
Property Service 13
y

t

 part
13.1 Overview

13.1.1 Service Description

An object supports an interface. An interface consists of operations and attributes. The
interface is statically defined in OMG IDL. Two objects are of the same type if the
support the same interface.

Properties are typed, named values dynamically associated with an object, outside of
the type system. There are many useful cases for properties. For example:

• Object Classification -- A particular document may be classified as important; i
must be read by the end of the day. Another document is marginally important; it
must be read by the end of the month. Yet another document is not marked
important. The classification of the document was invented by the user. It is not
of the document’s type. However, a user may use a standard utility to find all
documents marked important.

• Object Usage Count -- An on-line service download utility increments a counter
every time an object has been downloaded by a user. The information is associated
with the object but it is not part of the object’s type.
 CORBAservices: Common Object Services Specification 13-1

13

ce of

.

ber

The property service implements objects supporting the PropertySet interface or the
PropertySetDef interface. The PropertySet interface supports a set of properties. A
property is two tuple of: <property_name, property_value >.
property_name is a string that names the property. property_value is of type
any and carries the value assigned to the property.

The PropertySetDef interface is a specialization (subclass) of the PropertySet interface
that exposes the characteristics (or metadata) of each property (e.g. readonly or
read/write access). In general, this specification will use the term PropertySet to refer
to the collection of properties and will only use the term PropertySetDef when
explicitly referring to operations related to property metadata.

The association of properties with an object is considered an implementation detail.
This property service specification allows for the creation of PropertySets or
PropertySetDefs via factory interfaces, or an object may inherit the PropertySet or
PropertySetDef interfaces.

Client’s Model of Properties

As with CORBA attributes, clients can get and set property values. However, with
properties, clients can also dynamically create and delete properties associated with an
object. Clients can manipulate properties individually or in batches using a sequen
the Property data type called Properties .

In addition, when using objects that support the PropertySetDef interface, clients can
create and manipulate properties and their characteristics, such as the property mode
The PropertySetDef interface also provides operations for clients to retrieve constraint
information about a PropertySet, such as allowed property types.

To aid in the client’s view of properties associated with an object, the client may
request a list of property names (PropertyNames) or the number of properties.

Iterators are used by the property service to return lists of properties when the num
of properties exceeds that which is expected by the client. Iterators contain operations
that allow clients fine-grained control over the enumeration of properties.

Object’s Model of Properties

Every object that wishes to provide a property service must support either the
PropertySet or PropertySetDef interface. PropertySet is the interface that provides
operations for defining, deleting, enumerating and checking for the existence of
13-2 CORBAservices: Common Object Services Specification

f

r

n
properties. The PropertySetDef interface is a subclass of PropertySet that provides
operations to retrieve PropertySet constraints, define and modify properties with
modes, and to get and set property modes.

Subclasses of PropertySet or PropertySetDef may impose restrictions on some or all o
the properties they store.

Properties are intended to be the dynamic equivalent of CORBA attributes. As such,
the PropertySet interface provides exceptions to allow implementors to support the
concepts of a readonly property and a fixed property (i.e., a property that cannot be
deleted). In addition, the PropertySetDef interface provides operations for
implementors to declare their PropertySet constraints to clients. This mechanism is fo
those implementations that need the dynamics of properties, yet want the interface
control of CORBA attributes.

A PropertySet object may support the storage of property data types itself, or there
may be a “generic” PropertySet implementation that handles the parsing of property
data types and the memory management associated with storing properties. This is
considered an implementation detail.

When a PropertySet object receives a define_property request from a client, it
must ensure there are no property_name conflicts and then retain the property
information such that the object can later respond to get_property,
delete_property , and is_property_defined requests from clients.

When a PropertySet object receives a define_property request to an existing
property from a client, it must ensure that the any TypeCode of the
property_value of the request matches the existing property’s any TypeCode.

