
Query Service Specification 11
g

ral

hese

n

11.1 Service Description

11.1.1 Overview

The Query Service provides query operations on collections of objects. The queries are
predicate-based and may return collections of objects. They can be specified usin
object derivatives of SQL and/or other styles of object query languages, including
direct manipulation query languages.

The term “query” has read-only connotations, but we use it to denote general
manipulation operations including selection, insertion, updating and deletion on
collections of objects. Throughout this chapter, the term “object” is used in the gene
sense to include data.

The Query Service can be used to return collections of objects that may be:

• Selected from source collections based on whether their member objects satisfy a
given predicate.

• Produced by query evaluators based on the evaluation of a given predicate. T
query evaluators may manage implicit collections of objects.

The source and result collections may be typed. The source collection may be specified
by the client or may be the result of previous queries.

11.1.2 Design Principles

The Query Service exists to allow arbitrary users and objects to invoke queries o
arbitrary collections of other objects. Such queries are declarative statements with
predicates, including the ability to specify values of attributes; to invoke arbitrary
operations; and to invoke arbitrary services within the OMG environment, such as the
Life Cycle, Persistent Object, and Relationship Services.
CORBAservices: Common Object Services Specification 11-1

11

 any

nce

e

ultiple
To support the OMG architecture, the Query Service must allow querying against
objects, with arbitrary attributes and operations.

To be useful in practical situations, the Query Service must allow use of performa
enhancing mechanisms, such as indexing.

To be useful in environments with database systems—object-oriented, relational, and
other—and with other systems that store and access large collections of objects, the
Query Service must map well to these native systems’ internal mechanisms for
specifying collections and using indexing. The Query Service must also allow the
native systems to contribute to specifying collections and indexing.

To maximize usefulness to the community at large, the Query Service is based on
existing standards for query and extended when necessary to accommodate other
design principles.

The Query Service also supports flexibility in implementation and extensions.

11.1.3 Architecture

The Query Service design provides an architecture for a nested and federated servic
that can coordinate multiple nested query evaluators, much as the Transaction Service
provides an architecture for a nested and federated service that can coordinate m
nested resources managers.
11-2 CORBAservices: Common Object Services Specification

11

any
ry

r all

 such
s
ch
Query Evaluators: Nesting and Federation

Figure 11-1 Query Evaluators: Nesting and Federation

Objects may participate in the Query Service in two ways. The simplest involves
CORBA object as is. The Query Evaluator is then responsible for evaluating the que
predicate and performing all query operations by invoking operations on that object
through its published OMG IDL interfaces. Any non-supported operations trigger
exceptions. This mechanism provides the greatest generality, including support fo
CORBA objects, but with the least optimization.

In a more involved manner, objects participate as members of a collection, either
explicit or implicit. The collection supports a specific query interface (that is, the
collection is itself a Query Evaluator). In this case, the Query Evaluator passes the
query predicate to the collection, which then evaluates the predicate and performs
query operations on an appropriate member object, receives any result, combines
results with all other participating object results, and returns this to the caller. Thi
accomplishes the nesting, by passing the query evaluation on to a lower level. Su
nesting may continue to an arbitrary number of levels, without limit.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAA

Client

Query Evaluator

A A
A

AAAA
AAAA

AA
AA

Query Evaluator

Native Query
System

AA
AA
AAAA
AA

AA
AA
AAA

AA
AA
AAA
A

Query Evaluator

Object

A AAAAA

Object
Query Service: v1.0 Service Description July 1996 11-3

11

s to

sing

a

pe

w a
This second way allows Query Evaluators or any associated native query system
evaluate the query using the internal optimization at their disposal. This is expected to
include faster access, caching, and indexing. Interpretation of names embedded in
query predicates is determined by the Query Evaluator or its associated native query
systems.

The Query Service specification does not define evaluation, indexing or optimization
mechanisms. These are in the province of the implementor and may vary significantly
in different environments. The Query Service simply provides a mechanism for pas
the query to such systems and allowing their optimizations to take effect.

Collections

The Query Service provides definitions and interfaces for creating and manipulating
collections of objects. These (explicit) collections may form both the scope to which
query may be applied and the result of the query, when the result is one or more
objects.

The collections are defined as objects, with methods for adding and removing
members. They may be arbitrary in nature. In particular, they are not limited to ty
extents, as in some object systems, though type extents are examples of such
collections. They may map directly to collections managed by native query systems,
for optimization, and may also include arbitrary CORBA objects.

Associated iterators are defined to allow manipulation of collections, including
traversal over and retrieval of the objects within the collections. Such iterators allo
constant interface that can be invoked and implemented for arbitrary situations,
including mixtures of general CORBA objects; native query system collections; highly
distributed collections that could not be simultaneously accessed; collections across
multiple heterogeneous products and systems; very small collections; and very large
collections that could not be materialized physically.
11-4 CORBAservices: Common Object Services Specification

11

,

d

of the

dd or

)
Queryable Collections for Scope and Result

For collections to serve as both the result of a query and as a scope for another query
these collections must themselves be Query Evaluators. Such collections are called
Queryable Collections. They support both the Query Evaluator and collection
interfaces, as illustrated in Figure 11-2.

