Life Cycle Service Specification 6

6.1 Service Description

6.1.1 OQverview

Life Cycle Service defines services and eentions for creating, deleting, copying and
moving objects. Because CORBA-based environments sugistributedobjects, the
Life Cycle Service defines conventions that allow clients to perfdentycle
operations on objects in different locations.

This overview describes the life cycle problem for distributed olggstems.

The problem of creation

Figure 6-1lillustrates the problem of a client ane locationcreating an object in
another.

HERE THERE

Figure 6-1 Life Cycle service defines how a client can create an object “over there”.

To create an object in a different location, fhkkowing questions must banswered:

® (Can the clientontrol the location for the new object?

CORBAservices: Common Object Services Specification 6-1

On the other hand, can the location be determined according toasbmieistered
policy?

What entity does the client communicate with in order thaéw doject is created?
How does the client find thaintity?

How much control does the client have over deciding the implementation of the
created object?

Can the client influence the initishlues of the newly created object?

Can the client create an object in an implementation specific fashion?

The problem of moving or copying an adxt

Figure 6-2 illustrates the problem of movingampying an bject in a distrinted
object system.

<> Coesme3

HERE SOMEWHERE THERE

Figure 6-2 Life Cycle Service defines how a client can move or copy an object over there.

To support moving or copying an object, iedowing questions must benawered:

Can the client control the location for the copied or migrated object?

On the other hand, can the location be determined according toasbmieistered
policy?

What entity does the client communicate withctpy ormigrate the object?
How does the client find thaintity?

What happens to the implementation code of a copied or migrated object?

6-2 CORBAservices: Common Object Services Specification

The problem of operating on a graph of distributed objects

Distributed objects do ndloat in space; they are connected to one another. The
connections are calleglationships Relationships allow semantics to be added to
referencedbetween objects. For exampie]ationshipsallow one object t@ontain
another. Life Cycle services must workthre presence of graphs of related objects.

HERE SOMEWHERE THERE

Figure 6-3 The object life cycle problem for graphs of objects is to determine the boundaries
of a graph of objects and operate on that grapthdraboveexample, a document
contains a graphic and a logo, refers to a dictionary and is contained in a folder.

Figure 6-3 illustrates the object life cycle problem for graphs of objects. In the
example, the foldecontainsa document, the documenvntainsa graphic and a logo
andreferences dictionary.The graphiaeferenceghe logo that iontainedin the
document. For graphs of objectse Icycle services mustnswerthe following
guestions:

®* What are the boundaries of the graph? For example, if a client copies the document,
which objects are affected?

* |f multiple objectsare affected, how is the life cycle operation actually applied to
those objects?

® Are cycles in the graph preserved? For example, if copying the docueseitts in
copying the graphic and the logo, is the cycle preserved in the copy?

6.1.2 Organization of this Chapter
This specification defines services and conventiorentwerthese life cycle issues.

Section 6.1.3pecifies alients modelof object life cycle. It describe the model a
client has of factories and life cycle operationswiéle variety of implementations of
this model are possible.

Section 6.1.4 discusséactory findersin detail.

Life Cycle Servicevl.0 Service Description November 1996 6-3

6-4

Section 6.2 defines th@osLifeCyclemodule. This module defines the service
interfaces and the interface supported by objdws participate in the service.

Section 6.3 discussdactory implementation strategies.

Section 6.4 discusses how objects can use factories and factory finders to support the
copy and moveoperations.

Section 6.5 summarizes the object life cycle framework.

Appendix 6A contains an addendum to the Life Cycle&Service; the addendum
provides a specification for compoundife cycle operations.

This chapter also includes additioregdpendices that are not part of the Life Cycle
Service specification: they are included as background material. Appendix 6B suggests
a filtering language for the fér criteria. Apendix 6C discusses administration of
generic factories. Appendix 6D discusses support for PCTE objects.

6.1.3 Clients Model of Object Life Cycle

A client is any piece of code thattiaites a life cycle operation for some object. A
client has asimpleview of the ife cycle operations.

Client’s Model of Creation

The client'smodel of creation is defined in terms of factory objects. A factory is an
object that creates another object. Factoriematrspecial objects. As with any object,
factories have well-defined IDL interfacasdimplementations in some programming
language.

Client ‘ -
DocFactory

HERE THERE

Figure 6-4 To create an object “over there” a client must posses an object reference to a
factory over there. The client simply issues a request on the factory.

There is no standard interface for a factory. Factories provide the client with
specialized operations to creatied hitialize new instances in a natural way for the
implementation. Figure 6-3lustrates a factory for document.

interface DocFactory {
Document create();

Document create_with_title(in string title);

CORBAservices: Common Object Services Specification

Document create_for(in natural_language nl);
3

Figure 6-5 An example of a document factory interface. This interface is defined for clients as
a part of application development.

Factories are objed@nplenentationdependent. Alifferent implementation of the
document could define a different factory interface.

While there is no standard interface for a factorgemnericfactory interface is defined

by the life cycle service in section263. A generic factory is ereation service. It
provides a generic operation for creation. Insteashwdking an object specific
operation on a factory witktaticallydefined parameters, the client invokes a standard
operation whose parameters can include information about resdtecg btate
initialization, policy preferences, etc.

To create an object, a client must possess an object reference for a factory, which may
be either a generic factory or an object-specific factory, and issue an appropriate
request on the factory. As a resulthew object is created and typically an object
reference is returned.

There is nothing special about thigeraction.

A factory assembles the resources necessary for the existence of an object it creates.
Therefore, the factory represents a scope of resource allocation, which is the set of
resources available to the factory. A factory may support an interface that enables its
clients to constrain the scope.

Clients find factory objects in the same fashion they &ngl object. Twacommon
scenarios for clients to find factories are:

® Clients use a finding mechanism, such a naming cordexg-and-drop, or a trader,
to find factories.
® Clients are passed factory objects as a parameter to an operation the client supports.

Variousimplementatiorstrategies for factories are discussed in detail in se6ti&n

Life Cycle Servicevl.0 Service Description November 1996 6-5

6-6

Client’s Model of Deleting an Object

A client that wishes to delete an object issuesnaove ! request on an object
supporting thd_ifeCycleObjecinterface. (TheLifeCycleObjecinterface is defined in
section 6.2.) The object receiving the request is calledatiget.

Client ll @
LifeCycleObject

HERE SOMEWHERE

Figure 6-6 To delete an object, a client must posses an object reference supporting the
LifeCycleObjectinterface and issuesramove request on the object.

Figure 6-6 illustrates a client deleting the document.

Client’s Model of Copying or Moving an Object

A client that wishes to move or copy an object issue®ee or copy request on an
object supporting theifeCycleObjecinterface. The object receiving the request is
called thetarget.

The move and copy operations expect an object reference supportiFacthe/Finder
interface. The factory finder represents the “THERE” in Figure 6-7. The client is
indicating to move ocopy the target using a factory within the scope of the factory
finder. Section 6.1.4 describes factory finders in nuetail.

1.The operabn is named remmve, rather than delete, because delete collides with the delete operator in
C++.

CORBAservices: Common Object Services Specification

6

The implementatins of move and copy can use the factory finder to find appropriate
factories “over there”. Section 6.4 describes how objeatsimplement movand

copy using the factory finder. This is invisible to the client.
actory
Finder

= Cocume)
LifeCycleObject

HERE SOMEWHERE THERE

Figure 6-7 Life cycle services define how a client can move or copy an object from here to
there.

In the example of Figure 6-7, client code woslithply issue a&opy request on the
document and pass it an object supportingRhetoryFinderinterface as an argument.

When a client issues a copy request on a target, it is assumed that the target, the factory
finder, and the newly created object can all communicate via the ORB. W
externalization/internalization there is no such assumption. In the presence of a future
externalization service, the externalizedm of the objectan exist outside of the

ORB for arbitrary amounts of time, be transported by means outside of thea@RB

can beinternalized in a different, disconnected ORB.

Note —In general, a client is unaware of how a target and a factory finder are
implementedThe taget may represent a simple object or it may represent a graph of
objects. Shnilarly, a factoryfinder may represent a very concrete location, such as a
specific storage device, or it may represent a more abstract location, such as a group of
machines. The client uses the same interface in all of these cases.

6.1.4 Factory Finders

Factory finders support an operatifind_factories , which returns a sequence of
factories. Clients pass factory findershe move and copy operations, whiclpitally
invoke this operation to find a factory to interact with. (This is described in detail in
section6.4.) The new copy or the migratetlject will then be within the scope of the
factory finder.

Some examples of locations that a factory finder might represent are:
» somewhere on a work group’s local area network
* storage device A on machine X
» Susan’s notebook computer

Life Cycle Servicevl.0 Service Description November 1996 6-7

6-8

Multiple Factory Finders

The factory finder interfacgiven in section 6.2 represents thenimal functionality
supported byall factory finders. Target implementationan depend othis operation
being available. More sophisticated factory findfagilities can be provided by
extended finding services.

Currently, the only finding service being considered for standardization by the OMG is
the naming service. Others are likely to be standardized in the future. It is likely that
there will always be multiple finding services, differentexpressive powers, in
distributed object systems.

As demonstrated in Figure 6-8, tRactoryFinderinterface can be mixed-in with
interfaces for finding services, allowing multiple finding servidéany clients simply

pass factory finders on to target objects. However, objects that need the services of a
more powerful finding mechanism can narrow the factory finder to an appropriate,
more specific interface.

FactoryFinder NamingContext FactoryFinder Trading
NamingBase l%ctoryFinder Trfﬁ‘edéﬁjer

Figure 6-8 The FactoryFinderinterface can be “mixed in” with interfaces of more powerful
finding services.

The power of dactory finder is determined by the power of the finding service.

6.1.5 Design Principles

Several principles have driven the design of the Life Cycle Service:

1. A factory object registered at a factory finder represents an implementation at that
location. Thus, a factory finder allows clients to query a location for an
implementation.

2. Object implementations can embokiyowledge of finding a factory, relative to a
location. Objecimplementaibns usually do not embodynowledge of location.

3. The desired result for life cycle operatiagh as copy and move depends on
relationshipsbetween the target object and other objeEte design given in
Appendix 6A has bitrin support for the two most basic kinds of relationships,
containmentandreference and supports the definition of new kinds of relationships
and propagation semacs.

4. The Life Cycle Service is not dependent on anyigdar model of persistenand
is suitable for distribted, heterogeneous environments.

5. The design does not include an object equivalence service nor rely on global object
identifiers.

CORBAservices: Common Object Services Specification

6.1.6 Resolution of Technical Issues

This specification addresses the following issues that wersificed for theLife Cycle
Service in the OMQDbject Services Architectifre

® Creation Many of the parameters supplied to an obf@eate operator will be
implementation-dependent, so that a standardized universal IDL signature for object
creation is not possible. IDL signatures for object creation will be defined for
various kinds of object factories, but the signatures will be specific to type,
implementation, and pgistent storage mechanism of the object to be created.

