
Licensing Service Specification 12
rs

.
mon
vided

lica-
n-

s for

on-

ents.

cy.

ns-

nsing

r busi-
12.1 Background On Existing License Management Products

This section, “Background on Existing License Management Products,” is for reade
who are unfamiliar with the management of software licenses. It provides an overview of
licensing and addresses issues that must be faced in developing and selecting a license
management system.

Application suppliers need methods for controlling the access to and use of their products
In most cases, this is necessary to ensure fair compensation for use. The most com
control method used by software suppliers is licensing, where the license can be pro
through technical (software- or hardware-based) or contractual means. While contractual
licensing is a viable option, it does not provide the same level of control as technical
licensing, which uses hardware or software tools to control licensing. Therefore, app
tion suppliers continue to require technical licensing methods to complement legal co
tracts.

Along with the expanding need for technical licensing, there are specific requirement
licensing that must change to reflect today's computing environments. Traditional licens-
ing methods (nodelocked licensing and site licensing) evolved from computing envir
ments of the past, specifically timesharing systems and stand-alone systems such as PCs
and workstations. These older licensing methods are insufficient for current environm

While today’s computing environments provide significant advantages for application
suppliers and end users, they also present opportunities. It is apparent that softwareand
hardware resources can be managed on a network-wide basis for maximum efficien
However, the resulting requirement for network-wide license sharing is less apparent. The
traditional licensing methods (expensive site licensing and inflexible nodelocked lice
ing) do not complement today’s fleixible and efficient computing environments.

Given these realities, sophisticated technical licensing tools are required. These lice
tools are important to all constituents in the market: application suppliers; hardware ven-
dors; and application users. Software suppliers need a licensing tool to support thei
CORBAservices: Common Object Services Specification 12-1

12

ort
their

ust

t, it

nge

fers
age

g
ng

nli-

a-
a sin-
ness and pricing models. Hardware vendors embed and offer the technology to supp
software developers and end users, and act themselves as application suppliers for
internally developed applications. End users interact with licensing technologies when
they use, manage, and pay for software applications.

12.1.1 Business Policy

In the development and selection of software licensing systems, the licensing system m
not impose its business practices on users. The software license is, in effect, a contract
between suppliers and customers that establishes a business relationhip between them.
Because a software licensing system plays an important role in regulating this contrac
must provide mechanisms to implement the flexible business practices that suppliersneed
to deal with a diverse customer base.

One danger in developing a licensing system is that it could reflect the business practices
of the developing organization. This is sometimes the case when a licensing system is
developed for internal use in a large organization and then offered for general use. A
licensing system may work for one company, but will probably not address a wide ra
of business policies and practices. Often this problem manifests itself in subtle ways.

12.1.2 License Types

If not fully considered beforehand, it is possible to construct a software licensing
scheme that forces the software suppliers and end users into a limited model of
software licensing. If a licensing system offers only limited license types and/or of
few options for applying them, software suppliers are limited in the way they man
business relationships with their software customers.

Because software licensing touches many aspects of a relationship with a customer,
including upgrades, support, enhancements, and follow-on purchases, a licensin
system must provide a wide range of license options and many options for applyi
them. Software suppliers—not licensing system developers—must choose which
licensing options they want to use.

The options allowed within various license types are also critical to ensure that application
suppliers have all the capabilities necessary to establish the business relationship they
desire with their customers. Capabilities such as allowing a grace period to provide u
censed users access to the software for a limited period may be critical in retaining the
goodwill of a large and influential customer. Other licensing features include selective
user inclusion or exclusion lists; reserved licensing (to ensure that a license is always
available to high-priority users); and multi-use rules that allow multiple use of an applic
tion with a single license. In addition, different license types can be used together in
gle application. This ensures that the supplier, not the licensing system, determines
business policies.
12-2 CORBAservices: Common Object Services Specification

12

tation

l way

 they

e

 of a

e com-
urrent

d
rporate

 its
be

ve

nd-
r

ast.
-

12.1.3 A History of License Types

Providing a wide-ranging portfolio of license types ensures that application suppliers are
able to conduct business and arrange business policies as they deem appropriate.