Figure 11-2 Queryable Collections

One of the issues that arises in using Queryable Collections is scoping in a neste
environment. If the collection being queried allows adding arbitrary objects, and if
objects are then added which are outside the scope of the evaluation mechanism
Queryable Collection, then the Queryable Collection would have to provide the full
functionality of a top-level Query Evaluator, evaluating predicates on arbitrary
CORBA objects. This would defeat the purpose of nesting.

To solve this problem, we allow Queryable Collection implementations, in response to
the invocation of the add and replace operations, to internally decide whether to a
replace the specified object, and to raise an exception if they decide not to. This allows
arbitrary Queryable Collections—which are always supported at the top Query
Evaluator level, and sublevel implementations that scope Queryable Collections to
their own domain—to use whatever local mechanisms their (possibly pre-existing
query engines use. Examples of local mechanisms include optimization capabilities
such as physical and logical indices; clustering; caching, and so forth.

Query Objects

Since queries can be complex and resource-demanding, there are numerous
circumstances under which one would like to:

• Use graphical means to construct a query.

Query
Evaluator Collection

Queryable
Collection

Queryable
Collection

...

query

query

query query
Query Service: v1.0 Service Description July 1996 11-5

11

 back

bort.

 a
t

rch

t and

uery
, a
ges

tions.
QL.)

ry,

ge
t is,

• Save a query and re-execute it later on, maybe with different set of search
parameters.

• Precompile a query for later execution; this may be for the purpose of syntaxand
semantics checking and/or query optimization.

• Execute a query in an asynchronous manner; go do something else and come
for the result.

• Check the status of a long-running query and decide whether to continue or a

The Query Service provides the preceding capabilities and extensions through the use
of Query objects. A Query object is created by calling a Query Manager, which is
more powerful form of Query Evaluator. Once created, a client of the Query objec
can:

• Use whatever means appropriate to construct the query specification.

• Prepare the query for later execution.

• Execute the query any number of times, with the same or different set of sea
parameters.

• Check the status of the query.

• Obtain the result of the query.

How the Query object does the preceding tasks is determined by the Query objec
its associated Query Manager.

11.1.4 Query Languages

By using a very general model and by using predicates to deal with queries, the Q
Service is designed to be independent of any specific query languages. Therefore
particular Query Service implementation can be based on a variety of query langua
and their associated query processors.

However, in order to provide query interoperability among the widest variety of query
systems and to provide object-level query interoperability, a Query Service provider
must support one of the following two query languages: SQL Query or OQL.

(Query capability is commonly implemented in database systems, hence there are
many products, tools, trained users, and experiences based on these implementa
To leverage this, we base the query language specification on SQL Query and O

• SQL Query. Specifically, SQL-92 Query, which is defined in Chapter 7 (Entry
SQL), and Sections 13.7, 13.8 and 13.10 (Entry SQL) of Reference 1 on page
11-27. SQL Query is used as the generic term to denote the evolution of SQL-92
Query. That is, it is envisioned that SQL-92 Query will evolve into SQL-9x Que
and so forth. These will be future versions of SQL Query. SQL-92 Query is the
current version.

• OQL. Specifically, OQL-93, which is defined in Chapter 4 of Reference 4 on pa
11-27. OQL is used as the generic term to denote the evolution of OQL-93. Tha
it is envisioned that OQL-93 will evolve into OQL-9x, and so on. These will be
future versions of OQL. OQL-93 is the current version.
11-6 CORBAservices: Common Object Services Specification

11

l

il

QL
QL

QL-92

ther

ry

 of

f data

s
 of

age
ore

For those Query Service providers who intend to provide only basic object-leve
query interoperability (for example, to support the needs of the Life Cycle Service
or Property Service), the following must also be supported:

• OQL Basic. Specifically, OQL-93 Basic, which is defined in Sections 4.11.1.2,
4.11.1.3, 4.11.1.4, 4.11.1.5, 4.11.1.6 (set only), 4.11.1.7 (except first and last) and
4.11.1.10 in Reference 4 on page 11-27.

Ideally we would like to specify a single query language, for complete query
interoperability. The most widely used query language in currently available query
systems is SQL-92 Query, which does not support full object query capabilities. OQL-
93 does support full object query capabilities and contains a near- (but not exact)
subset of SQL-92 Query. Including SQL-92 Query provides the widest interoperabity
with the most query systems, while including OQL-93 provides full OMG Object
Model support and full object query capabilities.

X3H2 and ODMG have started working together toward merging SQL Query and O
with the goal of specifying a single standard query language. As SQL Query and O
evolve, the OMG will revise of the Query Service to conform to future changes.

SQL Query

In the relational database world the accepted standard for database language is S
(Reference 1 on page 11-27). The ANSI X3H2 committee is working on a new version,
SQL3 (Reference 5 on page 11-27), which will include object extensions, among o
things. The committee is still working on the details of the modeling constructs; the
object model under consideration is different from the OMG’s Object Model. It is
important for the eventual SQL object model to be fully compatible with the OMG
Object Model so that SQL Query, the query subset of SQL, can serve as the que
lingua franca in the OMG environment.

SQL-92 is a full database language. Functionally, it consists of the following types
language statements: schema; data; transaction; commection; session; dynamic;
diagnostics; and embedded exception declaration. Among these, only a subset o
statements deal directly with query. This subset is defined to be SQL-92 Query. SQL-
92 Query basically deals with query over tables (special kind of collections) of row
(special kind of dynamic data structures). As such, it concerns with a sub-domain
object query.

