Naming Service Specification 3

3.1 Service Description

3.1.1 OQverview

A name-to-object association is callethame bindingA name binding is always
defined relative to @aming contextA naming context is an object that contains a set
of name bindings in which each name is unique. Different names carubd tman
object in the same or different contexts at the same time. There is no requirement,
however, thatll objects must be named.

To resolve a namés to determine the object associated with the name in a given
context. Tobind a names to create a name binding in a given context. A name is
always resolvedelative to a context — there are absolute names.

Because a context is like any othéjext, it can also bedund to a name in a naming
context. Binding contexts in other contexts createaraing graph— a directed graph

with nodesand labeled edges where the nodes are contextanfinggraph allows

more complex names to reference an object. Given a context in a naming graph, a
sequence of names can reference an object. This sequence of names (called a
compound nanjedefines a path in the naming graph to navigate the resolution process.
Figure 3-1 shows an exate of a naming graph.

CORBAservices: Common Object Services Specification 3-1

user

Sys
ome
4 .
" U3 bin lib
u2 il \alden
O O O
11/ \ 12
cl|
4
0 0 O O

Figure 3-1 A Naming Graph

3.1.2 Names

Many of the operations defined omaming context take names as paramei¢ases
have structure. A name is an ordered sequenceraponents

A name with a single component is calledimple namga name with multiple
components is called @mpound nameEach component except tleest is used to
name a context; the lasbmponent denotes the bouabject. The notation:

< componentl ; component2 ; component3 >

indicates the sequences of components.

Note —The semicolon (;) characters are simply the notation used in this docantent
are not intended to imply that names are sequences of characters separated by
semicolon.

A name component consists of tatiributes:the identifier attributeand thekind
attribute Both theidentifier attribute and th&ind attributeare represented as
IDL strings.

Thekind attribute adds descriptiveoprer to names in a syntax-independent way.
Examples of the value of thénd attribute includec_source object_code
executablepostscript or*” . The naming system does not interpret, assigmaorage

CORBAservices: Common Object Services Specification

3

these values in any way. Higher levelssoftware may make policiesbout the use
and management of these values. This feature addresses the napplécations that
use syntactic naming conventions to distinguish related obfemtexample Unix uses
suffixes such axc and.o . Applications (such as the C compiler) dapg on these
syntactic convention to make name transformations (for example, to trarfefmom

to foo.o).

The lack of name syntax is especially important when consideriaghationalization

issues. Software that does not depend on the syntactic conventions for names does not
have to be changed when it is localized for a natural language that has different
syntactic conventions — unlike software that does depend on the syntactic conventions
(which must be changed to adopt to new conventions).

To avoid issues of ffiering name syntax, the Naming Service always deals with names

in their structural form (that is, there are no canonical syntaxes or distinguished meta
characters). It is assumed that various programs and system services will map names
from the representation into the structural form in a manner that is convenient to them.

3.1.3 Names Library

To allow the representation of names to evolve without affecting existing clients, it is
desirable to hide the representation from client code. Ideally, names themselves would
be OMG IDL objects; however, names must be lightweight entities that cearpe
efficiently created and manipulated in memory and passed as parameters in requests by
value. In order tsimplify name manipulation angfovide representation

independence, names can be presented to programs through the names library. Note,
however, it is not necessary to use the names library to use the basic operations of the
naming service.

The names library implements names as pseudo-objects. A client makes calls on a
pseudo-bject in the same way it makes calls on an ordinary object. Library names are
described in pseudo-IDL. Theames library supports two pseudo-Iiterfaces: the
LNameComonentinterface and theNameinterface. The.NameComponernhterface
defines the get and set operations associated with name comjutameifier and
thekind attributes. TheLNamelnterface includes operations for manipulating library
name and library name component pseudo objects and producing and translating a
structure that can be passed as a parameter to a normal object request.

3.1.4 Example Scenarios

This section provides two short scenarios that illustrate how the naming service
specification can be used by tfairly different kinds of systems -- systems that differ
in the kind ofimplementationsused to build the Naming Service and tHdfer in
models of how clients might use the Naming Service with other object services to
locate objects.