Nodelocked licenses (which evolved from timesharing) allow a software product to be
used at the single node for which the license was created. As the stand-alone works
market grew, new licensing models were required. Major workstations users, such as
insurance companies, banks, and industrial corporations, needing a more economica
to purchase software, demanded that application suppliers offer a business model that
would provide unlimited use at a given site. That need gave rise to site licensing.

Site licensing often resulted in dissatisfaction of both suppliers and customers. Suppliers
were asked to assess a price for usage they did not fully understand. They often felt
were being asked to discount their future revenue too deeply. Customers felt that the site
license fees were excessive and made them pay for usage that might not occur in th
future.

As networks of computers developed, system vendors began to introduce the notion
concurrent use license. Concurrent use licenses define the number of users allowed to
access an application at a given time. These licenses are allowed to “float” around the net-
work, temporarily appropriated by users as applications are invoked, then returned to the
license repository when an application is terminated. Concurrent use licensing allows end
users to purchase licenses to match their usage and allows software providers to b
pensated for use of their products. Additionally, end users can easily add more conc
licenses as needed.

12.1.4 Asset Management

Licenses protect expensive corporate assets. Since licenses exist only as data they are
harder to secure than a server or workstation, but every bit as important to control an
manage. Control helps ensure that licenses are used in a manner which supports co
goals, such as improving compliance with paper software license contracts and reducing
exposure to legal action. This helps keep the corporation out of court and enhances
relationship with its software suppliers. Large corporate software purchasers want to
treated as equal partners with their suppliers; licensing makes this easier.

Managing both existing and new licenses maximizes their value. Old licenses might need
to be redeployed as projects and budgets change. If the license administrator can keep
track of software licenses, know which licenses are and are not being used, and can mo
them to where they are needed, corporate waste will be reduced and productivity
improved.

Similarly, if a corporation has software usage metrics, it has a strong basis for understa
ing future needs. These metrics permit a corporation to purchase licenses in bulk at lowe
prices with the confidence that they are not over or under buying.

A corporation can also measure whether they have over or under purchased in the p
An important metric is the "shelfware" measure. How much software was purchased (per
Licensing Service: v1.0 Background On Existing License Management Products March 199612-3

12

case?

ight

g the

er try
s-
w

ither

ands

t

 A
haps as unused components of "suites" of software) that never leaves the user's book
Reducing such waste is a major incentive for software customers to use automated soft-
ware licensing and asset management.

12.1.5 License Usage Practices

Application suppliers can implement one or more of the license types in their software
products. An application can be programmed to require multiple license types, to allow
the supplier to sell the product in different ways to different customers.

An ideal licensing system should be transparent to end users. For example, a user m
invoke an application, which makes calls to a licensing library. Then, the library function
locates a server with a valid license. Assuming that a valid license is available and that
person is authorized to use the license, a grant is returned to the application, allowin
program to execute, all completely transparent to the end user.

If no licenses are immediately available, the application developer can program the soft-
ware to respond in a variety of ways. The application can automatically put the user on a
wait queue, query the user as to the course of action to take, recommend that the us
again later, or grant permission to run anyway. (The developer can choose to grant permi
sion to run without a license if, for example, there is a “grace period” instituted to allo
for a smooth transition to a network licensing model.) If all licenses are temporarily
checked out and users go on a wait queue, the next available license can be granted
according to user priority settings defined at the end user site.

These choices and how they are implemented comprise the policy a software provider
chooses as a business model. Policy can be further broken into two components: fixed and
variable. Fixed components are coded into the application and determine things such as
what license types are permitted; whether multiple use rules apply to the application; or if
a grace period will be extended when a license is not available. Variable components are
defined externally to the client application and include such things as external definition
of the hours a product may be used, or an external list of people allowed to use it. E
list may be producer- or end user-created.

12.1.6 Scalability

Some networks are small, consisting of just a few nodes, while others grow to thous
of machines. Typically, large user communities on large networks demand licensed appli-
cations from many different vendors. A licensing system and its runtime environmen
must, therefore, scale well to the network and all its software.

