5.1

Introduction

Persistent Object Service Specification 5

The goal of the Persistent Object Service (POS) is to provide common interfaces to the
mechanisms used for retaining and managing the perssdtagatofobjects. The

Persistent Objecservice will be used in conjetion with other object services, for
example, naming, relationships, transactions, life cycle, and so TdPersistent

Object Service has the primary responsibility for storing the persistent state of objects,
with other services providing other capabilities.

Object Reference

Object

Dynamic state

Persistent state

Persistent Object Service

Figure 5-1 Roles in the Persistent Object Service

CORBAservices: Common Object Services Specification 5-1

5-2

Figure 5-1 shows the participants in the Persistent Object Service. The state of the
object can be considered in two parts, diggamic statewhich is typically in memory
and is not likely to exist for the wholddtime of the object (for example, it would not
be preserved in the event of a system failure), angéhsistent statewhich the object
could use to reconstruct the dynamic state.

Although the ORB provides the ability for an object reference to be persistent, it
cannot ensure that the state of the object will be available just because the object
reference isstill valid.

The objectultimately haghe resporibility of managing its state, but can use or
delegate to the Persistent Object Service for the actual work. There is no requirement
that any object use any particular persistence mechanism. For example, it may write its
data to files using non-CORBA interfaces, or a single-level-store mechanism may be
used. However, the Persistent Object Service provides daieahthat should be

useful to a wide variety of objects.

Whether or not the client of an object is aware of the persistent state is a choice the
object has. CORBA already provides a persistent reference handling interface (i.e.,
object_to_string, string_to_object, release, etc.). We expect that this will fimesuf

for most clients to manage persistence of their referenced oledidecause certain
kinds of flexibility require the client to manage reference objects’ persistence, the
Persistent Object Service defines object interfaces for doing so. If this flexibility is not
required, then these interfaces need not be supported or used.

The size structure, access patteraisd other properties of the dynamic gretsistent

state of the object varies tremendously. For many objects, their primary semantics are
the efficient storage and access of its state for partipulgroses. It is critical that the
Persistent Object Service be able to suppgoeatly different styles of usage and
implementation in order to be useful to as many objects as possible.

As usual for object services, the primary task of this persistence specification is to
define the interfaces that are needed to usdétrsistent Object Service, and the
conventions for how objects can work together using it.

The architecture of the Persistent Object Service definekiple compnents and
interfaces. In a particular situation, different parts of the service may be used. In no
case does this specification assume the use of a particular implementation of a
component, and it is expected that different implementations of the cemisamill in

fact work together.

Section 5.2 describes the overall goals and prigseof the Persistent Object Service.
Section 5.3 defines the components which compose it. Section 5.4 presents the
CosFRersistenePID module which defines the Persistence lfient(PID). Section 5.5
presents the CosPersistencePO module with interfaces borrexditdnt Objects, and
Section 5.6 presents tl@terface to the Persistent Object Manager (POM). Seétion
presents an overview of the Persistent Data Service (PDS) which interfaces both to the
Protocol which communicates between PO and PDS, and to the Datastore which
actually stores the data; following this, Sectm8 defines the CosPersistencePDS
Module which defines base functionality inherited by every protocol. Three protocols
are presented in this specifizat although more are possible; the Direct Access

CORBAservices: Common Object Services Specification

3)

Protocol (PDS_DA) is described in Section 5.9 and its IDL module is presented in
Section 5.10. The ODMG-93 Protocol is described in Section 5.11. The Dynamic Data
Object (DDO) Protocol is described in SectiofZ.andits IDL module is presented

in Section 5.13. Other possible protocols are discusgefly in Section5.14. One
possible datastore, implementable usingumber of database afite mechanisms, is
described in Section 5.15; other possible datastores are discussed in Séétion 5
Finally, Section 518lists outside wrks referenced in this chapter.

5.2 Goals and Properties

The Persistent Object Service playkey role in structuring the object system. The
model of how many objects work csitically dependent on consistent and integrated
use of persistence. Like other object services, the Persistent Object Service provides
interfaces that can support different implementations in order to obtain different
gualities of service. Those interfaces allow different components to work together.

The overall persistence architecture hasltiple componentsEach will be introduced
in turn in this section, following presentation of some basic capab#éitidspropdies
provided by the overall architecture.

5.2.1 Basic Capabilities

The pinciple requirement to be supported is the need for an object to be able to make
all or part of its state be persistenithdugh the CORBA system defines object

references as persistent (that is, they are usable until they are released regardless of the
life time of their containing addrespace), it defined no particular way for the object

to make its state persistent. The Persistent Olfectice is intended ultimately to be

the most common way to implement this. Therefore, there must be a way for the object
to decide what state needs to be made persistent, and ways to stoe&riand that

state.

It is often necessary to expose fhersistent state from an object, so that the ctant
control the object's persistence to achieve certain types of flexibility. The Persistent
Object Service defines a convention for doing this. Clients of objectstsnesneed
ways to refer to the persistent staaad request various operations on it. It is often not
necessary to expose thersistent state from an object, so that the object
implementation itself determines its persisgtenin these cases, no persistencectic
object interfaces need be supported.

5.2.2 Object-oriented Storage

In existing non-object-oriented systems, persistence is accomplished by a number of
data storage mechanisms. Generally, such mechanisms do not provkey the
properties that object systems provide—unifomterfaces, self-descriptiorand
abstraction. The Persistent Object Service brings these properties to storage by
applying object technology and principles.

Persistent Object Service: v1.0 Goals and Properties March 1995 5-3

Interfaces to Data

To manage object persisiee, the POS defines amnchitecture with interfaces defined
using the CORBA IDL type system. Whethamtailingthe particular data to be stored,
describing the protocol for accessing the state, or defining the convention for making
state visible for client control, the same “tarage” is used. This makes persistence a
natural part of the software environment. These interfacedesigned to be used in a
wide variety of situations, creating uniformity by encouraging most objects to support
them, while allowing opihization andevolution.

By accessing data through an interface, many problems of data manipulation and
exchange can be avoided. For example, programs always see data in the representation
that is appropriate for the machine, programming language, etc., apftieation.

Data can be translated as needethtilitate use in different objectes and
implementations and for differentosage formats ounderlyingpersistent storage
mechanisms (e.g. stream files, record files, or various databases) when it is accessed
through thenterface.

Self-description

A powerful characteristic of object-oriented systems is that the elements are self-
describing. It is possible to determifrem anobject what kind of object it is and what
interfaces it supports. In the persistence architecture this means, for example, that a
client can determine whether or not an object wishes to magerisstent state visible

by checking to see if the object supports the interface for doing so.

It also means that the data can be manipulated to some degree independently of the
objects whose state they represent. This can allow gdaeiiities such as &ckup,
migration, storage accounting, etc., to lmme independent of the objects whose state
is being stored.

Abstraction

In order to support a wide and evolving set of uses, a service must be able to improve
and replace its implementations without affecting the clients of that service. The desire
for reuse of objects requires that those objects not depend itdly €tn other objects

and services, but rather be willing to work with any other comporteatsupport the
required interface.

A variety of value-added products are also possible assuming that the dbjeetsl

only on the defined interfaces. By interposingxypected implementatis, for

example, it may be possible to support features such as replication or versioning in a
transparent way.

5.2.3 Open Architecture

A major feature of the Persistent Object Service (and the OMG architecture) is its
openness. In this case, that means that there can be a variety of differentackients
implementations of the Persistent Object Service, and they can work together. This is

CORBAservices: Common Object Services Specification

3)

particularly important for stoge, where the mechanisms that are useful for documents
may not be appropriate for employee databases, or the mechanisms appropriate for
mobile computers may not be appropriate for mainframes.

Implementations can be lightweight, consisting of mostly library code, or powerful,
leveraging decades of experience with database systems. Of course, the architecture
specifies several interfaces, but alsowh how newinterfaces can be intduced when
needed whilestill exploiting the rest of the architecture.

As with other object services, the Persistent Object Service iddedeto be part of a
collection of services. As a result, it does not attempt to sdlvyeroblems that might

relate to storage. Rather, it assumes other services will provide the solutions. For
example, the Persistent Object Service does not do naming, but assumes that the Name
Service will perform that function; itaks not do transactions, but assumes that they

will be added as appropriate; it does not handle issues of generabwadnpbjects,

but assumes that there will be a scheme that spans persistence, lifecycle, printing and
other services.

