General Design Principles 2

This chapter discusses the principles that were considered in designing Object Services
and their interfaes. It also addresses dependencies between Object Setvides,
relationship to CORBA, and their conformance to existing standards.

2.1 Service Design Principles

2.1.1 Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:
e Separation ofnterfaceand mplementation
* Object references are typed by interfaces
* Clients depend oimterfaces, not implementations
« Use of multple inheritance of interfaces
» Use of subtyping to extend, evolve and specializectionality

Other related principles that the designs adhere to include:
» Assume good ORB andibject Services implementations. Specifically, it is
assumed that CORBA-compliant ORBplemenations are being built that
support eficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use of
distributed objects for virtually all service and application elements.

e Do not build non-type properties intoterfaces

A discussion and rationale for the design of object services was included in the HP-
SunSoftresponse to the OMG Object Services RFI (OMG TC Document 92.2.10).

CORBAservices: Common Object Services Specification 2-1

2.1.2 Basic, Flexible $@ces

The services are designed to do one thing well and are only as complicated as they
need to be. Individual services are gemselves relatively simple yet they can, by
virtue of their structuring as objects, be combined together in interestohgowerful
ways.

For example, the event atite cycle services, plus a future relationship service, may
play together to support graphs of objects. Object graphs commonly occurr@athe
world andmust be supported in many applicatioAsfunctionally-rich Folder
compound object, for example, may be constructed usinlife¢heycle, naming,

events, and future relationship services as “building blocks.”

2.1.3 Generic Services

Services are designed to bengec in that they do natepend on the type of the client
object nor, in general, on the type of data passed in requests. For example, the event
channel interfaces accept event data of any type. Clients of the service can dynamically
determine the actual data typed handle it appropriately.

2.1.4 Allow Local and Remote Implensns

In general the services are structured as CORBA objects with OMG IDL interfaces that
can be accessed locally mmotelyand which can have local library or remote server
styles of implemenmttions. This allows considerable flexibility as regards the location
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objeatan beimplemented to wrk with a Library

Object Adapter that enables their execution in the same process as the client.

2.1.5 Quality of Sevice is an Implemetation Characteristic

Service interfaces are designed to allow a wide range of implementation approaches
depending on theuglity of service required in a particular environmétdr example,

in the Event Service, an event channel can be implemented to pfastdeut

unreliable delivery of events or slower but guaranteed delivery. However, the interfaces
to the event channel are the same for all implementaéindsall clients. Because rules

are not wired into a complex type hierarchy, developers can select particular
implementations as building bloclksid easily combine them with other components.

2.1.6 Objects Often Gwpire in a Sevice

Services are typically decomposed into several distinct interfaces that provide different
views for different kinds of clients of the service. For example, the Event Service is
composed oPushConsumePullSupplierandEventChanneinterfaces. This

simplifies the way in which a particular client uses a service.

CORBAservices: Common Object Services Specification

2

A particular service implementation caopport theconstituent interfaces as a single
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility A client of a service may use a different object reference to
communicate with each distinct service function. Conceptually, these “internal’ objects
conspireto provide the complete service.

As an example, in the Event Service an event channel can providBusitConsumer
andEventChanneinterfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implements
either thePushConsumeandEventChanneinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interfaces
as the means to distinguighd coordinatdifferent clients without relying on the

existence of an object equality test or some special way of identifying cldsitg

the event service again as an example, when an event consumer is connected with an
event channel, aew object is created that supports fhellSupplierinterface. An

object reference to this object is returned to the event consumer which can then request
events by invoking the appropriate operation on the new “supplier” object. Because
each client uses a different object reference to interact with the event channel, the event
channel can keep track of and manage mulgpteultareous clients. This ishown
graphically in Figure 2-1.

PullConsumer)
\ 1 PushSupplier K

consumer } | / _
1 supplier

>

event channel

PullSupplier
PushConsumer

PullConsumer
|
consumer 1 1 .

|
/ PullSupplier

Figure 2-1 An event channel as a collection of objects conspiring to manage multiple
simultaneous consumer clients.

