Relationship Service Specification 9

9.1 Service Description

Distributedobjects are frequently used to moeetities in the real world. Asuch,
distributed objects do not exist in isatat. They are related to other objects.

Consider some examples of real woelttitiesand relationships:
» A personownscars; a car iswned byone or more persons.

« A companyemploysone or more persons; a persoremployed byone or more
companies.

» A documentcontainsfigures; a figure ixontained ina document.
» A documentreferencesa book; a book iseferenced byone or more documents.

» A personchecksout booksfrom libraries. A librarychecks outbooks to people.
A book ischecked ot by a person from a library.

These examples demonstrate severhtionships:
« Ownership relationships between people ears
» Employment relationships between companies and people
» Containment relationshipsetween documents and figures
» Referenceelationshipsetween books and documents
» Check out relationships between people, bookslinaries.

Such relationships can béaracterized along a number of dimensions:

Type
Related erities and therelationships themselves amged. In the examples,
employmentis an relationship defined betwepaopleandcompanies The type of
the relationship constrains the types of entities in the relationship; a company
cannot employ a monkey since a monkey is not a person. Furthermore, employment
is distinct from other relationships between people and companies.

CORBAservices: Common Object Services Specification 9-1

The roles of entities in relationships
A relationship isdefined by a set of roles thantities fave. In an employment
relatiorship, a company plays amployerrole and a person plays amployee
role.

A single entity can have different roles irstiinct relatimships. Notice that a person
can play the owner role in an ownership relationship and the employee role in an
employment relationship.

Degree
Degree refers to the number of required roles in a relation¥hgcheck out
relationship is a ternary relationship; it has three rolesbtinmwer role, the lender
role and the material role. person plays the borrower role, a library plays the
lender role and adok plays thematerial role. Owership, employment,
containment and reference, on the other hand, are of degree 2, or binary
relatiorships.

Cardinality
For each role in aelationshiptype, themaximum cardinality specifies the
maximum number of relationships that mayaive that role.

The containment relatiship is a many-to-onelationship; a documemrbntains

many figures; a figure is contained in exactly one document. A many-to-many
relationship isbetween two sets of aties. The ownership example is a many-to-
manyrelationship; gperson can owmultiple cars; a car can hawaultiple owners.

The check outelationship is a many-to-one-to-mamglationship. Aperson can

check out many books from many libraries. A book is checked out by one person
from one library and a library can loan mabgoks to many people.

Relationship Semantics
Relationships often have relationship-sfiegemantics; that is they define
operations andttributes. For examplgob ftle is an attribute of the employment
relatiorship, while it is not an attribute of an ownershiationship. Similarlydue
dateis an attribute of the check out relationship.

For more discussion on object-oriented modeling and designratdtionships, see

[2].

9.1.1 Key Features of the Relations&ervice

» The Relabnship Service allowsntitiesand relationships to bexplicitly
represented. Entities are represented as CORBA objects. The service defines two
new kinds of objectselationshipsandroles A role representsa CORBA object
in an relatioship. Arelatiorship is created by passing a set of roles to a
relationship factory.

» Relationships of arbitrary degrean be defined.

» Type and cardindy constraints can bexpressed and checked. Exceptions are
raised whercardinality and type constraints are violatethe Relationship
Service does not define a new typestem. Instead, the IDL type system is used
to represent relationship and role types. This allows the service to leverage
CORBA solutions for type federation.

CORBAservices: Common Object Services Specification

9

The Relationshipinterface can be extended to add relationship fipettributes

and operations. Similarly, tHeole interface can be extended to add myecific
attributes and operations.

The Relationship Service defines three levels of service: base, grappemific.

The base level defineglationships and roles.

When objects are related, they form graphs of related objEwtsgrapHevel

extends the base level service with nodes and traversal objects. Traversal objects
iterate through the edges of a graph. Traversals are useful in implementing
compound perations on graphs, among other things.

Specific relationships are defined by the third level.

4. A conforming Relationship Service implementation mogilement level 1 or
levels 1 and 2 or levels 1, 2 and 3.

Appendix 6A, which contains an addendum to the Life Cycle Service, defines
operations taopy, move, and remove graphs of related objects.

The RelationshiBervice requires a notion of object identify. As such, it defines a
simple, efficient mechanism f@upporting object identity in a heterog®us,
CORBA-based environment. We believe the mechanism to be of gemiéral

for other services.

Distributed implementations of the Relationship Service can have navigation
performance and availability silar to CORBA object references; role objects

can be collocated with their objects and need npedd on a centralized

repository of relationship information. As such, navigating a relationsdripbe a

local operation.

The Relationship Service allows so-called immutable objects to be related. There
are no required interfaces that objects being related must support. As such,
objects whose state and implementation were defined prior to the definition of the
RelationshipService can be related objects.

The Relationship Service allows graphs of related objects to be traversed without
activating related objects.

The Relabnship Service is extensible. Programmers define additional
relationships.

9.1.2 The Relationshifervice vs. CORBA Object References

CORBA: Common Object Request Broker Architecture and Specifickfomres object
references that clients use to issue requests on objects. Object refesmbesstored
persistentlyWhen is it appropriate to use object references and when is it appropriate
to use the Relationship Service?

The Relationship Service is apprigie to use Wen an application needs any of the
following capabilities that are not available with CORBA object references:

Relationship Servicez1.0 Service Description March 1995 9-3

Relationships that Are Multidirectional

When objects are related using the Relationship Service, the relationship can be
navigated from any role to any other role. The sermiegntains the relatioship

between related objects. CORBA object references, on the other hand, are
unidirectional. Objects that posses CORBA object references to each other can only
do so in an ad hoc fashion; there is no way to mairgathmanipulate the
relationshipbetween the objects.

Relationships that Allow Third Party Manipulation

Since roles and relationships are themselves CORBA objects, they can be exported
to third parties. This allows third parties to manipulate the relationship. For example
a third party could create, destroy or navigate the relationship. péites cannot
manipulate object references.

Traversals that Are Supported for Graphs of Related Objects

When objects are related using the Relationship Service, they form graphs of related
objects. Interfaces are defined by the Relationship Service to support traversing the
graph.

Relationships and Roles that Can Be Eghwith Attributes and
Behavior

Relationships haveelationship-specific semanticBor example, the employment
relationship has a job title attribut8incerelatiorships and roles are objects with well-
defined OMG IDL interfaes, they can be extended through OMG IDL inheritance to
add suchrelationship-specific attributes and opéras.

9.1.3 Resolution of Technical Issues

Modeling and Relationship Semantics

An application designer models a problem as a set of olgadtthe relationships
between those objects. Using OMG IDL, the application desidinectly represents
the objects of the model. Using the Relationship Service, the application designer
directly represents the roles and relationships of the model.

The Relationshipand Role interfaces can be extended using OMG IDL inheritance to
add relationship and role spgciattributes and operations. For example, a designer
might define the employment relationship to have an operation returning idgob t

CORBAservices: Common Object Services Specification

Managing Relationships

The RelationshipFactorynterface defines an operation to create a relationship, given a
set of roles. Th&oleandRelationshipinterfaces define operations to delete and
navigate relationships between objects.

Constraining Relationships

Type, cardinality and degree constraints on relationships are expressed in the
interfaces.

The RoleFactory::create_role operation can raise a
RelatedObjectTypeError exception. This allowgnplemenations of theRole
interface to placéurther constraints othe type of theelatedobjects. For example, an
EmployedByRolean ensure related objects are people. Aangdt to have it represent
a monkey would raise RelatedObjectTypeError exception.

Similarly, the RelationshipFactory::create operationcan raise a
RoleTypeError exception. This allowsnplementations of th®elationship
interface to put constraints on the type of the roles. For example an Employment
relationship can ensure there is EBmployerRoleand anEmployeeRole

The RelationshipFactory::create operation can also raiseDeegreeError
exception. This ensures that there are the correct number of roles.

Maximum cardinality constraints are enforced by the role objects themselves. A role
can raise aMaxCardinalityExceeded exception and refuse to participate in a
relationship if its maximum cardinality would be exceeded. Roles define an operation
to ask if theirminimum cardinality constraint iseingmet.

Referential Integrity

If the Relationship Service is used in an environment supportingattéims, strict
referential integrity is achieved. That is, if an related object refers to another (via a
relationship), then the otheelated object will also refer to it. Widlut transactions,
strict referential integritycannot be achieved since a failure during execution of the
relationship construction protocol could cause a dangling reference.

Relationships and Roles as First Class Objects

Our design defines botielationships and roles &Bst class objects. This is extremely
important because it encapsulates abdtracts the state tepresent the relationship,
allows third party manipulation of the relationship and allows the roles and
relationships themselves smpport operations and attributes.