* Deletion A remove operator is defined on any object supporting the
LifeCycleObjecinterface. This model for deletion supports any desired paradigm
for referential integrity. Apendix 6A describes support for the twmst common
paradigms, based on reference and containnedationships. Only one type of
deletion is supported; a different operat&ould be used for archiving an object.
This interface can support many paradigms for storage management, e.g. garbage
collectionandreference counts. Since storage managemeimhpgdementation-
dependentits interfacedoes not belong in the generalized life cycle interfaces.

® Copying Appendix 6A describes support for shallow and deep copyrefadcential
integrity. A scheme based on reference and containment relationships defines scopes
for operations such as copy. The concept ofaatory finderis used for object
location. This paradigm for copying, deleting, and moving objects works regardless
of an object's ORB, persistent storagpechanism, and implementation. This design
is extensible because objects participate in the traversal algorithm, and the
relationship service presented in thepepdix supports the definition aew kinds
of relationships with different behavior.

®* Equivalence There was no need for an object equivalence service or global object
identifiers in the design of thefe Cycle Service to support real world applications
or other object services.

2.0bject Services ArchitecteyDocument Number 92-8-4, Object Managme mtu@r FraminghaniViA,
1992.

Life Cycle Servicevl.0 Service Description November 1996 6-9

6.2 The CoslieCycle Module

Client code accesses the basic life cycle functionality vieCibel ifeCyclemodule.
This module defines thieactoryFinder, LifeCycle Obje@ndGenericFactonyinterfaces
and describes the operations of these interfaces in detail.

#include “Naming.idl’
module CosLifeCycle{

typedef Naming::Name Key;
typedef Object Factory;
typedef sequence <Factory> Factories;
typedef struct NVP {
Naming::Istring name;
any value;
} NameValuePair;
typedef sequence <NameValuePair> Criteria;

exception NoFactory {

Key search_key;
3
exception NotCopyable { string reason; };
exception NotMovable { string reason; };
exception NotRemovable { string reason; };
exception InvalidCriteria{

Criteria invalid_criteria;
3
exception CannotMeetCriteria {

Criteria unmet_ criteria;

k

Figure 6-9 The CosLifeCycle Module

6-10 CORBAservices: Common Object Services Specification

interface FactoryFinder {
Factories find_factories(in Key factory_key)
raises(NoFactory);

h

interface LifeCycleObject {
LifeCycleObject copy(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotCopyable, InvalidCriteria,
CannotMeetCriteria);
void move(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria,
CannoctMeetCriteria);
void remove()
raises(NotRemovable);

b

interface GenericFactory {
boolean supports(in Key K);
Object create_object(
in Key K,
in Criteria the_criteria)
raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

Figure 6-9 The CosLifeCycle Module

6.2.1 The LifeCycleObject Interface

The LifeCycleObjecinterface definesopy, move andremove operations. Objects
participate in the life cycle service Isypporting this interface.

copy

LifeCycleObject copy(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotCopyable, InvalidCriteria,
CannotMeetCriteria);

The copy operation makes a copy of the object. The copy is located in the scope of
the factory finder passed as the first parameter.chipg operation returns an object
reference to thenew object. The new object isitialized from the existing object.

The frst parametethere , may be a nil object reference. If passed a nil object
reference, the target object caletermine the location or fail with tidoFactory
exception.

Life Cycle Servicevl.0 Th€osLifeCycle Module November 1996 6-11

6-12

The secongarameterthe_criteria , allows for a number of optional parameters
to be passed. Typically, the target simply passes this parameterfextig used in
creating the new object. The criteria parameter is explained in detail in se@idn 6

If the target cannot find an appropriate factory to create a copy “over there”, the
NoFactory exception is raised. An implementation that refusesofuy itself shaild
raise theNotCopyable exception. If the target does not understandctiteria, the
InvalidCriteria exception is raised. If the target understandsctiteria but
cannot satisfy the criteria, tli@annotMeetCriteria exception is raised.

In addition to these exceptions, implementations may raise standard CORBA
exceptions. For example, if resources cannot be acquired for the copied object,
NO_RESOURCESIll be raised.Similarly, if a targetdoes not implement the copy
operation, theNO_IMPLEMENTEXxception will be raised.

It is implementation dependent whether thigigiion isatomic

move

void move(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria,
CannotMeetCriteria);

The move operation on the target moves the object to the scope of the factory finder
passed as the firstapameter. The object reference for the target object remains valid
aftermove has successfully executed.

The frst parametethere , may be a nil object reference. If passed a nil object
reference, the target object caletermine the location or fail with ti¢oFactory
exception.

The secongarameterthe_criteria , allows for a number of optional parameters
to be passed. Typically, the target simply passes this parameterfaxtim used in
migrating the new object. Theriteria parameter iexplained in detail in section 6.2.4

If the target cannot find an appropriate factory to support migration of the object “over
there”, theNoFactory exception is raised. An implementation that refuses to move
itself should raise thdlotMovable exception. If the target does not @ngtand the

criteria, thelnvalidCriteria exception is raised. If the target understands the
criteria but cannot satisfy the criteria, tBannotMeetCriteria exception is
raised.

In addition to these exceptions, implementations may raise standard CORBA
exceptions. For example, if resources cannot be acquired pating the object,
NO_RESOURCESIll be raised.Similarly, if a targetdoes not implement the move
operation, theNO_IMPLEMENTException will be raised.

It is implementation dependent whether thigigiion isatomic

CORBAservices: Common Object Services Specification

remove

void remove()
raises(NotRemovable);

Remove instructs the object to cease to exist. The object reference for the target is no
longer valid after remove successfully completes. The client is not responsible for
cleaning up any resources thieject uses. An implementation that refuses to remove
itself should raise thBlotRemovable exception. In addition to this exception,
implementations may raise standard CORBA exceptions.

6.2.2 The FactoryFinder Interface

Factory finders support an operatifind_factories , which returns a sequence of
factories. Clients pass factory finders to the move and copy operatibia, typically
invoke this operation to find a factory to interact with. (This is described in detail in
section 6.4.)

The factory finder interface represents timnimal functionality supported bgll
factory finders.

find_factories

Factories find_factories(in Key factory_key)
raises(NoFactory);

Thefind_factories operation is passed a key used to idgle desired factory.

The key is a name, as defined by the naming service. More than one factory may match
the key. As such, the factory finder returns a sequencactdries. If there are no
matches, th&loFactory exception is raised.

The scope of the key is thiactory finder. The factory finder assigns no semantics to
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factories or objects they create.

Life Cycle Servicevl.0 Th€osLifeCycle Module November 1996 6-13

It is beyond the scope diis specification to standardize tkey space. The space of
keys is established lpnventiorin particular environments. Thiénd field® of the key
is useful for partitioning the key space. Suggested values fdad tremdkind fields
are given in Table 6-1.

Table 6-1 Suggested conventions for factory finder keys.

id field kind field meaning

name of object “object interface” Find factories that create objects supporting

interface the named interface.

name of equivalent| “implementation Find factories that create objects with

implementations equivalence class” implementations in a named equivalence
class of implementations.

name of object “object Find factories that create objects of a

implementation implementation” particular implementation.

name of factory “factory interface” Find factories supporting the named factory

interface interface.

1. An example of an implementation equivalecless is a set of objeiotplementationshat have compatible extemalized
forms.

6.2.3 The GenericFactory Interface

In many environments, management of a set of resources that are allocated to objects at
creation time is required. Thigeds to be done in a coordinated fashiorafotypes

of objects. The Life Cycle Service provides a framework for this which is intended to
be usable in a variety of administrative environmentsvéler,the differing

environments will administer a variety of resources andbieigpond the scope ofiis
framework to iéntify all the possible types of resource.

While there is no standard interface for a factor@gemericFactoryinterface is
defined.The GenericFactoryinterface defines a generic creation operation,
create_object . By defining a generic interface for creation, a creation service can
be implemented. This is particularly useful in environmertiene administering a set

of resources is important.

Such a generic factory camplement resource policies and represent multiple
locations. In administered environments, object specific factories, such as the
document factory described in section , may delegate the creation process to the
generic factory. This is described in detail in secto 2.

The job ofthe generic factory is tmatch the creation criteria speaed by clients of
the GenericFactoryinterface with offers made on behalf of implementation specific
factories.

3.See the naming service specification.

6-14 CORBAservices: Common Object Services Specification

Figure 6-10 illustrates the structure of a creation service.

GenericFactory

creation service

GenericFactory GenericFactory
implementation

T | implementation
specific code specific code

4 4

resources resources

Figure 6-10 The Life Cycle service provides a generic creation capability. Ultimately,
implementation specific creation code is invoked by the creation service. The
implementation specific code also supports@smericFactoryinterface.

The client of theGenericFactoryinterface invokes thereate_object operation
and can express teria for creation.

Ultimately, this request will be passed to an implementation specific factory which
supports thesenerickactory interface. To get there, the request may travel through a
number of generic factories. However, all of this is transparent to the client.

create_object

Object create_object(
in Key k,
in Criteria the_criteria)
raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

The create_object operation is passed a key useddentify the desired object to
be createdThe key is a name, atefined by the Naming Service.

Life Cycle Servicevl.0 Th€osLifeCycle Module November 1996 6-15

The scope of the key is the generic factory. The generic factory assigesamtics to
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the created object.

It is beyond the scope tiis specification to standardize they space. The space of
keys is established lpnventionin particular environments. Thend field* of the key
is useful for partitioning the key spacguggestedalues for thed andkind fields
are given in Table 6-2.

Table 6-2 Suggested conventions for generic factory keys.

id field kind field meaning
name of object “object interface” Create an object that supports the named
interface interface.
name of equivalent| “implementation Create an object whose implementation is|in
implementations equivalence class” a named equivalence class of
implementations.

name of object “object Create objects of a particular
implementation implementation” implementation.

1. An example of an implementation equivaledess is a set of objeiotplementationshat have compatible extemalized
forms

The secongarameterthe_criteria , allows for a number of optional parameters

to be passed. Criteria are explained in detail in se&idr

If the generic factory cannot create an object specified by the keyNtfeactory is

raised.

If the target does not understand the criteria,ltivalidCriteria exception is
raised. If the target understands trieria but cannot satisfy the criteria, the
CannotMeetCriteria exception is raised.

supports

boolean supports(in Key k);

The supports operation returngrue if the generic factory can create an object,
given the key. Otherwiskalse is returned.

4. See the naming service specification.

6-16 CORBAservices: Common Object Services Specification

6.2.4 Criteria

The create_object operation of th&enericFactoryinterface expects a parameter
specifying the creation criteria. Theove andcopy operations of th&ifeCycleObject
interface also expects this parameter; typically they pabsoitigh to a factory. This
sectiondocuments thiparameter.

The crteria parameter is expressed as an IDL sequence of name-value pairs. In
particular, it is described by the following data structure given irCibslifeCycle
module:

typedef struct NVP {
Naming::Istring name;
any value;
} NameValuePair;
typedef sequence <NameValuePair> Criteria;

The parameter is given as a sequence of name-value pairs in order to be extensible and
support “pass-through”; that is, new name-value pairs can be defined in the future and
objects can bevritten that do not interpret the name-value pairs, but just pass them on
to other objects.