12.1.7 Reliability

Sometimes, an application obtains a license from a license server and never returns it.
licensing system must be designed to prevent licenses from being stranded and to prevent
other client-server breakdowns.
12-4 CORBAservices: Common Object Services Specification

12

use

k-in.

e

 are its

-

 the

 and

l and
co-

ake
i-
ified
alue

Breakdowns occur for several reasons. The application or server could abort, or the net-
work could become partitioned between the application and server. These situations could
arise unintentionally or maliciously (for example, in an attempt to gain unauthorized
of an application). Any design must make careful trade-offs between license availability
and security enforcement. All designs require a scheme to detect breakdowns.

Generally, there are two detection methods: continuous detection or occasional chec
Continuous detection methods ensure that while a license is in use by an application, the
application and server are both continuously aware of each other's existence and ar
immediately notified of a breakdown. These schemes are typically implemented by using
a connection protocol such as a port. The main advantages of a continuous scheme
directness, immediacy, and simplicity. The main disadvantage is its negative impact on
network performance. If a redundant server high availability model is employed, then con-
tinuous connections need to be maintained between the application and each of the serv
ers, thereby multiplying network traffic.

Occasional detection provides a method for the application to check in with the server
periodically before some time out has occurred. The breakdown is identified either by
server (if the time out occurs), or by the application (if the check-in is unsuccessful). This
method is very scalable and has a negligible impact on performance. The application sup-
plier should be able to adjust the time-out to allow trade-offs between higher security
higher availability.

Additionally, the occasional detection model is very tolerant of momentary interruptions
on the network. Continuous detection is not tolerant of such interruptions. Lost connec-
tions between the client and the server in a system using continuous detection causes a
breakdown or program termination.

Application suppliers will want to determine for themselves which action to take in the
case of a client-server breakdown. Some may want more strict enforcement and choose to
terminate an application; others might choose to display a polite message and allow the
application to continue.

12.1.8 Legacy Applications

Managing a business relationship with a minimum of disruption includes the ability to
accommodate existing customer applications within the scope of the licensing system.
This must be done without requiring access to or modification of the application's source
code, as the apparently simple solution of modifying source code may not always be avail-
able. Consider the personal computer, for which there are tens of thousands of smal
inexpensive applications. Modifying the sources of all these applications would be an e
nomically unacceptable approach even if the source code were available.

Software suppliers are eagerly awaiting an integrated licensing technology that will t
existing “shrink-wrapped” applications and enhance them to function in a licensed env
ronment. It may not be possible to provide a security fence as high as a source-mod
application, but the level of license security could be made commensurate with the v
of the application and well beyond the economic justification for attempting to defeat the
security.
Licensing Service: v1.0 Background On Existing License Management Products March 199612-5

12

ring;
ust

 to

 com-
that

urity,

ssed,

g the

e

to
cili-
ing

reby
12.1.9 Security

Until recently, licensing systems were required to enforce only simple, single-system
application use. Security infractions caused few implications. Today, security require-
ments must be designed to operate in more complex networks.

The distributed computing networks in use today are designed for easy resource sha
demand more complex licensing models (presenting new security challenges); and m
support mass distribution of software (on compact disk, for example). A supplier's ability
to ship trial copies of applications relies heavily on the security of the licensing system
ensure that prospective customers do not transgress the intended use permissions. An
application supplier must also rely on the licensing system’s security when it ships a
plete set of applications to its entire installed base: the licensing system must ensure
only the purchased applications are used.

Each application supplier has a different security need. Each will want to choose from a
spectrum of trade-offs, such as security versus availability, and effect of breach versus
development effort. A licensing system should not dictate one particular level of security,
but should allow application suppliers to choose the security level appropriate for their
business needs.

12.1.10 Client/Server Authentication

A secure licensing system should address the possibility of someone attempting to create
an impostor license server (an imposter server always grants licenses). Without sec
an impostor could be established by eavesdropping on valid client-server communication
and then mimicking the license grant protocol. Impostor clients should also be addre
since a successful impostor client could disrupt legitimate license activities by artificially
returning a license to the license server when it is actually still in use, thereby makin
returned license available for other users.

