Query Service Specification 11

11.1 Service Description

11.1.1 Qverview

The Query Service provides query operations on collections of obJértueries are
predicate-based and may return collections of objects. They can be specified using
object derivatives of SQL and/or other styles of object query languages, including
direct manipulation query languages.

The term “query™has read-only corotations, but we use it denote general
manipulation operations including selection, insertion, updatimddeletion on
collections of objects. Thrghout this chapter, the term “object” is used in the general
sense to include data.

The Query Service can be used to return collections of objects that may be:

® Selected from source collectiobased on whether their member objects satisfy a
given predicate.

® Produced by query evaluators based on the evaluation of a given predicate. These
guery evaluators may managenpilicit collectons of objects.

The source and result collections may be typed. The scolieetion may be specified
by the client or may be the result of previous queries.

11.1.2 Design Principles

The Query Service exists to allow arbitrary users and objects to invoke queries on
arbitrary collections of other objects. Sudhegies are declarative statemewith
predicates, including thability to specify values of attributes; to invoke arbitrary
operations; and to invoke arbitrary services witlie@ OMG environment, such as the
Life Cycle, Persistent Object, and Relationship Services.

CORBAservices: Common Object Services Specification 11-1

11

11-2

To support the OMG architecture, the Query Service must allow querying against any
objects, with arbitrary attributes and operations.

To be useful in practical situations, the Query Service must allow use of performance
enhancing mechanisms, such as indexing.

To be useful in environments with database systems—aebi@ttted, relatioal, and
other—and with other systems that stared access largeollections of objects, the
Query Service must map well to these native systems’ internal mechanisms for
specifying collections and using indexinbhe Query Servicenust also allow the
native systems to contribute to specifying collections and indexing.

To maximizeusefulness to the community at large, theey Service is based on
existing standards foguery and extended when necessary to accommodate other
design principles.

The Query Service also suppoftexibility in implementation and extensions.

11.1.3 Architecture

The Query Service design providesamwhitecture for a nested and federated service
that can coordinate multiple nested query evaluators, much as the Transactice S
provides an architecture for a nested and federated service that can coordinate multiple
nested resources managers.

CORBAservices: Common Object Services Specification

11

Query EvaluatorsNesting and Federation

Query Evaluator

Query Evaluator Query Evaluator

Object ?
Y

Native Query
\ System i
Object

Figure 11-1 Query Evaluators: Nesting and Federation

Objects may participate in the Query Service in two ways. The simplest involves any
CORBA object as is. The Queryw&uator is then responsible for evaluating the query
predicate and performing ajluery operations by woking operations on that object
through its published OMG IDL interfaces. Any non-supportpdrations trigger
exceptions. This mechanism provides the greatest generality, including support for all
CORBA objects, but with the least optimization.

In a more involved manner, objects participate as members afezton, either

explicit or implicit. The collection supportsspecific query interface (that is, the
collection is itself aQuery Evaluator). Irthis case, the Query Evaluator passes the

qguery predicate to the collectiowhich then evaluates the predicate gmuforms

guery operations on an appropriate member object, receives any result, combines such
results with all other participating object results, and returns this to the caller. This
accomplishes the nesting, by passing the query evaluation on to a lower level. Such
nesting may continue to an arbitrary number of lewsithout limit.

Query Servicev1.0 Service Description July 1996 11-3

11

11-4

This second way allows Query Evaluators or any associated native query systems to
evaluate the query using the internal opzation at theidisposal. This is expected to
include faster access, cachirmmd indexing. Interpretation of hames embedded in
qguery predicates is determined by the Query Evaluator or its associated mgtiye q
systems.

The Query Service ggification des not define evaluation, indexing or opzation
mechanisms. These are in the province ofitiqg@ementor and mayary significantly

in different environments. The Query Service simply provides a mechanism for passing
the query to such systerasd allowingtheir optimizations to take effect.

Collections

The Query Service providetefinitions and interfaces for creating and manipulating
collections of objects. These (explicidllections may form both the scope to which a
guery may be applied and thesult of the query, when the resultoise or more
objects.

The collections are defined as objects, with noetk for adding and removing
members. They may be arbitrary in nature. In particular, they are not limited to type
extents, as in some object systems, though type extents are examples of such
collections. They may map directly to collectiomanaged by native query systems,
for optimization,and may also include atbary CORBA objects.

Associatedterators are defined to allow manipulation of collections, including
traversal over and retrieval of the objects within the collections. Such iterators allow a
constant interface that can be invoked anglementedfor arbitrary situations,

including mixtures of general CORBA objects; native query systhaations; highly
distributed collections thatould not besimultaneously accessed; collections across
multiple heterogeneous products aystems; vergmall collectionsand very large
collections that could not bmaterialized physically.

CORBAservices: Common Object Services Specification

11

Queryable Collections for Scope and Result

For collections to serve as both the result of a gaed/as a scope for another query,
these collections must themselves(aery EvaluatorsSuch collections are called
Queryable CollectionsThey support botlthe Query Evaluator and collection
interfaces, as illustrated in Figure 11-2.