A key idea in object systems thatdstical for persistence is the ability for new and
existing storage services to be able to integrate into the architecture. The requirement
for such components to “plug and play” together is paramount, since one cannot expect
all data to be maintained in a particular kind of file or database sy$taums, the
architecture has features to allow existing databases or other storage mechanisms to be
used fompersistaice, and for new storage megtisms to be developed that cpport

both Persistent Obje&ervice clients and other kinds of clients.

The POSarchitecture is open with respect to PersistentDataService, Datastore,
Protocol, and PID interfaces. Although we define sen@mum requirements for
these in some cases, many alternatives are allowed, includinghantdmtve not yet
beendefined.

5.2.4 \iews of Service

There are multiple views of the service, and each participant may need to consider only
a part of the architecture.

Client

It is common for clients of objects tteed to control or tassist in managing

persistee. In paitular, the timing of when the persistent statprisserved or
restoredand the i@ntification ofwhich persistent state is to be used for an object, are
two aspects often ohierest to clients. The ability of a client to see the objectitand

data separately allows different object implementations to be used with the same data
and allows differentiles or databases aridrmats to baused with the same object
implementation.

However,the client need only deal with such complexitiem this type of
functionality is necessary. The client of the object can be completely ignorant of the
persistence mechanism, if the object chooses to hide it.

Persistent Object Service: v1.0 Goals and Properties March 1995 5-5

5-6

The Persistent Object Service provides an interface for objects to hese tivey want
to expose their persistence to their clients. iflerfacedoes not completelgbandon
encapsulation, but gives the cliersibility to those functions iheeds. In fact, the
client is generallyunaware of how or if the object uses other parts of the Persistent
Object Service.

Object Implementation

The object has the most involvement with the persistée and thenost options in
deciding how to use it. Defining and manipulating the persistent state of the object is
often the most crucial part of its implementatidhe first cecision the object makes is
what interface to its data it needs. Thersisent Object Service captures that choice in
the selection of the Protocol used by the object. Some Protocols provide simple
interfaces andimited functionality, others may provide more control and more
powerful operations.

The object also has the choice of delegating the manageméstpdrsistent data to
other services, or maintaining fine-grained control overhe Persistent Object

Service defines a Persistent Object Manager that handles much of the complexity of
establishing connectiorietween objects and storage, aflog new components to be
introduced withoutffecting the objects or their clients.

The dject may also provide the ability for its clients to manipulate its persistent state
in various ways. This is important for creating a unifanew of persistence in the
system.

Persistent Data Se&ice

The Rersstent Data Service (PDS) actually implements the mechanism for making data
persistentand manipulatingt. A particular PDS supports a Protocol defining the way
data is moved in and out of the object, and an interface to an underlying Datastore.

The PDS has theesponsibility of translating from the object world above it to the
storage world below it. It playsritical roles in identifying the storage as well as
providing convenient andfficient acess to it.

We define multiple kinds of BSs, each tuned togarticular protocol and data storage
mechanism, since the range of requirementpé&formance, cosand qualitative

features is so large. Multiple PDSs must work together to create the impression of a
uniform persistence mechanism. The Persistent Object Manager provides the
framework for PDSs to cooperate this way.

Datastore

The lowest-level interface we define is a Datastore. Although Datastore interfaces are
the least visible part of the persistence architecture, it may be the masblealksince
there are so many different Datastores offering a wide spectrum of tradetifsen
availability, data integrity, resource consumption, performamzkcost, and it is

CORBAservices: Common Object Services Specification

3)

expected that more will be created. By having an interface that is hidden from objects
andtheir clients, a Datastore can provide servicarty andall objects that indirectly
use the Datastore interface.

The Datastor@lays a key role in interoperating with other storage services. It is the
manifestation in the object world of the various means of storing data that are not
objects. Generally, standards for Datastore interfaces have already been defined for
different kinds of data repositories - relational, object-oriendedfile systems.

5.3 Service Structure

This section presents an overview of each of the major components and how they
interrelate. Subsequeséctions present the OMG IDL as divided into modules which
correspond closely (but not exactly) to these components, as noted below.

The major components of the Persistent Object Service are illustrated in Higjoe
page 1. Thewre:

® Persistent Identifier (PID) - This describes the location of an objest&igtent data
in some Datastore and generates a string iftemfior that data.

® Persistent Object (PO) - This is an object whose persistence is controlled externally
by its clients.

® Persistent Object Manager (POM) - This component provides a uniform interface
for the implementation of an object’s persistence operations. An object has a single
POM to which it routedts high-level persitence operations to achieve plug and
play.

® Persistent Data Service (PDS) - This component provides a uniform interface for
any combination of Datastore and Protocol, and coordinates the basic persistence
operations for a single object.

® Protocol - This component provides one of several ways to get data in and out of an
object.

® Datastore - This component provides one of several ways to store an object’s data
independently of the address space containing the object.

Persistent Object Service: v1.0 Service Structure March 1995 5-7

5-8

;

Persistent Object Pq PID |Persistent Identifier

4

Protocol — wem PersistentObjectManager

PersistentDataService éﬁ/

Datastore

~_/

Figure 5-2 Major Components of the POS and their Interactions

The term “gersistent object” isised to refer both to objects whagsersistence is
controlled internally or externally. Either kind of persistent obgzat be supported by
the Persistent Object Service’'s POM, PDS, Protocol and Datastore intefifaeeB0
interface supports externally controlled persistence.

5.4 The CosPersistencePID Module

The CosRrsistencPID module contains the basic interface fetrieving a PID:
® The PID Interface

This section describes this interface, plus an example factory intesfiadtheir
operations in detail.

CORBAservices: Common Object Services Specification

The CoslersistencPID Module is shown irFigure 5-3: .

module CosPersistencePID {
interface PID {

attribute string datastore_type;
string get_PIDString();

h

Figure 5-3 The CosPersistencePID Module

The PID identifiesone or more locations within adbastore that represent the
persistent data of an obje&td generates a string idiietr for that data. An object
musthave a PID in order to store its darsistently. The clientan create a PID,
initialize its attributesand connect it to the object. persistent object's
implementation uses the POM interface by passing the object and the PID as
parameters.

The PID should not be confused withe CORBA object referend®ID). Theyare
similar in that both have an operation thatquoes astring formthat can be stored or
communicated in whatever ways strings may be manipulated andisatrto get the
original PID or OD. They difer in that thePID identifies data while the OID
identifies a CORBA object.

For example, assume mySpreadSheet object is referenced by both myDoaidcyo
objects. If mySpreadSheet’s OID is stored persistently with myDogamdoc and

then all three are brought into memory, then lbuments will always see the same
spreadsheet object. If mySpreadSheet’s PID is stored persistently with raybBoc
yourDoc and then athree object are brought into memory, each document will see a
different spreadsheet object whose states will be the gatiedly but will diverge
overtime.

5.4.1 PID Interface

The OMG IDL deinition for the PID is asfollows

interface PID {
attribute string datastore_type;
string get_PIDString();

The PIDcontains at least one attribute:

Persistent Object Service: v1.0 The CosPersistencePID Module March 1995 5-9

5-10

attribute sting datastore_type;
This identifies the interface of a Datastore. Exanga&astore_types
might be ‘DBZ’, “PosixFS " and “ObjectStore ". The PDS hideshe
Datastore’s interface from the client, the ppersistent olsjedtthe POM, but
PDS implementations are dependent on the Datastore’s interface.

Other attributes can be added via subtypingRH2 basetype toreflect nore
specialized PIDs. Unless tldatastore_type contains only a single object’s
persistent data, there isn@ed for morespecific location informaan in the PID. The
following example PID subtypeBustrate this:

#include "CosPersistencePID.idl"

interface PID_DB : CosPersistencePID::PID {
attribute string database_name; // name of a database

b

interface PID_SQLDB : PID_DB {
attribute string sql_statement; // SQL statement

b

interface PID_OODB : PID_DB {
attribute string segment_name;// segment within database
attribute unsigned long oid; //object id within a segment

The PIDprovides a single operation:

string get_PIDString();
This operation returns a string version of the PID calledPixString. Aclient
should only obtain the PIDString using thet PIDString operation. This
allows the PID implementation to decide the form of the Rting.

Some implementations may simply concatenate thea®ilibutes. Others may return a
more compact form specialized for specific Datastores or even databases within a
Datastore. Still others may return a universally unique identifier (UUID) that facilitates
movement of its persistent data either within a single Datastore or between Datastores.
A UUID-based PID might be implemented by overriding theaget set atibute
operations and the get PIDString operation to bind aoklule the mapping between
UUID and location information in a speciabntext in the Name Service. Using such a
UUID-based PID, when an object is moved, tesv location would bechanged by

seting theattributes to mdicate the new location, and the PID would make the
modification in the Namé&ervice. The PID$ihg would contain the UUID that does

not change when an object’s data is movedhab references remain intact.