Use of property modes within a PropertySet is an implementation issue, as clients ca
neither access nor modify a property mode. For example, an implementation may
define some initial readonly properties at create time and raise the ReadOnlyProperty
exception if a client attempts to define a new property value.
Property Service: v1.0 Service Description July 1996 13-3

13

13.1.2 OMG IDL Interface Summary

The property service defines interfaces to support functionality described in the
previous sections. The following table gives a high-level description of the property
service interfaces.

13.1.3 Summary of Key Features

The following are key features of the Property Service:

• Provides the ability to dynamically associate named values with objects outside the
static IDL-type system.

• Defines operations to create and manipulate sets of name-value pairs or name-
value-mode tuples.

The names are simple OMG IDL strings. The values are OMG IDL anys. The use
of type any is significant in that it allows a property service implementation to deal
with any value that can be represented in the OMG IDL-type system. The modes
are similar to those defined in the Interface Repository AttributeDef interface.

• Designed to be a basic building block, yet robust enough to be applicable for a
broad set of applications.

• Provides “batch” operations to deal with sets of properties as a whole.

Table 13-1Property Service Interfaces

Interface Purpose

PropertySet Supports operations for defining, deleting, enumerating and
checking for the existence of properties.

PropertySetDef Supports operations for retrieving PropertySet constraints
and getting and setting property modes.

PropertiesIterator Supports operations to allow clients fine-grained control over
the enumeration of properties.

PropertyNamesIterator Supports operations to allow clients fine-grained control over
the enumeration of property names.

PropertySetFactory Creates PropertySets.

PropertySetDefFactory Creates PropertySetDefs.
13-4 CORBAservices: Common Object Services Specification

r
ct,

s of
The use of “batch” operations is significant in that the systems and network
management (SNMP, CMIP, ...) communities have proven such a need when dealing
with “attribute” manipulation in a distributed environment.

• Provides exceptions such that PropertySet implementors may exercise control of (o
apply constraints to) the names and types of properties associated with an obje
similar in nature to the control one would have with CORBA attributes.

• Allows PropertySet implementors to restrict modification, addition and/or deletion
of properties (readonly, fixed) similar in nature to the restrictions one would have
with CORBA attributes.

• Provides client access and control of constraints and property modes.

• Does not rely on any other object services.

13.2 Service Interfaces

13.2.1 CosPropertyService Module

The CosPropertyService module defines the entire property service, which consist
data types, exceptions and the following interfaces:

• PropertySet

• PropertySetDef

• PropertySetFactory

• PropertySetDefFactory

• PropertiesIterator

• PropertyNamesIterator
Property Service: v1.0 Service Description July 1996 13-5

13

ta
Data Types

The CosPropertyService module provides a number of structure and sequence da
types to manipulate PropertySet and PropertySetDef information.

Figure 13-1 Data types.

/***/
/* Data Types */
/***/

 typedef string PropertyName;
 struct Property {
 PropertyName property_name;
 any property_value;
 };

 enum PropertyModeType {
 normal,
 read_only,
 fixed_normal,
 fixed_readonly,
 undefined
 };

 struct PropertyDef {
 PropertyName property_name;
 any property_value;
 PropertyModeType property_mode;
 };

 struct PropertyMode {
 PropertyName property_name;
 PropertyModeType property_mode;
 };

 typedef sequence<PropertyName> PropertyNames;
 typedef sequence<Property> Properties;
 typedef sequence<PropertyDef> PropertyDefs;
 typedef sequence<PropertyMode> PropertyModes;
 typedef sequence<TypeCode> PropertyTypes;
13-6 CORBAservices: Common Object Services Specification

he

s

s

A property is a two tuple of: <property_name, property_value >.
property_name is a string, which names the property. property_value is of
type any and carries the value assigned to the property. This data type is considered t
base type for dealing with property data and is used throughout the PropertySet
interface.

Clients can manipulate properties individually or in batches using a sequence of the
Property data type called Properties or, when appropriate, a sequence of the
PropertyName data type called PropertyNames .