Query query
Evaluator - | Collection
query
query query
Queryable e Queryable L

Collection Collection

Figure 11-2 Queryable Collections

One of the issues that arises in using Queryable Collections is scoping in a nested
environment. If the collectiobeing queried allows adding arbitrary objeasd if

objects are then added which are outside the scope of the evaluation mechanism of the
Queryable Collection, then the Queryable Collection would have to providalthe
functionality of a top-level Query Evaluator, evaluating predicates on arbitrary

CORBA objects. This would defeat the purpose of nesting.

To solve this problem, we allow Queryable Collectioplemenations, in response to

the invocation of the add and replace operations, to internally decide whether to add or
replace the specified object, and to raise an exception if they decitte mbis allows
arbitrary Queryable Collections—which amwvays supported at the top Query

Evaluator level, and sublevel implementatidhat sope Queryable Collections to

their own domain—to use whatever local mechanisms their (possibly pre-existing)
guery engines use. Examples of local mechanisms include optimizatiahilt#s

such as physical and logical indicefjstering; cachingand so forth.

Query Objects

Since queriesan be complex and resource-demanding, there are numerous
circumstances under which one would like to:

» Use graphical means to construct a query.

Query Servicev1.0 Service Description July 1996 11-5

11

11-6

» Save a query and re-executdaiter on, maybe with dferent set of search
parameters.

» Precompile a query for later execution; this may be for the purpose of symtax
semantics checking and/or query aptiation.

» Execute a query in an asynchronous manner; go do something else and come back
for the result.

» Check the status of a long-running query and decide whether to continue or abort.

The Query Service provideke preceding cabilitiesand extensions through the use
of Query objects. A Query object is created by calling a Query Manager, which is a
more powerful form of Query Evaluator. Once created, a client of the Query object
can:

» Use whatever means appropriate to construct the query specification.
» Prepare the query for later execution.

» Execute the query any number of times, with the same or different set of search
parameters.

» Check thestatus ofthe query.
* Obtain the result of the query.

How the Query object does the preceding tasks is determined by the Query object and
its associated Query Manager.

11.1.4 Query Languages

By using a very general model and by using predicates to deal with queries, the Query
Service is designed to be independent of any specific query languages. Therefore, a
particular Query Service implementation can be based on a variety of query languages
andtheir associated query processors.

However, in order to provide queiyteroperability among the widest variety of query
systemsand to provide object-level quemyteroperability, a Query Service provider
mustsupport one of the following two query languages: SQL Query or OQL.

(Querycapability is commonly implemented database systems, hence there are
many products, tools, trained users, and experiences based on these implementations.
To leverage this, we base the query language specification on SQL Query and OQL.)

® SQL Query. Specifically, SQL-92 Query, which is defined in Chapter 7 (Entry
SQL), and ®ctions13.7, 13.8 and 13.10 (Entry SQL) of Reference 1 on page
11-27. SQL Query is used as the genegientto denote the evolution of SQL-92
Query. That is, it is envisioned that SQL-92 Query will evolve into SQL-9x Query,
and so forth. These will be future versions of SQL Query. SQL-92 Query is the
current version.

® OQL. Specifically, OQL-93, which is defined in Chapter 4 of Reference 4 on page
11-27. OQL is used as the generic term to denote the evolution of OQL-93. That is,
it is envisioned that OQL-93 will evolve into OQL-9x, and so on. These will be
future versions of OQL. OQL-93 is the current version.

CORBAservices: Common Object Services Specification

11

For those Query Service providers who intend to provide only basic object-level
qguery interoperability (for example, support the needs of the Life Cycle Service
or Property Service), thf@llowing must also be syorted:

® OQL Basic. Specifically, OQL-93 Basic, which is defined in Sections 4.21.
4.11.1.3,4.11.1.4, 4.11.1.5, 4.11.1set(only), 4.11.1.7 (excepirst andlast) and
4.11.1.10 in Reference 4 on page 11-27.

Ideally we would like to specify a single query language, for complete query
interoperability. The most widely used query laage in currently available query
systems is SQL-92 Query, which does not supfudrbbject query capabilities. OQL-
93 does support full object query capdldl and contains a near- (but not exact)
subset of SQL-92 Query. Including SQL-92 Query provides the widest interofigrabil
with the most query systems, while including IB@3 providesfull OMG Object

Model support and full object query caglities.

X3H2 and ODMG have started working together toward merging SQL Query and OQL
with the goal of specifying a single standard query language. As SQL Query and OQL
evolve, the OMG will revise of the Query Service to fmom to futurechanges.

SQL Query

In the relational database world the accepted standard for database language is SQL-92
(Reference 1 on page 11-27). The ANSI X3HEnenittee is varking on a new version,

SQL3 (Reference 5 on page 11-27), which will include object extensions, among other
things. The committee isiktworking on the details ofhe modeling constructs; the

object model under consideration is differéioim the OMG’s Object Model. It is

important for the eventual SQL object model to be fully compatible with the OMG
Object Model so that SQL Query, the query subset of SQL, can serve as the query
lingua francain the OMG environment.