In one system, the Naming Service is implemented using an underlying enterprise-
wide naming server such as DCE CDS. The Naming Service is used to construct large,
enterprise-wide naming graph&are NamingContexinodel "directories” or "folders"

and other names identify "document"'éite" kinds of objects. In other words, the

Naming Servicevl.0 Service Description March 1995 3-3

naming service is used as the backbone of an enterprisdiliidesystem. In such a
systemnon-object-based access to the naming service may well be as commonplace as
object-based access to the naming service. For example, the name of an object might
be presented to the DCE directory service as hatechinated ASClistringsuch as
“/.../IDME/nls/moa-1/ID-1".

The Naming Service providdbe principal mechanism through which most clients of

an ORB-based system locate objects that they intend to use (make requéitseaf).

an initial naming context, clients navigate naming contexts retrieving lists of the names
bound to that context. In conjunction with peyties and security services, clients look

for objects with certain "externally visible" characteristics, for example, for objects

with recognized names or objects with a certairetlast-modified (all subject to

security considerations). All objects used in such a scheme register their externally
visible characteristics with other services (a name service, a properties service, and so
on).

Conventions are employed in such a scheme that meaningfully partition the name
space. For example, individuals are assigned naming contexts for personal use, groups
of individuals may be assigned shared naming contexts while other contexts are
organized in a public section of the naming grapmilarly, conventions are used to
identify contexts thalist thenames of services that are available in the system (e.g.,
that locate a translation or printing service).

In an alternative system, the Naming Service can be used in aimdss role and

can have a less shisticated implementation. In this model, naming contexts represent
the types and locations of services that are available in the system and a much
shallower namingyraph is employed. For example, the Naming Service is used to
register the object references of a mail service, an information service, a filing service.

Given a handful of references to "root objects" obtained from the Naming Service, a
client uses the Relationship and Query Services to locate objects contained in or
managed by the services registered withNiaening Service. In such a system, the
Naming Service is used sparingly and instead clients rely on other services such as
guery services to navigate through large collections of objects. Also, objects in this
scheme rarely register "external characteristics" with another service - instead they
support the interfaces of Query or Relationship Services.

Of course, nothing precludes the Naming Service presented here from being used to
provide both models of use at the same time. These two scenarioadete how

this specification isuitable foruse in two fairly different kinds of systems with
potentially quite different kinds of implemeritats. The service provides a basic
building block on which highdevel services impose the conventions and semantics
which determine how frameworks of application dadilities objects locate other
objects.

3.1.5 Design Principles

Several principles have driven the design of the Naming Service:

CORBAservices: Common Object Services Specification

3

1. The design imparts no semantics or interpretation of the names themselves; this is
up to higher-level software. The naming service provides only a structural
convention for names, e.gompound names.

2. The design supportfistributed, heterogeneousiplementation and administration
of names and name contexts.

3. Names are structures, not just character striagdruct is necessary to avoid
encodinginformation syntactically in the name stringge.searating the human-
meaningful name and its type with a “.”, and the tgpd version with a “I"), which
is a bad idea with respect to the generality, extensibility, and internationalization of
the name service. The structure define includes a human-chosen string plus a kind

field.

4. Naming service clients need not be aware of the physiteabf name servers in a
distributed environment, or which server interprets what portionaafngound
name, or of the way that servers are implemented.

5. The Naming Service is a fundamental object service, with no dependencies on other
interfaces.

6. Name contexts of arbitrary and unknoimplementation may be utilized together
as nested graphs of nodes that cooperate in resolving names for a client. No
“universal” root is needed for a name hierarchy.

7. Existing name and directory services employed in different network computing
environments can be transparently encapsulated using name contexts. All of the
above features contribute to makitigs possible.

8. The design does not address name security since there is currently no OMG security
model. The Naming Service can be evolved to provide name security when an
object security service is standardized.

9. The design does not address namespace administration. It is the responsibility of
higher-level software to administer the nampace.

3.1.6 Resolution of Technical Issues

This specification addresses the issues identified for a name service in the OMG
Object Services Architectudgocument as follows:

® Naming standardsEncapsulation oéxisting naming standardsd protocols is
allowed using naming contexts. Transparent encapsulation is made possible by the
design features outlined above.

