply)
-
Client checks
sign and processes

reply

Figure H-3 Fragmented GIORequest with Context Establishment

SecurityService:v1.0 NovemhE996 15285

15

Appendix| Gbssary

.1 Definitions

15-286

absolute timeTime accurate within a known margin of error.
access controlThe restriction of access to resources to pret@ninauthorized use.

access control informatioACI): Information about the initiator of i@source access
request, used to make ancess control dorcement decision.

access control listA list of entities, together with their access rights, which are
authorized to have access to a reseu

access decision functioriThe function which is evaluated in order to mak@aecess
control enbrcement deision. The inputs to an accessid®n function include the
requester'siccess control fiormation(g.v.), the esouce’s conrol information, and
context data.

ADO: Access Decision Objecthe CORBA security object which jplementsaccess
deckion functions.

accountability: The property that ensures that the action of dityanay betraced
uniquely to the entity.

active threat The threat of a deliberate unauthorized change to the state ©i€msy

adjudicator. An authority that resolves disputes among parties in accordance with
policy. In CORBA security, an adjutditor evaluates non-repudiation evidenoerifer to
resolve disputes.

anonymous userA user of the system operating under a distinguished "public" ide!
corresponding to nepecific user.

assurance 1. Justified cofidence in the security of astgm. 2Development,
documentation, testingrocedural, andperational activitiesazried out to ensure that
system'’s sedaity sewices do in fact provide the claimed level of protection.

asymmetric keyOne half of a key pair used in an asymmetric ("public-key") encryp
system. Asymratric encryption systems &ve two inportant poperties: (i) the key usec
for encryption is different from the one used for decryption (i) neither key can feas
derived from the other.

audit Seesecurity audit.
audit event The data collectedbout a sgtem eventor inclusion in the sstem audit log
audit trail: Seesecurity audit trail.

authenication: The verification of a claimant’s atiement to use a claimed identity
and/or privilege set.

authenfcation information: Information wsed to establish a claimant’s entitlementto
claimed idetity (a common exaple of authentication information ispassword).

CORBAservices: Common Obj&arvices Specification

15

authorizationt The granting of authority, which includes the granting of access bas
access rights.

availability: The property of being of beirarcessible and usable upon demand by a
authorized user

call chain: The series of client to target object calls required togieta an operation.
Used in this specification in conjunction with delegation.

certification authority: A party trusted to vouch for the binding between names or
identities and public keys. In some systems, certification authorities generate pub

ciphertext The result of applying encryption to inptdta; encrypted text.

cleartext: Intelligible data; text which has not been encrypted or which has been dec
using the correct key. Also known as "plaintext”.

confidentality: The property that formation is not madevailable or dis@sed to
unauthorized individuals, éties, or processes.

conformance levelA graduated sequence of defined sets of functionality defined b
CORBA Securityspecification. An implementation mustgiement at least one of the
defined sets of functionality iarder to claim conformance to CORBRecurity.

conformance optionA defined set of functionality which implementations may
optionally povide in order to claim CORBA Sedty conformant functionality over an
above the minimum required by tdefined conformancevels.

conformance statemenfA written documentiescibing the coformance lgels and
conformance options to which anplementation of the OMG CORBA Security
specification coforms.

control attributes The set of chracteristics which restrict when and where privileges
be invoked or delegated.

counkr-measures Action taken in response to perceived threats.

credentials Informationdescribing the security attributes (identity and/or privileges)
user or other principal. Credentials are claimed through authentication or delegatic
and used by access control (g.v.).

current object An object representing the current execution context; CORBA Secu
associatesecurity state iformation, including the edentials of thactive prirtipal, with
the current object

DAC: Discretionary Access Control - an access control policy reginegevhthecreator
of a resource is permitted to manage @sess control policy fiermation.

data integrity: The property that data has rogten undetectably altered or destroyed i
unauthorized manner or by unauthorized users.

DCE: Distributed Computing Environment (of OSF).

DCE CIOP:DCE Common Inter-ORB Protocol - the protogeésified in the OMG
CORBA 2.0/ Interopeability specification which uses the DCE RPC faetoperaility.