SQL-92 is a fulldatabase language. Functionally, it consists of the following types of
language statements: schema; data; transaction; commection; seseamjcgly

diagnostics; and embedded exception declaration. Among these, only a subset of data
statements deal directly with query. This subset is defined to he93@uery. SQL-

92 Query basically deals with query over tables (special kind of collections) of rows
(special kind of dynamic data structures). As such, it concerns with a sub-domain of
object query.

oQL

In the object database world the leading standard is ODMG-93 (Reference 4 on page
11-27). The ODMG-93 standard includes an object model, based on the OMG’s Core
Object Model, with extensions, form theproposed object database profile. Also
included is the Object finition Language, ODL, which is strict superset of IDL,
providing a means to define objects in this profile model. All extensions, including
attributes and relationships, are visible in the object interfacesesatmmsand hence
remain compatible with OMG IDland the OMG architecture.

Query Servicev1.0 Service Description July 1996 11-7

11

11-8

ODMG-93 also includes OQL (that is, OQL-93). OQL-93 is an adaptation of the SQL-
92 Query capalty to extend to all objects in the ODMG object model. It includes the
ability to include operation pcation in queries, to query over object inherita
hierarchies, to invoke inter-object relationships, and to queey arbitrary collections.
OQL-93 is a query-only language; that is, it allowsleation of a predicatend a
returned result, but includes no specific constructs for object modification. The ability
within OQL-93 to invoke perations provides the insert, updated delete capability
without violating encapsulatn.

The OQL-93 syntax and semantics are not exactly compatible with92QQuery.
However, ODMG is working with X2H2 to addregsstissue. It is important for the
eventual OQL to béully compatible with SQL @Qery so that there is only one
standard query language. .

SQL Query = OQL

Both X3H2 and ODMG have agreed upon a vision of the evolution of SQL Query and
OQL, as illustrated in Figure 11-3.

SQL

SQL-92

SQL-92 OQL-93 SQL Query
Query = 0QL

Figure 11-3 SQL Query = OQL

In Figure 11-3,solid lines indicate existing, defined specifications, while dotted lines
indicate future specifications. As can be seen, SQL-92 Query is the query portion of
SQL-92. OQL-93, being a query only language and having object features, overlaps
with SQL-92 and is almost exactly compatible with it.

CORBAservices: Common Object Services Specification

11

SQL-92 will evolve toward a future SQL, which is a full databasguage. OQL-93
will evolve toward a future OQL. The agreemdrim X3H2 and ODMG is to make
the query subset of SQL, SQL Query, and OQL igahto that there is a single,
common query language specification.

11.1.5 Key Features

The following are keyeatures of the Query Service:

» Provides operations of selection, insertion, updating, and deletion on collections
of objects. The objects may be transient or persistent, local or remote; the objects
may have arbitrarattributesand geratians.

» Accommodates different granularity of objects@ssed by queries, including
good support for high performance access to fine-grained objects.

 Allows the scope of the objects accessible in and viadfiections that are the
immediateoperands of the query operations.

» Supports querying and/or returning complex data structures.

» Supports operating on user defined collections of objects.

» Supports operating on other kinds of collections and sets.

» Allows the use ofttributes, inhetance, and procedurally-specified operations in
the query predicate and in the qmmation of results.

» Allows the use of wailable interfaces defined by OM&dopted specifications.

» Allows the use of relationships for navigation, includtegting for the existence
of a relationshigbetween objects.

» Does not require breaking the ensafation provided by the interfaces to objects.

In addition, the Query Service:

* Provides an extensibfeamework for dealing with object query.

* Is independent of the specific syntax and semantics of the query language used.
The query language can be SQL Query, OQL, a graphical query language, or any
other suitable object query language. In order to provide goergoperability
among the widest variety of query systems and object-level query interdipgrabi
a Query Service providenustsupport either SQL Query or OQL (OQL Basic
with basic object-level interoperability) as specified in Sectibri.4 on page
11-6.

 Allows for associative query and navigational query.

Query Servicev1.0 Service Description July 1996 11-9

11

11.2 Service Structure

11.2.1 Overview

The Query Service defines two types of servitdee specification is organized around
these types.

Type One: Collections

The Collectionandlterator interfaces define the interfaces to createl manipulate
collections of objectsThe Collectioninterface is defined with operations fadding,
retrieving, replacing, and removing member objects. ddikections that it represents
may be arbitrary in nature. Thierator interface is defined with operations for
traversingover andretrieving objects \vithin a colection.

Type Wo: Query Framework

The Query Frameworlnterfaces define a flexible and extensible framework for
dealing with object quenyThe QueryLanguageTypiaterface provides the scheme to
use the OMG IDL type system to classifyery language types. Tl@ueryEvaluator
interface defines the basic operation to evaluate a qUkeyresult of the query, which
can serve as the scope for further queries, is represented Quéngable®@llection.

The QueryManagerinterface defines a more powerful QueryEvaluator which can be
called upon to create arbitraQueryobjects. Such objects can provide tapability

for graphical query construction, pre-compilation andmjaiation,asynchronous

qguery execution, and so forth.

11.2.2 Collection Interface Structure

The collection interfaces are arranged into the interface structure illustrated in
Figure 11-4. Dotted arrows represent association.