12.1.11 Example: Application Acquiring and Releasing a Concurrent Licens

This section contains an example of how an application might interact with one of the var-
ious license management products that exist today.

In a system that uses concurrenct licensing, end users at their workstations and PCs see no
change in their normal working routine. They start applications as they normally would.
The application has calls to the license library that transparently go over the network
request a license for the application. Using transport-specific naming and location fa
ties, a server holding a valid license is located and a “yes” is returned to the request
application.

The application need not be downloaded over the network to the workstation each time the
application is invoked. The application, once loaded, remains at the workstation as it nor-
mally would. Only a request for a license and a return grant go over the network, the
providing a rapid response time that is virtually unnoticed by users.
12-6 CORBAservices: Common Object Services Specification

12

r
-
nse
 of
er

cens-
When end users close an application, the license is “returned” to the server. The server
then can make this license available for other requests as they come in.

Administration and reporting tools act as clients to the license server, tapping into serve
databases and log files to access the stored information. The license servers, though imple
mented as multiple physical servers, operate as a single repository managing all lice
activity for the network. This single, “logical” server handles licenses for any number
vendors, for any number of products, with any number of product versions. The serv
also handles any number of clients making requests for its facilities, thereby automatically
scaling to accommodate increases in the number of users, machines, applications, and
licenses.

12.2 Service Description

Licensing Service terms are defined in Appendix A.

12.2.1 Overview

Figure 12-1 Licensing Service Relationships

The Licensing Service provides a mechanism for producers to control the use of their
intellectual property in a manner determined by their business and customer needs. In
Figure 12-1, the Licensing Service Manager, Producer Licensing Service, and the Li
ing System are shown as three distinct objects. Implementations of the Licensing Service

Implementation

Licensing
System

Cos Producer

Service

Service
Manager

Producer
Client

Cos License

Producer
Policy

License
Doc

LicenseLi
Licensing Service: v1.0 Service Description March 1996 12-7

12

d

s. A

s

rds
 to
um

tem

to
iate,
may differ. The dotted line indicates components that depend on the implementation
design and are addressed in terms of an example solution. Components outside the dotte
line are addressed in this chapter.

12.2.2 Key Components of a Licensing System

License Attributes

To implement controls, the Licensing Service needs a set of fundamental attribute
license can be thought of as having three dimensions of attributes:

Time includes, but is not limited to the attribute of Expiration/Duration. All license
should be able to have start/duration and expiration dates.

Value Mapping includes, but is not limited to, the following attributes:

• A unit is a quantity that can be used by policy mechanisms.

• Allocative. Use of an license with an allocative attribute removes it from the pool
of available allocative licenses for a given product until it is returned. This is
traditionally known as concurrent use licensing.

• Consumptive. Use of a license with a consumptive attribute permanently reco
its use. This can be used to provide metering capability. It can also be used
implement a “grace period” via the use of overflow licenses when the maxim
number of allowed concurrent licenses has been met.

Consumer includes, but is not limited to, the following attributes:

• Assignment or Reservation. All licenses should be able to be assigned to or
reserved for a specific entity or collection of entities. The definition of what an
entity may be is implementation-specific. One example is where an entity is
defined to be a specific user and a collection of entities is a specific organization
comprised of a collection of specific users. Other examples of what an entity
might be include a specific machine or collection of machines, a specific sys
resource or resource collection, such as printers and adapters.

Licensing Policy

The Licensing Service allows the license attributes to be combined and derived from
form any policy deemed necessary. This allows the producer and, where appropr
the end user administrators to control product use to fit their business environmenst.

The following derived attributes are representative examples of those that can be used for
a flexible policy implementation:

• Time windows

• Value

• Use by a collection of related objects

• Postage meter

• Gas meter
12-8 CORBAservices: Common Object Services Specification

12

a

tual
t use
l
 the
s of
c
any

he

ture

ently
ver

Time Windows

It may be necessary for some policies to constrain the time periods within which
particular license unit may be used. A time window attribute can be derived from the
expiration/duration attribute.