The graphical notation shown in Figure 2-1 is used throughout this document and in
the full service specificatits. An arrow with a vertical bar is usedstoow thatthe

target object supports the interface namelkbl the arrow anthat clients holding an
object reference to it of this type can invoke operations. In shorthand, one says that the
object reference (held by the client) supports the interface. The arrow points from the
client to the target (server) object.

General Design Principles Service Design Principles November 1996 2-3

A blob (misshapen circle) delineates a conspiracgre or more objects. In other
words, it corresponds to a conceptual object that may be composed of one or more
CORBA objects that together provide some coordinated service to potentidtiple
clients making requests using different object references.

2.1.7 Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that a
client object is required to support to enable a serviealidackto it to invoke some
operation. The callback may be, for example, to pass back data asynchronously to a
client.

Callback interfaces have two major beteef
®* They clearly define how a client object participates in a service

®* They allow the use of the standard interface definition (OMG &g operation
invocation (object reference) mechanisms

2.1.8 Assume No Global Identifier Spaces

Several services employ identifiers to labatl distinguishvarious elements. The
service designs do not assume or rely on any gideatifier service or global id
spaces in order to function. The scopédetifiers isalways limited to some context.
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique within
its scope but should not make any other assumption.

2.1.9 Finding a Seree is Orthogonal to Uag It

Finding a service is at a higher level and orthogonal to using a service. These services
do not dictate a particulapproach. They do not, for example, mandate that all

services must be found via the naming servBecause services are structured as
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutian#tieigated to be
applicationand policy specific.

2.2 Interface Style Consistency

2.2.1 Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptional
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to initécat®n
completion.

CORBAservices: Common Object Services Specification

2.2.2 Explicit Versus Implicit Operations

Operations are alays explicit rather thammplied e.g. by dlag passed as a parameter
value to some “umbrella” operation. In other words, there is always a digtiecdton
corresponding to eadttistinct function of a service.

2.2.3 Use of Interface Inheritance

Interface inheritance (subtyping) ised whenever one can imagine ttl&nt code
should depend on less functioityathan the full interface. Services are often
partitioned into several unrelated interfagdsen it ispossible to partition the clients
into different roles. For example, an aidistrative interface is often unrelated and
distinct in thetype system from the interface used by “normal” clients.

2.3 Key Design Decisions

2.3.1 Naming Service: Distinct from Property and Trad8egvices
The Naming Service is addresssgparately from propertgnd tradingservices.

Naming contexts have sorms@milarity to property lists (that is, lists of values

associated with objects though not necessarily part of the object’s state). The Naming
Service in general also has elements in common with a trading service. However,
following the “Bauhaus” pnciple of keeping services as simpled as orthogonal as
possible, these serviclave been keplistinctand are being addressed separately.

2.3.2 Universal Object Identity

The services described in this manual do not require the concept of object identity.

2.4 Integration with Future Object Services

This section discusses how the Object Services could evolve to integrate with future
services, such as:

» Archive

» Backup/Restore

« Change Management (Versioning)
» Data Interchange

* Implementation Repository

* Internationalization

» Logging

* Recovery

* Replication

e Startup

General Design Principles Key Design Decisions November 1996 2-5

2.4.1 Archive Service

Persistent Object ServiceThe Archive Service copiesbjects from an
active/persistent store tobemckup store and vice versa. This service should be able to
archive objects stored with the Persistent Object Service.

Externalization Service.The Archive Service copiesbjects from an active/persistent
store to a backup store and vice versa. This service could use the Externalization
Service to get the internal state of objects for saving and to subsequently recreate
objects with this stored state. dfly persistent objectseed to be archived, then the
Object Persistenc8ervice could be used instead.

2.4.2 Backup/Festore Service

Externalization Service.The Backup/Restore Service provides recovery after a
system failure or a user error. This service caidd the Object Externalization Service
as an underlying mechanism for objects regardless of whether thegraistent.

Persistent Object ServiceThe Backup/Rstore Service provides recovery after a
system failure or a user error. This service could use éhssEent Object Service as an
underlying mechanism for persistent objects.