CollectionFador .
y Ml e Collection e jne Iterator

Figure 11-4 Collection interface structure

11.2.3 Query Framework Interface Hierarchy/Structure

The queryframework interfaces are arranged into the interface hierarchy/structure
illustrated in Figure 11-5. Solid arrows represent inheritance and dotted arrows
represent association.

11-10 CORBAservices: Common Object Services Specification

11

Collection CosQuery-
Collection
A module

QueryEvaluator

" \

QueryLanguageType QueryableCollection

..... QueryManager

e s Query

Figure 11-5 Query Framework interface hierarchy/structure

11.2.4 Interface Overview

The Query Service defines the interfaces to support the functionality described in
Section 11.1 on page 11-1.

Table 11-1 and Table 11-2 give high leeeimmaries of the @ry Service interfaces.
Collection interfaces are described in desadrting inthe section Section 11.3 on
page 11-12. Query interfaces are described @tti®n 11.5 orpage 11-19.

Table 11-1 Interfaces defined in th€osQueryCollectioomodule

Interface Purpose
CollectionFactory To create collections
Collection To aggregate objects
Iterator To iterate over collections

Query Servicev1.0 Service Structure July 1996 11-11

11

Table 11-2 Interfaces defined in thEosQuerymodule

Interface Purpose

QueryLanguageType and its To represent query language
subtypes types

QueryEvaluator To evaluate query predicates

and execute query operations

QueryableCollection To represent the scope and
result of queries

QueryManager To create query objects and
perform query processing

Query To represent queries

11.3 TheCollection Model

11-12

11.3.1 Common Types of Collections

The Gllection interface allowgou to manipldte objects in a gup. The objects that
are part of a Collection are called @ementsExamples of common types of
Collections are afllows:

®* An Equality Collectionhas elements that can be checked for equality among each
other. An example is a set.

* A KeyCollectionuses keys to igntify elements (&ey is part of an element). An
example is a key bag.

* An OrderedCollectionhas its elements arranged so that there is alwaysta fi
element, last element, next element, and previous element. Ordered Collections can
be further classified as one of tf@lowing types:

* A SequentialCollectionhas sequentially ordered elements. An example is a
sequence.

» A SortedCollectionhas sorted elements. An example is a sorted set (which is
also an equity Collection).

The Query Service defines only a top-leymsic Collection interface thatpports
qguery on arbitrary collections withotgstricton to any particular typeSubtyping can
be used to map this basic Collection interface into a variety of collection classes,
including the ANSI C++ Standardemplate Library (ST), ODMGs, and others. The
OMG Collection Service, available in the future, is expected to 8irilarly well.

11.3.2 Iterators

An lterator is a movable pointer into a Collection. An Iterator is created in association
with a Collection and can be used by a client to move through the member elements of
the Collection. When aherator is created for aordered Collection, it points to the

CORBAservices: Common Object Services Specification

11

beginning or thdirst element othe Collection. Aseries ofnext operations move it
through subsequent elemenistil it passes thragh thelast element and points to the
end of the Collection. For unorderedl&ctions, the elements are visited in an
arbitrary order. Each element is visited exactlgen

The lerator interface allows traversing a Collection in a way Waks consistently

for arbitrarily large Collections. In addition to the next operation, whah be used to
move through the nextlement, itprovides a reset operation to restart iteeation.

Multiple Iteratorscan be created to maintain state concerning traversal of the same or
different Collections.

The behavior of afterator can become undefined if elements are added teleted

from its associated Collection. This means that its behavior depends upon the type and
implementation of the Collection. In particular, an Iterator may become invalid as a
result ofsuch actions. Once an lterator becomeslid, it must be reset before it can

be used for traversal again.

Query Servicev1l.0 TheCollection Model July 1996 11-13

11

11.4 The CosQue@pllection Module

The CosQuery®llection module defines the Collection interfaces of the Query
Service. Inparticular, it defines the
® CollectionFactoryinterfaces, to create Collections.
® Collectioninterface, to represent generic collections.
® |terator interface, to emmerate the Collections.
The CosQuery®llection module is shown below.

module CosQueryCollection {

exception Elementinvalid {};
exception lteratorinvalid {};
exception Positionlnvalid {};

enum ValueType {TypeBoolean, TypeChar, TypeOctet, TypeShort,
TypeUShort, TypeLong, TypeULong, TypeFloat, TypeDouble,
TypeString, TypeObject, TypeAny, TypeSmallint, Typelnteger,
TypeReal, TypeDoublePrecision, TypeCharacter, TypeDecimal,
TypeNumeric};
struct Decimal {long precision; long scale; sequence<octet>
value;}
union Value switch(ValueType) {
case TypeBoolean: boolean b;
case TypeChar: charc;
case TypeOctet: octet 0;
case TypeShort : short s;
case TypeUShort : unsigned short us;
case TypeLong : long;
case TypeULong : unsigned long ul;
case TypeFloat : float f;
case TypeDouble : double d;
case TypeString : string str;
case TypeObject : Object obj;
case TypeAny : any a;
case TypeSmallint : short si;
case Typelnteger: long i;
case TypeReal : float r;
case TypeDoublePrecision : double dp;
case TypeCharacter : string ch;
case TypeDecimal : Decimal dec;
case TypeNumeric : Decimal n;
3
typedef boolean Null;
union Fieldvalue switch(Null) {
case false : Value v;
h

typedef sequence<FieldValue> Record;

typedef string Istring;
struct NVPair {Istring hame; any value};
typedef sequence<NVPair> ParameterList;