A PropertyDef is a three tuple of: <property_name, property_value,
property_mode_type >. property_name is a string, which names the
property. property_value is of type any and carries the value assigned to the
property. property_mode_type is an enumeration that defines the characteristic
of the property. A property definition combines property characteristics (metadata) and
property data information and is used in the PropertySetDefFactory and
PropertySetDef interfaces. The PropertyDef data type provides clients access and
control of property metadata.

Clients can manipulate property definitions individually or in batches using a sequence
of the PropertyDef data type called PropertyDefs.

A PropertyMode is a two tuple of: <property_name,
property_mode_type >. property_name is a string, which names the
property. property_mode_type is an enumeration that defines the characteristic
of the property. The PropertyMode data type is used in the PropertySetDef interface
and provides clients access and control of property metadata.

Clients can manipulate property modes individually or in batches using a sequence of
the PropertyMode data type called PropertyModes.

There are five mutually exclusive property mode types defined:

• Normal means there are no restrictions to the property. A client may define new
values to an existing property or delete this property.

• Readonly means clients can only get the property information. However, a readonly
property may be deleted.

• Fixed_Normal means the property cannot be deleted. However, clients are free to
define new values to an existing property.

• Fixed_Readonly means the property cannot be deleted and clients can only get the
property information.
Property Service: v1.0 Service Description July 1996 13-7

13

.

• Undefined is used to signify PropertyNotFound when requesting a multiple get
mode request. Using this on an operation that sets the mode of a property (e.g
set_mode or define_property_with_mode) will raise the
UnsupportedMode exception.

Restrictions on the property_mode_type field is an implementation issue. For
example, a PropertySetDef implementation may choose to not support a client setting a
property to the fixed_readonly mode.
13-8 CORBAservices: Common Object Services Specification

Exceptions

The PropertySet interface supports the following exceptions.

Figure 13-2 PropertySet interface exceptions.

/***/
/* Exceptions */
/***/
 exception ConstraintNotSupported{};
 exception InvalidPropertyName {};
 exception ConflictingProperty {};
 exception PropertyNotFound {};
 exception UnsupportedTypeCode {};
 exception UnsupportedProperty {};
 exception UnsupportedMode {};
 exception FixedProperty {};
 exception ReadOnlyProperty {};

 enum ExceptionReason {
 invalid_property_name,
 conflicting_property,
 property_not_found,
 unsupported_type_code,
 unsupported_property,
 unsupported_mode,
 fixed_property,
 read_only_property
 };

 struct PropertyException {
 ExceptionReason reason;
 PropertyName failing_property_name;
 };

 typedef sequence<PropertyException> PropertyExceptions;

 exception MultipleExceptions {
 PropertyExceptions exceptions;
 };
Property Service: v1.0 Service Description July 1996 13-9

13

he
• ConstraintNotSupported

Indicates that either the allowed_property_types,
allowed_properties, or allowed_property_defs parameter could
not be properly supported by this PropertySet or PropertySetDef.

• InvalidPropertyName

Indicates that the supplied property_name is not valid. For example, a
property_name of length 0 is invalid. Implementations may place other
restrictions on property_name .

• ConflictingProperty

Indicates that the user is trying to modify an existing property_name with an
any TypeCode in a property_value that is different from the current.

• PropertyNotFound

Indicates that the supplied property_name is not in the PropertySet.

• UnsupportedTypeCode

Indicates that a user is trying to define a property having an any TypeCode that is
not supported by this PropertySet.

• UnsupportedProperty

Indicates that a user is trying to define a property not supported by this PropertySet.

• FixedProperty

Indicates that a user is trying to delete a property that the PropertySet considers
undeletable.

• ReadOnlyProperty

This indicates that a user is trying to modify a property that the PropertySet
considers to be readonly.