Some applications need to be able to restore an object given a PID but without
knowing which type oimplementaibn to use. The PID can be subtyped to
accommodate this by adding the type or implementation as a PID attribute.

CORBAservices: Common Object Services Specification

5.4.2 Example PIDFactory Interface

The OMG IDL deinition for an example PIDFactory is as follows (others are also
possible):

interface PIDFactory {
CosPersistencePID::PID create_PID_from_key(in string key);
CosPersistencePID::PID create_PID_from_string(
in string pid_string);
CosPersistencePID::PID create_PID_from_string_and_key(
in string pid_string, in string key);

This example PIDFactorprovides three ways of creating a PID:

CosPersistetePID::PID create_PID_from_key(in strikgy);
This creates an instance of a PID given a key that identifies a parfiDlar
implemenation.

CosPersistetePID::PID create_PIDfrom_string(in string pid_string);
This creates an ingtae of a PID given a PIBtring. The PIDString must include
some way to identify a particular PID implementation (the PID’s key) in some
way that allows this operation to extract ®D's keyfrom the PIDString. This
key identifies thePID implementation for th@ewly created PID.

CosPersisterePID::PID create_PIDrom_strirg_and_key(irstring pid_string, in
string key);
This creates an ingtae of a PID whose implementation is identified by the key
in the input parameter instead of tkey in the PIDString, and whose value is
determined by the PIDString. This is useful fdnem persistent data is moved
between Datastores that requitiferent PID interfaces.

5.5 The CosPersistencePO Module

The CoslersistencePO bHule collects the interfaces which are borne beisiptent
object to allow its clients and the POM to control the P@rlationship with its
persistent data. This module includes two interfaces:

®* The PO Interface
® The SD Interface

plus an example factory interface.

The POQinterface is borne by the PO and used by the cliemg. SDinterface is borne
by the PO and used by the POM.

This section describes these interfaces and their operations in detail.

Persistent Object Service: v1.0 The CosPersistencePO Module March 1995 5-11

The CoslersistencePO bdule is shown in Figure 5-4::

#include "CosPersistencePDS.idl"
/I CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePO {

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS::PDS connect (

in CosPersistencePID::PID p);

void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);

3
interface SD {

void pre_store();
void post_restore();

b

Figure 5-4 TheCosPersistencePO Module

5.5.1 The PO Interface

The PO interface provides two mechanisms for allowing a client to externally control
the PO’s relationship with its persistent data:

® Connection: This mechanism establishes a close relationship between the PO and its
Datastore where the two data representations can be viewed fig tne duration
of the connection. When the connection is ended, the data is the same in the PO and
the Datastore, and threlationship betweenhem no longer exists. An object can
have only one corettion at a time.

® Store/restore: Theseerations allow the client to move data between the PO and its
Datastore in each direction separately, with each movement in each direction
explicitly initiated by the client.

The PO interface @rations allow client control of a single PO’s persistent d&ftzen

one of these perations is performed on a PO, what data is included in these operations
is up to that PO’s implementation. For example, only part of the PO’s private data may
be included. Other POs may be included based on deyiarIf other POs are

included, the target POimplementatiorbecomes their client and is responsible for
controlling their persistence.

A PO client is responsible for the following:

® Creating a PID for the PO aritializing the PID. For storage, whatever location
information is not specified will be determined by the Datas®oe.a retrieval or
delete operation, the location information must be complete.

5-12 CORBAservices: Common Object Services Specification

3)

® Controlling the relationshipetween the data in the PO and the Datastore. This is
done by asking the PO to connect(), diswect(), store(), restore() or delete() itself.

The OMG IDL definition for a PO is as follows:

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS::PDS connect (

in CosPersistencePID::PID p);

void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID:PID p);

The POinterfacehas the following operations:

CosPersistetePDS::PDS connect (in €BersistecePID::PID p);
This begins a connectidretween the data in the PO and thegd3tore location
indicated by the PID. The persistent state mayjdated as operations are
performed on the object. This operation returns the PDS that haradkistgnce
for use by those Protocols that require the PO to call the PDS.

void disconnect (in CosPersistencePID::PID p);
This ends a connection between the data in the PO and the Datastore location
indicated by the PID. It is undefined whether or not the object is usable if not
connected to pseistent state. The PID can be nil.

void store (inCosRersistencePID::PID p);
This copies the persistent data out of the object in memory and puts it in the
Datastore loation indicated by the PID. The PID can be nil.

void restore (inCosRersstencePID::PID p);
This copies the object’s persistent data from the Datastore location indicated by
the PID and inserts it into the object in memory. The PID can be nil.

void delete(in CosPersistetePID::PID p);
This deletes the object’s persistent data from the Datastore location indicated by
the PID.The PID can be nil.

To adhere to the plug and play philosophy, objects pass these requests through to the
POM, so that the interface for PO parallels that of the POM. This delegation to the
POM allows objects to change PDSs (combination of Datastore and Protocol) without
changing their implementation.

Persistent Object Service: v1.0 The CosPersistencePO Module March 1995 5-13

5.5.2 The POFactory Interface

The OMG IDL deinition for an example POFactory is as follows (others are also
possible):

#include "CosPersistencePO.idl"
/I CosPersistencePO.idl #includes CosPersistencePDS.idl
/I CosPersistencePDS.idl #includes CosPersistencePID.idl

interface POFactory {
CosPersistencePO::PO create_PO (
in CosPersistencePID::PID p,
in string pom_id);

The example POFactory provides the following operation:

CosPersistatePO::PCcreate PO(irCosPesistencePID::PID p, in string pom_id);
This creates an instance of a PO thatws which POM to use and witits pid
attribute alreadyssigned.

5.5.3 The SD Interface

Some objects may be implemented Wing they are going to begpsistent. Manguch
objects have both transient apdrsistent data. Th8ynchronized Rta (SD) Interface

is provided to allow such objects to synchronize their transient and persistent data.
Operations on the SD are invokedly by thePOM. Persistent objects whose
persistence is controlled either internally or externally (PO)scgoport the SD
interface.

The OMG IDL deinition for SD is as follows:

interface SD {
void pre_store();
void post_restore();

The inerface for SD provides two operations:

void pre_store();
This ensures that theegsistent data areyschronized with the transient data.

void post_restore();
This ensures that the transient data are synchronized with the persistent data.

A word processing document provides a good example of how these openaitins
be implemented. Suppose the document typmemented withithe following data:

® text buffer (persistent)

5-14 CORBAservices: Common Object Services Specification

® attributes (persistent)
® text cache (transient)

® cursor location (transient)

The document could hiemplemented such that all work is done in the text cache. Then

at store time, the text buffer needs to be updated, since it contains the actual data that
will be stored. As such, the pre_storesogtion should be implementadch that any
updates in the text cache are propagated to the text buffepoBherestore

operation should be implemented such that the text cadh#itiglized with a state
consistent with the text buffer.

5.6 The CosPersistencePOM Module

The CosPersistencePOM module contains the interface which is borne by the POM and
used by the PO. It contains a single interface:

®* The POM Interface
This section describes this interfaad its @erations in detalil.

The CosfrsistencPOM Module is shown in Figure 5-5:

#include "CosPersistencePDS.idl"
/I CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePOM {

interface Object;
interface POM {
CosPersistencePDS::PDS connect (
in Object obj,
in CosPersistencePID::PID p);
void disconnect (
in Object obj,
in CosPersistencePID::PID p);
void store (
in Object obj,
in CosPersistencePID::PID p);
void restore (
in Object obj,
in CosPersistencePID::PID p);
void delete (
in Object obj,
in CosPersistencePID::PID p);

Figure 5-5 The CosPersistencePOM Module

Persistent Object Service: v1.0 The CosPersistencePOM Module March 1995 5-15

Clients of a PO will see the operations of the POM interface indirectly through the PO
interface. The implementation of a persistent object with either externally or internally
controlled persistence can use the POM interface. The POM provides a uniform
interface across all PBs, so different PDSs (combination of Datastore and Protocol)
can be used without changing the objeictiplementation.