Relationship Servicez1.0 Service Description March 1995 9-5

9-6

Different Models for Navigating and Constructing Relationships

The Relationship Servicgefines interfaces for constructimgnd navigating
relationships component-by-component. Thia#ding block operationsan be used
by a higher-level service, such as a query service.

Efficiency Considerations

Our design has several features that allow for highly optimized implemestatio
Performance opnhizations are achieved by clusteriagd/orcaching of connection
information.

Clients can cluster related objects and their rolethbir selection of factories.

Our design defines the containmealationship logically. It does not imply physical
clustering of state or execution, However, it serves as a good hint to implementations
for clustering. An environmerdan choose to cluster eminersand ontained objects.

Theget_other_related_object operation can be implementeddacheremote
related objects. The cached information is immutable; once a relationship is
establisted, the roles and related objewtsl not change.

CORBAservices: Common Object Services Specification

9.2 Service Structure

This section provides information about the levels of service; the specification is
organized around these levels. It also describes the hierarchglatforRship Service
interfaces and gxains the main puigse of eaclinterface.

9.2.1 Levels of Service
The Relationship Servicgefines three levels of service: base relationships, graphs of

related objects, and specific relatsips. The specification is organized amd these
levels.

Level One: Base Relatnships

The Relationshipand Roleinterfaces define thbase Relationship Service.
Figure 9-1 illustrates two instances of the containmelationship. The document
plays the container role; the figure and the logo play the containee role.

The diamond is an object supporting Relationshipinterface. Thesmall circles

are objects supporting tioleinterface.

e
<>

Roles represent objects in relationships. Roles have amaaxicardinality. As
illustrated, the container role can be involved in many instances of a relationship.
The containee roles can only be involved in a simgdtéence of a relationship.

Figure 9-1 Base relationships.

Relationship Servicez1.0 Service Structure March 1995 9-7

9-8

Figure 9-2 illustrates the navigation functionality of relationships; for example the
arrow between a role and another role indicates it is possible to nafrigmtene

role to anotherThe arrow does not, haver, indicate that the object reference to
the other role is necessarily stored by the role.

0—»

Figure 9-2 Navigation functionality of base relationships

Table 9-1 ists the interfaces to suppeoglationshipsand roles. Section 9 specifies
the interfaces in detail.

Level Two: Graphs of Related Objects

Distributed objects do not exist in isatat. They are connected together. Objects
connected together form graphsrefated objectsThe Relationship Service daés
the Traversalinterface. TheTraversalinterface defines an operation to traverse a
graph. The traversal object caaptes with extetied roles supporting the
CosGraphs::Rolenterface and objects supporting tHedeinterface.

Figure 9-3 illustrates a graph oflated objectsThe folder, the figure, the logo and
the book allsupport theNodeinterface. The small circles are rokspporting the
CosGraphs::Rolénterface.

CORBAservices: Common Object Services Specification

€ @ containment
< o reference
o0 check _out

Figure 9-3 An example graph of related objects.

Table 9-3 ists the interfaces to suppataphs of related objects. Section 9
specifies the interfaces in detail.

Level Three: Specific Relationships

Containment and reference are two important relationsfiips.Relationship Service
defines these two binary relationships.
Table 9-4 and Table 9¥st the interfees defining specific relatiahips. Section 9
specifies the interfaces in detalil.

Relationship Servicez1.0 Service Structure March 1995 9-9

9.2.2 Hierarchy of Relationship Interface

The rehtionship interfaces are arranged into the interface hieraltakjrated in

Figure 9-4.
Relationship CosRelationships module
‘ (Base level)
Containment Reference specific relationships

Figure 9-4 Relationship interface hierarchy

9.2.3 Hierarchy of Role Interface

The role intefaces are arranged into the interface hierarchy illustrat&ibimre 9-5.

CosRelationships::Role CosRelationships module
(Base level)
CosGraphs::Role CosGraphs module
/ ‘ (graph level)
ContainsRole /\ ReferencesRole specific relationships
ContainedInRole ReferencedByRole

Figure 9-5 Role interface hierarchy

The Roleinterface defines operations to efficiently navigatationships between
related objects.

The Cos@aphs::Roleinterface defines an operation to return édges that involve
the role. This is used by the traversal serdeéined at the graph level.

Finally, ContainsRolgContainedInRolgRefeencesRolend ReferencedByRolare
specific roles for two important relationships: containnmeemd reference.

9-10 CORBAservices: Common Object Services Specification

9.2.4 Interface Summary

The Relationship Servicgefines interfaces to support the functionality described in
section 9.2.

Table 9-1 through Table 9-5 give high level descriptions of the Relationship Service
interfaces. Sections 9 through 9 describeitierfaces in detail.

Table 9-1 Interfaces defined in th€osObjectldentitynodule

Interface Purpose IPrimary Clients
CosObjectldentity::
IdentifiableObject To determine if two objectsThere are many cligs. The
are identical. graph level of the

Relationship Service is one.

Table 9-2 Interfaces defined in th€osRelationshipsnodule

Interface Purpose Primary Clients

CosRelationships::

Relationship Represents an instance of aClients that navigate
relationship type. between related objects.

RelationshipFactory Supports the creation of Clients establishing
relationships. relationships.

Role Defines navigation operationsClients that navigate
for relationstlips. between related objects.
Implements type and Relationship factories.
cardinality constraints.

RoleFactory Supports the creation of Objects participating in
roles. relationships.

Relationshiplterator Iterates the relationships in Clients that navigate

which a particular role object relationships.
participates.

Relationship Servicez1.0 Service Structure March 1995 9-11

Table 9-3 Interfaces defined in thEosGraphsmodule

Interface Purpose Primary Client(s)
CosGraphs::

Traversal Defines an operation to Clients that want a standard
traverse a aph, given a service to traverse graphs.
starting node and traversal
criteria.

TraversalFactory Supports the creation of a Clients that want a standard
traversal object. service to traverse graphs.

TraversalCriteria Provides navigation behaviofiraversal implementations.
between nodes.

Role Extends the Clients that traverse graphs
CosRelationships::Role of related objects.
interface to return edges

Edgelterator Returns additional edges Clients that traverse graphs
from a role. of related objects.

Node Defines operations for a Clients that traverse graphs
related object to reveal its of related objects.
roles.

NodeFactory Supports the creation of Clients that create nodes in
nodes. graphs.

Table 9-4 Interfaces defined in th€osContainmenmodule

Interface Purpose Primary Client(s)

CosContainment::

Relationship one-to-many relationship Clients that depend on
Containment relationship
type.

ContainsRole Represents an object that Clients that navigate

contains other objects. containment relationships

between objects.

ContainedInRole Represents an object that isClients that navigate
contained in other objects. containment relationships
between objects.

9-12 CORBAservices: Common Object Services Specification

Table 9-5 Interfaces defined in th€osReferencenodule

Interface Purpose Primary Clients
CosReference::
Relationship many-to-many relationship Clients that depend on the
reference relationship type.
ReferencesRole Represents an object that Clients that navigate
references other objects. reference relationships

between objects.

ReferencedByRole Represents an object that iClients that navigate
referenced by other objects. reference relationships
between objects.

9.3 The Base Rationship Model

The basdevel of the Relationship Service defines interfacesshpportrelationships
between two or more CORBA objects. Objects that participate in a relationship are
called relatedbjects. Relationships that share the same semdatinsrelationship
types A relationship is an instance of a relationship type and has entitiyg.

Each related object is connected with telationship via a role. Roles are objects

which characterize a related object's participation in a relationship type. Role types are
used for expressing the role’s characteristics by an IDL interface. Cardinality
represents the number of relationship instances connected to a role. Degree represents
the number of roles in a relationship. All characteristics are expressed by
corresponding IDL interfaces.dRationshipand role types are built by subtyping the
Relationship and Role intedeas.

Figure 9-6 gives a graphical representation of a simple relationship type. It illustrates
that documents reference books. Documents are iReferencesRoland books are in

the ReferencedByRal®ocuments, reference, the roles and books are all types; there
are interfaces (written in OMG IDL) for all five.

Relationship Servicez1.0 Th8ase Relationship Model March 1995 9-13

@ ReferencesRole

Reference Relationship
attribute date_of reference

ReferencedByRol

Figure 9-6 Simple relationship type: documents reference books

Figure 9-7, on the other hand, gives a graphical representation of an instance of a
relationship type. Itllustrates that “mydocument”, an instance of Document,
references “Waand Peace”, an instance Bbok !

ReferencesRole

Reference Relationship
May 30, 1994

ReferencedByRol
\War and Peacq

Figure 9-7 Simple relationship instance: my document references the book “War and Peace*

9.3.1 Relationship Attributes and Operations

Relationships may have attributes and operations. For example, the reference
relationship of Figure 9-6 has aitribute indicatinghe date the reference from the
document to the book wastablished.