1.0bject Services ArchitecteyDocument Number 92-8-4, Object Managme mtu@r FraminghaniiA,
1992.

Naming Servicevl.0 Service Description March 1995 3-5

3-6

®* Federation of nanespacesThe specification supports distributed federation of

namespaces; no assumptions are made alemitalized or universal functions.
Namespaces may be nested in a graph in any fashion, independent of the
implementation of each namespace. There need be no distinguished root context,
andexisting graphs may be joined aty point.

Scope of namedlame contexts define hame scope. Names must be unique within a
context. Objects may haveultiple names, and may exist in multiple name

contexts. Name contexts may be named objects nested within another name context,
and cycles arpermitted. The name itself is not a full-fledged ORB object,dmgs
support structure, so it may hanaultiple commnents. No requirements are placed

on namingconventions, in order to support a wide variety of conventions and
existing standards.

Operations The specification supports bind, unbind, lapkand sequence

operations on a name context. It does not support a rename operation, because we
do not see how to implement this correctly idistributed environment witiut
transactions.

3.2 The CosNaming Module

The CosNaming Module is a collection of interfaces that together define the naming
service. This module contains two interfaces:

®* The NamingMntextinterface
®* TheBindinglteratorinterface

This section describes these interfaces and their operations in detail.

The CosNaming Module isshown in Figure 3-2. Note thédtring is a placeholder
for a future IDL internationalized string data type.

{

module CosNaming

typedef string Istring;
struct NameComponent {

typedef sequence <NameComponent> Name;
enum BindingType {nobject, ncontext};

struct Binding {

Istring id;
Istring kind;

Name binding_name;
BindingType binding_type;

Figure 3-2 The CosNaming Module

CORBAservices: Common Object Services Specification

b

typedef sequence <Binding> BindingList;

interface Bindinglterator;
interface NamingContext {
enum NotFoundReason { missing_node, not_context, not_object};

exception NotFound {
NotFoundReason why;
Name rest_of _name;

h

exception CannotProceed {
NamingContext cxt;
Name rest_of name;

h

exception InvalidName{};
exception AlreadyBound {};
exception NotEmpty{};

void bind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName);
void bind_context(in Name n, in NamingContext nc)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind_context(in Name n, in NamingContext nc)

raises(NotFound, CannotProceed, InvalidName);
Object resolve (in Name n)

raises(NotFound, CannotProceed, InvalidName);
void unbind(in Name n)

raises(NotFound, CannotProceed, InvalidName);
NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
void destroy()

raises(NotEmpty);
void list (in unsigned long how_many,

out BindingList bl, out Bindinglterator bi);

b

interface Bindinglterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

Figure 3-2 The CosNaming ModuléContinued)

Naming Servicev1.0 Th€osNaming Module March 1995

out BindingList bl);
void destroy();

Figure 3-2 The CosNaming ModuléContinued)

The following sections describe the operations ofNaeningCantextinterface:

binding objects

name resolution
unbinding

creating naming contexts
deleting contexts

listing a naming context

3.2.1 BindingObjects

The binding operations name abject in a naming context. Once an objectasird,
it can be found vth theresolve operation. The Naming Service supports four
operations to create bindindsind, rebind bind_contextandrebind_context

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);
void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

bind
Creates a binding of a name and an object im#dmaing contextNaming
contexts that are bound usibind do not participate in name resolution when
compound names are passed to be resolved.

A bind operation that is passed a compound name is defined as follows:

ctx->bind(< cl ; c2;...; cn >, objE
(ctx->resolve(< ¢l ; c2 ; ... gn-1 >))->bind(< cn >, obj)

rebind
Creates a binding of a name and an object imtming context even if the
name is already bound in the context. Naming contexts that are bound using
rebind do not participate in name resolution when compound names are
passed to be resolved.

CORBAservices: Common Object Services Specification

bind_context
Names an object that is a naming context. Naming contexts that are bound using
bind_context () participate in name resolution wheampound names are
passed to be resolved.