The OMG IDL definition of the POM is as follows:

interface POM {

CosPersistencePDS::PDS connect (

in Object obj,

in CosPersistencePID::PID p);
void disconnect (

in Object obj,

in CosPersistencePID::PID p);
void store (

in Object obj,

in CosPersistencePID::PID p);
void restore (

in Object obj,

in CosPersistencePID::PID p);
void delete (

in Object obj,

in CosPersistencePID::PID p);

The POMinterfacehas the following oprations:

CosPersistetePDS::PDS camect(in Object obj, inCosRersistencPID::PID p);
This begins a connection between data in the object and the Datastore location
indicated by the PID. The persistent state mayjaated as operations are
performed on the object. This emtion returns the PDS that is as®id the
object’s PID for use by those Protocols that require the PO to call the PDS.

void disconnec{ in Object obj, in CosPersisteePID::PID p);
This ends a connection between the data in the object and the Datastore location
indicated by the PID. It is undefined whether or not the object is usable if not
connected to pseistent state. The PID can be nil.

void store (in Object obj, in CosPersistencePID::PID p);
This gets the persistent data out of the object in memory and puts it in the
Datastore loation indicated by the PID. The PID can be nil.

void restore(in Object obj, in CosPersistencePID::PID p);
This gets the object’s pessént data from the Datastore location indicated by the
PID and inserts it into the object in memory. The RBHN benil.

void delete(in Object obj, inCosPegistencePID::PID p);
This deletes the object’s persistent data from the Datastore location indicated by
the PID.The PID can be nil.

5-16 CORBAservices: Common Object Services Specification

3)

The najor function of thePOM is toroute requests to a PDS that can support the
combination of Protocol andddastoreneeded by the persistent object. To do this, the
POM mustknow which PDSs are available and which Protocol and Datastore
combinations they support. There are several possible ways that this inforozation
be made available to a POM:

®* How a Protocol is associated with an object. One possibility is for the client to set
the Protocol for that object. Another possibility is for the Protocol to be associated
with the object’s type or implementation.

®* How a POM finds out the set of avdila PDSs and which Protocol (or object type)
and Datastores they support. One possibility is for the POM to find the information
in a configuration file or a registry. Another possibility is to provide an interface to
the POM for registering the infoation. Thebest or most natural techniqgue may
depend on the environment.

Because there are multiple ways to accashpthe above and more experience is
needed to better understand whether there is a best way and what that might be, a POM
interface for registering this information in the POMhi#t specified at this time.

When the POM is asked to store drjext, the following steps logically occur:
1. From thePID, the POM gets the datastore_type attribute.

2. Regardless of how the Protocol is associated with the object, the POM uses the
combination of Protocol and datastore_type to determine the PDS.

3. The POM passes the store request through to the PDS.

4. The PDS gets data from the object using a Protamdistores the data in the
Datastore.

The routing function of the POM serves to shield the client from having to know the
details of how actual data storage/retrieval takes place. A dinthange the
repository of an object by changing the PID. The changereslilt in routing the next
store/restore request to whatever the appropriate PDS is for the new Datastore.

Figure 5-6 illustrates an example of the routing logic for the storage of myDoc in a
DB2 database. This figure and tfedlowing example steps assume that, for this POM,
the Protocol is associated with object type:

. The POM is asked to perform a store on myDoc with pid1.
. The POM finds the datastore_type associated with (@djl, DB2).
. The POM finds the object type of myDocgge document).

1
2
3
4. The POM determines that myDoc will use a particular PDS (e.g., pdsl).
5. The POM routes the store/restore to pdsl.

6

. The PDS gets the persistent data using protocoll and stores the data in the DB2
Datastore at pid1.

Persistent Object Service: v1.0 The CosPersistencePOM Module March 1995 5-17

pidl pid2 pidl

datastore_type=DB2 datastore_type=ObjectStore datastore_type=FS

|

protocoll

) POM
PDS Registry
— protocol2 object_type,datastore_type PDS
document,DBZ pasT
SpreadSheet,ObjectStore
document,FS —p» pds3

protocol2

\

‘ ‘ DB2 ‘ ‘ObjectStore
NS N

n
(0]

(

Figure 5-6 Example to illustrate POMFunctions

5.7 Persistent Data Service (PDS) Overview

5-18

The PDSimplementaibn is responsible for the following:

® Interacting with the object to get data in and out of the object usprgtacol
Protocols are intduced in thissection; three example praiols and a discussion of
additional protocols are presented in Section 5.9 through Section 5.14.

Interacting with the Datastore to get data in and out of the object. Datastores are
introduced in this section, and an example datastore plus a discussion of
implementing additional datastores are presented in Segtidnand Sction 5.16.

A PDS performs the work for moving data into and out of an object and moving data
into and out of a Datastore. There can be a waliety of implementations of PDSs
which provide different performance, robustness, storage efficiency, storage format, or
other characteristicand which are tuned to the size, structuranglarity, or other
properties of the object’s state.

Because the range of storage requirements is so large, there mafetsmifays in
which the object can best accessitssistent data, and there may be differeays in
which the PDS can store that data. TWay in whichthe object interacts with the PDS

CORBAservices: Common Object Services Specification

3)

is called the Protocol. A Protocol may consist of calls from the object to thecalsS,
from the PDS to the object, implicit operations implemented withdridnterfaces, or
some combination. The interaction might be explicit, for example, asking the object to
stream out its data, omplicit, for example, the object might be mapped into persistent
virtual memory. The Protml isinitiated when an object’s persistestate is stored,
restored, or ennected; this may biaitiated by a POM or by the objeitself. What
happensafter thatdepends on thparticular Protocol. An object that uses a particular
Protocol can work with any PD®adt supports that Protocol. There is no “standard”
protocol. This spcification defines three Protocols: the Direct Attribute (DA) Protocol,
the ODMG Protocol, and the Dynamic Data &dij(DDO) Protocol. A PDS might also
use a programming language-specific or runtime environment-specific or other
Protocol.

A PDS may use either a standard or a proprietary interface to its Datastore. A
Datastore might be a file, virtual memory, some kind of database, or anything that can
store information. This specification defines one Datastore interfaceahdie
implemented by a variety of databasesd®n 5.15).

The PDS compeent interface is specified here as one module containing only the base
PDS interface, plus one additional module per protocol. Each protocol-specific module
inherits from the base module, augmenting the base functionaligetted.

5.8 The CosPersistencePDS Module

The CosRrsistencePD®odule contains the bageterfaceupon which protocol-
specific interfaces are built. It contains a single interface: the PDS Interface.

This section describes this interfaad its @erations in detalil.

Persistent Object Service: v1.0 The CosPersistencePDS Module March 1995 5-19

The CoslersistencePD#odule is shown in Figure 5-7. Some Protocols may require
specialization of the PDS interfaceoWever, no maér what Protocol or Datastore is
used, a PDS always supports at least the followitgyface:

#include "CosPersistencePID.idl"
module CosPersistencePDS {

interface Object;
interface PDS {
PDS connect (in Object obj,
in CosPersistencePID::PID p);
void disconnect (in Object obj,
in CosPersistencePID::PID p);
void store (in Object obj,
in CosPersistencePID::PID p);
void restore (in Object obj,
in CosPersistencePID::PID p);
void delete (in Object obj,
in CosPersistencePID::PID p);

Figure 5-7 The CosPersistencePDS Module

The exact semantics of the connect, disconnect, store, and restore operations depend on
the Protocol, since there may be other steps involved in the Protocol. In all four
operations, the persistent state is determined by the PID of the object.

PDS connect (in Object obj, in CasRistencePID::PID p);
This connects the object its persistent state, aftdisconnecting any previous
persistent state. The persistent statgy be updated as operations are performed
on the object.

void disconnect (in Object obj, in CosRistencePIDPID p);
This disconnects the object from the persisttate. It isundefined whether or
not the object is usable if not connected to persistee.

void store (in Object obj, in CosPersistencePID::PID p);
This saves the object's persistent state.

void restore (in Object obj, in CosPersistencePID::PID p);
This loads the object’s persistestate.The peristent state will not be modified
unless a store or other mutating operation is performed on the perststent

void delete (in Object obj, in CosPersistencePID::PID p);
This disconnects the object from itsrpistent state and deletes the object's
persistent data from the Datastore location indicated by the PID.

5-20 CORBAservices: Common Object Services Specification

5.9 The Direct Access (PDS_DA) Ryobl

Thefirst protocol to be describddkere is the PDS_DA or Direétccess Protocol. The

Direct Access Protocol supports direct access to persistent data through typed
attributes organized in data objects that are defined in a Data Defindinguhge

(DDL). An object using this Protocol would represent its persistent dataeagr more
interconnected data objects. For unifdty, the persistendata of an object is described

as a single data object; however, that data object might be the root of a graph of data
objects interconnected by stored data object references. If an object uses multiple data
objects, the object traverses the graph by following stored data object references.