Value

 A Producer can define, as part of their Producer Policy, the mapping between ac
use of their intellectual property and the way license units are associated with tha
in the Licensing System. A simplistic example might be where a single unit of contro
represents a single active implementation of a given object with no constraints on
number of instances. A more complex example may be where the number of unit
control required may be calculated to satisfy a combination of requirements: a specifi
machine size where an implementation is active, how many instances, and how m
method activations are allowed in parallel.

Use By a Collection of Related Objects

The definition of granularity is very broad. In an OMA-compliant system, the
Licensing Service will allow control from the fine grain of a method activation to t
coarse grain control of a suite of objects acting together in a relationship to represent
an application. The relationship may be defined with the Relationship Service, a fu
Collection Service or any other Service providing relational capability for objects. The
Producer Policy can discover all theseobjects according to the implementation.

Postage Meter

Derived from consumptive, use of a license with a postage meter attribute perman
removes it from the pool of available licenses. The total number of licenses is ne
less than zero (0) for any product.

Gas Meter

Derived from consumptive, use of a license with a gas meter attribute adds to the pool
of consumed licenses. The total number of licenses is initialized to 0.

Examples of how these attributes can be used in license policy are as follows:

• An end user administrator could be empowered by the Licensing Service to
combine assignment and time constraints on installed license units to constrain
the use of certain products to a set of individuals outside of the normal work
week.

• A producer could provide a personal use license by combining an allocative
attribute with an assignment attribute to an individual with a unit attribute of 1.

• A producer could enhance the previous example by allowing end user
administrators to reassign the license to a particular group.
Licensing Service: v1.0 Service Description March 1996 12-9

12

ns-

ro-

s the

will
of the

ticular

r

f

t is

f

es

n
ct
Interfaces Isolated From Business Policies

The Licensing Service interfaces are isolated from policy issues. The client interface only
delivers notification that a producer wants some or all of the producer’s intellectual prop-
erty to be controlled reliably and securely. Once the notification is made, the Licensing
Service can identify the appropriate policy.

For example, consider a producer who wants to restrict the activation of a particular
method to a certain simultaneous number of users. The producer need only tell the Lice
ing Service interface to indicate that a method has been activated and who activated it.
When the method activation is complete, an indication must be sent that the use is done.
The LS can then, in an implementation-specific way, determine if a producer-defined limit
has been met. The Licensing Service can notify the object, telling it what to do if a p
ducer policy is activated from overuse or another condition. The Producer can still over-
ride a generic policy with an alternate behavior for a particular Producer Client , since
policy responses are inside the Client implementation.

A Producer Policy implementation requires the use of other object services such a
Relationship and Property Services. As other services are defined, producer policy
implementations will broaden to use them. The producer client might change to
address any new producer policy, but the underlying Licensing Service interface
not require change. These services can be used to find out about objects outside
objects themselves.

For example, consider the Relationship Service. If producers choose to license a par
set of their objects that are related in a manner defined by the relationship service, the pro-
ducer policy implementation can obtain relationship information using the relationship
service. The objects involved need to have no special knowledge about their relationships
to one another other than that required to conspire together in the relation to achieve thei
desired functionality. Mechanisms provided to support this by an particular implementa-
tion will vary. One implementation may choose to support this using a document style o
policy delivery, others may support producer policy object implementation. This can not
be defined or restricted by the Licensing Service client interface.

A mechanism for license document delivery is not defined in the Licensing Service: i
implementation-specific.

12.2.3 Licensing in the CORBA Environment

Licensing in the CORBA world faces many issues. The provision of services by
objects in the ORB environment must allow for service producers to control use o
their intellectual property according to their business models.

Constraint of use must range from strict control to benign monitoring of intellectual
property. Strict control might allow only a specific number or combination of servic
to be used. Benign monitoring mechanisms might allow service use without constraint,
but would track usage for later examination.