Note —It is beyond the scope of thiseggfication to standardize particulariteria.
Supportingcriteria is optimal. Furthermore, supporting different criteria is acceptable.
The crteria given here are suggestions.

Table 6-3 suggests criteria to be supported by the generic factory. Detailed descriptions
follow.

Table 6-3 Suggested criteria.

criterion name type of criterion value interpretation

“initialization” sequence<NameValuePair> initialization parameters, given as a
sequence of name-value pairs.

“filter” string allows clients of the generic factory
to express a constraint on the
created object.

“logical location” sequence<NameValuePair> allows clients of the generic fagtory
to express a connection for the
object, for example a PCTE
relationship.

“preferences” string a way for clients to influence the
policies that a generic factory may
use when creating an object

Life Cycle Servicevl.0 Th€osLifeCycle Module November 1996 6-17

“initialization”

The “initialization” crierion is a sequence of name-value pairs which is intended to
contain application specific inalizationvalues. Typically, the generic factory will pay
no attention to the initialization criterion and simply passes it on to appficgpecific
factory code.

“filter”

The filter criterion is a constraint expression which provides the client with a powerful
way of expressing its requirements on creation. The generic factory will use the
constraint expression to make decisions about the allocatipart€ular resources.

For example, a client could give a constraint “operating syster¥visdows nt”.

These constraints are expressed in somesaintLanguage. A costraint laguage is
suggested in Appendix 6B.

Filters are potentiallgomplex andnvalidCriteria will be raised if the filter is
too complex for the factory or is syntactically incorrect.

“logical location”

The “logical location” criterion allows a client texpress where a
created/copied/migrated object is logically created. For example, in PCTE an object is
always in arelationship with another object. In such an environment, the logical
location would specify another object and a relationship.

“preferences”

The “preferences” criterion allows the client to influence the policies which the generic
factory uses to make decisio®r example, a generic factory might arbitrarily choose
a machine from a set of machines. Using the preferaritesion, a client cold

expresdts preference for a particular machine. Policesl preferences are described

in more detail in Appendix 6B.

6.3 Implementing Factories

6-18

As defined under Client's Model of Creation on page 4, any object that creates another
object in response to some requestalied afactory. Clients depend only on the
definitions in that section.

The cient's modelof object life cycle has intentionally been defined abstractly. This
allows a wide variety of implementation strategies.

Factories ar@mot special objects. They have well-defined Iblterfacesand
implementations in programmingniguages. Defining factory interfaces and
implementing them are a normal part of application development.

Ultimately, the creation process requires implementation dependent code that
assembles resources for the storage and execution of an dleect of creating an
object requires assembling amitializing all of the resources requiredgopport the
execution and storage of the objethe resourcegypically include:

CORBAservices: Common Object Services Specification

® the allocation of one or more BOA object references, and
® resources related to persistence storage.

6.3.1 Minimal Factories

Figure 6-11 illustrates a minimal implementation of a factory that assembles resources
in a single factory object.

« Object specific factory interface

factory
specific code

4/

resources

Figure 6-11 Factories assemble resources for the execution of antoBjeninimal
implementation achieves this with a single factory implementation.

6.3.2 Administered Factories

Factories can delegate the creation process to a generic factory that administers a set of
resources. The generic factory may apply policies to all creation requests.

Eventually such a generic creation service, needs to communiithtenplementation
specificcode that actually assembles the resources for the object. Figure 6-12
illustrates an object specific factoguch as the document factory of Figure 6-5 that
delegates the creation problem to the generic creation service. The object-specific
factory effectively adds ataticallytyped wrapper around the geneféctory.

Life Cycle Servicevl.0 Implementing Factories November 1996 6-19

Factory client

« Object specific factory interface

factory
specific code

GenericFactory

life cycle service

GenericFactory . GenericFactory

implementation implementation
specific factory specific factory

4/ 1)

resources resources

Figure 6-12 In an administered environment, factonyplementationgan delegate the creation
problem to a generic factory. The generic factory can apply resource allocation
policies. Utimately the creation service communicates with implementation
specific code that assembles resources for the object.

6-20 CORBAservices: Common Object Services Specification

6.4 Targets Use dfactories and Fatory Finders

FactoryFinder

Document

Private

Factory

HERE THERE

Figure 6-13 The copy and move operations are passeddoryFinderto represent “the.”
The implementation of the target usesMEaetoryFinderto find a factory object for
creation over there. The protocol between the object and the factory is private.
They can communicate and transfer state according to any implementation-defined
protocol.

A client passes a factory finder as a parameterdopy or move request.

Clients do not generally understand thglementation constraints of the objéeting
copied. Clients cannot express what the target object needs in order to copy itself to the
new location.

Target object implementations, on the othemdygut caistraints on factoriesased on
implementation concerns. It is unlikely that target implementatimie ¢s hterested in
further constraining location.

To find an appropriate factory, the target object implementation may use the factory
finder with itsminimal interface defined in section 6.2.2 or it matyempt to narrow

the factory finder to a more sophisticated finding service with more expressive power.
The taget object implementatiocan always depend on tlesistence of the minimal
interface.

Once the target object implementation finds a factory, it communicates with the factory
using a private, implementation-defined, interface.

6.5 Summary of Life Cycle Service

The problem of distributed object life cycle is the problem of
» Creating an object
» Deleting an object

Life Cycle Servicevl.0 arget's Use of Factories and Factory Finders November 16951

* Moving and copying an object
» Operating on a graph dfistributed objects.

The client'smodel of object life cycle is based &actoriesand target objects

supporting the ifeCycleObjecinterface. Factories are objects that create other objects.
The LifeCycleObjecinterface defines operations to delete an object, to move an object
and to copy an object.

A GenericFactoryinterface is defined. The generic factory interface is sufficient to
create objects of different types. By definin@anericFactoryinterface,
implementations that administer resources are enabled.

6.5.1 Summary of Life Cycle Service Structure

The Life Cycle Service smzification consists of these interfaces:
« LifeCycleObject
» FactoryFinder
» GenericFactory
* Interfaces described in Appendix 6A, an addendum to the Life Cyrhdce

6-22 CORBAservices: Common Object Services Specification

6

Appendix 6A Addendumto LE&gcle Service: CopoundLife Cycle Specification

This appendix contains the specification for the compoif@dycle component of the

Life Cycle Service .The compound life cydpecificationdepends on the Life Cycle
Service for the definition of the cliemtew of Life Cycle operations. Moreover, it
extends the Life Cycle Service to support compound life cycle operations on graphs of
related objects. In addition, the cooymd Ife cycle specificatiordepends on the
Relationship Service for the definition of object graphs.

The Life Cycle Service szification describes a client'sew of object life cycle. It
describes how a client caneate,copy, move and remove objects in a distributed
object system. To create objects, clients fiactory objectsand issuereate requests
on factories. To copy, move and remove objects, clients issue requests onbiecst o
supporting thd_ifeCycleObjecinterface.

If the target object represents a simple object, that is an object that is not part of a
graph of related objects, the target provides an implementation for each of the
operations in thé.ifeCycleObjecinterface.

If, on the other hand, the target object uses the Relationship Service for representing
relationships with other objects, additional services are availaltepiement the
compound life cycle operationhe specification in thisappendix describes those
services.

A.1 Key Features

The compound life cyclepecification:

» Addresses the issues of copying, moving and removing objects that are related to
other objects. Depending on the semantics ofdhegtionships, these life cycle
operations are applied to:

« the object, to the relationship and to the related objects

* the object and to theelationship

» the object

» Coordinates compoundfd cycle operations on graphs of related objects, thus
relieving object developers from implementing compounerafions.

« lllustrates a general model fapplying compound operations to graphs of related
objects. TheExternalization Service also illustrates the model.

A.2 Service Structure

The spedication in this appendix defines a service that applies a comgdaraycle
operation to a graph o€lated objects, givenstarting node. @mpound operations
traverse a graph of related objects and apply the operation to the relevant nodes, roles
and relationships of the graph. The service supports the
CosCompoudLifeCycle::Operationsnterface. Implementations of the servaepend

on theCosCompoundLifgycle::Node, CosCompoundLifeCycle::Robnd
CosCompoudLifeCycle::Relationshiinterfaces which are subtypes of thede, Role
andRelationshipinterfaces defined in the Relationship Servitke

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996 6-23

CosCompoudLifeCycle::Node, CosCompoundLiféycle::Roleand
CosCompoudLifeCycle::Relationshipnterfaces add aggrations tocopy, remove and
move nodes, roles amdlationships.

The Relationship Service defines interfaces for containment and reference relationships
andtheir roles. This appendix defines interfaces that inherit thuedacesand the
compound life cycle interfaces.

A.2.1 Interface Overview

Table 6A-1 and Table 6A-2 summarize the interfaces defined in the
CosCompoudLifeCyclemodule. TheCosCompoundLifeCyclemodule is described in
detail in sectioSection A.3.2.

Table 6A-1interfaces defined in theosCompoundLifeCyclaodule for initiating compound life
cycle operations.

Interface Purpose

Operations Defines compound life cycle operations on graphs of related
objects.

OperationsFactory Defines an operation to create an object that supports the

Operationsinterface.

Table 6A-2nterfaces defined in thEosCompoundLifeCyclmodule that are used by
implementations of compound life cycle operations

Interface Inherits Purpose

Node CosGraphs::Node Defines life cycle
operations on nodes in
graphs of related objects.

Relationship CosRelationships::Relationship Defines life cycle
operations on
relationships.

Role CosGraphs::Role Defines life cycle
operations on roles.

PropagationCriteriaFactory Creates an object that
supports the
CosGraphs::TraversalCrit
eria interface that uses
relationship propagation
values.

6-24 CORBAservices: Common Object Services Specification

6

Table 6A-3 and Table 6A-4 summarize the interfaces that combine the specific
relationships defined by theeRationshipService and théfe cycle interfaces defined
in this appendix.

Table 6A-3Interfaces defined in th€osLifeCycleContainmembodule.

Interface Inherits Purpose
Relationship CosContainment::Containment Combines both
and interfaces.

CosCompoundLifeCycle::Relationship No additional
operations are defined.

ContainsRole CosContainment::ContainsRole Combines both
and interfaces.
CosCompoundLifeCycle::Role No additional
operations are defined.
ContainedIinRole CosContainment::ContainedInRole Combines both
and interfaces.
CosCompoundLifeCycle::Role No additional

operations are defined.

Table 6A-4dinterfaces defined in th€osLifeCycleReferenamodule.

Interface Inherits Purpose
Relationship CosContainment::Reference Combines both
and interfaces.

CosCompoundLifeCycle::Relationship No additional
operations are defined.

ReferencesRole CosContainment::ReferencesRole Combines both
and interfaces.
CosCompoundLifeCycle::Role No additional
operations are defined.
ReferencedByRole CosContainment::ReferencedByRole Combines both
and interfaces.
CosCompoundLifeCycle::Role No additional

operations are defined.

A.3 Compoundlife Cycle Operations

The Life Cyclespecification describes a client’s view of object life cycle. It describes
how a client carcreate copy moveandremoveobjects in a distribted object system.

