
General Design Principles 2
rvices

 of

P-
This chapter discusses the principles that were considered in designing Object Se
and their interfaces. It also addresses dependencies between Object Services, their
relationship to CORBA, and their conformance to existing standards.

2.1 Service Design Principles

2.1.1 Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10).
CORBAservices: Common Object Services Specification 2-1

2

ey

y

vent
ically

 that
r
n

hes

aces

.

rent
is
2.1.2 Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can, by
virtue of their structuring as objects, be combined together in interesting and powerful
ways.

For example, the event and life cycle services, plus a future relationship service, ma
play together to support graphs of objects. Object graphs commonly occur in the real
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

2.1.3 Generic Services

Services are designed to be generic in that they do not depend on the type of the client
object nor, in general, on the type of data passed in requests. For example, the e
channel interfaces accept event data of any type. Clients of the service can dynam
determine the actual data type and handle it appropriately.

2.1.4 Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote serve
styles of implementations. This allows considerable flexibility as regards the locatio
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

2.1.5 Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approac
depending on the quality of service required in a particular environment. For example,
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interf
to the event channel are the same for all implementations and all clients. Because rules
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other components

2.1.6 Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service
composed of PushConsumer, PullSupplier and EventChannel interfaces. This
simplifies the way in which a particular client uses a service.
2-2 CORBAservices: Common Object Services Specification

2

 to
ects

ents

aces

ith an

quest
se
event

 in

at the
 the
A particular service implementation can support the constituent interfaces as a single
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obj
conspire to provide the complete service.

As an example, in the Event Service an event channel can provide both PushConsumer
and EventChannel interfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either the PushConsumer and EventChannel interface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interf
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Using
the event service again as an example, when an event consumer is connected w
event channel, a new object is created that supports the PullSupplier interface. An
object reference to this object is returned to the event consumer which can then re
events by invoking the appropriate operation on the new “supplier” object. Becau
each client uses a different object reference to interact with the event channel, the
channel can keep track of and manage multiple simultaneous clients. This is shown
graphically in Figure 2-1.

Figure 2-1 An event channel as a collection of objects conspiring to manage multiple
simultaneous consumer clients.

The graphical notation shown in Figure 2-1 is used throughout this document and
the full service specifications. An arrow with a vertical bar is used to show that the
target object supports the interface named below the arrow and that clients holding an
object reference to it of this type can invoke operations. In shorthand, one says th
object reference (held by the client) supports the interface. The arrow points from
client to the target (server) object.

event channel

consumer

PullConsumer

PullSupplier

consumer

PullConsumer

PullSupplier

supplier

PushSupplier

PushConsumer
General Design Principles Service Design Principles November 1996 2-3

2

re

a

to a

 within

rvices

h

l
t
A blob (misshapen circle) delineates a conspiracy of one or more objects. In other
words, it corresponds to a conceptual object that may be composed of one or mo
CORBA objects that together provide some coordinated service to potentially multiple
clients making requests using different object references.

2.1.7 Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service to call back to it to invoke some
operation. The callback may be, for example, to pass back data asynchronously
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service

• They allow the use of the standard interface definition (OMG IDL) and operation
invocation (object reference) mechanisms

2.1.8 Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some context.
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.

2.1.9 Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These se
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured as
objects there does not need to be a special way of finding objects associated wit
services - general purpose finding services can be used. Solutions are anticipated to be
application and policy specific.

2.2 Interface Style Consistency

2.2.1 Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via outpu
parameters. An example of this is the use of a DONE return code to indicate iteration
completion.
2-4 CORBAservices: Common Object Services Specification

2

r

ming
,

y.

ure
2.2.2 Explicit Versus Implicit Operations

Operations are always explicit rather than implied e.g. by a flag passed as a paramete
value to some “umbrella” operation. In other words, there is always a distinct operation
corresponding to each distinct function of a service.

2.2.3 Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client code
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clients
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

2.3 Key Design Decisions

2.3.1 Naming Service: Distinct from Property and Trading Services

The Naming Service is addressed separately from property and trading services.

Naming contexts have some similarity to property lists (that is, lists of values
associated with objects though not necessarily part of the object’s state). The Na
Service in general also has elements in common with a trading service. However
following the “Bauhaus” principle of keeping services as simple and as orthogonal as
possible, these services have been kept distinct and are being addressed separately.