If producers require strict control, they will also require assurance that the informatio
provided by their licensing mechanism is secure. It would be pointless to choose stri
12-10 CORBAservices: Common Object Services Specification

12

lli-

icy.

ll

rs

licies

g
olicy.

cer’s

r is a

 and
 Ser-

ppli-
ing

control if it were a trivial matter to replace some component within the ORB which nu
fied strict control enforcement without the producers’ services being aware of it. The level
of trust in the Licensing Service must meet the producer’s chosen enforcement pol
For example, suppose a producer has selected a policy that allows use of his object service
by an end user without constraint, but the policy requires the Licensing Service to log a
service usage so a monthly post-facto charge can be made for use of the service. This
capability is of limited use if the Licensing Service’s logging mechanism allows end use
to illicitly modify the logs to show low usage.

To enable usage control, there must be a mechanism that provides the end user with
appropriate authorization. This authorization is usually conveyed as a text string that can
be thought of as a License Document. The size of this document may vary from a few tens
of characters to a few thousand characters depending on the functionality provided by the
underlying Licensing Service. The content of the document must be protected by an
implementation-specific mechanism.

To support a wide variety of business models, producers require usage constraint po
(producer policies) that can vary for end user conditions. For example, a producer might
deliver a demonstration of a client service that allows unlimited use of the service durin
the demonstration period, but upon purchase requires a strict usage enforcement p
The enforcement policy may need to be varied depending on customer needs. A large cus-
tomer may negotiate a post-sale period where analysis of use is supported by benign mon-
itoring and later moved to strict enforcement. Interfaces to the Licensing Service allow
this and many other varieties of usage controls without requiring changes to the produ
fundamental product.

The ability for an end user to apply constraints beyond those specified by a produce
well-recognized benefit to the end user. The capability in this area will vary across imple-
mentations of the Licensing Service.

Because we live in a dynamic economic environment, a producer’s policies must be easily
changed. The best approach for a Licensing Service specification is to separate the “I
want to be controlled!” requirements of the application or service from the “how am I to
be controlled?” requirements of the policy that have to deal with all of the exceptions
producer business practices. This separation enables a producer to choose a Licensing
vice implementation based on considerations of how well a specific Licensing Service
supports the producer’s business practices, as instantiated by the producer policies.

The interface to the Licensing Service accomplishes this by allowing the controlled a
cations or services to notify the Licensing Service of its wish to be controlled specify
how the enforcement is to be performed.

Administration and policy issues are not addressed in detail by the Licensing Service
interface; instead, they are left to implementors. End users need to control their own inter-
face and reporting capabilities. The ability of the underlying Licensing Service to generate
management reports, both of historical and snapshot-of-time usage, will vary widely
depending on the implementation. The administrative interfaces for the Licensing Ser-
vices include command line only, GUI only, and combined GUI and command line. An
administrative interface would affect the ability of end users to manage their environments
as they choose, so it is not defined by the Licensing Service.
Licensing Service: v1.0 Service Description March 1996 12-11

12

 LS

o the
ce is

t can

ince,
ment.
the

.

 are

a very

ng

ion-

hosen
12.2.4 Design Principles

The design of the Licensing Service interface satisfies the following principles:

Neutrality. The Licensing Service should not introduce any constraint on the way a
Producer can use the interfaces because of some underlying dependency on the
implementation. Producers need to be able to choose Licensing Service
implementations that allow them to deliver their products in a manner best suited t
individual Producer's business needs without requirements on the way the interfa
used. It is expected that LS implementations will allow many Producer Client objects
to reference a single instance of the associated ProducerSpecificLicenseService
interface to reduce the overhead of object creation.

Extensibility. The Licensing Service allows for extensions to support styles of
Producer Policies that are not currently obvious. The Licensing Service provides
extensibility in its object reference in the returned Action structure in the check-
use operation. This allows implementation-specific extensions to the notification
mechanism. The interface can also be extended by adding additional arguments and/or
operations; for example, in support of the Security Service.