To create objects, clients firfdctory objectsand issue create requests on factories. To
copy, move and remove objects, clients issue requests on target objects supporting the
LifeCycleObjecinterface.

If the target object represents a simple object, that is an object that is not part of a
graph of relatedbbjects, the target provides an implementation for each of the
operations in thé.ifeCycleObjecinterface.

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996 6-25

If the target participates as ade in a graph ofelated objects, the targetn delegate
the life cycle opration to a service that implements tmenpound life cycle operation.
In particular, the target simply creates an object that supports the
CosCompoudLifeCycle::Operationsnterface and issues the correspondifegcycle
request on it. The compound life cycle operations exp&mapoundLifeCycle::Node
object reference as sasting node. The targetimply passes its
CompoundLifeCycle::Nodebject referace as the starting node.

When the life cycle object has completed issuing camgdife cycle requests, it
simply issues théestroy request to destroy the compoundceogdion.

Figure 6A-lillustrates the target’s delegation of the life cycle requesbtopound
operation.

CompoundLifeCycle::Node compound operations

CosCompoundLifeCycle::Operations

target

CosLifeCycle::LifeCycleObject

Figure 6A-1 A life cycle object that is part of a graph of related objects delegates the orderly
operation on the graph to an object that implements the compound life cycle
operation.

A.3.1 Applying the Copy Operation to the Example

We nowuse the example in the Relationship Service Specification (Figure 9-3) to
illustrate applying the copy operation to apjraFigure 6A-2 illistrates the gph and

the compound opation prior toapplying the copy operation. Badl that the folder
containsthe document; the documentdsntained inthe folder. The document
containsthe figure; the figure isontained inthe document. The documestintains

the logo and the logo isontained inthe document. On the other hand, the document
referenceghe book; the book iekferenced bythe document. Finally, the figure
referenceghe logo; the logo iseferenced byhe figure.

6-26 CORBAservices: Common Object Services Specification

compound
operation

dee shallow
P shallow
\ha]low

shallow)

none i shallovb &none

Figure 6A-2 Prior to applying copy to the graph.

deep O

In this example, the copy is performed in two pas$hs. irst pass creates a list
representation of the relevant edges of the graph. The second pass takes the list as
input, copies the relevant nodes and roles, then creates all the necessary links by
copying the relevant relationships.

A compound copy request is initiated by issuingfaCycleObjet:copy request on

the folder. Since the folder participates in a graph of related objects, it creates an object
supporting theaCosCompoudLifeCycle::Operationsnterface (theDperationsobject).
Thenthe folder issues @osCompoundLifeCycle::Operatisrcopy request on the
Operationsobject, passing in its ow@osCompoundLifegtle::Nodeobject reference

as thestarting node. The copgperation will opy the graph ofelated objects and

return an object refenee for the opy of the folder object.

The renainder of this section provides a description of howQiperationsobject
might implement the copyperation.

First Pass of the Compound Copy Operation

The frst pass consists of creatingist fepresentation of the relevant edges of the
graph. TheOperationsobject uses an object supporting thesGraphs::Traversal
interface to do most of the work.

The Operationsobject creates an object supporting @@sGraphs::TraversalCriteria
interface by callingCosCompoundLifeCycle::PropagationCriteriaFactacyeate

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996 6-27

The Operationsobject then creates@osGraphs::Traversabbject bycalling
CosQaphs:TraversalFactorycreate_traversal_on , passing in the object
supporting theCosGaphs:TraversalCriteriainterface. Calls on the
CosQ@aphs::Traversalobject yield an unordered list of
CosQ@aphs::TraversatScopedEdgesontaining the following information.
(folder, ContainsRole, Containment, ContaidinRole, daument)
(document, ReferencesRole, Reference, RefeeeiRyRole, book)
(document, ContainedInRole, Containment, ContainsRole, folder)
(document, ContainsRole, Containment, ContaiflaRole, figure)
(document, ContainsRole, Containment, ContaflaRole, logo)
(figure, ReferencesRole, Reference, ReferencedByRole, logo)
(figure, ContainedInRole, Containment, ContainsRole, document)
(logo, ContainedInRole, Containment, ContainsRole, document)

This list will be referred to as th@riginalEdgeList

Since the propagation value for copy from the document todbk is shallow, the
traversal did not it the ok. As such, the edge:

(book, ReferencedByRole, Reference, References, document)

is not included. Although the trawsal did visit thelogo, the edge

(logo, ReferencedByRole, Reference, ReferencesRiare)

is not included because the propagation value for émpy the logo to the figure is
none.

For more detailed information regarding the output ofGheGaphs::Traversalobject
with respect to the use of propagation semantics, see s8diéhof the Relationship
Service.

Second Pass of the Compound Copy Operation

The second pass copies thle relevant nodes and theslates them by quying the
relevantrelationships.

First, the set of nodes to be copied must be determined. This consists ofdakithe
nodes in thdeft column of theOriginalEdgeList. Since a node may be involved in
multiple edges, it may appeamltiple times in the list; it should only m®pied once.
Each node irthis set is copied by issuing a
CosCompoudLifeCycle::Nodecopy_node request. This request will cause the node
and all of its roleso be copied; the new node and its roles will be returned.

» For each returned role of the copied node, an entry is made in a table of new
roles. Eachentry consists of:

» The role object is the data and

* The node’s Costaphs::Traversal::TraversalScopedld and the role’s
CORBA::InterfaceDef together serve as a key.

6-28 CORBAservices: Common Object Services Specification

6

The finalstep is to create all the relationships for the copied graph. All of the distinct
relationships in the center column of BeiginalEdgeListneed to be copied. Although

a relatimship may appeanultiple times in the list, ishould only be copied once.

Each relationship is copied by issuing a
CosCompoudLifeCycle::Relationshipcopy_relationship request. The

arguments ta€CosCompoudLifeCycle::Relationshipcopy_relationship include
thelist of roles to be included in the newlationship. Some of these roles will be
copies that were created as a result of proceskeg propagation values; others will
be roles in the original graph.

Thus, copy each unique relationship in @eginalEdgeList using NamedRoles as
follows:

For each role in an entry in ti@riginalEdgeList make a role key using the node’s
TraversalScopedld and the role’s CORBnterfaceDef to search the table of new
roles.

a. If the rolewas copiedthe key will find the role’s copy. The roleRoleNamads
obtained from the entry in th@riginalEdgelList The role’s copy and the
RoleNameare combined to form @osGraphs::NimedRolewhich will then be
included in thdist of CosGraphs::NamedRdepassed to the
CosCompoandLifeCycle::Relationshipcopy_relationship method.

b. If no copy is found, theriginal CosGraghs::NanedRoleis used instead.

Once all theRelationshipshave been copied, the
CosCompoudLifeCycle::Operationscopy method is done.

Figure 6A-3illustrates the result of apphg copy to the graplstarting athe folder.

documen

<

Figure 6A-3 The result of applying copy to the graph, starting at the folder.
When the copy operation propagates to a node because of a deep propagation value,

other shallow propagation values to that nodepzoenoted That is, they are processed
as if they were deep; relationships are formed with the copied node, not with the

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996 6-29

original. This happened in the example; the shallow propagation value from the figure
to the logo was promoted to deep because the logo was copied. As sundw thigure
references the new lognot the original logo.

A.3.2 The CosCompoundéCycle Module

The CosCompoudLifeCyclemodule defines

» The Operationsinterface forinitiating compaindlife cycle operations ographs
of related objects,

» OperationsFactonjinterface for creating conaund operations,

» TheNode Rolg Relationshipand PropagationCriteriaFactoryinterfaces for use
by implementations of compound life cycle operations.

The CosCompoundLifegtle module is given in Figure 6A-4.dbailed descriptions of
the interfaces follow.

#include <LifeCycle.idl>
#include <Relationships.idl>
#include <Graphs.idl>

module CosCompoundLifeCycle {
interface OperationsFactory;
interface Operations;
interface Node;
interface Role;
interface Relationship;
interface PropagationCriteriaFactory;

enum Operation {copy, move, remove};

struct RelationshipHandle {
Relationship the_relationship;
::CosObjectldentity::Objectldentifier constant_random_id;

b

interface OperationsFactory {
Operations create_compound_operations();

h

Figure 6A-4 The CosCompoundLifeCycle Module

6-30 CORBAservices: Common Object Services Specification

interface Operations {
Node copy (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
void move (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
void remove (in Node starting_node)
raises (::CosLifeCycle::NotRemovable);
void destroy();

h

interface Node : ::CosGraphs::Node {
exception NotLifeCycleObject {};
void copy_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
out Node new_node,
out Roles roles_of_new_node)
raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
void move_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
void remove_node ()
raises (::CosLifeCycle::NotRemovable);
::CoslLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObiject);
3

Figure 6A-4 The CosCompoundLifeCycle Modu{€ontinued)

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996

6-31

6-32

interface Role : ::CosGraphs::Role {
Role copy_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CoslLifeCycle::CannotMeetCriteria);
void move_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CoslLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in RelationshipHandle rel,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

b

interface Relationship :
::CosRelationships::Relationship {
Relationship copy_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
in ::CosGraphs::NamedRoles new_roles)
raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CoslLifeCycle::CannotMeetCriteria);
void move_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in ::CosRelationships::RoleName from_role_name,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

h

interface PropagationCriteriaFactory {
::CosGraphs::TraversalCriteria create(in Operation op);

b
b

Figure 6A-4 The CosCompoundLifeCycle Modu(€ontinued)

CORBAservices: Common Object Services Specification

The OperationsFactory Interface

Creating a Compound Life Cycle Operation

Operations create_compound_operations();

Code Example 6A-1
The create_compound_operations operation creates an object that implements

the compoundife cycle operations, that is, the factory creaed returns an object
that supports th€osCompoundLifgycyle::Operationsnterface.

The Operations Interface

The Operationsinterface defines compmd life cycle operations to copy, move and
remove objects, given a starting node in a graph.

Applying the ©py Operation to a Graph of Related Objects

Node copy (

in Node starting_node,

in ::CosLifeCycle::FactoryFinder there,

in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,

::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CoslLifeCycle::CannotMeetCriteria);

Code Example 6A-2

The copy operation applies the copy operation to a graph of related objects. The
starting node is provided as th&arting_node parameter. Theopy should be
collocated with the factory finder given by ttieere parameter. The final parameter,
the_criteria , allows unspecified values to be passed. This is explained in the Life
Cycle specification in detail.

If a node, role or relationship in the graph refuses to be copietNat@opyable
exception is raised with the node, rolerelationship object reference returned as a
parameter to the exception.

If appropriate factories to create a copies of the nodes and roles cannahbetfe
NoFactory exception is raised. The exception value indicates the key used to find the
factory.

In addition to theNoFactory andNotCopyable exceptions, implementations may
raise standrd CORBA exeptions. For example, if resources cannot be acquired for the
copied graphNO_RESOURCESIll be raised.

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996 6-33

6-34

It is implementation dependent whether thigigiion isatomic

Applying theMoveOperation to a Graph of Related Objects

void move (

in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotMovable,
::CoslLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

Code Example 6A-3

The move operation applies the move operation to a graph of related objéets.
starting node is provided as thtarting_node parameter. The migrated graph
should be collocated with the factory finder given by ttiere parameter. The final
parameterthe_criteria , allows unspecified values to be passed. This is explained
in the Life Cycle specification idetail.