OQL

In the object database world the leading standard is ODMG-93 (Reference 4 on p
11-27). The ODMG-93 standard includes an object model, based on the OMG’s C
Object Model, with extensions, to form the proposed object database profile. Also
included is the Object Definition Language, ODL, which is a strict superset of IDL,
providing a means to define objects in this profile model. All extensions, including
attributes and relationships, are visible in the object interfaces as operations, and hence
remain compatible with OMG IDL and the OMG architecture.
Query Service: v1.0 Service Description July 1996 11-7

11

QL-
e

ility

and

s
 of
ps
ODMG-93 also includes OQL (that is, OQL-93). OQL-93 is an adaptation of the S
92 Query capability to extend to all objects in the ODMG object model. It includes th
ability to include operation invocation in queries, to query over object inheritance
hierarchies, to invoke inter-object relationships, and to query over arbitrary collections.
OQL-93 is a query-only language; that is, it allows evaluation of a predicate and a
returned result, but includes no specific constructs for object modification. The ab
within OQL-93 to invoke operations provides the insert, update and delete capability
without violating encapsulation.

The OQL-93 syntax and semantics are not exactly compatible with SQL-92 Query.
However, ODMG is working with X2H2 to address this issue. It is important for the
eventual OQL to be fully compatible with SQL Query so that there is only one
standard query language. .

SQL Query = OQL

Both X3H2 and ODMG have agreed upon a vision of the evolution of SQL Query
OQL, as illustrated in Figure 11-3.

Figure 11-3 SQL Query = OQL

In Figure 11-3, solid lines indicate existing, defined specifications, while dotted line
indicate future specifications. As can be seen, SQL-92 Query is the query portion
SQL-92. OQL-93, being a query only language and having object features, overla
with SQL-92 and is almost exactly compatible with it.

SQL-92
SQL Query
= OQL

SQL-92
Query

OQL-93

AA
AA

AA
AA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AA
AA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

AA
AA

AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AA

AA
AA
AA
AA
AA
AAAA AAA

AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AA
AA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

SQL
11-8 CORBAservices: Common Object Services Specification

11

ons
jects

n

.

sed.
r any

i

SQL-92 will evolve toward a future SQL, which is a full database language. OQL-93
will evolve toward a future OQL. The agreement from X3H2 and ODMG is to make
the query subset of SQL, SQL Query, and OQL identical so that there is a single,
common query language specification.

11.1.5 Key Features

The following are key features of the Query Service:

• Provides operations of selection, insertion, updating, and deletion on collecti
of objects. The objects may be transient or persistent, local or remote; the ob
may have arbitrary attributes and operations.

• Accommodates different granularity of objects accessed by queries, including
good support for high performance access to fine-grained objects.

• Allows the scope of the objects accessible in and via the collections that are the
immediate operands of the query operations.

• Supports querying and/or returning complex data structures.

• Supports operating on user defined collections of objects.

• Supports operating on other kinds of collections and sets.

• Allows the use of attributes, inheritance, and procedurally-specified operations i
the query predicate and in the computation of results.

• Allows the use of available interfaces defined by OMG-adopted specifications.

• Allows the use of relationships for navigation, including testing for the existence
of a relationship between objects.

• Does not require breaking the encapsulation provided by the interfaces to objects

In addition, the Query Service:

• Provides an extensible framework for dealing with object query.

• Is independent of the specific syntax and semantics of the query language u
The query language can be SQL Query, OQL, a graphical query language, o
other suitable object query language. In order to provide query interoperability
among the widest variety of query systems and object-level query interoperablity,
a Query Service provider must support either SQL Query or OQL (OQL Basic
with basic object-level interoperability) as specified in Section 11.1.4 on page
11-6.

• Allows for associative query and navigational query.
Query Service: v1.0 Service Description July 1996 11-9

11

e

11.2 Service Structure

11.2.1 Overview

The Query Service defines two types of service. The specification is organized around
these types.

Type One: Collections

The Collection and Iterator interfaces define the interfaces to create and manipulate
collections of objects. The Collection interface is defined with operations for adding,
retrieving, replacing, and removing member objects. The collections that it represents
may be arbitrary in nature. The Iterator interface is defined with operations for
traversing over and retrieving objects within a collection.

Type Two: Query Framework

The Query Framework interfaces define a flexible and extensible framework for
dealing with object query. The QueryLanguageType interface provides the scheme to
use the OMG IDL type system to classify query language types. The QueryEvaluator
interface defines the basic operation to evaluate a query. The result of the query, which
can serve as the scope for further queries, is represented by the QueryableCollection.
The QueryManager interface defines a more powerful QueryEvaluator which can b
called upon to create arbitrary Query objects. Such objects can provide the capability
for graphical query construction, pre-compilation and optimization, asynchronous
query execution, and so forth.

11.2.2 Collection Interface Structure

The collection interfaces are arranged into the interface structure illustrated in
Figure 11-4. Dotted arrows represent association.

Figure 11-4 Collection interface structure

11.2.3 Query Framework Interface Hierarchy/Structure

The query framework interfaces are arranged into the interface hierarchy/structure
illustrated in Figure 11-5. Solid arrows represent inheritance and dotted arrows
represent association.