• MultipleExceptions

This exception is used to return a sequence of exceptions when dealing with t
“batch” operations of define_properties and delete_all_properties
in the PropertySet interface, define_properties_with_modes and
set_property_modes in the PropertySetDef interface,
create_initial_propertyset in the PropertySetFactory interface, and
create_initial_propertysetdef in the PropertySetDefFactory interface.
Each operation defines the valid entries that may occur in the sequence.
13-10 CORBAservices: Common Object Services Specification

ns is

nd

 of
t all

ld

ty
A PropertyException is a two tuple of: <reason,
failing_property_name >. reason is an enumeration reflecting one of the
exceptions defined above. failing_property_name is a string, which names
the property. The sequence of property exceptions returned as MultipleExceptio
the PropertyExceptions data type.

13.2.2 PropertySet Interface

The PropertySet interface provides operations to define and modify properties, list a
get properties, and delete properties.

The PropertySet interface also provides “batch” operations, such as
define_properties , to deal with sets of properties as a whole. The execution
the “batch” operations is considered best effort (i.e., not an atomic set) in that no
suboperations need succeed for any suboperation to succeed.

For define_properties and delete_properties , if any suboperation fails, a
MultipleExceptions exception is returned to identify which property name had which
exception.

For example, a client may invoke define_properties using three property
structures. The first property could be accepted (added or modified), the second cou
fail due to an InvalidPropertyName, and the third could fail due to a
ConflictingProperty. In this case a property is either added or modified in the
PropertySet, and a MultipleExceptions is raised with two items in the
PropertyExceptions sequence.

The get_properties and delete_all_properties “batch” operations utilize
a boolean flag to identify that mixed results occurred and additional processing may be
required to fully analyze the exceptions.

Making “batch” operations behave in an atomic manner is considered an
implementation issue that could be accomplished via specialization of this proper
service.
Property Service: v1.0 Service Description July 1996 13-11

13

ist,
Defining and Modifying Properties

This set of operations is used to define new properties to a PropertySet or set new
values on existing properties.

Figure 13-3 Operations used to define new properties or set new values.

define_property

Will modify or add a property to the PropertySet. If the property already exists, then
the property type is checked before the value is overwritten. If the property does not
exist, then the property is added to the PropertySet.

To change the any TypeCode portion of the property_value of a property, a client
must first delete_property , then invoke the define_property .

define_properties

Will modify or add each of the properties in Properties parameter to the
PropertySet. For each property in the list, if the property already exists, then the
property type is checked before overwriting the value. If the property does not ex
then the property is added to the PropertySet.

This is a batch operation that returns the MultipleExceptions exception if any define
operation failed.

 /* Support for defining and modifying properties */
 void define_property(
 in PropertyName property_name,
 in any property_value)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 ReadOnlyProperty);

 void define_properties(
 in Properties nproperties)
 raises(MultipleExceptions);
13-12 CORBAservices: Common Object Services Specification

Table 13-2Exceptions Raised by Define Operations

Exception Raised Description

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

ConflictingProperty Indicates that the property indicated created a conflict
in the type or value provided.

UnsupportedTypeCode Indicates that the any TypeCode of the
property_value field is not supported in this Prop-
ertySet.

UnsupportedProperty Indicates that the supplied property is not supported in
this PropertySet, either due to PropertyName restric-
tions or specific name-value pair restrictions.

ReadOnlyProperty Indicates that the property does not support client mod-
ification of the property_value field.

MultipleExceptions The PropertyExceptions sequence may contain any of
the exceptions listed above, multiple times and in any
order.
Property Service: v1.0 Service Description July 1996 13-13

13
Listing and Getting Properties

This set of operations is used to retrieve property names and values from a
PropertySet.

Figure 13-4 Operations used to retrieve property names and values.

get_number_of_properties

Returns the current number of properties associated with this PropertySet.

get_all_property_names

Returns all of the property names currently defined in the PropertySet. If the
PropertySet contains more than how_many property names, then the remaining
property names are put into the PropertyNamesIterator.