If a node, role or relationship in the graph refuses to be movedatMovable
exception is raised with the node, rolerelationship object reference returned as a
parameter to the exception.

If appropriate factories to migrate the nodes and rcd@sot be found, the
NoFactory exception is raised. The exception value indicates the key used to find the
factory.

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standrd CORBA exeptins. For example, if resources cannot be acquired for the
migrated graphNO_RESOURCESIl be raised.

It is implementatio-dependent whether this operatioratemic

Applying theRemove Operation to a Graph of Related Objects

void remove (in Node starting_node)
raises (::CosLifeCycle::NotRemovable);

Code Example 6A-4

Theremove operation applies the remove operation to a graph of related ofjjbets.
starting node is provided as th&arting_node parameter.

If a node, role or relationship in the graph refuses to be removedptRemovable
exception is raised with the node, rolerelationship object reference returned as a
parameter to the exception.

CORBAservices: Common Object Services Specification

It is implementation dependent whether thigigiion isatomic

Destroying the Compound Operation

void destroy();

Code Example 6A-5

The destroy operation diicates to the compmd qoeration that the client has
completed operating on the graph. The componymeration object is destroyed.

The Node Interface

The Nodeinterface defines operations ¢opy, move and remove a node.

Copying a Node

void copy_node (in ::CosLifeCycle::FactoryFinder there,

in ::CosLifeCycle::Criteria the_criteria,
out Node new_node,
out Roles roles_of_new_node)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

Code Example 6A-6

The copy operation makes a copy of the node and its roles. The new node and roles
should be collocated with the factory finder given byttiexe parameter. The final
input parametethe_criteria , allows unspecified values to be passed. This is
explained in the Life Cycle specification in detail.

The result of acopy operation is a:
®* Nodeobject reference for the new node and

® Sequence of roles

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996 6-35

6-36

Figure 6A-5illustrates the result of a copy. #ode, when it is born, is not in any
relationships with other object$hat is, the roles in the new node are “disconnected”.
It is the compound copy operation’s job to correctly establish ne¢ationships.

original ‘F
(F) o

HERE THERE

Figure 6A-5 Copying a node returns the new object and the corresponding roles.

If the node or one of its roles refuses todopied, theNotCopyable exception is
raised with the node or role object reference returned as a parameter to the exception.

If an appropriate factory to create epy cannot be found, tHeoFactory exception
is raised. The exception value indicates the key used to finththery.

In addition to theNoFactory andNotCopyable exceptionsimplementabns may
raise standrd CORBA exeptins. For example, if resources cannot be acquired for the
copied nodeNO_RESOURCESIll be raised.

Moving a Node

void move_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

Code Example 6A-7

The move operation transfers some or all of the node’s resources from “here” to
“there”. Themove operation migrates a the node atsdroles. The migrated nodad

roles should be collocated with tfectory findergiven by thethere parameter. The
final parameterthe_criteria , allows unspecified values to be passed. This is
explained in the Life Cycle specification in detail.

If the node or one of its roles refuses torbaved, theNotMovable exception is
raised with the node or role object reference returned as a parameter to the exception.

If an appropriate factory teupport migration “over there” cannot beufa, the
NoFactory exception is raised. The exception value indicates the key used to find the
factory.

CORBAservices: Common Object Services Specification

6

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standrd CORBA exeptins. For example, if resources cannot be acquired for the
migrated nodeNO_RESOURCESIll be raised.

Removing a Node

void remove_node ()
raises (::CosLifeCycle::NotRemovable);

Code Example 6A-8

Theremove operation removes the node and its roles.

If the node or one of its roles refuses to be removed\thiRemovable exception is
raised with the node or role object reference returned as a parameter to the exception.

Getting the Nodes Life Cycle Object

::CosLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObject);

Code Example 6A-9

Some nodes not onlyarticipate in the life cycle protocols for graphs of related objects
but they also support the client's viewIdé cycle services. That is, the node also
supports the:CosLifeCycle::LifeCycleObjednterface described in the Life Cycle
Service specificationTheget_life_cycle object operation returns the
.:CosLifeCycle::LifeCycleObjeabbject referace for the node.

If the node does not support th€osLifeCycle::LifeCycleObjedhterface, the
NotLifeCycleObject exception is raised.

The Role Interface

The Roleinterface defines operations to copy and move a role. €soy

operation is defined by the baselR®iorship Service. As such, there is no need to
define aremove operation.) ThdRoleinterface also defines an operation to return the
propagation values for the copy, move and remove operations.

The mplementation of &ompoundLifeCycle::Nodeperationcan call these
operations on roles. For example, an implementatiocopy on a node can call the
copy operation on th®ole

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996 6-37

6-38

Copying a Role

Role copy_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CoslLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

Code Example 6A-10

Thecopy operation makes a copy of the role. The new role should be collocated with
the factory finder given by théhere parameter. The final parameter,

the_criteria , allows unspecified values to be passed. This is explained in the Life
Cycle specification in detail.

Theresult of acopy operation is an object reference for the new object supporting the
Roleinterface.

If the role refuses to be copied, tNetCopyable exception is raised with the role
object reference returned as a parameter to the exception.

If an appropriate factory to create apy cannot be found, tHdoFactory exception
is raised. The exception value indicates the key used to finfhtiery.

In addition to theNoFactory andNotCopyable exceptionsimplementabns may
raise standrd CORBA exeptins. For example, if resources cannot be acquired for the
copied role NO_RESOURCESIl be raised.

Moving a Role

void move_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotMovable,
::CoslLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

Code Example 6A-11

The move operation transfers some or all of the role’s resourcesnidwe operation
migrates the role. The migrated role should be collocated with the factory finder given
by thethere parameterThe final parameterthe_criteria , allows unspecified
values to be passed. This ispéadned in the Life Cycle specification in detail.

If the role refuses to be moved, tNetMovable exception is raised with the role
object reference returned as a parameter to the exception.

If an appropriate factory teupport migration cannot be found, tReFactory
exception is raised. The exception value indicates the key used to find the factory.

CORBAservices: Common Object Services Specification

6

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standrd CORBA exeptins. For example, if resources cannot be acquired for the
migrated role NO_RESOURCESIll be raised.

Getting a Propagation Value

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in RelationshipHandle rel,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

Code Example 6A-12

Thelife_cycle_propagation operation returns the propagation value to the role
to_role_name for the life cycle operatioop and the relatioshiprel . If the role

can guarantee that the propagation value is the sanadl f@lationships in which it
participatessame_for_all is true.

The Relabnship Interface

The Relationshipinterface defines operations to copy and move a relationship. (The
destroy operation is defined by the Relationship Service. As such, there is no need
to define aemove operation.) ThdRelationshipinterface also defines an operation to
return the propagation values for th@py, move and remove emtions.

Copying the Relationship

Relationship copy_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
in ::CosGraphs::NamedRoles new_roles)

raises (::CosLifeCycle::NoFactory,

::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

Code Example 6A-13

The copy operation creates a nawlatiorship. The new relationship should be
collocated with the factory finder given by ttteere parameter. The second
parameterthe_criteria , allows unspecified values to be passed. This is explained
in the Life Cycle specification idetail.

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996 6-39

The values othe newly created relationship’s attributes dedined by the
implementation of this operation. However, tr@med_roles attribute of the newly
created relatinship must match new_roles. That is, the newly creagkdionship
relates objects represented g _roles parameter, not the by the original
relationship’s named roles.

Theresult of acopy operation is an object reference for the new object supporting the
Relationshipinterface.

If the relationship refuses to be copied, M@ Copyable exception is raised with the
relationship object reference returned as a parameter to the exception.

If an appropriate factory to create apy cannot be found, tHéoFactory exception
is raised. The exception value indicates the key used to finfhthary.

In addition to theNoFactory andNotCopyable exceptionsimplementabns may
raise standrd CORBA exeptins. For example, if resources cannot be acquired for the
copied role NO_RESOURCESIl be raised.

Moving the Relationship

void move_relationship (
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

Code Example 6A-14

The move operation transfers some or all of the relationship’suess. Thanove
operation migrates the relationship. The migrated relationship should be collocated
with the factory finder given by thiénere parameterThe inal parameter,

the_criteria , allows unspecified values to be passed. This is explained in the Life
Cycle specification in detail.

If the relatilnship refuses to be moved, tNetMovable exception is raised with the
relationship object reference returned as a parameter to the exception.

If an appropriate factory tsupport migration cannot be found, tNeFactory
exception is raised. The exception value indicates the key used to find the factory.

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standrd CORBA exeptins. For example, if resources cannot be acquired for the
migrated relationshipNO _RESOURCESIll be raised.

6-40 CORBAservices: Common Object Services Specification

Getting a Propagation Value

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in ::CosRelationships::RoleName from_role_name,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

Code Example 6A-15

The life_cycle_propagation operation returns the relationship’s propagation
value from the roldrom_role to the roleto_role_name for the life cycle
operationop. If the role named bfrom_role_name can guarantee that the
propagation value is the same for all relationships in which it participates,
same_for_all is true.

The PropagationCteriaFactory Interface

The Cos@Gaphsmodule in the Relationship Service defines a general service for
traversing agraph of related object3he service accepts a “call-bk’ object
supporting the:CosGraphs::TraversalCriterianterface. Given a node, this object
defines which edges ®mitand which nodes to visit next.

The PropgationCriteriaFactorycreates draversalCriteriaobject that determines
which edges to emit and which nodes to visit based on propagation values for the
compound life cycle operations.

Create a Traversal Criteria Based on Life Cycle Propagation Values

::CosGraphs::TraversalCriteria create(in Operation op);

Code Example 6A-16

The create operation returns a TraversalCriteria object for an operation op that
determineswhich edges to emit and which nodesvisit based on proagation values
for op. For a moraletailed discussion see sectiorBA ofthis appendix andection
9.4.2 of theRelationship specification.

A.3.3 Specific Life Cycle Relationships

The Relationshifservice defines two important relationshipsntainmentand

reference Containment is a one-to-many relationship. A contai@ercatain many
containees; a containee is contained by one contaipéréRce, on the other hand, is

a many-to-many relationship. An object can reference many objects; an object can be
referenced by many bjects.

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996 6-41

6-42

Containment is represented by a relationship with two roleCtméainsRoleand the
ContainedInRoleSimilarly, reference is represented by a relationship with two roles:
ReferencesRole and ReferencedByRole

The compound life cyclepecification addsife cycle semantics to these specific
relationships. That is, it defines propagation values for containamhteference.

A.3.4 The CosLifeCycleContainment Module

The CosLifeCycleContainmemhodule defines three interfaces
* the Relationshipnterface
« the ContainsRolénterface and
* the ContainedInRolenterface.