Collection Iterator
AA
AA
A
A
AA
AA

AAA
AAAA
AAA
AAAAAAAA

CollectionFactory
AAA
AAA
A
A
AA
AA

AA
AA
A
A
AA
AA

AAAA
AAAA

AA
AA
11-10 CORBAservices: Common Object Services Specification

11

Figure 11-5 Query Framework interface hierarchy/structure

11.2.4 Interface Overview

The Query Service defines the interfaces to support the functionality described in
Section 11.1 on page 11-1.

Table 11-1 and Table 11-2 give high level summaries of the Query Service interfaces.
Collection interfaces are described in detail starting in the section Section 11.3 on
page 11-12. Query interfaces are described in Section 11.5 on page 11-19.

Table 11-1 Interfaces defined in the CosQueryCollection module

Interface Purpose

CollectionFactory To create collections

Collection To aggregate objects

Iterator To iterate over collections

 QueryEvaluator

QueryableCollection

QueryQueryManager
AAA
AAA
AAA
A
AA
AA

AAA
AAA
AAA

A
A
AA
AAAAAA

Collection CosQuery-
Collection
module

QueryLanguageType
AA
AA
A
A
AA
AA
AAA
AAA
AA
AA
AAA
AAA
AA
AA

AA
AA
AA

A
A
AA
AA
AA

AAA
AAA
AAA
AA
AA

AAA
AAA
AAAAA
AA

.
Query Service: v1.0 Service Structure July 1996 11-11

11

ch

s can

tion
ts of

11.3 The Collection Model

11.3.1 Common Types of Collections

The Collection interface allows you to manipulate objects in a group. The objects that
are part of a Collection are called its elements. Examples of common types of
Collections are as follows:

• An Equality Collection has elements that can be checked for equality among ea
other. An example is a set.

• A Key Collection uses keys to identify elements (a key is part of an element). An
example is a key bag.

• An Ordered Collection has its elements arranged so that there is always a first
element, last element, next element, and previous element. Ordered Collection
be further classified as one of the following types:

• A Sequential Collection has sequentially ordered elements. An example is a
sequence.

• A Sorted Collection has sorted elements. An example is a sorted set (which is
also an equality Collection).

The Query Service defines only a top-level, basic Collection interface that supports
query on arbitrary collections without restriction to any particular type. Subtyping can
be used to map this basic Collection interface into a variety of collection classes,
including the ANSI C++ Standard Template Library (STL), ODMGs, and others. The
OMG Collection Service, available in the future, is expected to fit in similarly well.

11.3.2 Iterators

An Iterator is a movable pointer into a Collection. An Iterator is created in associa
with a Collection and can be used by a client to move through the member elemen
the Collection. When an Iterator is created for an ordered Collection, it points to the

Table 11-2 Interfaces defined in the CosQuery module

Interface Purpose

QueryLanguageType and its
subtypes

To represent query language
types

QueryEvaluator To evaluate query predicates
and execute query operations

QueryableCollection To represent the scope and
result of queries

QueryManager To create query objects and
perform query processing

Query To represent queries
11-12 CORBAservices: Common Object Services Specification

11

e or

e and
a

beginning or the first element of the Collection. A series of next operations move it
through subsequent elements until it passes through the last element and points to the
end of the Collection. For unordered Collections, the elements are visited in an
arbitrary order. Each element is visited exactly once.

The Iterator interface allows traversing a Collection in a way that works consistently
for arbitrarily large Collections. In addition to the next operation, which can be used to
move through the next element, it provides a reset operation to restart the iteration.
Multiple Iterators can be created to maintain state concerning traversal of the sam
different Collections.

The behavior of an Iterator can become undefined if elements are added to or deleted
from its associated Collection. This means that its behavior depends upon the typ
implementation of the Collection. In particular, an Iterator may become invalid as
result of such actions. Once an Iterator becomes invalid, it must be reset before it can
be used for traversal again.
Query Service: v1.0 The Collection Model July 1996 11-13

11
11.4 The CosQueryCollection Module

The CosQueryCollection module defines the Collection interfaces of the Query
Service. In particular, it defines the
• CollectionFactory interfaces, to create Collections.
• Collection interface, to represent generic collections.
• Iterator interface, to enumerate the Collections.

The CosQueryCollection module is shown below.

module CosQueryCollection {

exception ElementInvalid {};
exception IteratorInvalid {};
exception PositionInvalid {};

enum ValueType {TypeBoolean, TypeChar, TypeOctet, TypeShort,
TypeUShort, TypeLong, TypeULong, TypeFloat, TypeDouble,
TypeString, TypeObject, TypeAny, TypeSmallInt, TypeInteger,
TypeReal, TypeDoublePrecision, TypeCharacter, TypeDecimal,
TypeNumeric};

struct Decimal {long precision; long scale; sequence<octet>
value;}

union Value switch(ValueType) {
case TypeBoolean: boolean b;
case TypeChar: char c;
case TypeOctet: octet o;
case TypeShort : short s;
case TypeUShort : unsigned short us;
case TypeLong : long l;
case TypeULong : unsigned long ul;
case TypeFloat : float f;
case TypeDouble : double d;
case TypeString : string str;
case TypeObject : Object obj;
case TypeAny : any a;
case TypeSmallInt : short si;
case TypeInteger : long i;
case TypeReal : float r;
case TypeDoublePrecision : double dp;
case TypeCharacter : string ch;
case TypeDecimal : Decimal dec;
case TypeNumeric : Decimal n;