SecurityService:v1.0 NovemhE996 15287

15

15-288

decipherment Generation of cleartext from ciphtext byapplcation of a crptographic
algorithm with the correct key.

decryption Seedecipherment.

delegation The act whereby one user or principal authorizes another to use his (or
its) identity or privilegs, perhaps with restrictions.

denial of service The prevention of authorized access to resources or the delaying
time-critical operations.

digital signature Data appended to, or a cryptographic $sfarmation of. alata unit tha
allows a recipient of thdata unit to prove the source and integrity of the data again:
forgery, e.g. by the reggient.

domain A set ofobjects sharing a common characteristic or abiding by a common
rules. CORBA Security defineseveral tpes of domains, including securpplicy
domains, security environment domains, and security technology domains.

domain manager A CORBA Security object through wke interfaces the characteris
of a security policy domain are administered.

encipherment Generation of ciphertext fromorresponding leartext by application of .
cryptogaphic algorithm and akey.

encryption Seeencipherment.

ESIOP: Environment-Specific Inter-ORB Protocol (specified in the OMG CORBA
Interopeability specification).

evidence Data generated by the CORBA Security Non-Repudiatioricgeto prove tha
a specific principal initiated a specific eut.

evidence tokenA data structure containing CORBA Security Non-Repudiation evid

federated domainsSeparate domains whe policy authoritiesdve agreed to a set of
shared policiesgverningaccess by sers from one domain to resources in another.

GSS-APt Generic Securityservices- Apptiation Program ming kerface - specified by
RFC 1508 issued by thetamnet IETF. An pdate to this interface is near completion
this is written, and it is anticipated that RFC 1508 will be supersby a resed
specificationsoon.

GIOP: General Inter-ORB Protocol (specified in the OMG CORB® Interoperabity
specification.)

group: A CORBA Security privilege attribute. Many users (and other grads) may be
assigned the same group attribute; this allows administratoradifgi security
administration by granting rights to groups rather than to individuadipéts.

granularity: The relative fineness or coarsms by which a mechanism may be adjus

hierarchical domains A set of domains together with a precedeneedrchy defining th
relationships among their policies.

CORBAservices: Common Obj&arvices Specification

15

identity: A security attribute with the property of uniqueness; no two graisi identities
may be identical. Principals may have several different kinds of idengiéiels,unique
(for example, a priripal may have both a unique audit idéty and a uniqueaess
identity). Other security attributes (e.g. groupées, etc...) need not be unique.

immediate invokerln a delegated call chain, the client from which an object directl
receives a call.

impersonation The act whereby one priipal assumes the identity apdivileges of
another principal without resttions and without any indicatiovisible to regdients of
the impersonator’s calls that delegation has takaoepl

initiator: The first pringpal in a delegation “call chain”; the only participant in the ca
chain which is not the rguient of a call.

integrity: In security terms, thproperty that a system alwalaithfully and effectively
enforces all of its stated security policies.

interceptor An object which provides one or more specialized sesyiat the ORB
invocation boundary, based upon the context obthjectrequest,. The OMG
CORBASecurityspecification define the security interceptors.

intermediate An object in a delegtion “call chain” which is neither the initiator or the
ultimate (final) target.

IETF: Internet Engineering Tagkorce. Reviews an issues Internet standards.

IIOP: Internet Interoperable Object Protocol (specified in the OMG CORBA 2.0/
Interoperabilityspecification).

IOR: Interoperable Olect Reference - a data structapecified in the OMG CORBA 2.
Interoperabilityspecification.

ITSEC: Information Techology Security EvaluatioCriteria (of ECSC-EEC-EAEC).
Harmonized Criteria.

MAC: Mandatory Access Control - an access control regimeraitresource access
control policy information is always managed by a desiggh authority, regrdless of wh
creates the resources.

mechanism A specific implementation of security services, using particular algoritt
data structures, and poatols.

message protectiorSecurity protectiompplied to amessage to ot it against
unauthorized access or moddtion in transit between a client and a target.

mutual authentication The process wherelsach of two communicating prirpals
authenticates the other’s identity. Frequently this is a prerequisite festiiglishment c
a secure association between a client and a target.

Non-Repudiation The provision of evidence which wgrevent garticipant in an actio
from convincingly denying hisesponsibility for the action.

ORB Core The functionality provide by the CORBA Object Request Broker which
provides thébasic repesentations of objects and the communication of requests.

SecurityService:v1.0 NovemhE996 15289

15

15-290

ORB ServicesElements of functionality provided transparently to applications by tl
CORBA Object Request Broker in response to the implicit context obpatt request.