A bind_context operation that is passed a compound name is defined as
follows:

ctx->bind_context(< cl ; c2 ;.. ; cn >, nCc)=
(ctx->resolve(< cl ; ¢c2 ; ... gn-1>))->bind_context(< cn >, nc)

rebind_context
Creates a binding of a name and a naming context inaheng context even if
the name is already bound in the context. Naming contexts that are bound using
rebind_context () participate in name resolution when corapd names are
passed to be resolved.

Table 3-1 describes the exceptions raised by the binding operations.

Table 3-1 Exceptions Raised by Binding Operations

Exception Raised Description
NotFound Indicates the name does not identify a binding.
CannotProceed Indicates that the implementation has given up for sspea.réhe

client, howevermay be able to continue the operation at #tarned
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

AlreadyBound Indicates an object is already bound to the specifiee. Only one
object can be bound to a particular name in a contextbiflte and
the bind_context operations raise thAlreadyBound
exception if the name is bound in the context;rdi#nd and
rebind_context operations unbind the name and rebind the name to
the object passed as an argument.

3.2.2 Resolving Names

Theresolve operation is the process of retrieving an objeatriabto a name in a
given context. The given name must exactly matchbthnd name. The naming
service does not return the type of the object. Clients are responsible for “narrowing
the object to the appropriate type. That is, clients typically cast the returned object
from Object to a more specialized interface. The OMG IDL definition ofékelve
operation is:

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

Naming Servicev1.0 Th€osNaming Module March 1995 3-9

Names can have multiple components; therefore, name resolution can traverse multiple
contexts. A compound resolve is definedfeléows:

ctx->resolve(< cl; c2;..;cn>)=
ctx->resolve(< cl; c2 ;.. ; cn-1>)->resolve(< cn >)

Table 3-2 describes the exceptions raised bydkelve operation.

Table 3-2 Exceptions Raised by Resolve Operation

Exception Raised Description
NotFound Indicates the name does not identify a binding.
CannotProceed Indicates that the implementation has given up for ssna.réhe

client, howevermay be able to continue the operation at #tamed
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

3.2.3 Unbinding Names

Theunbind operation removes a hame binding from a confEixé defnition of the
unbind operation is:

void unbind(in Name n)
raises (NotFound, CannotProceed, InvalidName);

A unbind operation that is passed a compound name is defintadl@ss:

ctx->unbind(< cl ; c2;...;cn >E
(ctx->resolve(< cl; c2 ;.. ; cn-1>))->unbind(< cn >)

Table 3-3 describes the exceptions raised byutitend operation.

Table 3-3 Exceptions Raised by Unbind Operation

Exception Raised Description
NotFound Indicates the name does not identify a binding.
CannotProceed Indicates that the implementation has given up for ssoa.réhe

client, howevermay be able to continue the operation at #tamed
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

3-10 CORBAservices: Common Object Services Specification

3.2.4 Creating Naming Contexts

The Naming Service supports two operations to create new contexts:contexand
bind_new_catext

NamingContext new_context();

NamingContext bind_new_context(in Name n)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

new_context
This operation returns a naming context implemented by the same naming server
as the context on which the operatioas invoked. The new context is not
bound to any name.

bind_new_context
This operation createsreew context and binds it to the name supplied as an
argument. The newly-created context is implemented by the same naming server
as the context in which it was bouf(ttiat is, the naming server that implements
the context denoted by the name argument excluding the last component).

A bind_new_context that is passed a compound name is defined as follows:

ctx->bind_new_context(< cl; c2 ;.. ; cn >)=
(ctx->resolve(< cl ; c2 ; ... gn-1 >))->bind_new_corext(< cn >)

Table 3-4 describes the exceptions raised when new contexts are being created.

Table 3-4 Exceptions Raised by Creating New Contexts

Exception Raised Description
NotFound Indicates the name does not identify a binding.
CannotProceed Indicates that the implementation has given up for ssoea.réhe

client, howevermay be able to continue the operation at #tarned
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

AlreadyBound Indicates an object is already bound to the speciéieet. Only one
object can be bound to a particular name in a context.