Security. The Licensing Service provides a mechanism such that a degree of trus
be established between the users of the interface (the Producers) and the underlying
license management system. This is different from a typical secure environment s
the Producer does not usually trust the end user or the end user security environ
A mechanism is provided to allow the Producer to authenticate, in real time, that
underlying license management system is a legitimate provider of the Licensing
Service. End user administration can not circumvent this authenticating mechanism

Performance. Implementations of the Licensing Service may choose to optimize
performance by the manner in which Producer Specific Licensing Service objects
managed. For example, an implementation could choose to allow multiple copies of a
Producer Specific Licensing Service to distribute client operations.

The Licensing Service mechanisms must allow both synchronous and asynchronous
messages so a producer can decide what is best for its application. For example,
short duration method activation may well be best suited, for performance reasons, to
using asynchronous meechanisms. On the other hand, if producers want to be
extremely strict, they might choose synchronous messages to prevent misuse and
accept the resulting loss of performance.

The Licensing Service provides mechanisms so that an application using the Licensi
Service cannot accidentally orphan a license by acquiring an allocative style of license
and never releasing when an application fails. Current mechanisms include connect
oriented, client-server communications; client-server heartbeat mechanisms; and
server-based, client status query mechanisms. Keep in mind that the mechanism c
may place a performance burden on the producer client.
12-12 CORBAservices: Common Object Services Specification

12

es

te

rted
s to

force

es

ent

ion
12.2.5 Licensing Service Interfaces

The Licensing Service defines the interface between the Producer Client and the
Licensing Service Manager (LicenseServiceManager interface) and the interface
between the Producer Client and the Producer Licensing Service
(ProducerSpecificLicenseService interface). The interfaces enable Producers to control
use of their intellectual property in any manner they deem appropriate for their
business model. The isolation of policy from the Licensing Service interfaces enhanc
Producer flexibility. The interfaces for administration, policy creation, and license
document creation are not addressed, because they are implementation-specific.

The LicenseServiceManager interface provides a mechanism for the Producer to loca
an object supporting the second interface, ProducerSpecificLicenseService. All of the
operations required to constrain use of producers’ intellectual property are suppo
by the second interface. This design allows the implementors of Licensing Service
make trade-offs such as those between client performance, licensing system
performance, and ease of administration.

Once a Producer Client implementation has obtained a ProducerSpecificLicenseService
object reference, the three operations (start_use, end_use, check_use) can be
performed on this interface within the Client where the Producer deems it correct. The
information returned from these operations provides the basis for the Producer to en
its chosen usage constraint policy.

Interfaces are Mandatory

All the interfaces are mandatory for all implementations. Optional arguments exist in
the LicenseServiceManager interface. For the check_use operation the
ProducerNotification component of the returned Action can be a nil object reference
indicating that the implementation does not support this kind of notification
mechanism. In the start_use operation the call_back argument can be a nil object
reference indicating that the Producer client implementation is not using event servic
and is designed to operate in a poll only mode. The properties argument to
start_use , check_use , and end_use can be nil.

Constraints on Object Behavior

The Licensing Service interface assumes the provision of an Event Service (the Ev
Service is specified in Chapter 4 in this manual. If an Event Service implementation
supports true asynchronous events—where delivery of an event can interrupt an
object’s task to invoke the push operation—then the Producer Client implementat
must manage its internal state in a re-entrant world.
Licensing Service: v1.0 Service Description March 1996 12-13

12

t

u-
Figure 12-2 Licensing Service Instance Diagram

In Figure 12-2, the Producer Client performs the operation
obtain_producer_specific_license_service on the LicenseServiceMan-
ager interface (Step 1). The Licensing Service Manager implementation creates an objec
(Steps 2 and 3) or locates an object reference to an object who has an interface Producer-
SpecificLicenseService and who is capable of responding to the particular producer chal-
lenge. It then returns the reference to the Producer Client (Step 4). The producer client
now uses the reference to perform the operations start_use, check_use, and
end_use (Steps 5 & 6). In implementations that support true asynchronous events, the
ProducerSpecificLicenseService object can asynchronously perform the push operation
using the reference to the interface in the Producer Client provided as one of the arg
ments to the start_use operation in a previous step (in Step 5).

12.2.6 Licensing Event Trace Diagram

Figure 12-3 on page 12-16 represents the flow of events through Producer Client objects
and a Licensing Service implementation. The steps below are illustrated in the diagram.