 /* Support for Getting Properties and their Names */
 unsigned long get_number_of_properties();

 void get_all_property_names(
 in unsigned long how_many,
 out PropertyNames property_names,
 out PropertyNamesIterator rest);

 any get_property_value(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName);

 boolean get_properties(
 in PropertyNames property_names,
 out Properties nproperties);

 void get_all_properties(
 in unsigned long how_many,
 out Properties nproperties,
 out PropertiesIterator rest);
13-14 CORBAservices: Common Object Services Specification

l

to

ixed
get_property_value

Returns the value of a property in the PropertySet.

get_properties

Returns the values of the properties listed in property_names .

When the boolean flag is true, the Properties parameter contains valid values for al
requested property names. If false, then all properties with a value of type tk_void
may have failed due to PropertyNotFound or InvalidPropertyName.

An separate invocation of get_property for each such property name is necessary
determine the specific exception or to verify that tk_void is the correct any TypeCode
for that property name.

This approach was taken to avoid a complex, hard to program structure to carry m
results.

get_all_properties

Returns all of the properties defined in the PropertySet. If more than how_many
properties are found, then the remaining properties are returned in PropertiesIterator.

Table 13-3Exceptions Raised by List and Get Properties Operations

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined for
this PropertySet.

InvalidPropertyName Indicates the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

MultipleExceptions The PropertyExceptions sequence may contain any of
the exceptions listed above, multiple times and in any
order.
Property Service: v1.0 Service Description July 1996 13-15

13

 all
s
Deleting Properties

This set of operations can be used to delete one or more properties from a PropertySet.

Figure 13-5 Operations used to delete properties.

delete_property

Deletes the specified property if it exists from a PropertySet.

delete_properties

Deletes the properties defined in the property_names parameter. This is a batch
operation that returns the MultipleExceptions exception if any delete failed.

delete_all_properties

Variation of delete_properties . Applies to all properties.

Since some properties may be defined as fixed property types, it may be that not
properties are deleted. The boolean flag is set to false to indicate that not all propertie
were deleted.

A client could invoke get_number_of_properties to determine how many
properties remain. Then invoke get_all_property_names to extract the property
names remaining. A separate invocation of delete_property for each such property
name is necessary to determine the specific exception.

 /* Support for Deleting Properties */
 void delete_property(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName,
 FixedProperty);

 void delete_properties(
 in PropertyNames property_names)
 raises(MultipleExceptions);

 boolean delete_all_properties();
13-16 CORBAservices: Common Object Services Specification

fore

e

e
Note – If the property is in a PropertySetDef, then the set_mode operation could be
invoked to attempt to change the property mode to something other than fixed be
using delete_property .

This approach was taken to avoid the use of an iterator to return an indeterminat
number of exceptions.

Table 13-4Exceptions Raised by delete_properties Operations

Determining If a Property Is Already Defined

The is_property_defined operation returns true if the property is defined in th
PropertySet, and returns false otherwise.

Figure 13-6 is_property_defined operation.

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined.

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

FixedProperty Indicates that the PropertySet does not support the dele-
tion of the specified property.

MultipleExceptions The PropertyExceptions sequence may contain any of
the exceptions listed above, multiple times and in any
order.

 boolean is_property_defined(
 in PropertyName property_name)
 raises(InvalidPropertyName);
Property Service: v1.0 Service Description July 1996 13-17

13

an

t
 the

ty
13.2.3 PropertySetDef Interface

The PropertySetDef interface is a specialization (subclass) of the PropertySet interface.
The PropertySetDef interface provides operations to retrieve PropertySet constraints,
define and modify properties with modes, and to get or set property modes.

It should be noted that a PropertySetDef is still considered a PropertySet. The
specialization operations are simply to provide more client access and control of the
characteristics (metadata) of a PropertySet.

The PropertySetDef interface also provides “batch” operations, such as
define_properties_with_modes , to deal with sets of property definitions as a
whole. The execution of the “batch” operations is considered best effort (i.e., not
atomic set) in that not all suboperations need to succeed for any suboperation to
succeed.