};
typedef boolean Null;
union FieldValue switch(Null) {

case false : Value v;
};
typedef sequence<FieldValue> Record;

typedef string Istring;
struct NVPair {Istring name; any value;};
typedef sequence<NVPair> ParameterList;

Figure 11-6 CosQueryCollection Module
11-14 CORBAservices: Common Object Services Specification

11
11.4.1 The CollectionFactory Interface

The CollectionFactory interface defines an operation for creating an instance of a
Collection.

interface Collection;
interface Iterator;

interface CollectionFactory {
Collection create (in ParameterList params);

};

interface Collection {
readonly attribute long cardinality;

void add_element (in any element) raises(ElementInvalid);
void add_all_elements (in Collection elements)

raises(ElementInvalid);

void insert_element_at (in any element, in Iterator where)
raises(IteratorInvalid, ElementInvalid);

void replace_element_at (in any element, in Iterator
where) raises(IteratorInvalid, PositionInvalid, ElementInvalid);

void remove_element_at (in Iterator where)
raises(IteratorInvalid, PositionInvalid);

void remove_all_elements ();

any retrieve_element_at (in Iterator where)
raises(IteratorInvalid, PositionInvalid);

Iterator create_iterator ();
};

interface Iterator {
any next () raises(IteratorInvalid, PositionInvalid);

void reset ();
boolean more ();

};
};

module CosQueryCollection {

Figure 11-6 CosQueryCollection Module
Query Service: v1.0 The CosQueryCollection Module July 1996 11-15

11

t of

the

ents
ions
Creating a Collection

Collection create (in ParameterList params);

This operation creates a new instance of a Collection. The factory is passed a lis
parameters, one of which must be:

“initial_size”, type long

which represents an initial, estimated number of elements. The Collection is initially
empty and may grow dynamically, both in elements and size. Other parameters that
may be passed include, for example, “hints” relating to indexing, and so forth.

The ParameterList is defined to be a sequence of name-value pairs, of which
name is defined to be of type Istring. As is the case in the Naming Service,
Istring is a placeholder for a future OMG IDL internationalized string data type.

11.4.2 The Collection Interface

The Collection interface defines operations to:

• Add elements
• Replace elements
• Remove elements
• Retrieve elements

to and from a collection and an operation to create iterators for traversing the
collection.

The element type of a collection can be any. This is designed to accommodate
generality. For most common queries, the result collections tend to consist of elem
that are records or objects. For some specific queries, however, the result collect
may consist of elements of any data type.

Record is defined to be a sequence of FieldValues . A FieldValue may be
Null or may have a value. This is designed to provide direct mapping to similar
features available in a wide variety of existing query systems. The type of a
FieldValue can be one of the OMG IDL base types, string, Object or one of the
suggested mappings to SQL data types: TypeSmallInt; TypeInteger; TypeReal;
TypeDoublePrecision; TypeCharacter; TypeDecimal; and TypeNumeric. (TypeFloat is
the same as that defined for the OMG IDL base type.)

Determining the Cardinality

readonly attribute long cardinality;

This attribute identifies the number of elements that a Collection contains.

Adding an Element

void add_element (in any element) raises(ElementInvalid);
11-16 CORBAservices: Common Object Services Specification

11

le
r

ts

me

n.

or,

This operation adds an element to a Collection. Behaviors of all Iterators of the
Collection become undefined when the element is added.

A Collection implementation, in response to the invocation of the add_element()
operation, may internally decide whether to add the specified element, raising the
ElementInvalid exception if it decides not to add it. As discussed in “Queryab
Collections for Scope and Result” on page 11-5, this allows sublevel Query Evaluato
implementations that scope Queryable Collections to their own domain.

Adding Elements from a Collection

void add_all_elements (in Collection elements) raises
(ElementInvalid);

This operation adds all elements of the input Collection to a Collection. The elemen
are added in the Iterator order of the input Collection and are consistent with the
semantics of add_element(). This operation is really a sequence of add_element(). If
any elements are added, behaviors of all Iterators of the Collection become undefined.

Inserting an Element

void insert_element_at (in any element, in Iterator where)
raises(IteratorInvalid, ElementInvalid);

This operation inserts an element to a Collection at the position pointed to by the input
Iterator. Behaviors of all Iterators of the Collection, except the input Iterator, beco
undefined when the element is inserted.

If the input Iterator is invalid, the IteratorInvalid exception will be raised. The
ElementInvalid exception will be raised as it is for the add_element() operatio

Replacing an Element

void replace_element_at (in any element, in Iterator where)
raises(IteratorInvalid, PositionInvalid, ElementInvalid);

This operation replaces the element of a Collection, pointed to by the input Iterat
with the input element. The input element must have the same positioning property as
the replaced element. (Only equality Collections and key Collections have positioning
property.)

If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be
raised. The ElementInvalid exception will be raised in the same manner as it is
for the add_element() operation.