Transaction Service The permanence of d&ct property of a transaction implies that

the state established by the commitment of a transaction will not be lost. To guarantee
this property, the storage media on which the objects updated by the transaction are
stored must be backed-up to secondary storage to ensure that they are not lost should
the primary storage media fail. Similarly, theraige media used by the logging service
must be restorable shlol the media fail. Since there araltiple components which

require backup services, a single interface would be advantageous.

2.4.3 Change Management Service

Persistent Object ServiceThe Change Management Service supports the
identification and consistent evolution of objects including version and configuration
management. This service should work with the Persistent Object Service to allow
persistent objects to evolve from the oldn@w versions.

2.4.4 Data Interchange Service

Persistent Object Service The Data Interchange Service enables objecextthange
some or all of their associated state. This servicelldhwork with Persistent Object
Service to allow state to be exclygud when one or more of the objects peesistent.

2.4.5 Internationalization Service

Naming Service.Naming Service interfaces may also need to be exteffded
example, the structure of names extended, additional nesoéution operations
added) to better support representarg resolving names for some languages and
cultures.

CORBAservices: Common Object Services Specification

2.4.6 Implementation Repository

Persistent Object Service Thelmplementation Repositorsupports the management
of object implementations. The Persistent Object Service rapgrdi orthis to
determine what persistent data an object contains.ddgendency is at the
implementation level.

2.4.7 Interface Repository

Persistent Object Service The Interface Repository supports runtime access to OMG
IDL-specified definitionssuch as objedhterfacesand typedefinitions. The Pesistent
Object Service depends on thisdetermine if a persistent object supports certain
interfaces.

2.4.8 Logging Service

Transaction Service.A logging service implements the abstract notion of an infinitely
long, sequentially-accessible, append-only file. It typically supports multiple log files,
where each log file consists osaquence of log records. New log recordsvatiéen

to the end of a log file, old log records can be read from any position in the file. To
stop log files fromgrowing too large for the underlying storage medium, a log service
mustprovide an operation to archive old log records to allow the log file to be
truncated.

Various components of a transaction processing system may require the services of a
log service:
» Transaction Service: during the two-phasenmit protocol the Transaction
Service must log its state to ensure that the outcome of thmittimg trarsaction
can be determined should there be a failure.
» Recoverable (transactional) objects: a log can be used to record old and new
versions of a recoverable object for the purposes of supporting recovery.

» Locking service: a log can be used to record the locks held on an object at prepare
time to facilitaterecovery.

Since there are multiple components withidistributed transactioprocessing system
that require the services of a log service, a single log service interface (and potentially
server) that is shared between the componertie#sly advantageous.

The correctness of a transaction service depemds the services of a log service, for
this reason, the log service must meet the following requirements:

1. Restart.

A restart facility allows rapidacovery from the cold start of an application. The
recovery service used by the application (indirectly through the application’s use of
recoverable objects) would use thestart facility to establish eheckpoint a

consistent point in the execution state of the application from which the recovery
process can proceed. In the absence of a checkpoint the recovery service would
have to scan thentire log to ensure restart re®sy occurs correctly.

General Design Principles Integration with Future Object Services November 19967

2. Buffering and forcing operations.

A log service should provide two classes of operatonwriting log records:

a. An operation to buffer a log record (the record is not written directly to the
underlying storage medium). Used during the execution of a transaction. Since
the log record is buffered the write is inexpensive.

b. An operation to force a log record to the underlying storage medium. Used
during the two-phaseommit protocol to guarantee the correctness of the
transaction. Forcing a log record also flushes all previously written, but buffered,
log records.

3. Robustness.

The log service should ensure the consistency of the underlying storage medium in
which log files are stored. This usually involves the log service employing protocols
that update the storage in a manner that would not result in the loss efiatiyg

data (i.e. careful updates), along with supportfianroring the storage media to
tolerate medidailures.

4. Archival.

A log service should provide support for archiving log records. Archival is
necessary to allow the log to be truncated to ensure that it dogsomotvithout
bounds.

5. Efficiency.

Since the log service may be written torayltiple components within a
transaction, the addition of log records must bieht to avoid the bandvdth of
log from becoming a bottleneck in the system.