Figure 11-6 CosQueryCollection Module

11-14 CORBAservices: Common Object Services Specification

11

module CosQueryCollection {

interface Collection;
interface lterator;

interface CollectionFactory {
Collection create (in ParameterList params);

b

interface Collection {
readonly attribute long cardinality;

void add_element (in any element) raises(Elementinvalid);
void add_all_elements (in Collection elements)
raises(Elementinvalid);

voidinsert_element_at(inanyelement,initeratorwhere)
raises(lteratorinvalid, Elementinvalid);

void replace_element_at (in any element, in Iterator
where) raises(Iteratorlnvalid, Positioninvalid, Elementinvalid);

void remove_element_at (in Iterator where)
raises(Iteratorinvalid, PositionInvalid);
void remove_all_elements ();

any retrieve_element_at (in Iterator where)
raises(Iteratorinvalid, Positioninvalid);

Iterator create_iterator ();

interface Iterator {
any next () raises(Iteratorinvalid, Positioninvalid);

void reset ();
boolean more ();
3
h

Figure 11-6 CosQueryCollection Module

11.4.1 The ColletionFactory Interface

The CollectionFactoryinterface defines an operation for creating an instance of a
Collection.

Query Servicev1l.0 TheCosQueryCollection Module July 1996 11-15

11

11-16

Creating a Collection
Collection create (in ParameterList params);

This operation creates a new instance of a Collection. The factory is passed a list of
parametersone of whichmust be:

“initial_size”, typelong

which represents an initiagstimatednumber of elementslhe Collection is initially
empty and maygrow dynantally, both in elementsnd size. Othergrameters that
may be passed include, for example, “himsfating toindexing, and so forth.

The ParameterList is defined to be a sequence of name-value pairs, of which the
name is defined to be of typstring. As is the case in the Naming Service,
Istring is a placeholder for a future OMG IDL internationaliztdng dataype.

11.4.2 The Collectiointerface

The Collectioninterface defines operations to:

Add elements

Replace elements
Remove elements
Retrieve elements

to and from aollectionand an operation to createrabrs for traversing the
collection.

The element type of a colléon can be any. This is designed to accommodate
generality. For most common queries, the result collections tend to consist of elements
that are records or objects. For some specific queries, however, the result collections
may consist of elements of any data type.

Record is defined to be a sequenceFa¢ldValues . A Fieldvalue may be
Null or may have a value. This is designed to provide direct mappingtasi
features available in a wide variety of existmgery systems. The type of a
Fieldvalue can be one of the OMG IDL base typssjng, bject or one of the
suggested mappings to SQL data types: TypeSmallint; TypelntegerR&gal;
TypeDoublePrecision; TypeCharactepeDecimal;and TypeNumeric. (TypeFloat is
the same as that defined for the OMG IDL base type.)

Determining the Cardinality
readonly attribute long cardinality;

This attribute identifies the number efements that a Collection contains.

Adding an Element

void add_element (in any element) raises(Elementinvalid);

CORBAservices: Common Object Services Specification

11

This operation adds an element to @l€ction. Behaviors of all Iterators of the
Collection become undefined when the element is added.

A Collectionimplementaibn, in response to the ineation of the add_element()
operation, may internally decide whether to add the specified element, raising the
Elementinvalid exception if it decides not to add it. As discussed in “Queryable
Collections for Scope andeRult’” on page 11-5, this allows sublevel Query Evaluator
implementations that scope Queryable Collections to their own domain.

Adding Elements from a Collection

void add_all_elements (in Collection elements) raises
(Elementinvalid);

This operatioraddsall elements of the input Collection to a Collection. The elements
are added in the lterator order of the inpwtl€ction and are consistent with the
semantics oadd_element(). This operation is really a sequence ofadhent(). If

any elements are added, behavioralbfterators of the Collection becomedefined.

Inserting an Element

void insert_element_at (in any element, in Iterator where)
raises(lteratorinvalid, Elementinvalid);

This operation inserts an element to a Collection at the position pointed toibputhe
Iterator. Behaviors of all Iterators of the Collection, except the input Iterator, become
undefined when the element is inserted.

If the input Iterator is invalid, thieratorinvalid exception will be raised. The
Elementlinvalid exception will be raised as it is for the add_element() operation.

Replacing an Element

void replace_element_at (in any element, in Iterator where)
raises(lteratorinvalid, Positioninvalid, Elementinvalid);

This operation replaces the element of a Collection, pointed to by the input Iterator,
with the input element. The input element mhiave the same positioning perty as

the replaced element. (Only equality Collectiamsl key Collections havgositioning
property.)

If the input Iterator is invalid, th&#eratorinvalid exception will be raised. If the
Iterator does not point at an element, Beasitioninvalid exception will be
raised. TheElementinvalid exception will be raised in the same manner as it is
for the add_element() operation.