Removing an Element

void remove_element_at (in Iterator where) raises
(IteratorInvalid, PositionInvalid);
Query Service: v1.0 The CosQueryCollection Module July 1996 11-17

11

or.
This operation removes the element of a Collection, pointed to by the input Iterat
After removal, behaviors of all Iterators of the Collection become undefined.

If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be
raised.

Removing all Elements

void remove_all_elements ();

This operation removes all elements from a Collection. After removal, behaviors of all
Iterators of the Collection become undefined.

Retrieving an Element

any retrieve_element_at (in Iterator where) raises
(IteratorInvalid, PositionInvalid);

This operation retrieves the element of a Collection, pointed to by the input Iterator.

If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be
raised.

Creating an Iterator

Iterator create_iterator ();

This operation creates an Iterator for a Collection. The Iterator is initially set at the
beginning of the Collection.

11.4.3 The Iterator Interface

The Iterator interface defines operations to:

• Access and navigate through elements of a collection

• Reset the iteration

• Test for completion of an iteration

Accessing the Current Element

any next () raises(IteratorInvalid, PositionInvalid);

This operation retrieves the element of a Collection, pointed to by the Iterator, and
advances the Iterator position. The operation will raise the IteratorInvalid
exception if the Iterator is invalid, and the PositionInvalid exception if the
Iterator does not point at an element.
11-18 CORBAservices: Common Object Services Specification

11

et to

et of
se

t can

0).
Resetting the Iteration

void reset ();

This operation resets the iteration to begin anew. The position of the Iterator is res
the beginning of a Collection.

Testing for Completion of an Iteration

boolean more ();

This operation returns true if there are more elements to be accessed and false if there
are not.

11.5 The Query Framework Model

The Query Framework interfaces provide an extensible framework for dealing with
query. This is accomplished in two ways. First, by providing a standard, generic s
object interfaces for handling query. Second, by providing extensibility so that the
object interfaces can be subtyped for further functionality.

The Query Framework interfaces define two levels of interfaces. The base level
consists of QueryEvaluator and QueryableCollection interfaces and provides the
minimal functionality for query. The advanced level consists of QueryManager and
Query interfaces and provides an extensible functionality for dealing with all aspects
of query.

11.5.1 Query Evaluators

A Query Evaluator is any object that supports the operation to evaluate a query. I
be a single object, an implicit collection of objects, or an explicit collection of objects
(particularly a Queryable Collection, as discussed in Section 11.5.2 on page 11-2
An example of a Query Evaluator that manages implicit collections of persistent
objects is a database system.
Query Service: v1.0 The Query Framework Model July 1996 11-19

11

s, but

 are

ions

nd by

d so
The result of a query evaluation can be anything. In most cases, it is a Queryable
Collection, as illustrated in Figure 11-7. (The solid arrow represents operation
invocation and the dotted arrows represent association.)

Figure 11-7 Query Evaluator and Queryable Collection

11.5.2 Queryable Collections

A Queryable Collection supports the QueryEvaluator interface and, therefore, can be
used not only to represent the result of a query that consists of one or more object
also to define the scope to which further queries may be applied. An especially
interesting kind of Queryable Collection is the type extent, whose member objects
instances of a certain object type.

A Queryable Collection evaluates a query by either invoking the evaluation operat
on its member objects if they are Query Evaluators—or by evaluating the query
predicate on the attributes and operations of its member objects if they are not—a
combining the results from such invocations and evaluations. As such, the query
predicate must be a valid predicate for the Queryable Collection object and its member
objects. If any one of its member objects is a Queryable Collection, the predicate (the
applicable part, that is) must further be a valid predicate for its member objects, an
on. Therefore, the QueryableCollection interface provides a mechanism for nesting
queries to an arbitrary number of levels.

Queryable
Collection

AA
AAA
AA
AAA AAAAAAAAA

Query
Evaluator

Source
Collection

evaluate

IteratorAAA
AAA
AAA AAAAAAAAAAAAAAAAAAA

AA
AAA AAAAAAAAAA

Result
Collection

CosQuery-
Collection
module
11-20 CORBAservices: Common Object Services Specification

11

s

d. A
iverse

n,

text,
 in a
11.5.3 Query Managers

A Query Manager is a more powerful form of Query Evaluator. It provides the
operation to create Query objects. Working in tandem with a Query object, it manage
the overall query processing and monitors the query execution. The QueryManager
contains the universe of collections of objects over which queries can be specifie
specific query, as represented by a Query object, operates on a subset of this un
of collections.

The relationship between a Query object and its Query Manager is shown in
Figure 11-8. (Dotted boxes represent logical entities; dotted arrows represent logical
associations.)

Figure 11-8 Query Manager and Query Object

11.5.4 Query Objects

A Query object represents a query and logically consists of the query specificatio
query status and query results. In addition, it contains the reference, either explicitly or
implicitly through the Query Manager, to the queryable collection that defines its
scope.

The Query object is responsible for composing and containing a query specification,
including parameters. The query specification may be represented in the form of
graphic, etc. A user may select a subset of the query specification to be executed
query. This is particularly useful for query debugging. The Query interface is expected
to be extended by vendors or users to provide the additional functionality for
composing and selecting the query specification.