1.Most of the figures in this specification re present instances of related objects, roles and rgdationshi
Figures describing object and relationshjipet are clearly marked.

9-14 CORBAservices: Common Object Services Specification

Rationale

If relationships arenot allowed to define attributesd operations, they will have to be
assigned to one of the related objects. This approach is prone to erstartings and
inconsistencies. The approach to defineadificial related object, whiclthen carries
the attributes, isequally unsatisfactory.

The dateattribute ofthe example of Figure 9-7 is clearly an attribute of the
relationship, not one of related objects. It cannot be an attribute of “my document”
since “my document” can reference many books dierdifiit dates. iilarly, it cannot

be an attribute of “Waand Peace” since “War and Peace” can be referenced by many
books on dferent dates.

9.3.2 Higher Degree Relationships

The Reference rationship in Figure 9-6 is hinary relationship; that is, it is defined

by two roles. The Relationship Service can also supptationships with more than
two roles. Thedact that three or more related objects may be part of a relatiocahip
be expressed directly by means of the same concept as in the binary cadegiEke
represents the number of roles in a relationship. The Relationship Service supports
higher degreeelatiorships, that iselationships with degree greater than two.

Figure 9-8shows aernary “check outtelationshipbetween bookdjbrariesand
persons. The semacd of this relationship is that a persbarrows a bookrom a
library. The relationship also defines an attribute that indicates thevliatehe book
is due to be returned by the person to the library.

check_outelationship
attribute due_date

() borrower role

Figure 9-8 A ternary check-out relationship type between books, libraries and persons.

Rationale

The Relationship Servicepresents higher degree relationships directly. It clearly
defines the number of expected related objects as well as other integstyadats. It

is more readable, more understandable and easier to enforce consistency constraints for
related objects with a direct representation than with alternative representations that
simulate higher degree relationships using a set of binary relationshiygs W

Relationship Servicez1.0 Th8ase Relationship Model March 1995 9-15

simulating higher degree relationships, thationship information is spread over
multiple objectandrelationship type definitions, as are the corresponding integrity
constraints.

Figure 9-9shows an a&¢rnative representation of the ternary relationship from
Figure 9-8 using binaryelationships. Note that tHest representation isot
equivalent to that of Figure 9-8 since cardinaligasl other integrity @nstraints
cannot be expressed correctly in this alternative representation.

Figure 9-9 An unsatisfactory representation of the ternary check-out relationship using binary
relationships.

Figure 9-10 illustrates a secoatternative representation thfe ternary relationship of
Figure 9-8. It uses an addition@rtificial) relatedobject type. This representation is
equivalent to Figure 9-8 i€heck-outis constrained to participate in exactige

instance of each of the three binary relationship types. Howeveralteisative eeds

three relationship types and one additional related object(t¥peck-out)instead of

only one relationship type, and therefore is much more complex and harder to capture
when compared to the representation using one relationship type with degree 3.

U
° @,
Figure 9-10 Another unsatisfactory representation

9-16 CORBAservices: Common Object Services Specification

9

Since the RIlatiorship Service supports higher ordefationships directly, the user of
the service need not resort to the unsatisfactory representations using binary
relationships of Figure 9-9 and Figure 9-10.

9.3.3 Operations

The basdevel of the Relationship Service provides operations to:
» Create role and relationship objects
» Navigate relationships
» Destroy roles and relationships
* lterate over the relationships in which a role participates

Creation

Roles are constructed independently using a role factory. Roles repressastary
related object that is passed as a parameter tRdblef-actory::create

operation. When creating a new role object, the type of the related object can be
checked by the factory. Thminimum and maximum cardinality, e.the minimal and
the maximal number of relationship instances to which the new role object may be
connected, are indicated Bytributes on the factory.

Figure 9-11 illustrates a newly created role.

Figure 9-11 Creating a role for an object

A new relationship is created by passing quemce of named roles to a factory for the
relationship. The expected degree anlé types for the new relationship are indicated
by attributes orthe factory. During the creation of the new relationship, the rgesty
and the maxnum cardinality can behecked. Duplicate role names are not allowed
since the names are useddistinguish the roles in thecope of theelatiorship.

When creating aelationship, the factory creates ‘kisi’ between the roles and the
relationship using thénk operation on the role.

Figure 9-12 illustrates a fully established binary relationéhip.

= TG

Figure 9-12 A fully established binary relationship

Relationship Servicez1.0 Th8ase Relationship Model March 1995 9-17

Navigation

Figure 9-12 illustrates the navigational functionality of a relationship. In particular,

® arelationship defines aattribute that indicates a read-only attribute that indicates
the named roles of the relationship,

® arole defines a read-only attribute that indicates the related object that the role
represents,

» A role supports thget_other_role operation, thagiven arelationship
object and a role name, returns the other role object,

» A role supports thget_other_related_object operation, that given a
relationship object and a role name, returns the related object that the named role
represents in the relationship and

» A role supports thget_relationships operation which returns the
relationships in which the role participates.

Destruction

For both roles and relationship objects, the Relationship Services introduces a
destroy operation. The destroy operation fetationship objects also destroys the
links between the relationship aatl of the role objects.

9.3.4 Consistency Constraints

For each role two cardinalities are definednimum and maximum.

® The minimum cardinality indiates the minimum number of relationship instances
in which a role must participate.

® The maximum cardinality indicates the maximum number of relationship instances
in which a role can participate.

Maximum cardinality constraintan be checked wherlationships are created. Note
that the relatiaship mechanism cannot, by itself, enforcentiasimum cardinality
constraint. However, a role can be askaglicitly if it meets its minimum cardinality
constraint using theheck_minimum_cardinality operation.

Typeintegrity is preserved by CORBA mechanisms because related objects, roles and
relationships are instances of CORBA object types. Type constraints can be checked
when roles and relationships are created.

2.Figure 9-12 representavigation functionalityit does not necessarily represent stored object
references. A variety of implementation strategies are described in se@ibn 9.

9-18 CORBAservices: Common Object Services Specification

9.3.5 Implementation Strategies

9-12 illustrates the navigational functionality of a fully established binary relationship.
There are a variety of implementation strategies possiblega@thether_role and
the get_other_related_object operations can be:
* Implemented by caching object references to other roles and related objects, or
» Computed when needed using the relationship object.

The appropriate implementation strategy typicallypgads on distributioboundaries.

If the roles and relationship objects are clustered, then only storing the values at the
relationship object optimizespace. If, on the other hand, the roles and the related
objects are clustered, caching object references to other roles and related objects at the
roles allows the relationship to beieiently navigated without involving a remote
relationship object.

Role implementations that cache object references to otherantéselated objects
need not worry about updating the cache. Once the related objects and relationships are
establisied, they cannot be changed.

9.3.6 The CosObjectldentity Module

CORBA: Common Object Request Brokechitecture and Specificatiotioes not

define a notion of object identity for objects. The Relationship Service requires object
identity for the objects it defines. Asdu the Relationship Service assumes the
Cos(bjectldentity module specified in Figure 9-13 . This is defined in a separate
module; other Object Services may find this module to be generally useful.

module CosObjectldentity {
typedef unsigned long Objectldentifier;
interface ldentifiableObject {
readonly attribute Objectldentifier constant_random_id;

boolean is_identical (
in IdentifiableObject other_object);

h

Figure 9-13 The CosObjectldentity Module

The IdentifiableObject Interface

Objects that support tHdentifiableObjectnterface implement an attribute of type
Objectldenifier and theis_identical operation. This mechanism provides an
efficientand convenient method of quprting object identity in a heterogeneous
CORBA-based environment.

Relationship Servicez1.0 Th8ase Relationship Model March 1995 9-19

constant_random_id

readonly attribute Objectldentifier constant_random_id;

Objects supporting thielentifiableObjectinterface define an attribute of type
Objectldenifier. The value of the attribute must ndtange during theéfétime of the
object.

A typical client use of thisttribute is as a key in a hash table. As such, the more
randomly distributed the values are, the better.

The value othis attribute is not guaranteed to be unique; that is, another identifiable
object can return the same valueowever, ifobjects return different identifiers,
clients can determine that twaentifiable objects araot identical.

To determine itwo identifiable objectsare identical, theis_identical operation
must beused.

Is_identical

boolean is_identical (
in IdentifiableObject other_object);

Theis_identical operation returngue if the object and thether_object are
identical. Otherwise, the peration returnfalse

9.3.7 The CosRelationships Module

The CosRelatinships module defines the interfaces of the base legktiBnship
Service. Inparticular, it defines

» RelationshipandRoleinterfaces to represent relationships and roles,
» RelationshipFactoryandRoleFactoryinterfaces to create relationshigsd roles

* Relationshiplteratolinterface to enumerate the relationships in which a role
participates

9-20 CORBAservices: Common Object Services Specification

The CosRelatioships module is shown in Figure 9-14.