Removing an Element

void remove_element_at (in Iterator where) raises
(Iteratorlnvalid, Positioninvalid);

Query Servicev1l.0 TheCosQueryCollection Module July 1996 11-17

11

11-18

This operation removes the element of a Collection, pointed to by the input lterator.
After removal, behaviors of all Iterators of the Collection become undefined.

If the input Iterator is invalid, thieratorinvalid exception will be raised. If the
Iterator does not point at an element, Basitioninvalid exception will be
raised.

Removing all Elements
void remove_all_elements ();

This operation removes all elements from a Collection. After rembeakviors of all
Iterators of the Collection become undefined.

Retrieving an Element

any retrieve_element_at (in Iterator where) raises
(Iteratorinvalid, Positioninvalid);

This operation retrieves the element of a Collection, pointed to byl Iterator.

If the input Iterator is invalid, th#eratorinvalid exception will be raised. If the
Iterator does not point at an element, Beasitioninvalid exception will be
raised.

Creating an Iterator

Iterator create_iterator ();

This operation creates an lterator for a Collection. The Iterafoitislly set atthe
beginning of the Collection.

11.4.3 The Iterator Interface

The lerator interface defines operations to:
» Access and navigate througlements of a collection
* Reset the iteration
» Test for completion of an iteration

Accessing the Current Element

any next () raises(lteratorinvalid, Positioninvalid);

This operation retrieves the element of a Collection, pointed to by the Itenadbr,
advances théterator position. The opeiat will raise theteratorinvalid

exception if the Iterator is invalidgnd thePositionInvalid exception if the
Iterator does not point at an element.

CORBAservices: Common Object Services Specification

11

Resetting the Iteration
void reset ();

This operation resets the iteration to begin anew. The position of the Iterator is reset to
the beginning of a Collection.

Testing for Completion of an Iteration
boolean more ();

This operation returngue if there are more elements to be accessedasedif there
are not.

11.5 The Query FramewoModel

The Query Frameworlnterfaces provide an extensible framework for dealing with
qguery. This is accomplished in two ways. First, by providing a standard, generic set of
object interfaces for handling query. Second, by providing extensibility so that these
object interfaces can be subtyped for further functionality.

The Query Frameworlinterfaces define two levels of interfacdhe basdevel
consists ofQueryEvaluatorand QueryableCollectiorinterfaces and provides the
minimal functionality for queryThe advancedevel consists oQueryManagemland
Queryinterfacesand provides an extensible functionality for dealing veithaspects
of query.

11.5.1 Query Evalators

A Query Evaluator is any object that supports the operation to evaluate a query. It can
be a single object, amplicit collection ofobjects, or an explicit collection of objects
(particularly a Queryable Collection, as discussed in Section 11.5.2 on page 11-20).
An example of a Query Evaluator that manaigegslicit collections of persistent

objects is a database system.

Query Servicevl.0 The Querfframework Model July 1996 11-19

11

Source
Collection

Result
Collection

Theresult of a query evaluation can be anything. In most cases, it is a Queryable
Collection, as illustrated in Figure 11-7. (Thelid arrow represents operation
invocation and the dotted arrows represent association.)

Query
Evaluator
evaluate
CosQuery-
Qultleryable T - Iterator Collection
Collection module

Figure 11-7 Query Evaluator and Queryable Collection

11.5.2 Queryable&ollections

11-20

A Queryable Collection supports tliueryEvaluatorinterface and, therefore, can be

used not only to represent the result of a query that consists of one or more objects, but
also to define the scope to which further queries may be applied. An especially
interesting kind of Queryable Collection is the type extent, whose member objects are
instances of acertain objectype.

A Queryable Collection evaluates a query by either invoking the evaluation operations
on its member objects they are Query Evaluators—or by evaluating the query
predicate on the attributes and operations of its member objects if they are not—and by
combining the results from such invocaticarsd evaluations. As such, the query
predicate must be a valid predicate for the Queryable Collection @njddts member
objects. If any one of its member objects is a Queryable Collectiony¢déecate (the
applicable part, that is) must further be a valid predicate for its member objects, and so
on. Therefore, thQueryableCollectiorinterface provides a mechanism for nesting
gueries to an arbitrary number of levels.

CORBAservices: Common Object Services Specification

11

11.5.3 Query Managers

A Query Manager is a more powerful form of Query Evaluator. It provides the
operation to create Quenpjects. Working in tandem with a Query object, it manages

the overall query processing and monitors the queeg@tion. TheQueryManager

contains the universe of collections of objects over which queries can be specified. A
specific query, as represented by a Query object, operates on a subset of this universe
of collections.

The reationship between a Query objexatdits Query Manager ishown in
Figure 11-8. (Dotted boxes represent logicalters; dotted arrows represent logical
associations.)

Query
Y| [— - Query
e . Manager
. Query
. Specification W
""""" h"' " Query !
= , Status i
S |
1 1 e !
' Queryable ! /
sSource Lyt i Collection I /
Collection ! :)
i i !
--------- oo /
T /
_________ N ——— e e - /
: -
Result gl ' Query Hr
Collection ' Result |

Figure 11-8 Query Manager and Query Object

11.5.4 Query Objects

A Query object represents a query and logically consists of the query specification,
query status and query results. In addition, it contains the reference, &jihieitlg or
implicitly through the Query Manager, to the queryable collection that defines its
scope.