#include <Containment.idl>
#include <CompoundLifeCycle.idl>

module CosLifeCycleContainment {

interface Relationship :
::CosCompoundLifeCycle::Relationship,
::CosContainment::Relationship {};

interface ContainsRole :
::CosCompoundLifeCycle::Role,
::CosContainment::ContainsRole {};

interface ContainedinRole :
::CosCompoundLifeCycle::Role,
::CosContainment::ContainedInRole {};

b

Table 6A-5
Figure 6A-6 The CosLifeCycleContainment module

The CosLifeCycleContainmemhodule does not define newperatins. It merely

“mixes in” interfaces from th€osCompandLifeCycleandCosGntainmentmodules.
Although it does not add any newengtions, it refines the semantics of these attributes
and @erations:

RelationshipFactory
attribute value

relationship_type CoslifeCycleContainment::Relationship

degree 2

named_role_types “ContainsRole”, CosLifeCycle Containment:: ContainsR
ole;
“ContainedIinRole”,CosLifeCycleContainment::Contai
nedinRole

CORBAservices: Common Object Services Specification

The CosRlationships::RelatioshipFactory.create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are no€osLifeCycleCotainmentContainsRoleand
CosLifeCycleCnotainmentContairedInRole It will raise

MaxCardinalityExceeded if the CosLifeCycleContainmerniContainedinRolés
alreadyparticipating in a relationship.

RoleFactory attribute for

ContainsRole value

role_type CosLifeCycleContainment::ContainsRole
maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a paranudes not
support theCosCompoundLifgycle::Nodeinterface. The
CosRelationships::RoleFactoy::link operation will raise
RelationshipTypeError if therel parameter does not cmmm to the
CosLifeCycleCntainment::Relationshipnterface.

RoleFactory attribute for

ContainedInRole value

role_type CpsLifeCycleContainment::ContainedInRole
maximum_cardinality 1

minimum_cardinality 1

related_object_types CosCompoundLifeCycle::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a paranses not
support theCosCompoundifeCycle::Nodeinterface. The
CosRelationships::RoleFactoy::link operation will raise
RelationshipTypeError if therel parameter does not cimmm to the
CosLifeCycleCotainment::Relationshipnterface. The
CosRelationships::RoleFactoy::link operation will raise
MaxCardinalityExceeded if it is already participating in a containment
relationship.

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996 6-43

The CosLifeGcleContainment ContainsRolelife_cycle propagation
operation returns the following:

operation ContainsRole to ContainedInRole
copy deep
move deep
remove deep

The CosLifeGcleContainment ContainedInRolelife_cycle propagation
operation returns the following::

operation ContainedInRole to ContainsRole
copy shallow
move shallow
remove shallow

A.3.5 The CosLifeCycleReference Module

The CosLifeG/cleReferencenodule defines three interfaces
« the Relationshipinterface,

» the RefeencesRolénterface and
» the ReferenceByRoleinterface.

#include <Reference.idl>
#include <CompoundLifeCycle.idl>

module CosLifeCycleReference {

interface Relationship :
::CosCompoundLifeCycle::Relationship,
::CosReference::Relationship {};

interface ReferencesRole :
::CosCompoundLifeCycle::Role,
::CosReference::ReferencesRole {};

interface ReferencedByRole :
::CosCompoundLifeCycle::Role,
::CosReference::ReferencedByRole {};

h

Table 6A-6

Figure 6A-7 The CosLifeCycleReference module

6-44 CORBAservices: Common Object Services Specification

6

The CosLifeG/cleReferencenodule does not define new operations. It merely “mixes
in” interfaces from th&CosCompoundLifeCyclendCosReferencenodules. Although

it does not add any new operations, it refinessirmantics of these attributasd
operations:

RelationshipFactory
attribute value

relationship_type CoslifeCycleReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosLifeCycleReference::Reference
sRole;
“ReferencedByRole”,CosLifeCycleReference::Referen
cedByRole

The CosRlationships::RelatiashipFactory.create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are no€osReference::ReferencesRaad
CosReferenceReferencedByRale

RoleFactory attribute for

ReferencesRole value

role_type ClosLifeCycleReference::ReferencesRole
maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a paranses not
support theCosCompoundLiféycle::Nodeinterface. The
CosRelationships::RoleFactoy::link operation will raise

RelationshipTypeError if therel parameter does not ciamm to the
CosLifeG/cleReference::Relationshipterface.

RoleFactory attribute for

ReferencedByRole value

role_type CosLifeCycleReference::ReferencedByRole
maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a paranudes not
support theCosCompoundLifeycle::Nodeinterface. The

Life Cycle Servicevd.0 Summary of Life Cycle Service November 1996 6-45

6-46

CosRelationships::RoleFactoy::link operation will raise
RelationshipTypeError if therel parameter does not cimamm to the
CosLifeG/cleRelationship::Relationshimterface.

The CosLifeCycleReference ReferencesRaldife_cycle propagation
operation returns the following:

operation ReferencesRole to ReferencedByRole
copy shallow
move shallow
remove shallow

The CosLifeCycleReference ReferencedByRaléife_cycle_propagation
operation returns the following::

operation ReferencedByRole to ReferencesRole
copy none

move shallow

remove shallow

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a paranudes not
support theCosCompoundLifgycle::Nodeinterface.

The CosRlationships::RelatiashipFactory.create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are no€osLifeG/cleReferenceReferencesRoland
CosLifeG/cleReferenceReferencedByRale

A.4 References

1. James Rumbaugh, “Controlling Propagation oé@gions using Attributes on
Relations.”OOPSLA 1988 Proceedingsg. 285-296

2. James Rumbaugh, Michael Blahal@m Premerlani, Frederickdgly and Wiiam
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

CORBAservices: Common Object Services Specification

Appendix 6B Filters

Note —Appendix 6B is not part of the Life Cycle Services specification. It sketches a
mechanism for expressing filters. Thippendix is included to provided an example of
how a filter might beprovided.

A factory represents a scope of resource allocation, which is the set of resources
available to the factory. Whenever it receives a creation request, a factory will allocate
resources according to any policies which are in operation.

Clearly, by choosing a particular factory upon which to issue a create request, a client
is exerting some control over the allocation of resources. Therefore, acadieiimit

the scope of resource allocation, by issuing the request on a different factory which
represents a smaller set of resources.

However, there are two prabhs with this. Firstly, the granularity of resources may be
muchsmaller than the granularity represented by the factories in a sy=tem.
example, there are unlikely to be factonlsich represent individual disk segments.

Secondly, the client may wish to rule out the usparficular resarces within a scope,
but avoid having a general nection inscope. For example, the client might not be
concerned with which machine within a LAN an object is createdproviding it is
not on machine X.

Both of these needs can be addressed by providiitigraln the firstcase, the filter is
relatively simple; it will simply iimit the scope of resource allocation. In theoset
case, the fier will need to be more sophisticated.

This appendix describes one waypobviding filters usingpropertiesand constraint
expressionsThese concepts appear in the development of Trading in the
ISO/IEC/CCITT OperDistributed Processing standards. Service providers register
their service with the Tradend use properties to describe the seroiter. Potential
clients may then use a constraint expressions to describe the requirements which
service offers must satisfy.

Similarly, the life cycle service may define a number of properties to represent the
different kinds of resources available within in a system and clients may nistagot
expressions to place the restrictiarmon the use of those resources.

Note —The Object Services Architecture identifies an Object Properdesc® which
enables an object to have a seadjitrary named values associated withThese are
very similar to the concept giroperties as used in Trading and in this appendix.

Filters Summary of Life Cycle Service November 1996 6-47

6-48

B.1 Resources as Properties

Resource pmperties are application and generic factory implementatependent and

it is beyond the scope of this specification to identify standard properties athich
generic factory implementations will recognize. The properties described in this
appendix are given as examples only. Table 6B-1 gives some examples ofigsopert
that might be supported by a generic factory.

Table 6B-1Examples of properties supported by a generic factory

Property Name Meaning

Host Host name of the machine

Architecture Machine architecture,g. “intel”, “sparc”
OSArchitecture Operating system architecterg. “solaris”, “hpux”

B.2 Constraint Expressions

Constraints are expressed in anGtaint Language which provides a set of operators
which allow arbitrarilycomplex expressions involving propert@sd potential values
to be specified. A property listatisfiesa constraint if the constraint expression is true
when evaluated with respect to the propeisy:. |

Constraint expressions are very flexible. For example, if a client has an object
executing on a machine called ‘Host1l’ and wishes to create another object wiith is
on the same machine, the client can specify the constraint “Host != ‘Host1™.

The constraint expression describledre works withproperties for which the value can
be a string, a number, or a set of values.

The constraint language consists of:

comparative functions:=, 1=, >, >=, <, <=, in
constructorsand, or , not

property names

numeric and string constants

mathematical operators; -, *, /

grouping operators;,), [,]

The following precedenceelations hold in thabsence of parentheses, in the order of
lowest to highest:

® +and-
® * and/
® or

®* and

® not

The comparative operatan checks for the inclusion of a particular string constant in
thelist which is the value of a property.

CORBAservices: Common Object Services Specification

B.3 BNF for Constraint Expressions

<ConstraintExpr>

<Expr>

<NumOp>
<StrOp>

<SetOp>

<NumExpr>

<NumTerm>

<NumFactor>

<StrExpr>

<StrTerm>

<SetExpr>

<SetTerm>

<Identifier>

Filters

Summary of Life Cycle Service

[<Expr>]

<Expr> "or” <Expr>

<Expr> "and” <Expr>

"not” <Expr>

"(" <Expr>")"

<SetExpr> <SetOp> <SetExpr>
<StrExpr> <StrOp> <StrExpr>
<NumExpr> <NumOp> <NumExpr>
<NumExpr> "in"” <SetExpr>
<StrExpr>"in" <SetExpr>

n_—n | n!:n | ngm | g In>n o

<NumTerm>
<NumExpr>"+" <NumTerm>
<NumExpr>"-" <NumTerm>

<NumFactor>
<NumTerm> "*" <NumFactor>
<NumTerm> "/ <NumFactor>

<Identifier>
<Number>
"(" <NumExpr>")"
7" <NumFactor>

<StrTerm>
<StrExpr>"+" <StrTerm>

<Identifier>
<String>
"(" <StrExpr>")"

<SetTerm>
<SetExpr>"+" <SetTerm>

<Identifier>
<Set>
11(11 <SetEXpr> n)n

<Word>

November 1996 6-49

6-50

<Number>

<Integer>
<Float>

<Mantissa>

<Sign>

<Exponent>

<Word>

<AlphaNum>

<String>

<Char>

<Set>

<Elements>

<Element>

<lLetter>

<Digit>

<Other>

<Sp>

<Integer>
<Float>

{ <Digit> }+
<Mantissa> [<Sign>] [<Exponent>]

<Integer>[". [<Integer>]]
"." <Integer>

n N

nyn

"e” <Integer>
"E” <Integer>

<Letter> { <AlphaNum> }*

<Letter>
<Digit>

mn { <Char> }* "y

<Letter>
<Digit>
<Other>

H{H <E|ements> 11}”
[<Element> { <Sp>+ <Element> }*]

<Number>
<Word>
<String>

alblcldle|flglh[iljlk
lim{nlolplalr|s|tiu|v
wix|y|z|A|B|CID|E|F|G
HIITJIKILIMIN|O|P|Q|R
S|ITIU|IVIW[X]|Y]|Z

0/1]2|3]4|5|6]|7]8]9
<Sp>|~[!@]#]3|%|"|&|*|(

YE-1Z1=T+ DT
IV <=1 ?

non

CORBAservices: Common Object Services Specification

Appendix 6C Administration

Note —Appendix 6C is not part of the Life Cycle Services specification. This
description is included as a suggested way of administering generic factories.