2.3.2 Universal Object Identity

The services described in this manual do not require the concept of object identit

2.4 Integration with Future Object Services

This section discusses how the Object Services could evolve to integrate with fut
services, such as:

• Archive

• Backup/Restore

• Change Management (Versioning)

• Data Interchange

• Implementation Repository

• Internationalization

• Logging

• Recovery

• Replication

• Startup
General Design Principles Key Design Decisions November 1996 2-5

2

 to

n

e

ntee
are
hould
e

on

2.4.1 Archive Service

Persistent Object Service. The Archive Service copies objects from an
active/persistent store to a backup store and vice versa. This service should be able
archive objects stored with the Persistent Object Service.

Externalization Service. The Archive Service copies objects from an active/persistent
store to a backup store and vice versa. This service could use the Externalizatio
Service to get the internal state of objects for saving and to subsequently recreat
objects with this stored state. If only persistent objects need to be archived, then the
Object Persistence Service could be used instead.

2.4.2 Backup/Restore Service

Externalization Service. The Backup/Restore Service provides recovery after a
system failure or a user error. This service could use the Object Externalization Service
as an underlying mechanism for objects regardless of whether they are persistent.

Persistent Object Service. The Backup/Restore Service provides recovery after a
system failure or a user error. This service could use the Persistent Object Service as an
underlying mechanism for persistent objects.

Transaction Service. The permanence of effect property of a transaction implies that
the state established by the commitment of a transaction will not be lost. To guara
this property, the storage media on which the objects updated by the transaction
stored must be backed-up to secondary storage to ensure that they are not lost s
the primary storage media fail. Similarly, the storage media used by the logging servic
must be restorable should the media fail. Since there are multiple components which
require backup services, a single interface would be advantageous.

2.4.3 Change Management Service

Persistent Object Service. The Change Management Service supports the
identification and consistent evolution of objects including version and configurati
management. This service should work with the Persistent Object Service to allow
persistent objects to evolve from the old to new versions.

2.4.4 Data Interchange Service

Persistent Object Service. The Data Interchange Service enables objects to exchange
some or all of their associated state. This service should work with Persistent Object
Service to allow state to be exchanged when one or more of the objects are persistent.

2.4.5 Internationalization Service

Naming Service. Naming Service interfaces may also need to be extended (for
example, the structure of names extended, additional name resolution operations
added) to better support representing and resolving names for some languages and
cultures.
2-6 CORBAservices: Common Object Services Specification

2

G

ly
es,

o
ice

 of a

pare

tially

r

e of

ry
ld
2.4.6 Implementation Repository

Persistent Object Service. The Implementation Repository supports the management
of object implementations. The Persistent Object Service may depend on this to
determine what persistent data an object contains. This dependency is at the
implementation level.

2.4.7 Interface Repository

Persistent Object Service. The Interface Repository supports runtime access to OM
IDL-specified definitions such as object interfaces and type definitions. The Persistent
Object Service depends on this to determine if a persistent object supports certain
interfaces.

2.4.8 Logging Service

Transaction Service. A logging service implements the abstract notion of an infinite
long, sequentially-accessible, append-only file. It typically supports multiple log fil
where each log file consists of a sequence of log records. New log records are written
to the end of a log file, old log records can be read from any position in the file. T
stop log files from growing too large for the underlying storage medium, a log serv
must provide an operation to archive old log records to allow the log file to be
truncated.

Various components of a transaction processing system may require the services
log service:

• Transaction Service: during the two-phase commit protocol the Transaction
Service must log its state to ensure that the outcome of the committing transaction
can be determined should there be a failure.

• Recoverable (transactional) objects: a log can be used to record old and new
versions of a recoverable object for the purposes of supporting recovery.

• Locking service: a log can be used to record the locks held on an object at pre
time to facilitate recovery.

Since there are multiple components within a distributed transaction processing system
that require the services of a log service, a single log service interface (and poten
server) that is shared between the components is clearly advantageous.

The correctness of a transaction service depends upon the services of a log service, fo
this reason, the log service must meet the following requirements:

1. Restart.

A restart facility allows rapid recovery from the cold start of an application. The
recovery service used by the application (indirectly through the application’s us
recoverable objects) would use the restart facility to establish a checkpoint: a
consistent point in the execution state of the application from which the recove
process can proceed. In the absence of a checkpoint the recovery service wou
have to scan the entire log to ensure restart recovery occurs correctly.
General Design Principles Integration with Future Object Services November 19962-7

2

nce

ed,

m in
ols

 (as
t to

e,

to the
g

s.
2. Buffering and forcing operations.