3.2.5 Deleihg Contexts

The destroy operation deletes a nhaming context:.

void destroy()
raises(NotEmpty);

Naming Servicev1.0 Th€osNaming Module March 1995 3-11

If the naming context contains bindings, tHetEmpty exception is raised.

3.2.6 Listing a Naming Context

Thelist operation allows a client to iterate through a set of bindings in a naming
context.

enum BindingType {object, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;
h

typedef sequence <Binding> BindingList;

void list (in unsigned long how_many,
out BindingList bl, out Bindinglterator bi);

b

Thelist operation returns at most the requested number of bindings in
BindingList bl .

® |f the naming context contains additional bindings, litste operation returns a
Bindinglterator with the additional bindings.

* |f the naming contextioes not contain additional bindings, the binditegator is a
nil object reference.
3.2.7 The Bindinglterator Interface

The Bindinglteratorinterface allows a client to iterate through the bindings using the
next_one or next_n operations:

interface Bindinglterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,
out BindingList bl);
void destroy();

next_one
This operation returns the next binding. If there are no more bindaigsjs
returned.

next_n
This operation returns at most the requested number of bindings.

3-12 CORBAservices: Common Object Services Specification

destroy
This operation destroys the iterator.

3.3 The Names Library

To allow the representation of names to evolve without affecting existing clients, it is
desirable to hide the representation of names from clizatet.ddeally, names

themselves would be objects; however, names must be lightweight entities that are
efficient to create, manipulate, and transmit. As such, names are presented to programs
through thenames library

The names library implements namegasudeobjects A client makes calls on a
pseudo-object in the same way it makes calls on an ordinary object. Library names are
described in pseudo-IDL (to suggest the appropriate language binding). C and C++
clients use the same client language bindings foudselDL (PIDL) as they use for

IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As described
in Section 3.2, “TheCosNamingModule,” the naming servicgupports the
NamingContexODMG IDL interface. The names library supports an operation to

convert a library name into a value that can be passed to the name service through the
NamingContexinterface.

Note —It is not a requirement to use the names library in order to use the Naming
Service.

The names library consists of two pseudo-IDiterfaces: thé NameComponent
interface and théNameinterface, ashown inFigure 3-3.

2.As anticipated

Naming Servicev1.0 Th&lames Library March 1995 3-13

interface LNameComponent { /I PIDL
exception NotSet{};
string get_id()
raises(NotSet);
void set_id(in string i);
string get_kind()
raises(NotSet);
void set_kind(in string k);
void destroy();
h

interface LName { /I PIDL
exception NoComponent{};
exception OverFlow{}
exception InvalidName{};
LName insert_component(in unsigned long i,
in LNameComponent n)
raises(NoComponent, OverFlow);
LNameComponent get_component(in unsigned long i)
raises(NoComponent);
LNameComponent delete_component(in unsigned long i)
raises(NoComponent);
unsigned long num_components();
boolean equal(in LName In);
boolean less_than(in LName In);
Name to_idl_form()
raises(InvalidName);
void from_idl_form(in Name n);
void destroy();
|3

LName create_Iname(); /I CIC++
LNameComponent create_Iname_component(); // C/C++

Figure 3-3 The Names Library Interface in PIDL

3.3.1 Creating a Library Name Component

To create a library name component pseudo-object, use the following C/C++ function:

LNameComponent create_Iname_component(); /I CIC++

The returned pseudo-object can then be operated on using the operations in Figure 3-3.

3-14 CORBAservices: Common Object Services Specification

3.3.2 Creating a Library Name

To create a library name pseudo-object, use the following C/C++ function.

LName create_Iname(); Il CIC++

The returned pseudo-object reference can then be operated on using the operations in
Figure 3-3.

3.3.3 The LNameComponent Interface

A name component consists of tatiributes:the identifier attribute and the
kind attribute.The LNameComonentinterface defines the operatioassociated with
theseattributes.

string get_id()
raises(NotSet);
void set_id(in string k);
string get_kind()
raises(NotSet);
void set_kind(in string K);

get id
Theget id operation returns thielentifier attribute’'svalue. If the
attributehas not been set, tiNotSet exception is raised.

set_id
Theset_id operation sets thieentifier attribute tothe string argument.

get_kind
Theget _kind operation returns thdénd attribute’s value. If the attributeas
not been set, thBlotSet exception is raised.

set_kind
Theset_kind operation sets thkind attribute to the string argument.