The Queryobject is responsible for composing and containing a gsgegification,
including parameters. The query specification may be represented in the form of text,
graphic, etc. A user may select a subset of the query specification to be executed in a
query. This igparticularly useful for query delgging. TheQueryinterface isexpected

to be extended by vendors or users to provide the additional functionality for
composing and selecting the query specification.

Query Servicevl.0 The Querfframework Model July 1996 11-21

11

The Queryobject is responsible for maintaining the status informadiod log
information regarding a query. Ti@ueryinterface is expected to be extended by
vendors or users to provide the additional functionality for displaying the status
information.

The Query bject also contains the results of a query. Query interface is expected
to be extended by vendors or users to provide the additionetidmality for bravsing
guery results. For example, successive results may be dggbém previousesults or
replace them. A user mdyowse qery results by specifying the version numbers, and
so forth.

11-22 CORBAservices: Common Object Services Specification

11

11.6 The CosQuery Module

The CosQuery module defines the query framework interfaces of the Query Service. In
particular, it defines the following interfaces:

®* QueryLanguageTypmterfaces to denote query language types.

®* QueryEvaluatorinterface to representugry evaluators.

® QueryableCollectionnterface todenotecollections which cagerve as the result as
well as the source of a query.

®* QueryManagelinterface to create queries and perform query processing.

® Queryinterface to represent queries.

The CosQuery module isshown below.

module CosQuery {

exception Querylnvalid {string why};
exception QueryProcessingError {string why};
exception QueryTypelnvalid {};

enum QueryStatus {complete, incomplete};

typedef CosQueryCollection::ParameterList ParameterList;
typedef CORBA::InterfaceDef QLType;

interface QueryLanguageType {};

interface SQLQuery : QueryLanguageType {};
interface SQL_92Query : SQLQuery {};
interface OQL : QueryLanguageType {};
interface OQLBasic : OQL {};

interface OQL_93 : OQL {};

interface OQL_93Basic : OQL_93, OQLBasic {};

interface QueryEvaluator {
readonly attribute sequence<QLType> qgl_types;
readonly attribute QLType default_gl_type;

any evaluate (in string query, in QLType qgl_type, in
ParameterList params) raises(QueryTypelnvalid, Querylnvalid,
QueryProcessingError);

g

interface QueryableCollection : QueryEvaluator, CosQueryC-
ollection::Collection {};

interface QueryManager : QueryEvaluator {
Query create (in string query, in QLType gl_type, in
ParameterList params) raises(QueryTypelnvalid, Querylnvalid);

3

Query Servicevl.0 TheCosQuery Module July 1996 11-23

11

interface Query {
readonly attribute QueryManager query_mgr;

void prepare (in ParameterList params) raises(QueryPro-
cessingError);

void execute (in ParameterList params) raises(QueryPro-
cessingError);

QueryStatus get_status ();
any get_result ();

11.6.1 The QueryLanguageType Interfaces

The QueryLanguageTypimterfaces consist of seven interfaces that form the interface
hierarchyillustrated inFigure 11-9.

QueryLanguageType
SQLQuery OoQL
‘\
f f OQLBasic
SQL_92Query OoQL_93

- !

T T OQL{SBaSiC

A Query Service provider is expected to use subtyping from 9@Query, OQL_93

or OQL_93Basic to denote the query language that it supports. For example, if a Query
Service provider supports a query language, Object SQL, which imsmpith both
SQL-92Query and OQL-93&sic, thernits interfacetype, ObjectSQL, should be

defined to be a subtype of SQB2Query and OQL_9Basic:

Figure 11-9 QueryLanguageType Interface Hierarchy

interface ObjectSQL : SQL_92Query, OQL_93Basic {};

11-24 CORBAservices: Common Object Services Specification

11

11.6.2 The QueryEvadtor Interface

The QueryEvaluatorinterface defines an operation for evaluating queries. It lets a
client determine the query lgnage types, and the default ottegt it supports.

Theresult type of a query can be any. This is desighed to accomnymtadeality. For
mostcommon queries, the results tend to be Collections (mostly of records or objects).
For some specific queries, Wever,the result may be of any data type.

Determining the Supportéguery Language Types
readonly attribute sequence<QLType> ql_types;
This attribute identifies thquery language types supported by @weeryEvaluator

Determining the Default Query Language Type
readonly attribute QLType default_gl_type;

This attribute identifies the default query language type supported by the
QueryEvaluator

Evaluating a Query

any evaluate (in string query, in QIType gl_type, in
ParameterList params) raises(QueryTypelnvalid,
Querylnvalid, QueryProcessingError);

This operation evaluates a query and performs required query processing. If the query
language type is not specified, the default query language type is assumed.

The querylanguage type specifiedust be supported by theu€yEvaluator.
Otherwise, th&ueryTypelnvalid exception is raised. If the query syntax or
semantics is incorrect or if the input parameter list is incorrectQterylnvalid
exception is raised. If any error is encountered during query processing, the
QueryProcessingError exception is raised.