2.4.9 Recovery Service

Transaction Service.As recoverable objects are updated during a transaction, they (as
resource managerkgep a record of the changes made to their state that is sufficient to
undo the updates should the santion rollack. The component responsible fois

task istermedthe recovery service. Various different forms of recovery are possible,
however the most commdnrm is calledvalue logging and involves the recoverable
object recording both the old am&w values of the@bject. When a transaction is
recovered due to failure, the old value of an object is used to undo changes made to the
object during the transaction. Most e&ery services employ the services of a logging
service (described in this section) to maintain the “uriddrmation. The definition

of a standard recovery service interfaceng possible additional CORBA-compliant
object service.

2.4.10 Replication Service

Persistent Object Service The Replication Service provides explicit replication of
objects in a distribted environment and manages the consistencgpbitated copies.
This service could use the Persistent Object Service to manage persistent replicas.

CORBAservices: Common Object Services Specification

2.4.11 Startup Service

Persistent Object Service The Startup Service supports b&tedpping and
termination of the Persistent Object Service.

2.4.12 Data Interchange Service

Externalization Service.The Data Interchange Service enables objects to exchange
some or all of their associated state. This service could use the Object Externalization
Service to allow state to be exchanged regardless of whether the objgutssistent.

2.5 Service Dependencies

The inerface designs of all the services are general in nature and do not presume or
require the existence of specific supportsaftware in order ttmplement them. An
implementation of the Name Service, for instance, could use naming or directory
services provided in a general-purpose networking environment. For example, an
implementation may be based on the naming services provided by ONC or DCE. Such
an implementation could provide enterprise-widgning services to both object-based
and non-object-based clients. Object-basefiware would sesuch services through

the use of NamingContext objects.

Although the Object Services do not depemmbn specific software, some
dependencies and relationships do exist betvgeevices.

2.5.1 Event Service

The Event Service does not depend upon odkerices.

2.5.2 Life Cycle Service

Interfaces for the Life Cycle Service depend on the Naming Service.

The Life Cycle Service alsdefines compound @pations thatdepend on the
Relationship Service for the definition of object graphs.Appendix 6A describes the
topic of compound life cycle, and its dependence on the Relationship Sendegain

2.5.3 Persistent Object Service

The Externalization Service provides functions that provide for the transformation of
an object into a form suitable for storage on an external media or for trhesferen
systems. The Persistent Object Service uses this service as a POS protocol.

The Life Cycle Service provides operatidies managing object creation, deletion,
copy and equivalence. TheRistent ObjecBervice depends ahis service for
creatinganddeleting all required objects.

General Design Principles Service Dependencies November 1996 2-9

The Naming Service provides mappings betwesar-comprehensible names and
CORBA object referenced.he Persistent Object Servidepends on this service to
obtain the object reference of, say, a PDS fitsmame or id.

2.5.4 Relationship Service

The Relationship Service does not depend on other services. Netgadlgpthat the
Relationship Service does not depend on emyimon storage service.

For guidelines about when to use the Relationship Service and when to use CORBA
object references, refer to the section “Theddforship Service vs CORBA Object
References,” in Chapter 9.

2.5.5 Externalization Service

The Externalization Servicavorks with the Life Cycle Service idefining

externalization protocols for simple objects, for arbitrarily related objeaits for

graphs of related objects that support compound operations. Specifically, this service
uses the Life Cycle Service to create and remove Stream and StreamFactory objects.
ORB services may be used in Streamplementations to identify InterfaceDahd
ImplementationDef objects corresponding to an externalized objetttto support

finding an appropriate factory for recreating that object at internalization time.

The Externalization Service can also work with the Relationship Service.
Implementations of Streaand StreamlO operations could use the Relationship
Service to ensure thatultiple reerences to the same object or circular references
don’t result in duplication of objects at internalization time or in the external
representation.

In addition, the Externalization Service adds compound externalizedimantics to
the containment and reference relationships in the Relationship Service. Detailed
information is provided in Section 8.8.

2.5.6 Transaction Service

As concurrent requests are processed by an object a mechanism is required to mediate
access. This is necessary to provide the transaction propagglaifon. The
Concurrency Control Service is onegsible implementation of a locking service.