A log service should provide two classes of operation for writing log records:

a. An operation to buffer a log record (the record is not written directly to the
underlying storage medium). Used during the execution of a transaction. Si
the log record is buffered the write is inexpensive.

b. An operation to force a log record to the underlying storage medium. Used
during the two-phase commit protocol to guarantee the correctness of the
transaction. Forcing a log record also flushes all previously written, but buffer
log records.

3. Robustness.

The log service should ensure the consistency of the underlying storage mediu
which log files are stored. This usually involves the log service employing protoc
that update the storage in a manner that would not result in the loss of any existing
data (i.e. careful updates), along with support for mirroring the storage media to
tolerate media failures.

4. Archival.

A log service should provide support for archiving log records. Archival is
necessary to allow the log to be truncated to ensure that it does not grow without
bounds.

5. Efficiency.

Since the log service may be written to by multiple components within a
transaction, the addition of log records must be efficient to avoid the bandwidth of
log from becoming a bottleneck in the system.

2.4.9 Recovery Service

Transaction Service. As recoverable objects are updated during a transaction, they
resource managers) keep a record of the changes made to their state that is sufficien
undo the updates should the transaction rollback. The component responsible for this
task is termed the recovery service. Various different forms of recovery are possibl
however the most common form is called value logging and involves the recoverable
object recording both the old and new values of the object. When a transaction is
recovered due to failure, the old value of an object is used to undo changes made
object during the transaction. Most recovery services employ the services of a loggin
service (described in this section) to maintain the “undo” information. The definition
of a standard recovery service interface is one possible additional CORBA-compliant
object service.

2.4.10 Replication Service

Persistent Object Service. The Replication Service provides explicit replication of
objects in a distributed environment and manages the consistency of replicated copies.
This service could use the Persistent Object Service to manage persistent replica
2-8 CORBAservices: Common Object Services Specification

2

e
ation

e or

Such

of
2.4.11 Startup Service

Persistent Object Service. The Startup Service supports bootstrapping and
termination of the Persistent Object Service.

2.4.12 Data Interchange Service

Externalization Service. The Data Interchange Service enables objects to exchang
some or all of their associated state. This service could use the Object Externaliz
Service to allow state to be exchanged regardless of whether the objects are persistent.

2.5 Service Dependencies

The interface designs of all the services are general in nature and do not presum
require the existence of specific supporting software in order to implement them. An
implementation of the Name Service, for instance, could use naming or directory
services provided in a general-purpose networking environment. For example, an
implementation may be based on the naming services provided by ONC or DCE.
an implementation could provide enterprise-wide naming services to both object-based
and non-object-based clients. Object-based software would see such services through
the use of NamingContext objects.

Although the Object Services do not depend upon specific software, some
dependencies and relationships do exist between services.

2.5.1 Event Service

The Event Service does not depend upon other services.

2.5.2 Life Cycle Service

Interfaces for the Life Cycle Service depend on the Naming Service.

The Life Cycle Service also defines compound operations that depend on the
Relationship Service for the definition of object graphs.Appendix 6A describes the
topic of compound life cycle, and its dependence on the Relationship Service, in detail.

2.5.3 Persistent Object Service

The Externalization Service provides functions that provide for the transformation
an object into a form suitable for storage on an external media or for transfer between
systems. The Persistent Object Service uses this service as a POS protocol.

The Life Cycle Service provides operations for managing object creation, deletion,
copy and equivalence. The Persistent Object Service depends on this service for
creating and deleting all required objects.
General Design Principles Service Dependencies November 1996 2-9

2

BA

vice
ects.

ediate

tent
The Naming Service provides mappings between user-comprehensible names and
CORBA object references. The Persistent Object Service depends on this service to
obtain the object reference of, say, a PDS from its name or id.

2.5.4 Relationship Service

The Relationship Service does not depend on other services. Note especially that the
Relationship Service does not depend on any common storage service.

For guidelines about when to use the Relationship Service and when to use COR
object references, refer to the section “The Relationship Service vs CORBA Object
References,” in Chapter 9.

2.5.5 Externalization Service

The Externalization Service works with the Life Cycle Service in defining
externalization protocols for simple objects, for arbitrarily related objects, and for
graphs of related objects that support compound operations. Specifically, this ser
uses the Life Cycle Service to create and remove Stream and StreamFactory obj
ORB services may be used in Stream implementations to identify InterfaceDef and
ImplementationDef objects corresponding to an externalized object, and to support
finding an appropriate factory for recreating that object at internalization time.