An object must define the types of the data objects it uses. Those types are specified in
DDL, which is a subset of the OMG Interface Definition Langu@@®G IDL) in

which objects consist solely of attributes. The state of the data object is accessed using
the attributeaccess operations defined in CORBA in conjunction with the appropriate
programming language mapping.

Object (Client of PDS)
Data Object References PDS Object Referenc

[\
[[]

PDS_DA

data objects

Figure 5-8 Direct Access Protocol Interfaces

The PDS_DA Protocol has twmarts, ashown inFigure 5-8. When connected to a

PDS, the object (which is effectively the client of the PDS) has an object representing
the PDS which supports the PDS_DA interfatke dject performs operations

defined in the PDS_DA interface to get references to the data objects in the PDS. The
persistent data is manipulated by performing operations using the data object
references to geandset attritutes on the collection of data objects in the PDS.

5.10 The CosPersistencePDS DA Module

The CosPaistencePDS_DA Module is a collewt of interfaces which together define
the protocol. This module contains the following interfaces:

®* The PID_DA Interface
®* The DAObiject Interface

Persistent Object Service: v1.0 The Direct Access (PDS_DA) Protocol March 195821

5-22

®* The DAObjectFactory Interface

® The DAODbjectFactoryFinder Interface
® The PDS_DA Interface

®* The DynamicAttributéccess Interface
® The PDSClustered_DA Interface

This section describes these interfaces and their operations in detail.

The CosfrsistencePDS_DA Mtule isshown inFigure 5-9: :

#include "CosPersistencePDS.idl"
/I CosPersistencePDS.idl #includes CosPersistencePID.idI

module CosPersistencePDS_DA {
typedef string DAObjectID;

interface PID_DA : CosPersistencePID::PID {
attribute DAODbijectID oid;

b

interface DAObject {
boolean dado_same(in DAObject d);
DAObijectID dado_oid();
PID_DA dado_pid();
void dado_remove();
void dado_free();

h

interface DAObjectFactory {
DAObiject create();

h

interface DAObjectFactoryFinder {
DAObjectFactory find_factory(in string key);

b

interface PDS_DA : CosPersistencePDS::PDS {
DAObiject get_data();
void set_data(in DAObject new_data);
DAODbiject lookup(in DAObjectID id);
PID_DA get_pid();
PID_DA get_object_pid(in DAObject dao);
DAObijectFactoryFinder data_factories();

Figure 5-9 The CosPeaistencePDS_DA Module

CORBAservices: Common Object Services Specification

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {
AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

h

typedef string ClusterID;
typedef sequence<ClusterlD> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA{
ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA create_cluster(in string kind);
PDS_ClusteredDA open_cluster(in ClusterlD cluster);
PDS_ClusteredDA copy_cluster(
in PDS_DA source);
h

h
Figure 5-9 The CosPeaistencePDS_DA Module

5.10.1 The PID_DA Interface

The Pesgistent Identifier§PIDs) used by the PDS_DA contain an objdentifier that
is local to the particular PDS. This value may be accessed with the following extension
to the CosPersistencePID interface:

interface PID_DA : CosPersistencePID::PID {
attribute DAODbjectID oid;
h

The DAObjectlD has thdollowing atribute:

attribute DAObjectID oid();
This returns the data object identifigsed by this PDS for the data object
specified by the ®.The DAObjectID type is defined as an unbounded sequence
of bytes that may be vendor-dependent.

Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 199623

5.10.2 The Generic DAObject Interface

The DAObject interface defineddbow provides operations that many data object
clients need. A Datastoimplementation mayrovide support for these operations
automatically for its data objects. A data object is not required to support this interface.
A client can obtain access to these operations by narrowing a data objectoefere

the DAObject interface:

interface DAODbject {
boolean dado_same(in DAObject d);
DAObijectID dado_oid();
PID_DA dado_pid();
void dado_remove();
void dado_free();

The DAObject has the following operations:

boolean dado_same(in DAObject d);
This returns true if the target data object and the parameter data object are the
same data object. This operation can be useestodata object references for
identity.

DataObjectID dado_oid();
This returns the object identifier for the data object. $bape of data object
identifiers is implementation-specific, but is not guaranteed to be global.

PID_DA dado_pid();
This returns a PID_DA for the data object.

void dado_remove();
This deletes the object from the persistent store and deletesthemory data

object.

void dado_free();
This informs the PDS that the data object is not required for the time being, and
the PDS may move it back to persistent store. The data object must be preserved
and must be brought back thext time it is refereced. This operation is only a
hint and is provided to improve performance and resource usage.

5.10.3 The DAODbijectFactory Interface

The scheme fofactories is consistent with that of the Life Cycle Service. The factory
supports the followingnterface:

interface DAODbjectFactory {
DAObiject create();

k

5-24 CORBAservices: Common Object Services Specification

The DAObjectFactory has thillowing operation:

DAObijectFactory create();
creates a new data object in the PDS.

5.10.4 The DAODbjectFactoryFinder Interface

This scheme for factories follovtke Life Cycle Services specificatiomhe factory
finder supports théollowing interface:

interface DAObjectFactoryFinder {
DAObijectFactory find_factory(in string key);
h

The DAObjectFactoryFinder has the following operation:

DAObijectFactoryFinder find_factory(istring key);
This finds a factory for data objects as specified by the key.

5.10.5 The PDS_ DA Interface

The DA Protocol uses an extended PiDterface called PDS_DA:

interface PDS_DA : CosPersistencePDS::PDS {
DAObiject get_data();
void set_data(in DAObject new_data);
DAObiject lookup(in DAODbjectID id);
PID_DA get_pid();
PID_DA get_object_pid(in DAObject dao);
DAObijectFactoryFinder data_factories();

The PDS_DA providethe following operations:

DAObiject get_data();
This returns the single root data object of the PDS.

void set_data(in DAObject new_data);
This sets the single root data object

DAObiject lookup(in DAObjectiDid);
This finds a data object by object id.

PID_DA get_pid();
This constructs 1D that corresponds to the single root data object of this PDS.

PID_DA get object_pid(in DAObject dao);
This constructs a PID that corresponds to the specified data object, which must
be in this PDS.

Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 199625

DAObjectFactoryFinder data_factories();
This returns a factory finder. The factory finder will provide factories for the
creation ofnew dataobjects within the PDS.

5.10.6 Defining and Using DA Data Objects

A PDS_DA implements data objects thwive a set chttributesdefined in a Data
Definition Language (DDL)DDL is a subset of OMG IDL. In DDL, all interfaces
consist only of attributes; that is, there are no operatid he programming interface
for accessing the persistent state is the CORBA-defitigthute access operations as
specified in the particular programming tarage mapping. A PDS_DAniplements
those accessor operations and transfers the persisadgtbetween the Datastore and
data objects as necessary.

DA data objects are used like normal CORBA objects. They are manipulated using
object references, sometimes called “data object referericasjuage mappings to
data object interfaces are generated just like language mappings for other interfaces.

To define a DA data object (DAD), the developer decideshat state must be made
persistentFor example, suppose the objeqtrsistent data consiststafo values, one
integer and one floating point number. The developer would define a data object
interface MyDataObject describing this data:

interface MyDataObject {
attribute short my_short;
attribute float my_float;

The DDL definition must be compiled, installed andkiéd with the object
implementation as necessary for the particular BRB& CORBA environment.
Mechanismsimiar to those for creating stubs for IDL interfaces ased to provide
the callable routines and create the runtime information necessary for the PDS
implementation. The precise mechanisms are not defined in this specification.

5-26 CORBAservices: Common Object Services Specification

3)

Once the object hasebn connected to the PDS, the factopemtions describeabove
are used to create the data object and set it as the root object in th&HeDS8ject
gets or sets values for tlad¢tributes using the CORBA accessor operations, for
example:

/I PDS_DA Examples

/I C++ code

/I Include IDL compiler output from CosPersistencePDS_DA.idl

#include "CosPersistencePDS_DA.xh"

/I CosPersistencePDS_DA.idl #includes CosPersistencePDS.idl

/I CosPersistencePDS.idl #includes CosPersistencePID.idl

/I connect to PDS

CosPersistencePDS_DA::PDS_DA my_pds =
pom->connect(my_object,my_PID);

I/ get factory finder

DAObjectFactoryFinder daoff = my_pds->data_factories();

/I get factory for MyDataObject

DAObjectFactory my_factory =
daoff->find_factory(“MyDataObiject”;

// create an instance of MyDataObject

MyDataObjectRef my_obj = my_factory->create();

// set the object to be the root object

my_pds->set_data(my_obj);

/I put persistent state in attributes

my_obj->my_short(42);

my_obj->my_float(3.14159);

Il use persistent state

my_obj->my_short(my_obj->my_short()+12);

The DA Protocol allows developers to build simplgext implementations that just

read and wite attribute values whenever they need to. There is no need for an object to
cache prsistent data in its transient store or to explicitly request it to be read or
written.