ORB technology domainA set of objects or entities that share a common ORB
implementation technology.

originator: The entity in an object request whidteates the request.

passive threatThe threat of unauthorized disclosure of information without changir
state of the system.

physical security The measuressed to provide phsicalprotection of resoices agains
deliberate and &ertal threats.

POSIX: Portable Open System Intects (for) UNIX - Aset of standardized intedas to
UNIX systems specified by IEEE Standard 1003.

principal: A user oprogrammatic entity with the dity to use the resources of a syst

privacy. 1. Seeconfidentiality. 2. The right of individuals to carol or influence what
information related to them may bellected and stored and by whom thdbim ation
may be disclosed.

private key In a public-key (asymmetric) cryptosystem, the component of a key pa
which is not divulged by its owner.

privilege A security attribute (g.v.) which need naive theproperty of uniqueness, al
which thus may be shared by many users and othaigmie. Examples of privileges
include groups, rek, and clearances.

proof of delivery Non-repudiation evidence demonstrating that amessage or data
been deVered.

proof of origin: Non-repudiation evidence identifying the originator of a messagata

proof of receipt Non-repudiation evidence demonstrating that a message or data h
received by a particular party.

protectionboundary. The domain boundary within which securigngces provide a
known level of protection against threats.

PDU: Protocol Data Unit. The data fields of a ol message, as distinguished from
protocol header and trailer fields.

proof of submissionNon-repudiation evidence demonstrating that a message or d:
been submitted to a particular pripal or service.

public key In a public-key (asymgetric) cryptosystem, the component of a kpgir
which is revealed.

public-key cryptosystemAn encryption system which uses an asymmetric-key (q.v.
cryptographic algorithm.

QOP: Quality of Protection. The type and strength of protegtimvided by a message
protection service.

CORBAservices: Common Obj&arvices Specification

15

RPC: Remote Procedure Call.

replaceability The quality of an implementation which permits substitution of one
security service for another semantically simflarvice.

repudiation Denial by one of the entities involved in an action of having participate
all or part of the action.

RFP: Request for Proposal. An OMG proceduredoliciting technology from OMG
members.

right: A named value conferring the ability to perform actions in a sysfaness contrc
policies grant rights to principals (on the basis of teeaurity attributes); in order to
make an access control decision, access decision functions compare the rights gre
principal against the rights required to performoaeration.

rights type A defined set of rights.

role: A privilege attribute representing the position or function a user represents in
seeking security authentication. A given human being may play muligieand
therefore require multiple role priege attribués.

RSA: An asymmetric encryption algorithm invented by Ron Rivest, Adi Shamir, an
Adelman

seal To encrypt data for the purpose of providing confidentialityqatibon.

secretkey cryptosystemA cryptosystem which uses a symmetric-key (q.v.)
cryptographic algorithm.

secure time A reliable Time service that has ribgen com proméezi, and whose messag
can be authenticated by thegcipients.

security associationThe shared security statdarmation whichpermits secure
communication between two entities.

security attributes Characteristics of a subject (user or principal) which form the ba
the system'olicies governing that subject.

security audit The facility of a secure sfem which ecords informtion about security-
relevantevents in a tampeesistant log. Oftensed to facitate an independem¢view
and examination of systeraaords and activities in ordertest for adequacy of systen
controls, to ensure compliance with established policyopedational procedures, to
detect breaches in security, and to recommend changestiol, policy and procedure:

security featuresOperational iformation which cotrols thesecurity protectiorapplied
to requests and responses in a CORBA Security conformant system.

security contextThe CORBA Security object which eapsulates the sharedtst
information repesenting a securitgssoition.

security policy The data whicldefines what protection a stgm’ssecurityservces mus
provide. There are many kinds of secuptficy, including acess contrgbolicy, audit
policy, message protectigolicy, nonfepudiation policy, etc.