For define_properties_with_modes and set_property_modes , if any
suboperation fails, a MultipleExceptions exception is returned to identify which
property name had which exception.

For example, a client may invoke define_properties_with_modes using four
property definition structures. The first property could be accepted (added or
modified), the second could fail due to an UnsupportedMode, the third could fail due
to a ConflictingProperty, and the fourth could fail due to ReadOnlyProperty. In this
case a property is either added or modified in the PropertySetDef and a
MultipleExceptions exception is raised with three items in the PropertyExceptions
sequence.

The get_property_modes “batch” operation utilizes a boolean flag to signal tha
mixed results occurred and additional processing may be required to fully analyze
exceptions.

Making “batch” operations behave in an atomic manner is considered an
implementation issue that could be accomplished via specialization of this proper
service.
13-18 CORBAservices: Common Object Services Specification

at

Retrieval of PropertySet Constraints

This set of operations is used to retrieve information related to constraints placed on a
PropertySet.

Figure 13-7 Operations used to retrieve information related to constraints.

get_allowed_property_types

Indicates which types of properties are supported by this PropertySet. If the output
sequence is empty, then there is no restrictions on the any TypeCode portion of the
property_value field of a Property in this PropertySet, unless the
get_allowed_properties output sequence is not empty.

For example, a PropertySet implementation could decide to only accept properties th
had any TypeCodes of tk_string and tk_ushort to simplify storage processing and
retrieval.

get_allowed_properties

Indicates which properties are supported by this PropertySet. If the output sequence is
empty, then there is no restrictions on the properties that can be in this PropertySet,
unless the get_allowed_property_types output sequence is not empty.

 /* Support for retrieval of PropertySet constraints*/
 void get_allowed_property_types(
 out PropertyTypes property_types);

 void get_allowed_properties(
 out PropertyDefs property_defs);

Property Service: v1.0 Service Description July 1996 13-19

13

s not

the

n the
Defining and Modifying Properties with Modes

This set of operations is used to define new properties to a PropertySet or set new
values on existing properties.

Figure 13-8 Operations used to define new properties or values.

define_property_with_mode

This operation will modify or add a property to the PropertySet. If the property already
exists, then the property type is checked before the value is overwritten. The property
mode is also checked to be sure a new value may be written. If the property doe
exist, then the property is added to the PropertySet.

To change the any TypeCode portion of the property_value of a property, a client
must first delete_property , then invoke the define_property_with_mode .

define_properties_with_modes

This operation will modify or add each of the properties in the Properties parameter
to the PropertySet. For each property in the list, if the property already exists, then
property type is checked before overwriting the value. The property mode is also
checked to be sure a new value may be written. If the property does not exist, the
property is added to the PropertySet.

 /* Support for defining and modifying properties */
 void define_property_with_mode(
 in PropertyName property_name,
 in any property_value,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 UnsupportedMode,
 ReadOnlyProperty);

 void define_properties_with_modes(
 in PropertyDefs property_defs)
 raises(MultipleExceptions);
13-20 CORBAservices: Common Object Services Specification

This is a batch operation that returns the MultipleExceptions exception if any define
operation failed.

Table 13-5Exceptions Raised by define Operations

Exception Raised Description

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

ConflictingProperty Indicates that the property indicated created a conflict
in the type or value provided.

UnsupportedTypeCode Indicates that the any TypeCode of the
property_value field is not supported in this
PropertySet.

UnsupportedProperty Indicates that the supplied property is not supported in
this PropertySet, either due to PropertyName restric-
tions or specific name-value pair restrictions.

UnsupportedMode Indicates that the mode supplied is not supported in this
PropertySet.

ReadOnlyProperty Indicates that the property does not support client mod-
ification of the property_value field.

MultipleExceptions The PropertyExceptions sequence may contain any of
the exceptions listed above, multiple times and in any
order.
Property Service: v1.0 Service Description July 1996 13-21

13

ne or
Getting and Setting Property Modes

This set of operations is used to get and set the property mode associated with o
more properties.