Attributes can be defined using thdl flexibility of the DDL type system. A
particular PDS may restrict thedtribute types it supports.

A data object may contain object references to other data objedt® ordinary
CORBA objects. Here is an example that extends the previous example by adding a
data object reference attribute and an ordinary CORBA object reference:

interface MyDataObject {
attribute short my_short;
attribute float my_float;
attribute MyDataObject next_data;
attribute SomeOtherObject my_object_ref;

Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 199627

5-28

This example allows an instance of MyDataObject to refer to anothendesta
Datastore implementation migtgstrict thescope of stored data objeefferences. For
example, it might permit only references to data objects in the same Datastore.

DDL interfaces support inheritance with semantics identical to IDL. Irfahe@wing
example, a new type of data object is defined thatlabke attributes of
MyDataObiject, plus an additional integer:

interface DerivedObject : MyDataObject {
attribute short my_extra;

b

Like other CORBA objects, data objects support operations on object references. In
particular, the get_interface operation, which returns an interface repository reference
to the object’s most derived interface, is useful for dynamically determining the type of
a data object.

5.10.7 The Dynamid&ibuteAccess Interface

Because data objects are CORBA objects, the CORB#abyc Invocation Interface

can be used to get and set data olgéicibutes dynamically, using strings to identify
attributes at run time. Heever, tosimplify dynamic access to data object attributes,

the DynamicAttributeAccess interface is defined. This intertifenes operations that
allow determination of the names of the attributes of a data object and getting and
seting individual attribute values by name. A data object is not required to support this
interface. It can bedetermined whether or not a data object supports these operations
by narrowing a data object reference to the DynamicAttributeAdoemsace.

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {
AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

AttributeNames attribute_names();
This returns a sequence containing the names of the object’s attributes.

any attribute_gdin string name);
This returns the value of the specifiatdribute.

void attribute_set(irstringname, in any value);
This sets the value of the named attribute to the value specified by the any
parameter.

CORBAservices: Common Object Services Specification

5.10.8 The PDS_ClusteredDA Interface

It is often useful to group data objects together within a PDS. Common reasons include
locking, sharing, performance, etc. The PDS_ClusteredDA is an extension to the
PDS_DA. A non-clustered PDS_DA is effectively a single cluster.

Eachcluster is represented as a distinct instance of the PDS_ClusteredDA interface,
although they willtypically all be implemented by the same service using the same
Datastore.

In addition to supporting the normal PDS_DA interface, a Clustered PDS_DA has the
following interface:

typedef string ClusterID;
typedef sequence<ClusterlD> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA {
ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA create_cluster(in string kind);
PDS_ClusteredDA open_cluster(in ClusterlD cluster);
PDS_ClusteredDA copy_cluster(
in PDS_DA source);

ClusterID cluster_id();
This returns the id of this cluster.

string cluster_kind();
This returns the kind of this cluster.

ClusterIDs clusters_of();
This returns a sequence of ClusterIDs listatigof the clusters in this Datastore.

PDS_ClusteredDA create_cluster(in string kind);
This creates a new cluster of the specified kind in this Datastore and returns a
PDS_ClusteredDA instance to represent it.

PDS_ClusteredDA open_cluster(in ClusterID cluster);
This opens amxisting cluster thalhas the specified ClusterID.

PDS_ClusteredDA copy_cluster(in PDS_DA source);
creates a new cluster, loadiitg state from the specified clustarhich may be
implemented in a different Dadtore.

Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 199629

5

5.11 The ODMG-93 Pratcol

A group of Object-Oriented Database Management System (ODBMS) vendors has
recently endorsed and published a common ODBM&Rifipation called OMG-93.
That specification defines an exted version of IDL for defining ODBMS object
types as well aprogramming language interfaces for objexnipulation.

The ODMG-93 Protocol is wsiilar to the DA Protocol, in that the object accesses
attributes organized as data objects. phieary diference is that the ODMG-93
Protocol uses the Object Definition hguage (ODL) defined in ODMG-93 instead of
DDL, and it uses the programming language mapping defined for data objects
specified in ODMG-93, rather than the CORBA IDL attribute operations.

If the ODMG-93 database object inherits the PDS_DA interface, then the database
object can be used with the rest of this specification. Objects using theG2a3M
Protocol would manipulate persistent data using the interfaces specified in ODMG-93.

Note that in addition to using the ODMG-88erface as another protocol, it would be
straightforward to implement the DA Protocol using an ODMG-93 ODBMS as a PDS.
Since the DA Protocol is a subset of the functionality in ODMG-93, in most
programming languages the language mapping for the Btrlbutes would be a

trivial layer on the ODMG-93 mapping. Using the MB-93 Protocol wouldully

exploit the capabilities of ODMG-93; using an ®3-93 ODBMS toimplement the

DA Protocol captures those objects that use DA Protocol.

5.12 The Dynamic Data Object (DDO) Pogol

5-30

The DDO is a [tastore-neutral representation of an object’s persistent data. Its
purpose is to contaiall of the data for a single objedtigure 5-1 illustrates an

example of a DDO. A DDO has a single PID, object_type and set of data items whose
cardinality is data_count. Each piece of data has a data_name, datanthhaset of
properties whose cardinality is property_count. Each property has a property _name and
a property value.

Although any data can be stored in a DDO, the following example illustrates how it
might map onto a row in &ble:

® aDDO = arow

® data_count = number of rows

® data_item = column

® data_name = column name

® data_value = column value

® property_count = number of column propes
® property_name = e.g., type size

® property value = e.g., character or 255

CORBAservices: Common Object Services Specification

a DDO
PID data_count=2 object_type
a data item a data item
data_name="" |data_va|ue:any | | data_name="" | |data_va|ue:any |
| property_count=2 | | property_count=1 |
a property a property
| property_id=1 | | property_id=1 |
property_name="" | property_name="" |
property_value=any | property_value=any |
a property
| property_id=2 |
| property_name="" |
| property_value=any |

Figure 5-10 Structure of a DDO

A DDO provides a Protocol when the persistent object supports theibtB®@eace. In

this case, the DDO interface is used to get data in and out of the persistent object. It
may even provide the way that the persistent object stisré@sternaldata, in which

case a copy angkformat step is avoided.

To facilitate fast and simplea@tge and retrieval in spialized types of Datastore,

DDOs can be used with particular conventions that are more suitable to different types
of Datastore. If the DDO is used for both a Protocol and as a direct way to get data in
and out of a Datastore, then copy dodnat costs are greatly daced.

5.13 The CosPersistenceDDO Module

The CaPersisteceDDOmodule contains the OMG IDL to support the DDO protocol.
The module cortins oneinterface, the DDO interface.

This section describes the CosPersistenceDDO module in detail.

The CoslersistenceDDO Mdule is shown in Figure 5-11.

Persistent Object Service: v1.0 The CosPersistenceDDO Module March 1995 5-31

5-32

#include "CosPersistencePID.idl"
module CosPersistenceDDO {

interface DDO {
attribute string object_type;
attribute CosPersistencePID::PID p;
short add_data();
short add_data_property (in short data_id);
short get_data_count();
short get_data_property_count (in short data_id);
void get_data_property (in short data_id,
in short property_id,
out string property_name,
out any property_value);
void set_data_property (in short data_id,
in short property_id,
in string property_name,
in any property_value);
void get_data (in short data_id,
out string data_name,
out any data_value);
void set_data (in short data_id,
in string data_name,
in any data_value);

b

b

Figure 5-11 The CosPersistenceDDO Module

A DDO has two attributes:

attribute string object_type;
This identify the object_type that this DDO is associated with.

attribute CosRersistencePID::PID p;
This identify the PID of the DDO.

A DDO has the following oprations for getting data iand out of the DDO:

short add_data();
This adds a new dattem and returns a new data_id that can be used to access
it.

short add_data_property (in short data_id);
This adds a newroperty within the data item identified by dataaiad returns
the new property_id that can be used to access it within the context of the data
item.

short get_data_count();
This gets the number of data items in the DDO.