SecurityService:v1.0 NovemhE996 15291

15

15-292

security policy domain A domain whose obfts are all governed by the same secur
policy. There arseveral types of security policy domain, includingcass control polic
domains and audit policy domains.

security serviceCode that implements a defined set of security functionality. Secu
services include Access CooltrAudit, Non-repudiation, and others.

security technology domainA set of objects or entities whose securityiess are all
implemented using the same technology.

subject An active entity in the sstemeither a human user pcipal or a programmatic
principal.

symmetric key The key used in a symmetric ("secret-key") encryption system. In s
systems, the same key sad for encryption and decryption.

tagged profile The data elementin an IOR which provides the profile information f
each prabcol supported.

target The final recipient in a delegation “call chain.” The only participant in such
chain which is not the originator of a call.

target ACL The Access Control Information for the targéifect.
target objectThe regpient of a CORBA regest message.
threat A potential volation of security.

traced delegationDelegation wherein inforntian about the initiator and all intervenir
intermediates is available to each m@ent in thecall chain, or to the audization
subsystem controlling access to eachpieqit.

trust model A description of which components of the system and which entities ol
the system must be trusted, and what they must be trusted for, if the system isto |
secure.

trusted codeCode assumed to always perform some specified sgteshtions coectly.

TCB: Trusted Com puting Base. The portion of a system which must furedioactly in
orderfor the system to remain secure. A TCB should bgtanrproof and its enforceme
of policy should be noncircumvtable. Ideally a sstem’sTCB should also be as small
possble, to facilitate analysis dfs integrity.

TCSEC Trusted Computer System Evaluation Criteria (a U.S. Department of Defe
Standard specifyingequrementsfor secure sgtems).

unauthenticated principal A user or other principal who has not auttieated any
identity or privilege.

UNO: Universal Networked Objects (an OMG Specification, now obsolete).
UTC: Coordinated Universal Time.
unsecure time Time obtained from an unsecure time services.

UTO: Universal Time Object.

CORBAservices: Common Obj&arvices Specification

15

.2 References

user. A human being using the system to issue requests to objestento get them t
perform functions in the system on his behalf.

user sponsarThe interactive user iarface to the sstem whichacts as the authenticati
authority (e.g. validating passwords) which validate the identity of a user.

vault: The CORBA Securitybject which creates security context objects.

X/Open X/Open Company Ltd., U.K.

The following sources weresad in the preparation of thisogkary:

Applied Cryptogaphy,2nd editionby Bruce Schneier, John Wiley and Sons, New Y«
1996.

ISO Standard 7498-2‘Information Processing SystemsOpen Systeniaterconnectior
-- Basic Reference Model - Part 2:Security Arebiue”, International Standards
Organization,1989.

ECMA TR/46“Security inOpen Systems: A Security Framework”, European Comg.
Manufactuers Assocation, 1988.

ITSEC “Information Technology Security Bzaluation Criterid’" European Commissio
1991.

DoD Standard 5200.28-STDDepartment of Defenserlisted Computer System
Evaluation Criteria”, US Department of Derise, 1985.

X/Open Snapshot:Distri buted SecuritfFramework: Company Review Draft”, X/Ope
Company Ltd.,U.K. 1994,

Computer Related Risk®eter G. Neuman, The ACM Press, 1995

SecurityService:v1.0 NovemhE996 15293

15

15-294 CORBAservices: Common Obj&srvices Specification

	Message Definitions
	MTEstablishContext
	MTCompleteEstablishContext
	MTContinueEstablishContext
	MTDiscardContext
	MTMessageError
	MTMessageInContext

	SECIOP Protocol State Tables
	15.8.5 DCE-CIOP with Security
	Goals of Secure DCE-CIOP
	Secure DCE-CIOP Overview
	IOR Security Components for DCE-CIOP
	TAG_DCE_SEC_MECH
	TAG_ASSOCIATION_OPTIONS
	TAG_SEC_NAME

	DCE RPC Security Services
	DCE RPC Authorization Services
	DCE RPC Authentication Services

	Secure DCE-CIOP Operational Semantics
	Deriving DCE Security Parameters from Association ...
	DCE Association Options Reduction Algorithm
	Behavior When TAG_ASSOCIATION_OPTIONS Not Present
	Securing the Binding Handle to the Target

	Request-Level Interceptors
	Message-Level Interceptors
	Distributed Trusted Computing Base
	Protection Boundaries
	Controlled Communications
	Example Using Trusted Generation Tools and ORBs
	Commercial System with Limited Security Requiremen...
	Higher Security System
	Logging onto the System
	Walkthrough of Secure Object Invocation
	Object and Object Reference Creation
	Authorization Policy Information
	Audit Policy Information and Audit Logs
	Target Object Identities
	Assumptions about Security Association Mechanisms
	Invoking Special Objects
	Integrity of the ORB and Security Service Objects
	Safeguarding the Object Environment
	Safeguarding the Dispatching Mechanism
	Safeguarding Information in Shared Vault Objects