Figure 13-9 Operations used to get and set property mode.

get_property_mode

Returns the mode of the property in the PropertySet.

get_property_modes

Returns the modes of the properties listed in property_names .

 /* Support for Getting and Setting Property Modes */
 PropertyModeType get_property_mode(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName);

 boolean get_property_modes(
 in PropertyNames property_names,
 out PropertyModes property_modes);

 void set_property_mode(
 in PropertyName property_name,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 PropertyNotFound,
 UnsupportedMode);

 void set_property_modes(
 in PropertyModes property_modes)
 raises(MultipleExceptions);
 };
13-22 CORBAservices: Common Object Services Specification

ame.

ixed

When the boolean flag is true, the property_modes parameter contains valid values
for all requested property names. If false, then all properties with a
property_mode_type of undefined failed due to PropertyNotFound or
InvalidPropertyName. A separate invocation of get_property_mode for each such
property name is necessary to determine the specific exception for that property n

This approach was taken to avoid a complex, hard to program structure to carry m
results.

set_property_mode

Sets the mode of a property in the PropertySet.

Protection of the mode of a property is considered an implementation issue. For
example, an implementation could raise the UnsupportedMode when a client attempts
to change a fixed_normal property to normal .

set_property_modes

Sets the mode for each property in the property_modes parameter. This is a batch
operation that returns the MultipleExceptions exception if any set failed.

Table 13-6Exceptions Raised by Get and Set Mode Operations

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined.

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

UnsupportedMode Indicates that the mode supplied (set operations only) is
not supported in this PropertySet.

MultipleExceptions The PropertyExceptions sequence may contain any of
the exceptions listed above, multiple times and in any
order.
Property Service: v1.0 Service Description July 1996 13-23

13

irs

13.2.4 PropertiesIterator Interface

A PropertySet maintains a set of name-value pairs. The get_all_properties
operation of the PropertySet interface returns a sequence of Property structures
(Properties). If there are additional properties, the get_all_properties operation
returns an object supporting the PropertiesIterator interface with the additional
properties.

The PropertiesIterator interface allows a client to iterate through the name-value pa
using the next_one or next_n operations.

Resetting the Position in an Iterator

The reset operation resets the position in an iterator to the first property, if one
exists.

Figure 13-10reset operation.

next_one, next_n

The next_one operation returns true if an item exists at the current position in the
iterator with an output parameter of a property. A return of false signifies no more
items in the iterator.

The next_n operation returns true if an item exists at the current position in the
iterator and the how_many parameter was set greater than zero. The output is a
properties sequence with at most the how_many number of properties. A return of
false signifies no more items in the iterator.

Figure 13-11next_one and next_n operations (properties)

 void reset();

 boolean next_one(out Property aproperty);
 boolean next_n(
 in unsigned long how_many,
 out Properties nproperties);
13-24 CORBAservices: Common Object Services Specification

ng

one

o
Destroying the Iterator

The destroy operation destroys the iterator.

Figure 13-12destroy operation.

13.2.5 PropertyNamesIterator Interface

A PropertySet maintains a set of name-value pairs. The get_all_property_names
operation returns a sequence of names (PropertyNames). If there are additional names,
the get_all_property_names operation returns an object supporting the
PropertyNamesIterator interface with the additional names.

The PropertyNamesIterator interface allows a client to iterate through the names usi
the next_one or next_n operations.

Resetting the Position in an Iterator

The reset operation resets the position in an iterator to the first property name, if
exists.

Figure 13-13reset operation.

next_one, next_n

The next_one operation returns true if an item exists at the current position in the
iterator with an output parameter of a property name. A return of false signifies n
more items in the iterator.

The next_n operation returns true if an item exists at the current position in the
iterator and the how_many parameter was set greater than zero. The output is a
PropertyNames sequence with at most the how_many number of names. A return of
false signifies no more items in the iterator.

 void destroy();

 void reset();
Property Service: v1.0 Service Description July 1996 13-25

13
Figure 13-14next_one, next_n operations (PropertyNames)

Destroying the Iterator

The destroy operation destroys the iterator.