AAAAAAAAAA

AA
AA
AA
AA
AA
AA
AA

AAAAAAAAAAAA
AA
AA
AA
AA
AA
AA

Query
Specification

AAAAAAAAAA

AA
AA
AA
AA
AA
AA
AA

AAAAAAAAAAAA
AA
AA
AA
AA
AA
AA

AAAAAAAAAA

AA
AA
AA
AA
AA
AA
AA

AAAAAAAAAAAA
AA
AA
AA
AA
AA
AA

AAAAAAAAAA

A
A
A
A
A
A

AAAAAAAAAAA
A
A
A
A
A

Queryable

Query
Result

Query
Status

Query
Manager

AAA
AAA
AAAAA
AAA
AA

AAAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AA
AAAA
AA
AA

A

AA
A
A

AA
AA
AAA

AA
AA
AAA

A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AAAA
AA
AA

A

AA
A
A

AAA
AAAA
AAA
AAA
A
A

A
A

AAAA
AAAA

AAA
AAASource

Collection

Result
CollectionAAA

AAAA
AAA
AAAA AAAAAAAA

Collection

AAA
AAA
AAAA

AAA
AA
AA
AAA
AA

AAAA

Query
Query Service: v1.0 The Query Framework Model July 1996 11-21

11

d
The Query object is responsible for maintaining the status information and log
information regarding a query. The Query interface is expected to be extended by
vendors or users to provide the additional functionality for displaying the status
information.

The Query object also contains the results of a query. The Query interface is expected
to be extended by vendors or users to provide the additional functionality for browsing
query results. For example, successive results may be appended to previous results or
replace them. A user may browse query results by specifying the version numbers, an
so forth.
11-22 CORBAservices: Common Object Services Specification

11

. In

11.6 The CosQuery Module

The CosQuery module defines the query framework interfaces of the Query Service
particular, it defines the following interfaces:

• QueryLanguageType interfaces to denote query language types.
• QueryEvaluator interface to represent query evaluators.
• QueryableCollection interface to denote collections which can serve as the result as

well as the source of a query.
• QueryManager interface to create queries and perform query processing.
• Query interface to represent queries.

The CosQuery module is shown below.

 module CosQuery {

exception QueryInvalid {string why};
exception QueryProcessingError {string why};
exception QueryTypeInvalid {};

enum QueryStatus {complete, incomplete};

typedef CosQueryCollection::ParameterList ParameterList;
typedef CORBA::InterfaceDef QLType;

interface QueryLanguageType {};
interface SQLQuery : QueryLanguageType {};
interface SQL_92Query : SQLQuery {};
interface OQL : QueryLanguageType {};
interface OQLBasic : OQL {};
interface OQL_93 : OQL {};
interface OQL_93Basic : OQL_93, OQLBasic {};

interface QueryEvaluator {
readonly attribute sequence<QLType> ql_types;
readonly attribute QLType default_ql_type;

any evaluate (in string query, in QLType ql_type, in
ParameterList params) raises(QueryTypeInvalid, QueryInvalid,
QueryProcessingError);

};

interface QueryableCollection : QueryEvaluator, CosQueryC-
ollection::Collection {};

interface QueryManager : QueryEvaluator {
Query create (in string query, in QLType ql_type, in

ParameterList params) raises(QueryTypeInvalid, QueryInvalid);
};
Query Service: v1.0 The CosQuery Module July 1996 11-23

11

ce

uery
interface Query {
readonly attribute QueryManager query_mgr;

void prepare (in ParameterList params) raises(QueryPro-
cessingError);

void execute (in ParameterList params) raises(QueryPro-
cessingError);

QueryStatus get_status ();
any get_result ();

};

};

11.6.1 The QueryLanguageType Interfaces

The QueryLanguageType interfaces consist of seven interfaces that form the interfa
hierarchy illustrated in Figure 11-9.

Figure 11-9 QueryLanguageType Interface Hierarchy

A Query Service provider is expected to use subtyping from SQL_92Query, OQL_93
or OQL_93Basic to denote the query language that it supports. For example, if a Q
Service provider supports a query language, Object SQL, which complies with both
SQL-92Query and OQL-93Basic, then its interface type, ObjectSQL, should be
defined to be a subtype of SQL_92Query and OQL_93Basic:

interface ObjectSQL : SQL_92Query, OQL_93Basic {};

QueryLanguageType

SQLQuery

OQL_93

OQL_93Basic

OQL

OQLBasic

SQL_92Query
11-24 CORBAservices: Common Object Services Specification

11

cts).

uery
11.6.2 The QueryEvaluator Interface

The QueryEvaluator interface defines an operation for evaluating queries. It lets a
client determine the query language types, and the default one, that it supports.

The result type of a query can be any. This is designed to accommodate generality. For
most common queries, the results tend to be Collections (mostly of records or obje
For some specific queries, however, the result may be of any data type.

Determining the Supported Query Language Types

readonly attribute sequence<QLType> ql_types;

This attribute identifies the query language types supported by the QueryEvaluator.

Determining the Default Query Language Type

readonly attribute QLType default_ql_type;

This attribute identifies the default query language type supported by the
QueryEvaluator.

Evaluating a Query

any evaluate (in string query, in QlType ql_type, in
ParameterList params) raises(QueryTypeInvalid,
QueryInvalid, QueryProcessingError);

This operation evaluates a query and performs required query processing. If the q
language type is not specified, the default query language type is assumed.