#include <Objectldentity.idl>
module CosRelationships {

interface RoleFactory;
interface RelationshipFactory;
interface Relationship;
interface Role;

interface Relationshiplterator;

typedef Object RelatedObject;

typedef sequence<Role> Roles;

typedef string RoleName;

typedef sequence<RoleName> RoleNames;

struct NamedRole {RoleName name; Role aRole;};
typedef sequence<NamedRole> NamedRoles;

struct RelationshipHandle {
Relationship the_relationship;
CosObjectldentity::Objectldentifier constant_random_id;
h

typedef sequence<RelationshipHandle> RelationshipHandles;

interface RelationshipFactory {

struct NamedRoleType {

RoleName name;

::CORBA::InterfaceDef named_role_type;
%
typedef sequence<NamedRoleType> NamedRoleTypes;
readonly attribute ::CORBA::InterfaceDef relationship_type;
readonly attribute unsigned short degree;
readonly attribute NamedRoleTypes named_role_types;
exception RoleTypeError {NamedRoles culprits;};
exception MaxCardinalityExceeded {

NamedRoles culprits;};
exception DegreeError {unsigned short required_degree;};
exception DuplicateRoleName {NamedRoles culprits;};
exception UnknownRoleName {NamedRoles culprits;};

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,
MaxCardinalityExceeded,
DegreeError,
DuplicateRoleName,
UnknownRoleName);

h

Figure 9-14 The CosRelationships Module

Relationship Servicez1.0 Th8ase Relationship Model March 1995

9-21

interface Relationship :
CosObjectldentity::IdentifiableObject {
exception CannotUnlink {
Roles offending_roles;
b
readonly attribute NamedRoles named_roles;
void destroy () raises(CannotUnlink);

k

interface Role {
exception UnknownRoleName {};
exception UnknownRelationship {};
exception RelationshipTypeError {};
exception CannotDestroyRelationship {
RelationshipHandles offenders;
|3
exception ParticipatinglnRelationship {
RelationshipHandles the_relationships;
h
readonly attribute RelatedObject related_obiject;
RelatedObject get_other_related_object (
in RelationshipHandle rel,
in RoleName target_name)
raises (UnknownRoleName,
UnknownRelationship);
Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)
raises (UnknownRoleName, UnknownRelationship);
void get_relationships (
in unsigned long how_many,
out RelationshipHandles rels,
out Relationshiplterator iterator);
void destroy_relationships()
raises(CannotDestroyRelationship);
void destroy() raises(ParticipatinglnRelationship);
boolean check_minimum_cardinality ();
void link (in RelationshipHandle rel,
in NamedRoles named_roles)
raises(RelationshipFactory::MaxCardinalityExceeded,
RelationshipTypeError);
void unlink (in RelationshipHandle rel)
raises (UnknownRelationship);

h

interface RoleFactory {
exception NilRelatedObject {};
exception RelatedObjectTypeError {};
readonly attribute ::CORBA::InterfaceDef role_type;

Figure 9-14 The CosRelationships Modu(€ontinued)

9-22 CORBAservices: Common Object Services Specification

readonly attribute unsigned long max_cardinality;
readonly attribute unsigned long min_cardinality;
readonly attribute sequence
<::CORBA::InterfaceDef> related_object_types;
Role create_role (in RelatedObject related_aobject)
raises (NilRelatedObject, RelatedObjectTypeError);

b

interface Relationshiplterator {
boolean next_one (out RelationshipHandle rel);
boolean next_n (in unsigned long how_many,
out RelationshipHandles rels);
void destroy ();

b

Figure 9-14 The CosRelationships Modu(€ontinued)

Example of Containment Relatships

The example of Figure 9-15 is referred to throughout the following sections to describe
roles and relationshipd.he figurerepresents two binary, one-to-many containment
relationships between a document and a figure and a logo.

’ContainedInRoIe A

relationship B

@ ContainsRole C

relationship D

ContainedInRole E

Figure 9-15 Two binary one-to-many containment relationships.

The RelationshipFactory Interface

The RelationshipFactorynterface defines an operation for creating an instance of a
relationship among a set of related objects. The factory also défioedtributes that
specify the degree and role types of tekationships it creates.

Relationship Servicez1.0 Th8ase Relationship Model March 1995 9-23

Creating a Relationship

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,
MaxCardinalityExceeded,
DegreekError,
DuplicateRoleName,
UnknownRoleName);

The create operation creates a new instance oélationship. The factory isassed

a sequence of named roles that represent the related objects in the newly created
relationship. The factory, in turn, informs the roles about the new relationship using the
link operation described in section

Roles implement marium cardinality constraints. A role may refuse to participate in

a newrelationship because it would violate a cardinality constraint. In such a case, the
MaxCardinalityExceeded exception is raised and the offending roles are
returned in the exception.

The number of roles passed to treate operation must be the same as the value of
thedegree attribute. If not, theDegreeError exception is raised.

Role names are used to associate each actual role olijecing of theformal roles
expected by the relationship to be created.

The set ofrole names passed to theeate operation must be the same as the set of
role names in the factoryisamed_role_types attribute. If not, the
UnknowRoleName exception is raised, and the unrecognized names are returned in
the exception. The sequence order ofritamed_roles parameter and the sequence
order of thenamed_role_types need not correspond.

The type of each role passedie create operation must be of the same type as the
type indicated for the corresponding role name inndw@ed_role_types attribute.

If not, theRoleTypeError is raised and the offending roles are returned in the
exception.

The names of the roles passed to theate operation must be unique within the
scope of this relationship type. If not, tbeiplicateRoleName exception is raised.

Example of Figure 9-15

The document anthe figure were related, that is relationship B was created, by
passing roles A and C to tleeeate operation of the relationship factory. Similarly,
the document and the logo were related by passing roles C and Erédatiieship
factory for relatimship D.

9-24 CORBAservices: Common Object Services Specification

Determining the Created Relationship’s Type

readonly attribute ::CORBA::InterfaceDef relationship_type;

The rehtionship created by a factory may be a subtype oR#ilationshipinterface.
The relationship_type attribute indicates the actual types of the relationships
created by the factory.

Determining the Degree of a Relationship Type

readonly attribute unsigned short degree;

Thedegree attribute indicates the number of roles for the relationships created by the
factory.

Example of Figure 9-15
The reationship factory for containment has a degree attribute whose value is 2

because containment is a binary relationship.

Determining Names and Types of the Roles oR&lationship Type

readonly attribute NamedRoleTypes named_role_types;

The named_role_types attribute indicates the required names and types of roles
for the relationships created by the factory. NamedRoleTypes are defined as structures
where the role type is given by tR®ORBA::InterfaceDef for the role objects.

Example of Figure 9-15

Therelationship factory for containment hasattribute vhose value is a sequence of
two CORBA::InterfaceDefs: onor ContainsRole and one for ContainedInRole.

The Relationship Interface

The Relationshipinterface defines aattribute whose value is the named roles of the
relationship and an operation to destroy the relationship.

Relationship Servicez1.0 Th8ase Relationship Model March 1995 9-25

Determining the Roles of a Retenship and Their Names

readonly attribute NamedRoles named_roles;

The named_roles attribute returns the roles of the relationsHipe roles have the
names that were indicated in theeate operation defined by the
RelationshipFactorynterface.

Example of Figure 9-15

Relationship B has aattribute whose value is a sequenc¢@%interfaceDeffor
ContainedInRole; “C”, InterfaceDdbr ContainsRole>. &iilarly, relationship D has
an attribute whose value is a sequence <“E”, InterfacefoefContainedIinRole; “C”,
InterfaceDef for ContainsRole>.

Destroying a Relationship

void destroy () raises(CannotUnlink);

The destroy operation destroys thelationship between the objects. The roles are
unlinked by the relationship implementation before it is destroyed. If roles cannot be
unlinked, theCannotUnlink exception is raised and the roles that could not be
unlinked are returned in the exception.

Example of Figure 9-15

If destroy is requested of relationship B, thaelink operation is requested of both
roles A and C and theelationship B is destroyed.

The Role Interface

The Roleinterface defines operations to:
* navigate the relatiwship fromone role to another,
» enumerate the relationships in which the role participates,
« destroy all relationships in which the role participates,
« link a role to a nevly created relationship and
« unlink a role in the destruction process ak#tionship and
* destroy the rolétself,

9-26 CORBAservices: Common Object Services Specification

Determining the Related Object That a Role Represents

readonly attribute RelatedObject related_object;

The related_object attribute indicates the related object that the role represents.
The relatedobject that the role represents is specified as a parameter ¢oettie
operation defined by thRoleFactoryinterface.