The Transaction Service depends upon the Concurrency Control Service in the
following ways:

» Concurrency Control Service must support $aetion duration locks, which
provideisolation of concurrent requests by different transactions.

» Concurrency Control Service must record transaction duration locks on persistent
media, such as a log, as part of the prepare phasenohitment.

« If nested transactions aseipported by the Traaction Service then the
Concurrency Control Service must also support locks that provide isolation
between siblings in a transactifamily and provide inheritance of locks owned
by a subransaction to its parenthewn the subtransaction canits.

2-10 CORBAservices: Common Object Services Specification

2

» Transactional clients of thea@currency Control Service are responsible for
ensuring thaall locks held by a transaction ateopped afterll recovery or
commitmentoperations have taken place. The drop-licks operation is provided by
the LockCoordinator interface for this purpose.

The Transaction Service suppodsomicity anddurability properties through the
Persistent Object Service (POS). The Transaction Service can work with the POS to
support atomic exaution of operations on persistent objects. Transactoils

persistence are not provided by the same serWiten coordination of multiple state
changes are required to persistent data, a persistence service requires a transaction
service. The POS can provide persistence, bimidemenation needs to be changed

to support transactional behavidhere are no changes to the interfaces of the POS to
support transactions. The following discussion applies to support of persistence when a
transaction service is required.

Supportfor persistencean be built from other specialized services that can also be
shared by other object services. Examples include:
* Recovery service: this supports the atomieityl durability properties.
» Logging service: this is used by the recovery service to assist posing the
atomicity and durability properties. It is alsased by the Transaction Service to
support the two-phase comit protocol.

» Backup and restore serviahis supports the isolation property.

This view is consistent with the/®pen DTP (Dstributed TransactioRrocessing)
model which separates the transaction manager service (iiepleamenation of a
generalized two-phassommit protocol) from a resource manager that provides
services for data with a lifeeyond process execution. This pésnboth transactions
on transient objects and @ersistent objects without transactions.

2.5.7 Concurrency Control 88ce

The Concurrency @ntrol Service does not depend on any other service per se.
Nevertheless, it is designedwmrk with the Transaction Service.

2.5.8 Query Service

The Query Service does not dependotimer service but is closely related to these
Object Services: Life Cycle; Persistent Object; Relationshipc@wancy Control;
Transaction; Property; Collection.

2.5.9 Licensindservice

The Licensing Service depends on the Event Service. It may depend on tienBE|a
Property, and Query 8aces for some implementationshis dependency is determined
by an implementation’s policy definitimndentry capabilityThe Licensing Service also
depends on the Security Service, because the Licensing Senacaaatcan use unforge-
able and secure events. The Licensing Service will useri§eService interfaces to sup-
port the requirements addhsed by the challenge mechanism.

General Design Principles Service Dependencies November 1996 2-11

2.5.10 Property Service

The Property Service does not depend upthrer services.

2.5.11 Time Service

The Time Servicedoes not depend upon other services.

2.5.12 Security Service

The Security Service does not depend upther services.

2.6 Relatonship to CORBA

This section provides information about tiedatiorship of other services to the
CORBA specification.

2.6.1 ORB Interoperability Considerations: Transacti®earvice

Some implementations of the Transaction Service suiiport:

The ability of a single application use both object and procedunalerfaces to
the TransactioBervice. This is described as part of the specificapartjcularly

in the sections “The User’s View” arifihe Implementor’s View.”.

The ability for differentTransaction Servicenplementations to interoperate
across a single ORB. This is provided as a consequence of this specification,
which defines IDL interfaces for all interactiobstween Trasaction Service
implementations.

The ability for the same Transaction Service to irgerate with another instance
of itself across different ORBs. (This abilitysspported by the Interoperability
specification of CORBA 2.0.)

The ability for differenfTransaction Servicesnplementations to interoperate
across different ORBs. (This ability is supported by the Interoperability
specification of CORBA 2.0.)

A critical dependency for Transaction Service interoperation across different
ORBs is the handling of thgropagation_context between ORBSs. This
includes the following:

Efficient transformatiorbetween different ORB representations of the
propagation_context

The ability to carry the ID information (typically an Xg@n XID) between
interoperating ORBs.