The specification for the life cycle service includes®enericFactoryinterface. There
will be at least two styles of object whisluipport thainterface:

* implementation specific factories that actually assemble the resources for a new
object, and

® generic factories which pass requests on to eithptementation specific factories
or other generic factories.

By configuring generic factorieendimplementation specific factories into a graph, a
creation service can be built which administers the allocation of a large number of
resources and can use them to create a wadiety of objects.

To ensure that the creation service is scalable, it is essential that the principle of
federationis adopted — each component retains its autonomy rather than becoming
subordinate to another.

Whenever the creation service receives a creation request, the request will need to
traverse the graph until it reaches an implementatiexifp factory which can satisfy
the request. As the request traverses thplgreach noterminalnode in the graph

(i.e. the generic factories) will decide which link the request will traverse next.
Decisions will be based upon informatiabout each available link, appliciesin

force at that node and, of course, the actual request.

Clearly, the configuratiomnd policies of such ereation service will eed to be
administered. However, the specification does not include the specification of an
administration interface. This is because the principle of federation is not only
important to the life cycle service. It will be essential to a number of other services,
notably trading, and the OMG plans to address the issue of federatiah &dject
services, rather than making a premature specification addressing the needsrd# just
service.

The renainder of thisappendix describes the principle of federation in nuetail,
outlines the use of policies and preferences to support federation, and then concludes
with a suggestion for how an administration interface might look.

C.1 Federation

Federation is essential in large-scdistributed systems where the existence of
centralized ownership and universal control cannot be assumed. In these systems the
only way to achieve cooperation between autonomousragswithout creating a
hierarchical structure is to use federation. Federation is also benefisiabiter

systems which can exploit the high degredl@fibility which federation provides.

Administration Summary of Life Cycle Service November 1996 6-51

Federation differs from the more conventional approach of adoptirrictyst

hierarchical organization in a number of wayss#yr components can provide their
service to any number of others, not just the single component which is its “parent” in
the hierarchy. Secondly, components can establish peer-to-peer relationships,
eliminating the need for a single component at the top of the hierarchy. Fihislly,
approach avoids the necessity of maintaining a global namespace. Instead, all names
are relative to the context in whitchey are used.

Federation enables previoudystinct systems to be unified wiht requiring global
changes to their naming structures and system management hierafbkies.
administration functions must ensure the systems are configured appropriately,
e.g. avoiding circular references in those graphs wiriakt be kept acyclic.

C.1.1 Federabnin Object Services

In addition to the use of federation in configuring generic factories, federation is also
applicable to a number of other services.

Trading is a notable example. A global offer space is neither practical nor desirable.
Consequently, there will bmultiple traders, each representing a different portion of
the offer space. Offers held lmne trader can be made available to the clients of
another trader through federation.

The naming service specification also demonstrates attributes of federation. Naming
contexts can be bound to other naming contexts and redaest@me resolution can

be passed across the linksowever, it isentirely theconcern of the naming context
how it resolves the name withits domain, i.e. it is autonomous.

C.1.2 Federabn Issues

There are a number of issues which need to be addressed for federation to be used in a
cohesive fashion acrosdl object services.

Misibility of the Federatioraph

The naming service makes the configuration of naming contexts igtagh very
visible to the clients. This is essentibécause the naming service must provide clients
with a structured namespace.

On the other hand, it is not clear that a client should ever be able to see the internal
structure of a life cycle creation service built with genand implementation ggific
factories.

The tradingservice falls inbetween the two extremes. It may be useful for a client to
be able to navigate the structure of a trading service graph in order to have more
control over the visibility of offers. However, this may make clients too dependent
upon the organization of the trading service andtlthe flexibility of the system
administrator in reorganizing the trading service to provide the most effective service.

6-52 CORBAservices: Common Object Services Specification

Service Interface vs. Administration Interface

In general, it is desirable to federate using the service interface for the links and
reserve the administration interface for the administrators. Tgsach ensures that
autonomy is retained. d¥vever,this precludes the use of compound names in the
administration functions because the administration functangot traverse the
graph; only simple names can be useddministration only functions.

However,this is inappropriate for services where graph manipulation is an essential
part of the service. For example, the naming service specification dodstirguish
betweenadministration functions for manipulating theagh and service functions.

This is clearly correct; the clienteeed to be able to manipulate the graptcigating,
binding and destroying contexts.

Multiple Service Interfaces

A node in a federation graph may be a conspiracy and offer multiple service interfaces,
perhaps one for each point it is bound into the graph. However, for services where the
administration is kept distinct from the service, it is likely thatabespiracy will

support only on@dministration interface.

In these situations, it becomes necessary for an administrator to be able to match
service interfaces to conspiracies, i.e. to match one or more service interfaces to an
administrative interface. The example in Section C.3 providedwdion to this which,

in theory, will scale, but there may be better ways of doing this.

Cyclesand Peetto-Peer Rlationships

Theintroduction of cycles into a federation graph is a contentious issue. Sinempeer
peerrelationships are a degenerate form of cycle, any service which supports peer-to-
peerrelationships must be capable of handling cycles. The major impact of this is to
provide loop detection on operations which would otherwise go out of control. Both
trading andnaming services are examples of tkiisd of service.

However,some services may not be able to handle cycles effectively and will wish to
proscibe them. This probably covers peer-to-peer relationships, although that might be
an acceptable special case. An example of this might be the life cycle creation service,
where information about the current usage of the available resources must percolate up
the graph in order to make informed decisions, but the introduction of cycles would
make this information unclear @ven meaningless.

C.2 Policies

It is frequently necessary to configure the way in which operations are performed in
order to tune the performance, e.g how long a search operation may take, how many
matches can be returned, or how much memory to use for a cache.

Administration Summary of Life Cycle Service November 1996 6-53

6-54

The sameproblems exist in distrilted systems except that such courfagion

parameters must be explicitly passed around. Wiilerent administrative domains

are connected, such configuratioargmeters carot be enforced by one domain on the
other. Similarly, users may want to control the configuration but muptéeented

from hogging resources, engemory, disk space, etc. Some configuration elements
must beenforced, e.g disk quotas, some elements may specify defaults which can be
changed and some elements may be requests which may or may not clash with hard
limits e.g max memory per process.

Policies are used as a generic solution to this problem — wherever some kind of choice
needs to be made, policies may be used to guide the decision making process.

Table 6C-1 provides some examples of policies. which a federated service might
support.

Table 6C-1Example policies

Policy Name Meaning

search_algorithm determines whether the federation graph should be
traversed in a depth first or breadth first fashion.

cross_ boundaries determines whether administrative boundaries should be
crossed.

maximum_distance how far to traverse a graph before failing a request.

When invoking @eratians, clients can specify preferences farticular policies.
Providing the service has no value set for that policy, the preference will be simply
added to the policyidt for the duration of the request. However, if a service policy is
already specified then the preference will either be ignored opdligies such as
“maximum_distane”, the more constraining value will be adopted.

As a request traverses a graph, each node will pass its current policy set as preferences.
In this way, the autonomy of individual administrative domains is preserved.

When an object doesn't implement all choices of a policy, it should not allow its policy
to be modified to an unsupported value. This means that implementation limitations are
handled as Admistrativehard imits which provides the correct semantics.

Where no policy is specified by either administrator or clientjrtiementation
determines its own behavior. iWever, this @cision would not b@ropagated through
the graph (as a preference), leaving it to each node in the graph to make its own
decision.

CORBAservices: Common Object Services Specification

C.3 An Example LifeCycleService Module

Administrators access the administration functions via_tfeCycleServicenodule,
which defines th&ifeCycleServiceAdmiimterface. This example is intended to work
with the GenericFactory interface in the specification. As a result, the administration
functions cannot make use of compound names.

#include “LifeCycle.idl”
module LifeCycleService {

typedef sequence <Lifecycle::NameValuePair> PolicyList;

typedef sequence <Lifecycle::Key> Keys;

typedef sequence <Lifecycle::NameValuePair> PropertyList;
typedef sequence <Naming::NameComponent> NameComponents;

interface LifeCycleServiceAdmin {
attribute PolicyList policies;

void bind_generic_factory(
in Lifecycle::GenericFactory df,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)
raises (Naming::AlreadBound, Naming::InvalidName);

void unbind_generic_factory(
in Naming::NameComponent name)
raises (Naming::NotFound, Naming::InvalidName);

Lifecycle::GenericFactory resolve_generic_factory(

in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);

NameComponents list_generic_factories();
boolean match_service (in Lifecycle::GenericFactory f);
string get_hint();
void get_link_properties(

in Naming::NameComponent name,

out Keys key_set,

out PropertyList other_properties)
raises (Naming::NotFound, Naming::InvalidName);

b

Figure 6C-1 The LifeCycleService Module

Administration Summary of Life Cycle Service November 1996 6-55

6-56

C.3.1 The LifeCycleServiddmin Interface

The LifeCycleServiceAdmimterface provides the basic administration operations
required to enable the lifecycle service to be administered by a set of tools or an
administration serviceThe operations enable configuration of factories supporting the
GenericFactoryinterface into a graph and settingpaflicies for those factories.

bind_generic_factory

void bind_generic_factory(
in Lifecycle::GenericFactory df,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)
raises (Naming::AlreadBound, Naming::InvalidName);

This operation binds a factosupporting theGenericFactoryinterface into a graph.
The name must be unique within the context of the target of the operation. From then
on, that factory can bigentified by that name.

In order to make a good decision about which link to choose for a request, the node
needs to be provided with additiornaformation about those factories. This

information may be fairly dynamic, e.g. the current usage of the resources available
through the link, or more static, e.g. tkeys for which the link can provide support.

Thekey _set parameter is a list of the keys for which the factory can provide support.
In the case of an implementation specific factory, this list will often oalyetone
member.

The other_properties parameter can be used to provide other statipgrti@s
associated with the factory. For example, an “Architecturespgntg would indicate
the type(s) of machine which the factory could create objects on.

Changes to the static information aslias more dynamic informatiocen be

monitored through the Events service. Each factory would generate events whenever
the informationchangedsignificantly (e.g. a nevienericFactoryinterface with new

keys is bound to thfactory, or there is a change in the usage of resources available to
the factory) and these can then be passed to those factories which need to know.

unbind_generic_factory

void unbind_generic_factory(
in Naming::NameComponent name)
raises (Naming::NotFound, Naming::InvalidName);

This operation unbinds the generic factagntified by the name.