Getting Anoher Related Object

RelatedObject get_other_related_object (
in RelationshipHandle rel,
in RoleName target_name)
raises (UnknownRoleName,
UnknownRelationship);

Theget_other_related_object operation navigates the relationshgb to the
related object represented by the role nataeget name

If the role does not know about a role naneedjet name , the
UnknownRoleName exception is raised. If the role does not know about the
relationship rel, th&JnknownRelationship exception is raised.

Example of Figure 9-15
Assuming role A is named “A”, requesting

get_other_related_object(B,"A") of role C returns the figure. On the other
hand, requestinget_other_related_object(D,"E") of role C returns the
logo.

Getting Anoher Role

Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)
raises (UnknownRoleName, UnknownRelationship);

The get_other_role operation navigates threlationshiprel to the role named
target_name . The role is returned.

If the role does not know about a role nant@djet hame for the relationshipel
the UnknownRoleName exception is raised. If the role does kabw about the
relationship rel, thé&JnknownRelationship exception is raised.

Relationship Servicez1.0 Th8ase Relationship Model March 1995 9-27

Example of Figure 9-15

Assuming role A is named “A”, requestinggt_other_role(B,”A”) of role C
returns role A. On the other hand, requestirg other_role(D,”E") of role C
returns role E.

Getting All Relatbnships in Which aRole Partcipates

void get_relationships (
in unsigned long how_many,
out RelationshipHandles rels,
out Relationshiplterator iterator);

The get_relationships operation returns the relationships in which the role
participates.

The size ofthe list is determined by theow_many argument. If there are more
relationships than specified by thew_many argument, an iterator is creatand
returned with the additional relatiships. If there are no more relationships, a nil
object reference is returned for the iteraf@he Relationshiplteratoiinterface is a
standard iterator described in the next section.)

Example of Figure 9-15
Requestinget_relationships on role C would return the relationshipsaBd D.

Destroying All Relationships in Which a Role Pactpates

void destroy_relationships()
raises(CannotDestroyRelationship);

Thedestroy_relationships operation destroys all relationships ihiah the role
participates.

The destroy_relationships operation is semantically equivalent to requesting
destroy of each relationship in which the role participates. The operation is not required
to be implemented in that fashion.

If the destroy_relationships operation cannot destroy one of the relationships,
then theCannotDestroyRelationship exception is raised and the relationships
that could not be destroyed are returned in the exception.

Example of Figure 9-15

Requestinglestroy_relationships of role A causes relationship B to be
destroyed. On the other hand, requestiagtroy_relationships of role C
causes relationships B and D to be destroyed.

9-28 CORBAservices: Common Object Services Specification

Destroying a Role

void destroy() raises(ParticipatinglnRelationship);

The destroy operation destroys the role. The role must not be participatiagyin
relationships. If it is, the ParticipatingInRelationship exception is raised and the
relationships in which the role participates are returned in the exception.

Example of Figure 9-15
Requestinglestroy role of role A destroys relationship &nd role A.

Checking Minimum Cardinality of a Role

boolean check_minimum_cardinality ();

The check_minimum_ cardinality operation returngrue if a role satisfies its
minimum cardinality constraints. Otherwise, the operation retiaige

Example of Figure 9-15
Requestingcheck_minimum_cardinality of role A would return true since it is

participating in relationship B.

Linking a Role in a Newly Created Relamship

void link (in RelationshipHandle rel,
in NamedRoles named_roles)
raises(RelationshipFactory::MaxCardinalityExceeded,
RelationshipTypeError);

Note —Thelink operation is not intended fgeneral purpose clients that create,
navigate and destroy relationships. lasieit is an peration intended for
implementations of the relationship factameate operation.

Thelink operation ifiorms the role that a new relationshipbising created. The role
is passed a relationship andet of named roles that represent related objects in the
relationship.

A role can have a maximum cardinality, that is it may limit the number of relationships
in which it participates. If thbnk request would cause the maximum to be exceeded,
the MaxCardinalityExceeded exception igaised. If the type of the relationship
does not agree with threlationship type that the role expects, the
RelationshipTypeError exception is raised.

Relationship Servicez1.0 Th8ase Relationship Model March 1995 9-29

Example of Figure 9-15

When creating relationship B, the factory for B requested the link (B) #peration
on roles A and C. This allows roles A and C to support the navigation and
administration operations for relationship B.

Removing a Role from a Relenship

void unlink (in RelationshipHandle rel)
raises (UnknownRelationship);

Note —Theunlink operation is not intended fgeneral purpose clients that create,
navigate and destroy relationships. lasieit is an peration intended for
implementations of the relationshiestroy operation.

Theunlink operation causes the role to delete its record of the relationship.
If the relationshigpassed as an argument is unknown to the role, the
UnknownRelationship exception is raised.

Example of Figure 9-15

The mplementation of thelestroy operation omrrelationship B requests
unlink(B) of roles A and C. This causes roles A and C to fotfyeit participation
in relationship B.

The RoleFactory Interface

The RoleFactoryinterface defines attributes describing the roles that it creat: s
single operation to create a role.

Creating a Role

Role create_role (in RelatedObject related_object)
raises (NilRelatedObject, RelatedObjectTypeError);

The create_role operation creates a role for the related object passed as a
parameter.

A role must represent a related object. If a nil object reference is passed to the factory
for the related object, thiilRelatedObject exception is raised.

Role factories canestrict the type of objects the roles they create will represent. If the
interface of the related object does not conform RbkatedObjectTypeError
exception is raised.

9-30 CORBAservices: Common Object Services Specification

Example of Figure 9-15

Clients that created roles A, C and E usedditeate operation of factories that
support theRoleFactoryinterface.

Determining the Created Role’s Type

readonly attribute ::CORBA::InterfaceDef role_type;

Therole created by a factory may be a subtype oRtleinterface. Theole_type
attribute indicates the actual types of the roles created by the factory.

Determining the Maximum Cardinality of a Role

readonly attribute unsigned long max_cardinality;

The max_cardinality attribute indicates the maximum numberrefationships in
which a role (created by the factory) participates.

Example of Figure 9-15

The factory for role A returns 1, sinceGontainedInrole can be in no more than one
relationship. Attempts to add role A to more thare relationship result in
MaxCardinalityExceeded exceptions. (See theeate operation of the
RelationshipFactorynterface and thénk operation of thdRoleinterface.)

Determining the Minimum Cardinality of a Role

readonly attribute unsigned long min_cardinality;

The min_cardinality attribute indicates the minimum number of relationships in
which a role (created by the factory) participates.

Note, that unlike maximum cardinalityyinimum cardinality cannot be enforced since
roles will be below their minimum during relationship construction. Roles do support
the check_minimum_cardinality operation to report if they are below their
minimum.

Example of Figure 9-15

The factory for role A returns 1, since@ontainedInrole should be in one
relationship.

Relationship Servicez1.0 Th8ase Relationship Model March 1995 9-31

Determining the Related Object Types for a Role

readonly attribute sequence
<::CORBA::InterfaceDef> related_object_types;

The factory creates roles that represent related objects in redhifpm The related
objects mussupport at least one of the interfacedigated by the
related_object_type attribute.

Example of Figure 9-15
The factory for role C returns the CORBA::Interfddef for a document.

The Relationshiplterator Intéice

The Relationshiplteratolinterface is returned by thget_relationships
operation defined by thRoleinterface. It allows clients to iterate thugh any
additional relationships in ch the role participates.

next_one

boolean next_one (out RelationshipHandle rel);

Thenext_one operation returns the next relationship; if no maationships exist,
it returnsfalse

next_n

boolean next_n (in unsigned long how_many,
out RelationshipHandles rels);

The next_n operation returns at most the requested numbeglafionships; if no
more relationships exist, it returfese

destroy

void destroy ();

Thedestroy operation destroys the iterator.

9-32 CORBAservices: Common Object Services Specification

9.4 Graphs of Rated Objects

When objects areelatedusing the Relationship Servicgraphs of related objectare
formed. This sectiofocuses on how the Relationship Service supports graphs of
related objects. We first describe thph architecture supported by the service,
describe support for traversing the graph and implementing compound operations and
then specify th&€CosGraphsmodule in detail.

Graphs aremportant for distriluted, object-oriented applications.féw examples of
graphs are:

Distributed Desktops

Folders and objects are connected together. Folders contain sjeatsand

reference others. Folders may contain or reference other folders. The objects are
distributed; theyspan multiple machinedhe distributeddesktop is alistributed

graph.

Composed Aplications

Applications are built out of existing objects that are connected together. An

example of such a composeppéication is a shared white board. The composed
application is a graph.

User Interface Hierarchies

Presentation objects visualize semantic objects for users. Presentations contain other
presentation objects. For example, a winduight contain a button. The user
interface hierarchy is graph.

Compound Da@uments

A compound document architecture allows graphacsmation, sond, video, etc.
to be connected together to give the user the impression of a single document. The
compound document is a graph.