The query language type specified must be supported by the QueryEvaluator.
Otherwise, the QueryTypeInvalid exception is raised. If the query syntax or
semantics is incorrect or if the input parameter list is incorrect, the QueryInvalid
exception is raised. If any error is encountered during query processing, the
QueryProcessingError exception is raised.

11.6.3 The QueryableCollection Interface

The QueryableCollection interface is a subtype of both the QueryEvaluator and
CosQueryCollection::Collection interfaces. Any collection that supports this interface
can be used to represent the result of a query that consists of one or more objects. It can
also be used to define the scope to which further queries may be applied.

11.6.4 The QueryManager Interface

The QueryManager interface is a subtype of the QueryEvaluator interface. It defines
an additional operation for creating Query objects. The QueryManager interface works
in tandem with a Query object in managing the overall query processing and monitoring
the query execution.
Query Service: v1.0 The CosQuery Module July 1996 11-25

11

tion

ill
Creating a Query Object

Query create (in string query, in QlType ql_type, in
ParameterList params) raises(QueryTypeInvalid,
QueryInvalid);

This operation creates a Query object representing the input query. If the query
language type is not specified, the default query language type is assumed.

The query language type specified must be supported by the QueryManager.
Otherwise, the QueryTypeInvalid exception is raised. If the query syntax or
semantics is incorrect or if the input parameter list is incorrect, the QueryInvalid
exception is raised.

11.6.5 The Query Interface

The Query interface defines operations to:

• Prepare the query for execution
• Execute the query
• Determine the preparation and execution status of the query
• Obtain the result of the query

Determining the Associated Query Manager

readonly attribute QueryManager query_mgr;

This attribute identifies the QueryManager associated with the Query object.

Preparing the Query for Execution

void prepare (in ParameterList params) raises
(QueryProcessingError);

This operation performs the necessary processing, including optimization, on the query
so that it is ready for execution. Query preparation may be carried out in coopera
with the associated QueryManager.

If the input parameter list is incorrect or if any error is encountered during query
preparation, the QueryProcessingError exception is raised.

Executing the Query

void execute (in ParameterList params) raises
(QueryProcessingError);

This operation executes the query. If the query has not been prepared before, it w
prepare the query first. Query execution may be carried out in cooperation with the
associated QueryManager.

If the input parameter list is incorrect or if any error is encountered during query
execution, the QueryProcessingError exception is raised.
11-26 CORBAservices: Common Object Services Specification

11

e
Determining the Query Status

QueryStatus get_status ();

This operation returns the preparation and/or execution status of the query. This may
be carried out in cooperation with the associated QueryManager.

Obtaining the Query Result

any get_result ();

This operation returns the result of the query.

11.7 References

1. American National Standard X3.135-1992, Database Language - SQL, January,
1993.

2. Object Management Group. CORBA: Common Object Request Broker Architectur
and Specification. Published by the OMG, Framingham, MA. 1995.

3. Object Management Group. Object Services RFP 4, OMG Document Number
94.4.18, May, 1994.

4. Cattell, R.G.G. (ed), The Object Database Standard: ODMG-93, v1.2, Morgan
Kaufmann Publishers, San Mateo, California. 1994.

5. Melton, Jim (ed), SQL3 Part 2: Foundation, ANSI X3H2-94-329, August, 1994.
Query Service: v1.0 References July 1996 11-27

11
11-28 CORBAservices: Common Object Services Specification

	Query Service Specification
	11.1 Service Description
	11.1.1 Overview
	11.1.2 Design Principles
	11.1.3 Architecture
	Query Evaluators: Nesting and Federation
	Collections
	Queryable Collections for Scope and Result
	Query Objects

	11.1.4 Query Languages
	SQL Query
	OQL
	SQL Query = OQL

	11.1.5 Key Features

	11.2 Service Structure
	11.2.1 Overview
	Type One: Collections
	Type Two: Query Framework

	11.2.2 Collection Interface Structure
	11.2.3 Query Framework Interface Hierarchy/Structu...
	11.2.4 Interface Overview

	11.3 The Collection Model
	11.3.1 Common Types of Collections
	11.3.2 Iterators

	11.4 The CosQueryCollection Module
	11.4.1 The CollectionFactory Interface
	Creating a Collection

	11.4.2 The Collection Interface
	Determining the Cardinality
	Adding an Element
	Adding Elements from a Collection
	Inserting an Element
	Replacing an Element
	Removing an Element
	Removing all Elements
	Retrieving an Element
	Creating an Iterator

	11.4.3 The Iterator Interface
	Accessing the Current Element
	Resetting the Iteration
	Testing for Completion of an Iteration

	11.5 The Query Framework Model
	11.5.1 Query Evaluators
	11.5.2 Queryable Collections
	11.5.3 Query Managers
	11.5.4 Query Objects

	11.6 The CosQuery Module
	11.6.1 The QueryLanguageType Interfaces
	11.6.2 The QueryEvaluator Interface
	Determining the Supported Query Language Types
	Determining the Default Query Language Type
	Evaluating a Query

	11.6.3 The QueryableCollection Interface
	11.6.4 The QueryManager Interface
	Creating a Query Object

	11.6.5 The Query Interface
	Determining the Associated Query Manager
	Preparing the Query for Execution
	Executing the Query
	Determining the Query Status
	Obtaining the Query Result

	11.7 References