11.6.3 The QueryableCollection Interface

The QueryableCollectiomterface is a subtype of both tRieryEvaluatorand
CosQuery®llection::Collectioninterfaces. Anycollection thasupports this interface
can be used to represent theuleof aquery that consists of one or moreeatig. Itcan
also be used to define the scope to wifisther queries may be applied.

11.6.4 The QueryManager Interface

The QueryManagerinterface is a subtype of tlfigueryEvaluatorinterface. It defines

an additional operation for creating Query objects. The QueryManageadetevbrks

in tandem with a Query object in managing the overall query processing artdnngni
the query exeution.

Query Servicevl.0 TheCosQuery Module July 1996 11-25

11

11-26

Creating a Query Object

Query create (in string query, in QIType gl_type, in
ParameterList params) raises(QueryTypelnvalid,
Querylnvalid);

This operation creates a Query object representing the input query. If the query
language type is not specified, the default query language type is assumed.

The querylanguage type specifiedust be supported by the QueryManager.
Otherwise, th&QueryTypelnvalid exception is raised. If the query syntax or
semantics is incorrect or if the input parameter list is incorrectQtreylnvalid
exception is raised.

11.6.5 The Query Interface

The Queryinterface defines operations to:

®* Prepare the query for execution

® Execute the query

®* Determine the preparation and execution status of the query
® Obtain the result of the query

Determining the Associatéguery Manager
readonly attribute QueryManager query_mgr;

This attribute identifies th®ueryManagemassociated with the Query object.

Preparing the Query for Execution

void prepare (in ParameterList params) raises
(QueryProcessingError);

This operation performs the necessary processing, includimgiaption, onthe query
so that it is ready for execution. Query preparation may be carried out in cooperation
with the associateQueryManager.

If the input parametdist is incorrect or if any error is encountered during query
preparation, th&ueryProcessingError exception is raised.

Executing the Query

void execute (in ParameterList params) raises
(QueryProcessingError);

This operation executes the query. If the query has not been prepared before, it will
prepare the query first. Query execution maychagied out in cooperation with the
associatedyueryManager

If the input parametdist is incorrect or if any error is encountered during query
execution, the€QueryProcessingError exception is raised.

CORBAservices: Common Object Services Specification

11

11.7 References

Determining the Query 8tus
QueryStatus get_status ();

This operation returns the preparation and/or execution status qtimg. This may
be carried out in cogration wth the associateQueryManager.

Obtaining theQuery Result
any get_result ();

This operation returns the result of the query.

1. American National Standard X3.135-19@3tabase Language - SQUlanuary,
1993.

2. Object Management Group. CORBBommon Object Request Broker Architecture
and SpecificationPublished by the OMG;ramingham, MA. 1995.

3. Object Management Grouf@bject Services RFP,DMG Document Number
94.4.18, May, 1994.

4. Cattell, R.G.G. (ed)The Object Database Standard: ODMG-93, vM&rgan
Kaufmann Publisherssan Mateo, California. 1994.

5. Melton, Jim (ed)SQL3 Part 2: FoundationANSI X3H2-94-329, August, 1994.

Query Servicevl.0 References July 1996 11-27

11

11-28 CORBAservices: Common Object Services Specification

	Query Service Specification
	11.1 Service Description
	11.1.1 Overview
	11.1.2 Design Principles
	11.1.3 Architecture
	Query Evaluators: Nesting and Federation
	Collections
	Queryable Collections for Scope and Result
	Query Objects

	11.1.4 Query Languages
	SQL Query
	OQL
	SQL Query = OQL

	11.1.5 Key Features

	11.2 Service Structure
	11.2.1 Overview
	Type One: Collections
	Type Two: Query Framework

	11.2.2 Collection Interface Structure
	11.2.3 Query Framework Interface Hierarchy/Structu...
	11.2.4 Interface Overview

	11.3 The Collection Model
	11.3.1 Common Types of Collections
	11.3.2 Iterators

	11.4 The CosQueryCollection Module
	11.4.1 The CollectionFactory Interface
	Creating a Collection

	11.4.2 The Collection Interface
	Determining the Cardinality
	Adding an Element
	Adding Elements from a Collection
	Inserting an Element
	Replacing an Element
	Removing an Element
	Removing all Elements
	Retrieving an Element
	Creating an Iterator

	11.4.3 The Iterator Interface
	Accessing the Current Element
	Resetting the Iteration
	Testing for Completion of an Iteration

	11.5 The Query Framework Model
	11.5.1 Query Evaluators
	11.5.2 Queryable Collections
	11.5.3 Query Managers
	11.5.4 Query Objects

	11.6 The CosQuery Module
	11.6.1 The QueryLanguageType Interfaces
	11.6.2 The QueryEvaluator Interface
	Determining the Supported Query Language Types
	Determining the Default Query Language Type
	Evaluating a Query

	11.6.3 The QueryableCollection Interface
	11.6.4 The QueryManager Interface
	Creating a Query Object

	11.6.5 The Query Interface
	Determining the Associated Query Manager
	Preparing the Query for Execution
	Executing the Query
	Determining the Query Status
	Obtaining the Query Result

	11.7 References