The ability to do interposition tensureefficient localexecution of the
is_same_transaction operation.

2-12 CORBAservices: Common Object Services Specification

2.6.2 Life Cycle Service

The Life Cycle Service assumes CORBA implementations support object relocation.

2.6.3 Naming Service

Entities that are not CORBA objects - that is to say, not objects accessed via an Object
Request Broker - are used for names (in the guise of pseudo objects). In both cases the
interfaces to these entities conform as closely as possible to OMG IDL while satisfying
the specific service design requirements, in order to emaidémum flexibility in the

future. Specifically, in the Naming Service, name objectspaeeidoobjects with

interfaces defined ipseudo IDL (PIDL). These objects look like CORBBjects but

are specifically designed to be accessed using a programming language binding. This is
done for reasons based on the expected use of these objects.

2.6.4 Relationship Service

The Relationship Service requires CORBA Interfaepésitories to support the ability
to dynamically determine if an IntedaDef conforms to another InterfaceDef, that is,
if it is a subtype. This is neededitoplement type constraints for particular
relationships.

2.6.5 Persistent Object Service

The Persistent Object Service requires CORBA Interface Repositories.

2.7 Relatonship to Object Model

All specifications contained in this manual conform to the OMG Object Model. No
additional components or profiles are required by any service.

2.8 Conformance to Existing Standards

In general, existing relevant standards dohmte doject-oriented interfaces nor are
they structured in a form that is easihapped to objects. These specifications have
been influenced begxisting standardsand services have been designed which
minimize the difficulty of encapsulating supporting software. The naming service
specification is belieed to be compatible with X(®, DCE CDS and ONC NIS and

NIS+.

Thesespecifications are broadly conformant to emerging/IEO/CCITT ODP
standards:
» CCITT DraftRecommendations X.900, @IEC 10746 Bsic Reference Model
for OpenDistributed Computing
* ISO/IEC JTC1 SC21 WG7 N743 Working Document on Topic 9.1 - ODP Trader

General Design Principles Relationship to Object Model November 1996 2-13

2-14 CORBAservices: Common Object Services Specification

	General Design Principles
	2.1 Service Design Principles
	2.1.1 Build on CORBA Concepts
	2.1.2 Basic, Flexible Services
	2.1.3 Generic Services
	2.1.4 Allow Local and Remote Implementations
	2.1.5 Quality of Service is an Implementation Char...
	2.1.6 Objects Often Conspire in a Service
	2.1.7 Use of Callback Interfaces
	2.1.8 Assume No Global Identifier Spaces
	2.1.9 Finding a Service is Orthogonal to Using It

	2.2 Interface Style Consistency
	2.2.1 Use of Exceptions and Return Codes
	2.2.2 Explicit Versus Implicit Operations
	2.2.3 Use of Interface Inheritance

	2.3 Key Design Decisions
	2.3.1 Naming Service: Distinct from Property and T...
	2.3.2 Universal Object Identity

	2.4 Integration with Future Object Services
	2.4.1 Archive Service
	2.4.2 Backup/Restore Service
	2.4.3 Change Management Service
	2.4.4 Data Interchange Service
	2.4.5 Internationalization Service
	2.4.6 Implementation Repository
	2.4.7 Interface Repository
	2.4.8 Logging Service
	2.4.9 Recovery Service
	2.4.10 Replication Service
	2.4.11 Startup Service
	2.4.12 Data Interchange Service

	2.5 Service Dependencies
	2.5.1 Event Service
	2.5.2 Life Cycle Service
	2.5.3 Persistent Object Service
	2.5.4 Relationship Service
	2.5.5 Externalization Service
	2.5.6 Transaction Service
	2.5.7 Concurrency Control Service
	2.5.8 Query Service
	2.5.9 Licensing Service
	2.5.10 Property Service
	2.5.11 Time Service
	2.5.12 Security Service

	2.6 Relationship to CORBA
	2.6.1 ORB Interoperability Considerations: Transac...
	2.6.2 Life Cycle Service
	2.6.3 Naming Service
	2.6.4 Relationship Service
	2.6.5 Persistent Object Service

	2.7 Relationship to Object Model
	2.8 Conformance to Existing Standards