The Externalization Service can also work with the Relationship Service.
Implementations of Stream and StreamIO operations could use the Relationship
Service to ensure that multiple references to the same object or circular references
don’t result in duplication of objects at internalization time or in the external
representation.

In addition, the Externalization Service adds compound externalization semantics to
the containment and reference relationships in the Relationship Service. Detailed
information is provided in Section 8.8.

2.5.6 Transaction Service

As concurrent requests are processed by an object a mechanism is required to m
access. This is necessary to provide the transaction property of isolation. The
Concurrency Control Service is one possible implementation of a locking service.

The Transaction Service depends upon the Concurrency Control Service in the
following ways:

• Concurrency Control Service must support transaction duration locks, which
provide isolation of concurrent requests by different transactions.

• Concurrency Control Service must record transaction duration locks on persis
media, such as a log, as part of the prepare phase of commitment.

• If nested transactions are supported by the Transaction Service then the
Concurrency Control Service must also support locks that provide isolation
between siblings in a transaction family and provide inheritance of locks owned
by a subransaction to its parent when the subtransaction commits.
2-10 CORBAservices: Common Object Services Specification

2

 by

 to

tion

 to
en a

e

• Transactional clients of the Concurrency Control Service are responsible for
ensuring that all locks held by a transaction are dropped after all recovery or
commitment operations have taken place. The drop-licks operation is provided
the LockCoordinator interface for this purpose.

The Transaction Service supports atomicity and durability properties through the
Persistent Object Service (POS). The Transaction Service can work with the POS
support atomic execution of operations on persistent objects. Transactions and
persistence are not provided by the same service. When coordination of multiple state
changes are required to persistent data, a persistence service requires a transac
service. The POS can provide persistence, but its implementation needs to be changed
to support transactional behavior. There are no changes to the interfaces of the POS
support transactions. The following discussion applies to support of persistence wh
transaction service is required.

Support for persistence can be built from other specialized services that can also b
shared by other object services. Examples include:

• Recovery service: this supports the atomicity and durability properties.

• Logging service: this is used by the recovery service to assist in supporting the
atomicity and durability properties. It is also used by the Transaction Service to
support the two-phase commit protocol.

• Backup and restore service: this supports the isolation property.

This view is consistent with the X/Open DTP (Distributed Transaction Processing)
model which separates the transaction manager service (i.e. the implementation of a
generalized two-phase commit protocol) from a resource manager that provides
services for data with a life beyond process execution. This permits both transactions
on transient objects and on persistent objects without transactions.

2.5.7 Concurrency Control Service

The Concurrency Control Service does not depend on any other service per se.
Nevertheless, it is designed to work with the Transaction Service.

2.5.8 Query Service

The Query Service does not depend on other service but is closely related to these
Object Services: Life Cycle; Persistent Object; Relationship; Concurrency Control;
Transaction; Property; Collection.

2.5.9 Licensing Service

The Licensing Service depends on the Event Service. It may depend on the Relationship,
Property, and Query Services for some implementations. This dependency is determined
by an implementation’s policy definition and entry capability. The Licensing Service also
depends on the Security Service, because the Licensing Service interface can use unforge-
able and secure events. The Licensing Service will use Security Service interfaces to sup-
port the requirements addressed by the challenge mechanism.
General Design Principles Service Dependencies November 1996 2-11

2

,

2.5.10 Property Service

The Property Service does not depend upon other services.

2.5.11 Time Service

The Time Service does not depend upon other services.

2.5.12 Security Service

The Security Service does not depend upon other services.

2.6 Relationship to CORBA

This section provides information about the relationship of other services to the
CORBA specification.

2.6.1 ORB Interoperability Considerations: Transaction Service

Some implementations of the Transaction Service will support:

• The ability of a single application to use both object and procedural interfaces to
the Transaction Service. This is described as part of the specification, particularly
in the sections “The User’s View” and ‘The Implementor’s View.”.

• The ability for different Transaction Service implementations to interoperate
across a single ORB. This is provided as a consequence of this specification
which defines IDL interfaces for all interactions between Transaction Service
implementations.

• The ability for the same Transaction Service to interoperate with another instance
of itself across different ORBs. (This ability is supported by the Interoperability
specification of CORBA 2.0.)

• The ability for different Transaction Services implementations to interoperate
across different ORBs. (This ability is supported by the Interoperability
specification of CORBA 2.0.)