3.3.4 The LName Interface

The following operations are described in this section:
« destroying a library name component pde dject
* creating a library name
* inserting a hame component
* getting the ' name component
* deleting a name component
» number of name components

Naming Servicev1.0 Th&lames Library March 1995 3-15

* testing for equality

» testing for order

» producing an idform

« translating an idl form

« destroying a library name pseudbject

Destroying a Library Mme Gmponent Pseudo Object

The destroy operation destroys library name component pseudo-objects.

void destroy();

Inserting a Name Gmponent

A name has one or more componetiitach component except thast is used to
identify names of subcontexts. (The last component denotdstived object.) The
insert_component operation inserts a component after position

LNameinsert_component(inunsignedlongi,in LNameComponentinc)
raises(NoComponent, OverFlow);

If component-1 is undefined and componénis greater than 1, the
insert_component operation raises thdoComponent exception.

If the library cannot allocate resources for the inserted componer@virdow
exception is raised.
Getting thet Name Component

The get_component operation returns thé'icomponent. The first component is
numberedL.

LNameComponent get_component(in unsigned long i)
raises(NoComponent);

If the component does not exist, tReComponent exception is raised.

3-16 CORBAservices: Common Object Services Specification

Deleting a Name Component

The delete_component operation removes and returns tliecomponent.

LNameComponent delete_component(in unsigned long i)
raises(NoComponent);

If the component does not exist, tReComponent exception is raised.

After adelete_component operationhas been performed, the compound name has
one fewer component and components previously identifieéélasn are now
identified asi...n-1

Number of Nam€omponents

The num_components operation returns the number of components in a library
name.

unsigned long num_components();

Testing for Equality

Theequal operation tests for equality with library name In.

boolean equal(in LName In);

Testing for Order

Theless_than operaion tests for the order of a library namerglation to library
name In.

boolean less_than(in LName In);

This operation returngue if the library name is less than the library name In passed as
an argument. The library implementation defines the ordering on names.

Naming Servicev1.0 Th&lames Library March 1995 3-17

3-18

Producing an IDL form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo object; therefore, it cannot be passed across the IDL interface for the naming
service. Several operations in tNamingContexinterface have arguments of an IDL-
defined structureName The folloving PIDL opeation on library names produces a
structure that can be passed across the IDL request.

Name to_idl form()
raises(InvalidName);

If the name is of length 0, tHavalidName exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo object; therefore, it cannot be passed across the IDL interface for the naming
service. TheNamingContexinterface defines operations that return an IDL struct of
type Name The following PIDL operation on libramgames sets the components and
kind attribute for a library ame from a returned IDL defined structukame

void from_idI_form(in Name n);

Destroying a Library MmePseudo-Object

The destroy operation destroys library name pseudo-objects

void destroy();

CORBAservices: Common Object Services Specification

	Naming Service Specification
	3.1 Service Description
	3.1.1 Overview
	3.1.2 Names
	3.1.3 Names Library
	3.1.4 Example Scenarios
	3.1.5 Design Principles
	3.1.6 Resolution of Technical Issues

	3.2 The CosNaming Module
	3.2.1 Binding Objects
	3.2.2 Resolving Names
	3.2.3 Unbinding Names
	3.2.4 Creating Naming Contexts
	3.2.5 Deleting Contexts
	3.2.6 Listing a Naming Context
	3.2.7 The BindingIterator Interface

	3.3 The Names Library
	3.3.1 Creating a Library Name Component
	3.3.2 Creating a Library Name
	3.3.3 The LNameComponent Interface
	3.3.4 The LName Interface
	Destroying a Library Name Component Pseudo Object
	Inserting a Name Component
	Getting the ith Name Component
	Deleting a Name Component
	Number of Name Components
	Testing for Equality
	Testing for Order
	Producing an IDL form
	Translating an IDL Form
	Destroying a Library Name Pseudo-Object