Figure 13-15destroy operation.

13.2.6 PropertySetFactory Interface

The create_propertyset operation returns a new PropertySet. It is considered an
implementation issue as to whether the PropertySet contains any initial properties or
has constraints.

The create_constrained_propertyset operation allows a client to create a
new PropertySet with specific constraints. The modes associated with the allowed
properties is considered an implementation issue.

The create_initial_propertyset operation allows a client to create a new
PropertySet with specific initial properties. The modes associated with the initial
properties is considered an implementation issue.

 boolean next_one(out PropertyName property_name);
 boolean next_n(
 in unsigned long how_many,
 out PropertyNames property_names);

 void destroy();
13-26 CORBAservices: Common Object Services Specification

Figure 13-16 PropetySetFactory interface.

Deletion of any initial properties is an implementation concern. For example, an
implementation may choose to initialize the PropertySet with a set of
fixed_readonly properties for create_propertyset or choose to initialize
all allowed_properties to be fixed_normal for
create_constrained_propertyset .

The relationship of a PropertySet to a specific object is an implementation issue.

13.2.7 PropertySetDefFactory Interface

The create_propertysetdef operation returns a new PropertySetDef. It is
considered an implementation issue as to whether the PropertySetDef contains any
initial properties or has constraints.

The create_constrained_propertysetdef operation allows a client to create a
new PropertySetDef with specific constraints, including property modes.

 interface PropertySetFactory
 {
 PropertySet create_propertyset();
 PropertySet create_constrained_propertyset(
 in PropertyTypes allowed_property_types,
 in Properties allowed_properties)
 raises(ConstraintNotSupported);
 PropertySet create_initial_propertyset(
 in Properties initial_properties)
 raises(MultipleExceptions);
 };
Property Service: v1.0 Service Description July 1996 13-27

13
The create_initial_propertysetdef operation allows a client to create a new
PropertySetDef with specific initial properties, including property modes.

Figure 13-17 PropertySetDefFactory interface.

It should be noted that deletion of intial or allowed properties is tied to the property
mode setting for that property. In other words, initial or allowed properties are not
inherently safe from deletion.

 interface PropertySetDefFactory
 {
 PropertySetDef create_propertysetdef();
 PropertySetDef create_constrained_propertysetdef(
 in PropertyTypes allowed_property_types,
 in PropertyDefs allowed_property_defs)
 raises(ConstraintNotSupported);
 PropertySetDef create_initial_propertysetdef(
 in PropertyDefs initial_property_defs)
 raises(MultipleExceptions);
 };
13-28 CORBAservices: Common Object Services Specification

	Property Service
	13.1 Overview
	13.1.1 Service Description
	Client’s Model of Properties
	Object’s Model of Properties

	13.1.2 OMG IDL Interface Summary
	13.1.3 Summary of Key Features

	13.2 Service Interfaces
	13.2.1 CosPropertyService Module
	Data Types
	Exceptions

	13.2.2 PropertySet Interface
	Defining and Modifying Properties
	define_properties
	Listing and Getting Properties
	get_all_property_names
	get_property_value
	get_properties
	get_all_properties
	Deleting Properties
	delete_property
	delete_properties
	delete_all_properties
	Determining If a Property Is Already Defined

	13.2.3 PropertySetDef Interface
	Retrieval of PropertySet Constraints
	get_allowed_properties
	Defining and Modifying Properties with Modes
	define_properties_with_modes
	Getting and Setting Property Modes
	get_property_modes
	set_property_mode
	set_property_modes

	13.2.4 PropertiesIterator Interface
	next_one, next_n
	Destroying the Iterator

	13.2.5 PropertyNamesIterator Interface
	Resetting the Position in an Iterator
	next_one, next_n
	Destroying the Iterator

	13.2.6 PropertySetFactory Interface
	13.2.7 PropertySetDefFactory Interface