CORBAservices: Common Object Services Specification

resolve_generic_factory

Lifecycle::GenericFactory resolve_generic_factory(
in Naming::NameComponent name)
raises (Naming::NotFound, Naming::InvalidName);

This operation t&es the name supplied and returns the reference &dhericFactory
object.

list_generic_factories

NameComponents list_generic_factories();

This operation returns a list of the names of all the bound factories.

match_service

boolean match_service (in Lifecycle::GenericFactory f);

This operation returnsue if the generic factory interface is supported by the target.

get_hint

string get_hint();

This operation returns a hint associated with the targeBusikging a Map of a Graph
below.

get_link_properties

void get_link_properties(
in Naming::NameComponent name,
out Keys key_set,
out PropertyList other_properties)
raises (Naming::NotFound, Naming::InvalidName);

This operation returns tHeey set andother_properties associated with the
name.

Administration Summary of Life Cycle Service November 1996 6-57

6-58

Building a Map of a Graph

Administration tools may wish to build a map of a federagjoaph from scratch and
some of the operations above are provided for that purpose.

First of all, the tool must obtain the set of administration interfaces for all the factories
to be administered. These might be obtairredhfa number of sources, e.g. a well-
knowntrading context.

For each interface, thest_generic_factories operation obtains a list of all
the links for each node. Usirgsolve_generic_factory , a service interface
can be obtained for each link. These can then be matched to amsadation interface
usingmatch_service

Clearly, this does not scale well if there are many nodes involved because of the
average number of inwations ofmatch_service required. This problem can be
solved if one of thether_properties associated with each service interface is a
hint and a hint is available for eaelministration interface. If the hints are the same,
there may be a match amtatch_service is called to check. If the hints could be
guaranteed to be unambiguous, the invocation could be avoided altogether, but this
requires a global namespace for the hifitee best that can reasonably be achieved is
to reduce the chance of a clash tmiaimum.

Theget_hint andget_link_properties can be used for this purpose.

CORBAservices: Common Object Services Specification

Appendix 6D Support for PCTE Objects

Note —Appendix 6D is not part of the Life Cycle Services specification. This appendix
defines a set of critefissuitable for supporting PCTE objects.

It is intended that objects in a PCTE repository be among those difijaectsan be
managed thoughhis lifecycle interface. It is reasonable to expect that applications
written for PCTE will use the PCTE APIs to manage the life-cycle of PCTE objects. It
is also reasonable to expect that clients not specifically writterefationship-

oriented objects will not be able to manipulate the life-cycles of PCTE objects.
However, betweethese two, one can envisictients which desire to be flexible,

working on objects which may or may not be stored in the PCTE repository. One can
also envision object factories, constructed to make use of PCTE which provide services
to clients that are not PCTE applications because they do not have the appropriate
working schemas, etc.

Supportfor these clients employs a seriescofiventional interpretations of the
lifecycle operations. This appendix provides one ssathof conventions to
demonstrate the feidity of the use of tiese interfaces in a context supporting PCTE.

Object references appear innstraint expressions in the form of character strings. Any
implementation of PCTE as a CORBA Object Adapter has to estabieatnship
between these and the corresponding CORBA types, and be able to convert between
them.

D.1 Overview

A PCTE repositorycan be viewed as a generic factory. Using whatever naming or
trading services are appropriate, a client wishing to use the PCTE factory obtains an
object reference to it. To support the simpiplécations intending to operate within

the context of a single PCTE repository, the PCTE factory supports the operations
defined by both th&enericFactoryandFactoryFinderinterfaces. The client can then
invoke the PCTE factory'sreate_object operation, or pass the factory as the
“factory finder” when invoking the move or copyerations to move aropy within

the same PCTE repository. These clients include the servers implementimngube
andcopy operations for various PCTE objects as well.

5.PCTE details used here are from the PCTE AbsSpetification, StandafdCMA-149available from
the European Computer Manufacturers Association.

6.As defined in section 6.2.4 of the life cycle specification.

Supportfor PCTE Objects Summary of Life Cycle Service November 1996 6-59

6-60

Lifecycle creation, copy, and move operations are influenced by a sequence of criteria.
Criteria are specified as a sequence of name/value pairs. Gmitaiia are of interest
to the PCTE factories:

“logical location”

Thelogical location is used to express the logicahnectioninformation that must be
specified vhen creating or copying a PCTE object. Logical location is a sequence of
name/value pairs expressing a connection for the object. The PCTE factory supports
and requires two:

ORIGIN A sting representation of the reference to the object to which the
newly created object is to be connected.

ORIGINLINK The name otthe origin object’s link which is to hold the link
from the origin object to the newly created object.

“filter”

The fiter isused to express the fact that an object being created, copied, or moved
should reside on the same volume as some other, nearby, object. A filter is an
expression as described in B.3. For PCTE,térm “NEAR=" followed by anobject
reference to the designated nearby object indicates that the new object is to be located
at least as near as the same volume to the specified object. “authorizationighltho
omitted from table 1-4 because no proposal on authorization has yet been accepted by
OMG, this lifecycle criterion isequired to create PCTE objects.

D.2 Object Creation

The LifeCycle::GenericFactory::create_object operation in this
specification is borne by factory objects. It has two parameters:

1. a key used tadentify the desired object to be created and
2. a set of criteria expressed in an NVP-list.

The corresponding PCTE operatiorcaled OBJECT_CREATE. The parameters to
OBJECT_CREATE are obtained from the
LifeCycle::GenericFactory::create_object parameters.

The PCTEoperation OBJECT_CREATE has six parameters:

1. the type of object to be created This is the “key” fiafeCycle
create_object

2. the origin object of the relation anchoring the new object This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. the name of the link from that origin object to the new object This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. an optional key for that link This is the string idéatl as the nametLINKKEY”
of theinitialization criteria.

CORBAservices: Common Object Services Specification

6

5. an object near whose location the object is to be created Thisggittgevalue of
a required filter expression value by the qualifier “NEA

6. an access mask This is thteing identified ashe named “ACCESS” of the
authorization criteria This string is a simple mapping of thetgchand denied
access rights.

Exceptionsraised by PCTE armapped tosuitableLifeCycle exceptions.

D.3 Object Deletion

The LifeCycle::LifeCycleObject::remove operation in this specification is
borne byall life-cycle objects. Ihas no parameters.

The corresponding PCTE operatiorcaled OBJECT DELETE. The parameters to
OBJECT_DELETE are obtained from the object to be deleted using infornadutar
that object defined in PCTE’s schemdoinmation about the object.

The PCTEoperation OBJECT_DELETE has two parameters:
1. the origin object of a relation anchoring the object to be deleted and
2. the name of the link from that origin object to the object to be deleted.

To both ensure that the controlling object is actually deleted and maintain the PCTE
referential integrity constraints the following steps are performed for each reversible
link emanating from the controlling object:

1. Determine the object, o, that the link refers to.
2. Determine the name&prime., ofthe reverse link backom o.
3. Perform PCTE OBJECT_DELLHEE(o, r&prime.)

The objective is accomplished when all outgoing, reversible links have been dealt with
thus, or before that if one of the OBJECT_DELEd&#ls fails kecause the object has
already been deleted.

Exceptionsraised by PCTE armapped tosuitableLifeCycle exceptions.

D.4 Object Copying

The LifeCycle::LifeCycleObject::copy operation in this specification is
borne byall life-cycle objects. Ihas two parameters:

1. a factory-finder to assist in locating a factory that provides resources for the copied
object

2. a set of criteria expressed in an NVP-list

Supportfor PCTE Objects Summary of Life Cycle Service November 1996 6-61

6-62

The corresponding PCTE operation isl@ehlOBJECT_COPY. Some of the parameters
to OBJECT_COPYcan be obtainedirectly from theLifeCycle copy parameters.

Other requirednformation is obtained from the constraint expression parameter of the
LifeCycle copy.

The PCTEoperation OBJECT_COPY has six parameters:
1. the object to be copied This is the bearer object of LifeCycle oppyation.

2. the origin object of the relation anchoring the new object This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. the name of the link from that origin object to the new object This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. an optional key for that link This is the string idéatl as the nametLINKKEY”
of theinitialization criteria.

5. an object near whose location the object is to be created Thissgittgevalue of
a required filter expression value by the qualifier “NEA

6. an access mask This is thteing identified ashe named “ACCESS” of the
authorization criteria This string is a simple mapping of thextghand denied
access rights.

The semaimts of the copy operation corresponds to the PCEBETT COPY
semantics. They are based upon details of the object types involved, inckidaiy
attributes, links and destination objects are “duplicable”.

Exceptionsraised by PCTE armapped tosuitable CORBA standard exceptions.

D.5 Object Moving

The LifeCycle::LifeCycleObject::move operation in this specification is
borne byall life-cycle objects. Ihas two parameters:

1. a factory-finder to assist in locating a factory that provide resources for the moved
object

2. a set of criteria expressed in an NVP-list

The corresponding PCTE operatiorcaled OBJEQ_MOVE. Theparameters to
OBJECT_MOVE can be obtainatirectly from the LifeCycle copy parameters or from
defaults.

The PCTEoperation OBJECTMOVE has three parasters:
1. the object to be copied This is the bearer object of LifeCycle move operation.

2. an object near whose location the object is to be created Thisggittgevalue of
a required filter expression value by the qualifier “N&A

3. scope - whether to move the object itself or the objectlirits components

This will be defaulted to ATOMIC.

CORBAservices: Common Object Services Specification

	Life Cycle Service Specification
	6.1 Service Description
	6.1.1 Overview
	The problem of creation
	The problem of moving or copying an object
	The problem of operating on a graph of distributed...

	6.1.2 Organization of this Chapter
	6.1.3 Client’s Model of Object Life Cycle
	Client’s Model of Creation
	Client’s Model of Deleting an Object
	Client’s Model of Copying or Moving an Object

	6.1.4 Factory Finders
	Multiple Factory Finders

	6.1.5 Design Principles
	6.1.6 Resolution of Technical Issues

	6.2 The CosLifeCycle Module
	6.2.1 The LifeCycleObject Interface
	copy
	move
	remove

	6.2.2 The FactoryFinder Interface
	find_factories

	6.2.3 The GenericFactory Interface
	create_object
	supports

	6.2.4 Criteria
	“initialization”
	“filter”
	“logical location”
	“preferences”

	6.3 Implementing Factories
	6.3.1 Minimal Factories
	6.3.2 Administered Factories

	6.4 Target’s Use of Factories and Factory Finders
	6.5 Summary of Life Cycle Service
	6.5.1 Summary of Life Cycle Service Structure
	Creating a Compound Life Cycle Operation
	Applying the Copy Operation to a Graph of Related ...
	Applying the Move Operation to a Graph of Related ...
	Applying the Remove Operation to a Graph of Relate...
	Destroying the Compound Operation
	Copying a Node
	Moving a Node
	Removing a Node
	Getting the Node’s Life Cycle Object
	Copying a Role
	Moving a Role
	Getting a Propagation Value
	Copying the Relationship
	Moving the Relationship
	Getting a Propagation Value
	Create a Traversal Criteria Based on Life Cycle Pr...
	bind_generic_factory
	unbind_generic_factory
	resolve_generic_factory
	list_generic_factories
	match_service
	get_hint
	get_link_properties
	Building a Map of a Graph
	“logical location”
	“filter”