9.4.1 Graph Architecture

A graph is a set of nodes and a set of edges, involving those nodes. Nodes are related
objects that support theodeinterface and edges are represented by the relationships
that relate nodes.

Figure 9-3 on page 9-9 illustrates an example of a graph.

Relationship Servicerl.0 Graphs of Related Objects March 1995 9-33

€ @ containment

< o reference
o0 check _out

Figure 9-16 An example graph of related objects.

The folder, book, documerfigure, library, person and logo are nodes in the graph.

The

edges of the gragre represented by the relationships:
containment: the folder and document,

containment: the document and the figure
containment: the document and the logo

reference: the figure and the logo

reference: the document and the book,

check_out: the book, the library and the person

The grapharchitecture supportsiultiple kinds ofrelationships. For example, in
Figure 9-3, there are containment, reference and checkelatibnships. Thesmall
circles depict roles for a reference relationship, the solid circles depict roles for a
containment relatioship and the shadedircles represent the roles of the check_out

relationship.

A node can participate in more than one kind of relationahippthus have more than
one role. In the example the document has three kindsles:

» The ContainsRole

» The ContainedInRole

» The ReferencesRole

9-34 CORBAservices: Common Object Services Specification

Nodes

Nodes are identifiable objects that supportMueleinterface. Nodes collect roles of a
related object and the related object itself. A node enables standard traversals of graphs
of related objects because it supportsftil®wing:

* A readonly attribute definingll of its roles
* An operation allwing roles of a paicular type to be returned
» Operations to add and remove roles

The Nodeinterfacecan be inherited by related objects or an ohjagtiemening the
Nodeinterfacecan beinstantiatedand interposed in front of related objects.
Interposition is particularly useful in these cases:
* When conecting immutable objects,hich are objects that are not aware of the
RelationshipService

* In order to traverse graphs of related objects witlaatitatingthe related objects

As such, theNodeinterface defines an attributehase value is the related object it
represents.

9.4.2 Traversing Graphs of Related Objects

The Relationship Servicgefines a traversal object that, givestartingnode,
produces a sequence of directed edges of the graghreétededge corresponds to a
relationship. In particular, it consists of:
e An instance of a relationship,
A startingnode and atartingnamed role of the edge to indicatieectionand
» A sequence containing the remaining nodes and named roles. For binary
relationships, there is a single remaining node and role. For n-ary melaps,
there are n-1 remaining nodes and roles.

The traversabbject works like an iterator, where directedges are the items being
returned.

The traversal object, the nodes and the rolese@ip in traversing the gph. Through
the operations of thBodeinterface, the node reveals its roles to tila@ersal object.
Through the operations of theos@Gaphs::Roleinterface, a role reveals its directed
edges to other nodes. (TE®s@aphs::Roleinterface defines an operation allowing a
role to reveal directed edges.)

In traversing a graph, the traversal object must detedtrepresent cycles, and
determine the relevant nodes asdbes.
Detecting and Representing Cycles

In order to terminate, a traversal must be able to detect a cycle in the graph. In the
example of 9-3, the document, the figure, and the logo form a cycle.

Relationship Servicerl.0 Graphs of Related Objects March 1995 9-35

9-36

To detect cycles in the graph, the traversal object depends on the fact that nodes are
identifiable objects, that is they support tdentifiableObjectinterface defined in
section 9.3.6.

To represent cycles in the graph, the traversal object defines a scope of identifiers for
the nodes and relationships in themraThat is, ajiven traversahssignsdentifiers to

the nodes and relationships that are guaranteed to be unique within the scope of the
traversal.

Determining the Relevant Nodes and Edges

A traversal begins at theasting rode,emitsdirected edges anday continue to other
related nodes. The traversal object is programmable in tiegiait uses for
determining the edges to emit and the nodeagsid The traversal objectepends on a
“call-back” object supporting th&raversalCriteriainterface.

Given a node, the traversal criteria computes a sequence of directed edges to include in
the traversal. For each edge, the tramkcriteriacan indicate whether the traversal

should continue to an adjaceride. Based on thesults of the traversal criteria, the
traversal object emits edges avidits othernodes. The proces®utinues until there

are no more edges to emit and no more nodessio

Three standard traversal modes are defined to allow clients flexibility in controlling the
search orderepthfirst, breadth first,andbestfirst. In order to understand the
differences between the modes, consider that the traveesatains arorderedlist of

the edges which have been producedrisiting noces. This ikt initially containsthe
edges which resuftom visiting the roothode. In eachtération the first edge is
removedfrom the list to be returned and its destioatnodes areisited. Depending

upon thetraversal mode, these edge®: inserted in the beginning of the list (depth
first), appended to the end of thist (breadthfirst), or insertednto the list which is

sorted by the edge’s weight (bdist).

9.4.3 Compound Operations

Traversal objects are especially important in implementmgpound operations on
graphs of related objects. By compoumktmtiins, we mean perations that apply to

some subset of the nodes and edges in the graph. Examples of compound operations
include operationssuch as copy, move, remove, externalize, print, and so forth.

Note —The Relationship Service defines a framework for compound operations but
does not define gEific compaind operations.The Life Cycle and th&xternalization
Service specifications define compound operations that depend orldt@@ship
Service.

A compound opration may be implemented eitherdne or two passes. A compound
operationimplemented in one pass traverses the graph itself and applies the operation
as it proceeds.

CORBAservices: Common Object Services Specification

9

A compound operation implemented in two passes uses the traversal object defined by
the Relationship Service to determine the relevant naddsdetect and represent
cycles. The second pass simply applies the operation to the resultsfio$tthass.

A compound operation implemented in two passes provideawersalCriteriaobject
for the traversal service.

9.4.4 An Example Traversal Criteria

Consider a traversal of a graph with a travecsaéria dject that uses propagation
values defined by the relationships to determine whethemib an edgend whether

to proceed to another node. Tinaversal criteria is given a node by the traversal. The
traversal criteria then requests propagation values from each of the node’s roles.

Figure 9-17 illustrates a traversal of a graph using a traveisaliaifor a compund

copy operation. Using thpropagation_for operation defined by
CompoundLifeCycle::Rolimterface, the traversal criteria obtains the propagation value
for the copy operation from each of the node’s roles.

: TraversalCriteria

Role Role
— “+—
Gocumed) O« 4O Cloge>
Node Node
copy=deep copy=shallow

Figure 9-17 A traversal of a graph for compound copy operation.

Propagation

Compound perations may propagate froome node to another depending on the
semantics of the relatiship between the nodeBhe propagation semacs of a
relationship depend on the direction tieéatiorship is being traversed. A progation
value is eithedeep shallow inhibit or none

Deepmeans that the operation is applied to the node, to the relationship and to the
related objects. In the example of Figure 9-17, the propagation value foogie
operation is deep from the document to the logocttyey propagates from the
document to the logo across the containment relationghip.taversal criteria for

copy that encounters a deep propagation value wouldigidtre traversal object to
emit the edge andisit the logo.

Shallowmeans that the operation is applied to the relationtshtphot to the related
objects. In the example of Figure 9-17, the propagation value farofne operation
from the logo to the document shallow. The traversal criterfar copy that
encounters a shallow propagation value woutdrirct the traversal object to emit the
edge but the document is not visited.

Relationship Servicerl.0 Graphs of Related Objects March 1995 9-37

Nonemeans that the operation has no effect on the relationship and no effect on the
related objects. A traversal criteria that encounters a nonegatipavalue would not
return any edges and related nodes arevisited.

Figure 9-18 summarizes howee shallow and node propagation valudscifnodes,
roles and relationships.

RN

[B L 2 Q’O

shallow

deep

Figure 9-18 How deepshallow and none propagation values affect nodes, roles and
relationships.

Inhibit means that the operation si not propagate to the node via any of the node’s
roles. Inhibit is particularly meaningful for the remove operation to provide so-called
“existence-ensuring relationships”.

For more discussion of propagation values, see [1].

9.4.5 The CosGraphs Module

The CosGraphs module defines the support for graphs of related objects. It defines the
following interfaces:

» TraversalFactoryinterface for creating traversal objects
» Traversalinterface for enumerating directed edges of a graph,

» TraversalCriteria“call-back” interface to allow programmability of the traversal
object

» Nodeinterface for collecting the roles of a related object
* NodeFactory interface for creating nodes
» Roleinterface tosupport traversals

9-38 CORBAservices: Common Object Services Specification

The CosGaphs module ishown inFigure 9-14.