• A critical dependency for Transaction Service interoperation across different
ORBs is the handling of the propagation_context between ORBs. This
includes the following:

• Efficient transformation between different ORB representations of the
propagation_context .

• The ability to carry the ID information (typically an X/Open XID) between
interoperating ORBs.

• The ability to do interposition to ensure efficient local execution of the
is_same_transaction operation.
2-12 CORBAservices: Common Object Services Specification

2

on.

bject
es the
ying

his is

,

er
2.6.2 Life Cycle Service

The Life Cycle Service assumes CORBA implementations support object relocati

2.6.3 Naming Service

Entities that are not CORBA objects - that is to say, not objects accessed via an O
Request Broker - are used for names (in the guise of pseudo objects). In both cas
interfaces to these entities conform as closely as possible to OMG IDL while satisf
the specific service design requirements, in order to enable maximum flexibility in the
future. Specifically, in the Naming Service, name objects are pseudo objects with
interfaces defined in pseudo IDL (PIDL). These objects look like CORBA objects but
are specifically designed to be accessed using a programming language binding. T
done for reasons based on the expected use of these objects.

2.6.4 Relationship Service

The Relationship Service requires CORBA Interface Repositories to support the ability
to dynamically determine if an InterfaceDef conforms to another InterfaceDef, that is
if it is a subtype. This is needed to implement type constraints for particular
relationships.

2.6.5 Persistent Object Service

The Persistent Object Service requires CORBA Interface Repositories.

2.7 Relationship to Object Model

All specifications contained in this manual conform to the OMG Object Model. No
additional components or profiles are required by any service.

2.8 Conformance to Existing Standards

In general, existing relevant standards do not have object-oriented interfaces nor are
they structured in a form that is easily mapped to objects. These specifications have
been influenced by existing standards, and services have been designed which
minimize the difficulty of encapsulating supporting software. The naming service
specification is believed to be compatible with X.500, DCE CDS and ONC NIS and
NIS+.

These specifications are broadly conformant to emerging ISO/IEC/CCITT ODP
standards:

• CCITT Draft Recommendations X.900, ISO/IEC 10746 Basic Reference Model
for Open Distributed Computing

• ISO/IEC JTC1 SC21 WG7 N743 Working Document on Topic 9.1 - ODP Trad
General Design Principles Relationship to Object Model November 1996 2-13

2

2-14 CORBAservices: Common Object Services Specification

	General Design Principles
	2.1 Service Design Principles
	2.1.1 Build on CORBA Concepts
	2.1.2 Basic, Flexible Services
	2.1.3 Generic Services
	2.1.4 Allow Local and Remote Implementations
	2.1.5 Quality of Service is an Implementation Char...
	2.1.6 Objects Often Conspire in a Service
	2.1.7 Use of Callback Interfaces
	2.1.8 Assume No Global Identifier Spaces
	2.1.9 Finding a Service is Orthogonal to Using It

	2.2 Interface Style Consistency
	2.2.1 Use of Exceptions and Return Codes
	2.2.2 Explicit Versus Implicit Operations
	2.2.3 Use of Interface Inheritance

	2.3 Key Design Decisions
	2.3.1 Naming Service: Distinct from Property and T...
	2.3.2 Universal Object Identity

	2.4 Integration with Future Object Services
	2.4.1 Archive Service
	2.4.2 Backup/Restore Service
	2.4.3 Change Management Service
	2.4.4 Data Interchange Service
	2.4.5 Internationalization Service
	2.4.6 Implementation Repository
	2.4.7 Interface Repository
	2.4.8 Logging Service
	2.4.9 Recovery Service
	2.4.10 Replication Service
	2.4.11 Startup Service
	2.4.12 Data Interchange Service

	2.5 Service Dependencies
	2.5.1 Event Service
	2.5.2 Life Cycle Service
	2.5.3 Persistent Object Service
	2.5.4 Relationship Service
	2.5.5 Externalization Service
	2.5.6 Transaction Service
	2.5.7 Concurrency Control Service
	2.5.8 Query Service
	2.5.9 Licensing Service
	2.5.10 Property Service
	2.5.11 Time Service
	2.5.12 Security Service

	2.6 Relationship to CORBA
	2.6.1 ORB Interoperability Considerations: Transac...
	2.6.2 Life Cycle Service
	2.6.3 Naming Service
	2.6.4 Relationship Service
	2.6.5 Persistent Object Service

	2.7 Relationship to Object Model
	2.8 Conformance to Existing Standards