CORBAservices: Common Object Services Specification

short get_data_property_count (in short data_id);
This gets the number of properties associated with the data item identified by
data_id.

void get_data_property (in short data_id,
in short property _id,
out string property_name,
out any property_value);
This gets the name and value of the property identified by property_id within the
data item identified by data_id.

void set_data_property (in short data_id,
in short property _id,
in string property_name,
in any property value);
This sets the name and value of the propeytified byproperty id within the
data item identified by data_id.

void get_data (in short data_id,
out string data_name,
out any data_value);
This gets the name and value of the data item identified by data_id.

void set _data (in short data_id,
in stringdata_name,
in any data_value);
This sets the name and value of the di@ia identified by data_id.

5.14 Other Protocols

This specification includes three protocols, but other pagcan be supported in this
architectureThe proliferation of protocols would reduce the commonality of different
objects, so it is desirable to use an existing protocol if that is possible. Howéesr, w
a new potocol is required, it is still possible to use other parts of the Pers@bgedtt
Service with it. In general, the protocshould be independent of the Datastore
interface, although some Datastore interfamékbe better suited to some protocols.

Some protocols are already defined and are not specified here. Sutdrdtaterfaces

as POSIX files are already in wide us@d there is no need to respecify themthiis

case, the PID would include the file name, and the protocol would consist of reads and
writes.

Other protocols are intended to be value-added and non-standard. For example, a
LISP-specific PDS might take advantage kifowledge of the LISRuntime
environment to create the appearance of glaifevel store of LSP objects. Although
such a PDS would not be usafilem other programming langges, it could provide
significant value to LISP pgrammers. Of course, it is also possible for a particular
value-added protocol to hmplemented as kyer on a standard Protocol.

This specification allows such protocols to be gnéged in the overall POS
architecture without ltanging thaarchitecture.

Persistent Object Service: v1.0 Other Protocols March 1995 5-33

5

5.15 Datastores: CosPersistenceDS_CLI Module

The last mjor component in the architecture is a DataStore, which providgatams

on a data repository underneath the Protocols just discussed. As with Protocols, a
variety of DataStore interfaces may be definEldere is no “standard” DataStore
interface. Only one kind of DataStore is defined here, for record-oriented databases,
because other standard interfaces already exist at thisaledghany customers may
choose toomit this level ofthe architecture altogether for performance in an object-
oriented database by using the DA or ODMG Protocol directly on the DBMS.

Datastore_CLI provides a uniform interface for accessing many differatiaisres
either individually orsimultaneously. The acronym CLI refers to the X/Open Data
Management Call Level Interface on which the module is based. Datastore_CLI is
especially suited for record database and file systems (e.g., relational, IMS,
hierarchical databases, and VSAM félgstems) that support user sessions,
connections, transactions, and scanning through data items using cursors.

The spcification of this framework, where appropriate, is consistent with ffpen

CLI, IDAPI, and ODBC standards. These are industry standards which specify
procedure-oriented application programming interfaces for accessing data stored in any
type of Datastore.

More detailed explanations amthumeration of the options in the Datastore_CLI
operations can be found in the X/Open ClpeSification.

DDOs are used as the way data are passed intodtasire_CLI interface. If DDO is

also being used as the Protocol, the PDS can use this DDO directly as a parameter to
calls to the Datastore_ CLWhen a different Protocol is being used, the P&t

create a new DO and populate it with data prior to calling the Datastore_CLI.

The CoslersistenceDS_CLI ndule contains the interfaces derived from OD&el
IDAPI, providing cursors into relational and other databases. The module contains the
following interfaces:

® The UserEnvironment Interface
® The Connection Interface

®* The ConnectionFactory Interface
® The Cursor Interface

® The CursorFactory Interface

® The PID_CLI Interface

® The Datastore_ ClLinterface

This section describes these interfaces and their operations in detail.

5-34 CORBAservices: Common Object Services Specification

The CoslersistenceDS_CLModule is shown in Figure 5-12:

#include "CosPersistenceDDO.idl"
/I CosPersistenceDDO.id| #includes CosPersistencePID.idl

module CosPersistenceDS_CLI {
interface UserEnvironment {
void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

b

interface Connection {
void set_option (in long option,in any value);
void get_option (in long option,out any value);

h

interface ConnectionFactory {
Connection create_object (
in UserEnvironment user_envir);

h

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

3

interface CursorFactory {
Cursor create_object (
in Connection connection);

kh

interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

b

Figure 5-12 The CosPersistenceDS_CLI Module

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module

MarbH3E95

5-36

interface Datastore_CLI {
void connect (in Connection connection,
in string datastore_id,
in string user_name,
in string authentication);
void disconnect (in Connection connection);
Connection get_connection (
in string datastore_id,
in string user_name);
void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void update_obiject (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
Cursor select_object(
in Connection connection,
in string key);
void transact (in UserEnvironment user_envir,
in short completion_type);
void assign_PID (in PID_CLI p);
void assign_PID_relative (
in PID_CLI source_pid,
in PID_CLI target_pid);
boolean is_identical_PID (
in PID_CLI pid_1,
in PID_CLI pid_2);
string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connection connection,
in string command);

h

Figure 5-12 The CosPersistenceDS_CLI Module

5.15.1 The UserEnvironment Interface

The Usermvironment OMG IDL is agollows:

interface UserEnvironment {
void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

CORBAservices: Common Object Services Specification

The Usermvironment has théllowing operations:

void set_option (in long option, iany value);
This sets the option to the desired value. Téteof settable options is specified
in the X/Open CLI $ecificationand the IDAPI Specification.

void get_option (in long option, oany value);
This gets the value of the optiofihelist of gettable options is the same as that
for set_option().

void release();
This releases all resources associated with the UserEnvironment.
5.15.2 The Connection Interface

The Comection OMG IDL is as follows:

interface Connection {
void set_option (in long option,in any value);
void get_option (in long option,out any value);

The Comection interface contains thellowing operations:

void set_option (in long option,in any value);
This sets the option to the desired value. Téteof settable options is specified
in the IDAPI Specification.

void get_option (in long option, oatny value);

This gets the value of the optiofhelist of gettable options is the same as that
for set_option.

5.15.3 The ConnectionFactory Interface

The ComectionFactory OMG IDL is as follows:

interface ConnectionFactory {
Connection create_object (
in UserEnvironment user_envir);

The ComectionFactory has the following operation:

Connection create_object (
in UserEnvironment user_envir);
This creates an instance of Connection. @nfection is created within the
context of a single UserEnvironment.

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLIModule Marbk31R95

5.15.4 The Cursor Interface

The Cursor OMG IDL is as follows:

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

A cursor is a movable pointer into a list of DB, through wich a client can move
about theibt or fetch a DDO from thést. The Cursoihas the following oprations:

void set_position (in long po#n, in any value);
This sets the Cursor position to the desired valhe. ist of settable positions is
specified in the IDAPI Specification.

CosPersisteceDDO::DDO fetch_olgct();
This fetches the next DDO from the list, based on the curesiign of the
Cursor.

5.15.5 The CursorFactory Interface

The CursorFactory OMG IDL is dellows:

interface CursorFactory {
Cursor create_object (
in Connection connection);

The CursorFactory hake following operations:

Cursor create_object (in Connection connection);
This create an instance of Cursor. A Cursor is created within the context of a
single Connection. See the X/Op€hl Specification and IDAPI Sgrification
for more information.

5.15.6 The PID_CLI Interface

The PID_CLI IDL is adollows:

interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

5-38 CORBAservices: Common Object Services Specification

3)

PID_CLI subtypes the PID base type (seect®n 5.41), adding attributes required for
the Datatstore_CLlI interfac&he PID_CLI nterface has the followingttributes:

attribute sting datastore_id;
This identifies the specific datastoretise. Most datastore products support
multiple datastores. For a relatiort@tabase, this might be the name of a
particular database containingultiple tables. For a Posix file sest, this
might be the pathname of a file.

attribute gting id;
This identifies a particular data elemerithin a datastorefor a relational
database, this might be a table name and primary key indicagiagieular row
in a table. For a Poside system, this might be a logical offset within the file
indicating where the datstarts.

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLIModule Marbi3B95

5-40

5.15.7 The Datastore_CLI Interface

The Datastore_CLI OMG IDL is as follows:

interface Datastore_CLI {
void connect (in Connection connection,
in string datastore_id,
in string user_name,
in string authentication);
void disconnect (in Connection connection);
Connection get_connection (
in string datastore_id,
in string user_name);
void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
Cursor select_object(
in Connection connection,
in string key);
void transact (in UserEnvironment user_envir,
in short completion_type);
void assign_PID (in PID_CLI p);
void assign_PID_relative (
in PID_CLI source_pid,
in PID_CLI target_pid);
boolean is_identical PID (
in PID_CLI pid_1,
in PID_CLI pid_2);
string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connection connection,
in string command);

In general, a client goes thrgh the following steps to storegstore or delete DDOs:
1. Create a UserEnvironment and set the appropriate options to their desired values.