#include <Relationships.idl>
#include <Objectldentity.idl>

module CosGraphs {

interface TraversalFactory;
interface Traversal,
interface TraversalCriteria;
interface Node;

interface NodeFactory;
interface Role;

interface Edgelterator;

struct NodeHandle {
Node the_node;

::CosObjectldentity::Objectldentifier constant_random_id;

h

typedef sequence<NodeHandle> NodeHandles;

struct NamedRole {
Role the_role;
::CosRelationships::RoleName the_name;
3

typedef sequence<NamedRole> NamedRoles;

struct EndPoint {
NodeHandle the_node;
NamedRole the_role;
%
typedef sequence<EndPoint> EndPoints;

struct Edge {
EndPoint from;

::CosRelationships::RelationshipHandle the_relationship;

EndPoints relatives;
3
typedef sequence<Edge> Edges;

enum PropagationValue {deep, shallow, none, inhibit};
enum Mode {depthFirst, breadthFirst, bestFirst};

interface TraversalFactory {
Traversal create_traversal_on (
in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

Figure 9-19 The CosGraphs Module

Relationship Servicerl.0 Graphs of Related Objects March 1995

9-39

interface Traversal {
typedef unsigned long TraversalScopedid;
struct ScopedEndPoint {
EndPoint point;
TraversalScopedld id;
h
typedef sequence<ScopedEndPoint> ScopedEndPoints;
struct ScopedRelationship {
::CosRelationships::RelationshipHandle
scoped_relationship;
TraversalScopedld id;

3

struct ScopedEdge {
ScopedEndPaint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;

3

typedef sequence<ScopedEdge> ScopedEdges;
boolean next_one (out ScopedEdge the_edge);
boolean next_n (in short how_many,
out ScopedEdges the_edges);
void destroy ();
%

interface TraversalCriteria {
struct WeightedEdge {
Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;
h
typedef sequence<WeightedEdge> WeightedEdges;
void visit_node(in NodeHandle a_node,
in Mode search_mode);
boolean next_one (out WeightedEdge the_edge);
boolean next_n (in short how_many,
out WeightedEdges the_edges);
void destroy();

Figure 9-19 The CosGraphs Modulgontinued)

9-40 CORBAservices: Common Object Services Specification

interface Node: ::CosObjectldentity::ldentifiableObject {
typedef sequence<Role> Roles;
exception NoSuchRole {};
exception DuplicateRoleType {};

readonly attribute ::CosRelationships::RelatedObject
related_object;
readonly attribute Roles roles_of node;
Roles roles_of_type (
in ::CORBA::InterfaceDef role_type);
void add_role (in Role a_role)
raises (DuplicateRoleType);
void remove_role (in ::CORBA::InterfaceDef of _type)
raises (NoSuchRole);

h

interface NodeFactory {
Node create_node (in Object related_object);

h

interface Role : ::CosRelationships::Role {
void get_edges (in long how_many,

out Edges the_edges,
out Edgelterator the_rest);

J

interface Edgelterator {
boolean next_one (out Edge the_edge);
boolean next_n (in unsigned long how_many,
out Edges the_edges);
void destroy ();

h

Figure 9-19 The CosGraphs Modulgontinued)

The TraversalFactory Interface

The TraversalFactoryinterface creates traversal objects. Thaversalinterface is
used by clients that want to traverse graphs of related objects according to some
traversal criteria.

Relationship Servicerl.0 Graphs of Related Objects March 1995 9-41

create_traversal_on

Traversal create_traversal_on (
in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

The create_traversal_on operation creates a traversal objdetrihg at the
root_node . The created traversal object usesTraversalCriteriaobject to
determine which directed edges to earid which nodes to visit.he mode parameter
indicates whether the traversal will proceed in a déipsh breadthfirst or best first
fashion.

The Traversal Interface

Traversal objects iterate throu§@copedEdges of the graph according to the

traversal criteria and the mode established when the traversal was ciéeted.

traversal also defines a scope for the nodes and edges it returns; thassgyns
identifiers to thenodes and edges it returns. The identifiers are unique within the scope
of a given traversalScopedEdges are given by the following structure:

struct ScopedEdge {
ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;

3

typedef sequence<ScopedEdge> ScopedEdges;

A ScopedEdge consists of a distinguished scoped end point, a scoped relationship
and a sequence of scoped end points. disimguished scoped endmt indicates the
direction of theedge. The scoped end point cetsiof a node, a rolend anidentifier

for the node that is unique within the scope of the traversal.

next_one

boolean next_one (out ScopedEdge the_edge);

Thenext_one operation returns the next scoped edge; if no more scoped edges exist,
it returnsfalse

9-42 CORBAservices: Common Object Services Specification

next_n

boolean next_n (in short how_many,
out ScopedEdges the_edges);

The next_n operation returns at most the requested number of scoped edges.

destroy

void destroy ();

The destroy operation destroys the traversal.

The TraversalCriteria Interface

The TraversalCriteriainterface is used by the traversal object to determine which
edges to emit and which nodes to vfsitm agiven node. The traversaliteria

behaves like aiterator of weighted edges. Weighted edges are given by the following
structure:

struct WeightedEdge {
Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;

b

typedef sequence<WeightedEdge> WeightedEdges;

A WeightedEdge consists of an edge, a weight and a sequence of natieating if
the traversal should continue to the nodese weight is only meaningfdibr the best
first traversal.

next_one

boolean next_one (out WeightedEdge the_edge);

The next_one operation returns the next weighted edge; if no more weighted edges
exist, it returndalse

Relationship Servicerl.0 Graphs of Related Objects March 1995 9-43

9-44

next_n

boolean next_n (in short how_many,
out WeightedEdges the_edges);

The next_n operation returns at most the requested number of weighted directed
edges.

destroy

void destroy();

The destroy operation destroys the traversaiteria.

visit_node

void visit_node(in NodeHandle a_node,
in Mode search_mode);

The visit_node operation establishes the node for whichttigersal criteria will
iterate and indicates the current search mode. As the traversal object traverses the
graph, it visits nodes by requesting thsit node operation of the traversal

criteria, followed bynext_one/next_n requests to obtain the outgoing edges from
the node.

For depthFirst and breéhFirst modes, the weight field in the weighted edges is
ignored. In the bestFt mode, the weight value is utilized to order the traversal’s
edgesikt which is sorted by this value in ascending order.

If weighted edges from a previousde remain whewisit_node is requested, the
traversal criteria discards the previous edges.

The Node Interface

The Nodeinterface defines operations that are useful in navigatinghs of related
objects. In particular, it defines:

» Areadonly attribute giving all of the node’s roles

» An operation allwing roles conforming to @articular type to be returned

e Operations to add and remove roles

Roles ardistinguisied in nodes in the OMG IDL of their interfaces.

A node cannot posses two roles where one role is a subtype of the other. This is
precluded by thadd_role operation.

CORBAservices: Common Object Services Specification

9

A node can posses two or more roles that have a common supertype. The set of roles
can be obtained by passing the common supertype toldge of type operation.

related_object

readonly attribute ::CosRelationships::RelatedObject
related_object;

The related_object attribute gives the related object that the node represents.
This is useful whemelating immutable objects.

roles_of node

readonly attribute Roles roles_of _node;

Theroles_of node attribute gives all of the node’s roles.

roles_of type

Roles roles_of_type (
in ::CORBA:InterfaceDef role_type);

Theroles_of_type operation returns the node’s roles that conform to the
role_type parameter. A role conforms tole_type ifit’s interface is the same or
is a subtype ofole_type

add_role

void add_role (in Role a_role)
raises (DuplicateRoleType);

Theadd _role operation adds a role to the node. If the node posses a role of the same
type, a supertype or a subtypeaofrole , theDuplicateRoleType exception is
raised.

Relationship Servicerl.0 Graphs of Related Objects March 1995 9-45

remove_role

void remove_role (in ::CORBA::InterfaceDef of_type)
raises (NoSuchRole);

Theremove_role operation removes all the roles that conform todhaype
parameter. If no roles conform to the of _type parametefNtd8uchRole exception
is raised.

The NodeFactory Interface

The NodeFactoryinterface defines a single operation for creatinges.

create_node

Node create_node (in Object related_object);

The create_node operation creates a node whoskated_object attribute is
initialized to therelated_object parameter.

The Role Interface

The Cos@aphs::Roleinterfaceextends the&CosRelationships::Rolmterface with a
single operation to return a role’s view of it's relationshipise role’s view of a
relationship is given by the followingdge structure:

struct Edge {
EndPoint from;
::CosRelationships::RelationshipHandle the_relationship;
EndPoints relatives;

b

typedef sequence<Edge> Edges;

The edgestructure is defined by an end point, a relationship and the other end points.
The from end point is theole and its relatedlgect.

9-46 CORBAservices: Common Object Services Specification

get_edges

void get_edges (in long how_many,
out Edges the_edges,
out Edgelterator the_rest);

The get_edges operation returns the edges in which the role participates.

Thessize of the list is determined by thew_many argument. If there are more edges
than specified by thBow_many argument, an iterator is created and returned. If there
are no more edges,ndl object reference is returned for the iterator.

The Edgelterator Interface

The Edgeterator interface is returned by thget_edges operation defined by the
Cos@aphs::Roleinterface. It allows clients to iterate through any additional
relationships in which the role participates.

next_one

boolean next_one (out Edge the_edge);

The next_one operation returns the next edge; if no more edges exist, it returns
false

next_n

boolean next_n (in unsigned long how_many,
out Edges the_edges);

The next_n operation returns at most the requested number of edges.

destroy

void destroy ();

The destroy operation destroys the iterator.

9.5 Specific Relationships

The Relationship Servicgefines two important relatiahips,containmentand
referenceas part of its specification. The exampked throughout this specification
has been in terms of these two relationships.

Relationship Servicerl.0 Specific Relationships March 1995 9-47

9.5.1 Containment and Reference

Containment is a one-to-many relationship. A contaga@r cotain many containees;

a containee is contained by one container. Reference, on the other hanthrig-to-
manyrelatiorship. An object can reference many objects; an object can be referenced
by many objects.

Containment and reference are examples of relationships. However, since containment
and reference are very commmaationships, the Relationship Service defines them as
standard.

Containment is defined by interfaces for a relalop and two ras: the
Cosntainment::Relationshipterface, the&CosContainment::ContainsRoieterface,
and theCosGntainment::ContainedinRolaterface.Relationshipis a subtype of
CosRelationships::RelationshipndContainedInRoleand ContainsRoleare subtypes
of CosGraphs::Role

Similarly, reference is defined by interfaces for a relationgimg tworoles: the
CosReference::Relationshimterface, th&CosReference::RefemcesRolénterface, and
the CosReference::RefemcedByRolinterface.Relationshipis a subtype of
CosRelationships::RelationshipndReferencesRolandReferencedByRolere
subtypes ofCosGraghs::Role

9.5.2 The CosContainmektodule

The CosGntainmentmodule is shown in Figure 9-14.

#include <Graphs.idl>
module CosContainment {

interface Relationship :
::CosRelationships::Relationship {};

interface ContainsRole : ::CosGraphs::Role {};

interface ContainedInRole : ::CosGraphs::Role {};

b

Figure 9-20 The CosContainment Module

9-48 CORBAservices: Common Object Services Specification

9

The CosGntainmentmodule does not define new operations. It introduces new IDL
types to represent containment. Altigh it does not add any newperations, it refines
the semantics of these attributes and operations:

RelationshipFactory
attribute value

relationship_type CosContainment::Relationship

degree 2

named_role_types “ContainsRole”,CosContainment::ContainsRole;
“ContainedInRole”,CosContainment::ContainedinRole

The CosRlationships::RelatioshipFactory.create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are no€os@ntainmentContainsRoleand
CosGntainmentContainedInRolelt will raise MaxCardinalityExceeded if the
CosMntainmentContainedInRolés already participating in igelationship.

RoleFactory attribute for

ContainsRole value

role_type CpsContainment::ContainsRole
maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parandies not
support theCosGaphs::Nodeinterface.The CosRelationships::BeFactory:link
operation will raiseRelationshipTypeError if the rel parameter does not
conform to theCosGontainment::Relationshipnterface.

RoleFactory attribute for

ContainedInRole value

role_type CpsContainment::ContainedInRole
maximum_cardinality 1

minimum_cardinality 1

related_object_types CosGraphs::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parandes not
support theCosGaphs::Nodeinterface.The CosRelationships::BeFactory:link
operation will raiseRelationshipTypeError if therel parameter does not
conform to theCosQntainnent::Relationshipgnterface. The

Relationship Servicerl.0 Specific Relationships March 1995 9-49

CosRelationships::RoleFactoy::link operation will raise
MaxCardinalityExceeded if it is already participating in a containment
relationship.

9.5.3 The CosReference Module

The CosReferencamodule is given in Figure 9-21.

#include <Graphs.idl>
module CosReference {

interface Relationship :
::CosRelationships::Relationship {};

interface ReferencesRole : CosGraphs::Role {};

interface ReferencedByRole : ::CosGraphs::Role {};

h

Figure 9-21 The CosReference Module

The CosReferencemodule does not define new operations. It introduces new IDL types
to represent reference. Although it does not add any new operations, it refines the
semantics of thesattributes and operations:

RelationshipFactory
attribute value

relationship_type CosReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosReference::ReferencesRole;
“ReferencedByRole”,CoReference::ReferencedByRole

The CosRlationships::RelatioshipFactory.create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are no€osReference::ReferencesRa@d
CosReferenceReferencedByRale

9-50 CORBAservices: Common Object Services Specification

9.6 References

RoleFactory attribute for

ReferencesRole value

role_type CosReference::ReferencesRole
maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parandes not
support theCosGaphs::Nodeinterface.The CosRelationships::BeFactory:link
operation will raiseRelationshipTypeError if therel parameter does not
conform to theCosReference::Relationshipterface.

RoleFactory attribute for

ReferencedByRole value

role_type CpsReference::ReferencedByRole
maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a paranues not
support theCosGaphs::Nodeinterface.The CosRelationships::BeFactory:iink
operation will raiseRelationshipTypeError if therel parameter does not
conform to theCosRelationship::Relationshipnterface.

1. James Rumbaugh, “Controlling Propagation oé@gions using Attributes on
Relations.”OOPSLA 1988 Proceedingsg. 285-296.

2. James Rumbaugh, Michael Blahal@m Premerlani, Frederickdgly and Wiiam
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

Relationship Servicerl.0 References March 1995 9-51

9-52 CORBAservices: Common Object Services Specification

	Relationship Service Specification
	9.1 Service Description
	9.1.1 Key Features of the Relationship Service
	9.1.2 The Relationship Service vs. CORBA Object Re...
	Relationships that Are Multidirectional
	Relationships that Allow Third Party Manipulation
	Traversals that Are Supported for Graphs of Relate...
	Relationships and Roles that Can Be Extended with ...

	9.1.3 Resolution of Technical Issues
	Modeling and Relationship Semantics
	Managing Relationships
	Constraining Relationships
	Referential Integrity
	Relationships and Roles as First Class Objects
	Different Models for Navigating and Constructing R...
	Efficiency Considerations

	9.2 Service Structure
	9.2.1 Levels of Service
	Level One: Base Relationships
	Level Two: Graphs of Related Objects
	Level Three: Specific Relationships

	9.2.2 Hierarchy of Relationship Interface
	9.2.3 Hierarchy of Role Interface
	9.2.4 Interface Summary

	9.3 The Base Relationship Model
	9.3.1 Relationship Attributes and Operations
	Rationale

	9.3.2 Higher Degree Relationships
	Rationale

	9.3.3 Operations
	Creation
	Navigation
	Destruction

	9.3.4 Consistency Constraints
	9.3.5 Implementation Strategies
	9.3.6 The CosObjectIdentity Module
	The IdentifiableObject Interface
	constant_random_id
	is_identical

	9.3.7 The CosRelationships Module
	Example of Containment Relationships
	The RelationshipFactory Interface
	Creating a Relationship
	Determining the Created Relationship’s Type
	Determining the Degree of a Relationship Type
	Determining Names and Types of the Roles of a Rela...

	The Relationship Interface
	Determining the Roles of a Relationship and Their ...

	Destroying a Relationship
	The Role Interface
	Determining the Related Object That a Role Represe...
	Getting Another Related Object
	Getting Another Role
	Getting All Relationships in Which a Role Particip...
	Destroying All Relationships in Which a Role Parti...
	Destroying a Role
	Checking Minimum Cardinality of a Role
	Linking a Role in a Newly Created Relationship
	Removing a Role from a Relationship

	The RoleFactory Interface
	Creating a Role
	Determining the Created Role’s Type
	Determining the Maximum Cardinality of a Role
	Determining the Minimum Cardinality of a Role
	Determining the Related Object Types for a Role

	The RelationshipIterator Interface
	next_one
	next_n
	destroy

	9.4 Graphs of Related Objects
	9.4.1 Graph Architecture
	Nodes

	9.4.2 Traversing Graphs of Related Objects
	Detecting and Representing Cycles
	Determining the Relevant Nodes and Edges

	9.4.3 Compound Operations
	9.4.4 An Example Traversal Criteria
	Propagation

	9.4.5 The CosGraphs Module
	The TraversalFactory Interface
	create_traversal_on

	The Traversal Interface
	next_one
	next_n
	destroy

	The TraversalCriteria Interface
	next_one
	next_n
	destroy
	visit_node

	The Node Interface
	related_object
	roles_of_node
	roles_of_type
	add_role
	remove_role

	The NodeFactory Interface
	create_node

	The Role Interface
	get_edges

	The EdgeIterator Interface
	next_one
	next_n
	destroy

	9.5 Specific Relationships
	9.5.1 Containment and Reference
	9.5.2 The CosContainment Module
	9.5.3 The CosReference Module

	9.6 References