2. Create a Connection and set the appropriate options to their desired @geesa
conrection to the Datastore, viagnect().

3. To store a DDO, calidd_object() or update_object(). To restore a DD&l,
retrieve_object(). To delete a DDO, call delete_obiject().

4. If necessary, call transact() ¢ommit or abort @atastore transaction.

CORBAservices: Common Object Services Specification

5. Repeat steps 3 and 4 as necessary.

6. Close the corection to the Datastore, via discowt(§. Delete thecorresponding
Connection.

7. Delete the UserEnvironment.
The Datastore_CLI connection eftions are:

void connect (in Connection coaction,
in string datastore_id,
in string user_name,
in string authentication);
This opens a connection to that@store using the Connection. A cliean
establish more than one connection, but only one connection can be current at a
time. The connection that conneatgtablishes becomes the current connection.

void disconnect (in Connection conniecd;
This closes the Connection.

Connection get_connection (
in string datastore_id,
in stringuser_name);
This returns the Connection associated with the datastore_id.

When any of the data manipulation operations is called, a datastore transaction begins
implicitly if the Connection involved is not already active. A Connection becomes
activeonce theransaction beginand remains activantil transact() is called.

The Datastore_CLI data mawmiation operations are:

void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);
This adds the DDO to thedfastore. If necessary, get the mapping schema
information for the DDO first.

void delete_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);
This deletes the DDO from the Datastore. If necessary, getdpping schema
information for the DDO first.

void update_object (in Comitction connection,
in CosPersistenceDDO::DDO data_obj);

This updates the DDO in theaastore. If necessary, get the mapping schema
information for the DDO first.

void retrieve_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);
This retrieves the DDO from the Datastore. If necessary, get the mapping
schema information for the DDO first. To improve performance, the
DBDatastoe_CLI may dtain access to more than one DDO at a tumeé cache
these.

Cursor select_object (in Connection connection,

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLIModule Marbk1995

in string key);
This selects and retrieve the DDO(s) which match thefiay the Datastore.
The DDO(s) are returned through the Cursor. If necessary, get the mapping
schema information for the kdirst. This operation is provided to support the
Query Service. In addition, theaPastore_CLI willsupport any otherperation
required by the Object Query Service.

The Datastore_CLI functions as a resource manfagehe DDOs that it manages. As
such, it will supporall resource manager operations specified by the Transaction
Service. When the Transaction Service is not being used, a transagtigrated
implicitly by either a Connection or a transacthd ended with &ransact():

void transact (in UserEnvironment user_envir,
in short completion_type);

This completes (commit or rollback) a Datastore transaction. Transaction
completion enacts or undoes any add_objeapdate_object() or
delete_object() operations performedany Connection whin the
UserEnvironment since the cagrtion was established or sincgraviouscall
to transact() for the same UserEnvironment. The values of completion_type are
specified in the X/Open CLI&cification.

The Datastore_CLI PID g@erations are:

void assign_PID (in PID_CLI p);
This assign a value for the id attribute of {id. Thefirst atribute,
datastore_type, must iidled in before calling this operation. If only tHigst
attribute is filledin, then this operation will fill in thesecond attribute,
datastore_id, as well.

void assign_PID relative (in PID_CLI source_pid,
in PID_CLI target_pid);
This assigns values for the attributes of the target asad on the values of the
source_pid. The target_pid’s first two attributes, datastore_type and datastore_id,
will be assigned the same values as those of the sourcéspidi attribute will
be assiged a newalue which is based on somaationship with that of the
source_pid. Thalgorithm defining that relationship is up to tineplementation.

boolean is_identicaPID (in PID_CLI pd_1, in PID_CLI pid_2);
This tests to see if the two pids are identical. In order for the two pids to be
identical, the following conditions must be true:

1. Both pidsmust be managed by this PDS

2. all three attributes of the pids must be identical individually.

string get_object_type (in PID_CLI p);
This gets the object_type of the pid.

Other Datastore_CLI operations are:

5-42 CORBAservices: Common Object Services Specification

void register_mapping_schema (in string scheit®); f
This registers the mapping schema information contained within the schema_file
with the Datastore_CLI. The mapping schegemerally consist of individual
mappings each of which is applicable to a given pair of object_type and
datastore_type.

Cursor execute (iConrection connection,
in string command);
This executes a command on the Datastore. If there are any DDOs to be returned
as a result, this is done through the Cursor.

5.16 Other Datastores

There are other &astore interfaces thaan be used by PDSs. Some of these
interfaces are not CORBA object interfaces, in that they are not defined in IDL and the
Datastores are not objects.

Some Datastores are simple, such as POSIX files. Others may be databases, and may
use generic interfaces for databases and record files such as SQLOpen>CLI

API, IDAPI or ODBC. Some Datastores dumed to support nested documents or

other specific kinds of objects such as Bento.

Because the Btastore interface is nekposed to object implementations or clients, the
choice of Datastore interface is up to the PDS. So long as the PDS can support its
Protocol using the particular Datastore interface, immplementation of the Datastore
can be used by that PDS. The idiécdtion of data within different types of &tastores

is facilitated by the PID, which can be specialized to each Datastore type.

5.17 Standards Conformance

5.18 References

This service is specified in standard OMG IDL.

The Datastore_CLI portion dhe Persistent Object Service is consistent with the
X/Open CLI draft standard.

The ODMG-93 PDS Object Pratol incorporates the ODMG-98pecificiation.

The X/Open CListandard is documented XiIOpen Data Manageemt Call Level
Interface (CLI) Draft Preliminary SpecificatioiReading, UK: X/Open Ltd., 1993.

The IDAPI standard is documented IBAPI Working Draft Scotts Valley, CA:
Borland International, August 1993.

The term “ODBC"refers toMicrosoft Qoen Database Connectivioftware
DevelopmenKit, ProgrammerReferenceVersion 1.0. Redmond, WA: irosoft
Corp., 1992.

Persistent Object Service: v1.0 Other Datastores March 1995 5-43

The term “Bento’refers to Jed Harris and IrauBin, The Bento Becification, Revision
1.0d5 Cupertino, CA: Apple Computer, Inc., July 15, 1993,

The term “ODMG-93"refers to R.G.G.Cattell, T.Atwam, J.Duhl, G.Ferran,

M.Loomis, and D.WadeThe Object Database Standard: ODMG-%an Mateo, CA:
Morgan Kaufmann, 1993.

5-44 CORBAservices: Common Object Services Specification

	Persistent Object Service Specification
	5.1 Introduction
	5.2 Goals and Properties
	5.2.1 Basic Capabilities
	5.2.2 Object-oriented Storage
	Interfaces to Data
	Self-description
	Abstraction

	5.2.3 Open Architecture
	5.2.4 Views of Service
	Client
	Object Implementation
	Persistent Data Service
	Datastore

	5.3 Service Structure
	5.4 The CosPersistencePID Module
	5.4.1 PID Interface
	5.4.2 Example PIDFactory Interface

	5.5 The CosPersistencePO Module
	5.5.1 The PO Interface
	5.5.2 The POFactory Interface
	5.5.3 The SD Interface

	5.6 The CosPersistencePOM Module
	5.7 Persistent Data Service (PDS) Overview
	5.8 The CosPersistencePDS Module
	5.9 The Direct Access (PDS_DA) Protocol
	5.10 The CosPersistencePDS_DA Module
	5.10.1 The PID_DA Interface
	5.10.2 The Generic DAObject Interface
	5.10.3 The DAObjectFactory Interface
	5.10.4 The DAObjectFactoryFinder Interface
	5.10.5 The PDS_DA Interface
	5.10.6 Defining and Using DA Data Objects
	5.10.7 The DynamicAttributeAccess Interface
	5.10.8 The PDS_ClusteredDA Interface

	5.11 The ODMG-93 Protocol
	5.12 The Dynamic Data Object (DDO) Protocol
	5.13 The CosPersistenceDDO Module
	5.14 Other Protocols
	5.15 Datastores: CosPersistenceDS_CLI Module
	5.15.1 The UserEnvironment Interface
	5.15.2 The Connection Interface
	5.15.3 The ConnectionFactory Interface
	5.15.4 The Cursor Interface
	5.15.5 The CursorFactory Interface
	5.15.6 The PID_CLI Interface
	5.15.7 The Datastore_CLI Interface

	5.16 Other Datastores
	5.17 Standards Conformance
	5.18 References