1. Producer Client gets an object reference to the Producer Specific Licensing Service.

Licensing
System

Cos Producer

 Service

 Service
 Manager

Producer
Client

Cos License

Producer
Policy

License
Doc

1

4

6
5

3

2
 License
12-14 CORBAservices: Common Object Services Specification

12

e

ks for

l is

-

2. Producer Client determines that usage control is required and performs the
start_use operation.

3. Producer Client does an intial check_use c all to retrieve the initial
recommended_check_interval.

4. Producer Specific Licensing Service instance interprets policy and interacts with th
Licensing System as necessary.

5. If asynchronous events are supported, the Producer Specific Licensing Service as
event notification to the particular Producer Client at an interval determined by Pol-
icy.(See page 35 for information on asynchronous events).

6. Event Service delivers the event to the Producer Client.

7. Producer Client responds to the event by performing the check_use operation.

Steps 4,5,6,7 are repeated until the Producer Client instance indicates that usage contro
no longer necessary.

8. Producer Client performs the end_use operation when usage control is to be termi
nated.

If asynchronous events are not supported, the Client implementation will need to “poll”
the Producer Specific Licensing Service with the check_use operation at an interval
defined by the check_interval argument to the check_use operation. To initially
retrieve this check_interval value, the Client will need to invoke a check_use immedi-
ately after the start_use call.
Licensing Service: v1.0 Service Description March 1996 12-15

12

Figure 12-3 Licensing Event Trace Diagram

12.3 The CosLicensing Module

The CosLicensing module is a collection of interfaces that together define the
Licensing Service. The module contains two interfaces:

Client License Producer
Specific

License
Manager

Event
Service

1

2

5
6

7

4

5
6

8

1-obtain_producer_specific_license_service
2- start_use

4- inquiry to the Licensing System
5- ask for event notification
6- event notification
7- check_use
8- end_use

License
Service

Service
Manager

4

3

3. Initial check_use
12-16 CORBAservices: Common Object Services Specification

12
The LicenseServiceManager interface consisting of the following operation:

• obtain_producer_specific_license_service

The ProducerSpecificLicenseService interface consisting of the following operations:

• start_use

• check_use

• end_use

This section describes the LicenseServiceManager and ProducerSpecificLicenseService
interfaces and their operations.

The CosLicensing module is shown below. Note that this module definition uses some
definitions from the CosEventComm module (in the Event Service) and the CosProperty-
Service module (in the Property Service).

#include “CosEventComm.idl”
#include “CosPropertyService.idl”

Module CosLicensingManager {
 exception InvalidProducer{};
 exception InvalidParameter{};
 exception ComponentNotRegistered{};

typedef Object ProducerSpecificNotification;

enum ActionRequired { continue, terminate};

enum Answer { yes, no };

struct Action {
 ActionRequired action ;
 Answer notification_required ;
 Answer wait_for_user_confirmation_after_notification ;
 unsigned long notification_duration;
 ProducerSpecificNotification producer_notification;
 string notification_text;
};

struct ChallengeData {
 unsigned long challenge_index;
 unsigned long random_number;
 string digest;

};

struct Challenge {
 enum challenge_protocol { default, producer_defined };
 unsigned long challenge_data_size;
 any challenge_data;

};

Figure 12-4 CosLicensingManager Module
Licensing Service: v1.0 The CosLicensing Module March 1996 12-17

12
typedef any LicenseHandle;

interface ProducerSpecificLicenseService {

 readonly attribute string producer_contact_info
 readonly attribute string
producer_specific_license_service_info

 LicenseHandle start_use (
 in Principle principle,
 in string component_name,
 in string component_version,
 inProperty::PropertySet license_use_context,
 CosEventComm::PushConsumer call_back,
 inout Challenge challenge
)

 raises (InvalidParameter, ComponentNotRegistered);

 void check_use (
 in LicenseHandle handle,

 in Property::PropertySet
license_use_context,
 out unsigned long recommended_check_interval,
 out Action action_to_be_taken,
 inout Challenge challenge
)

 raises (InvalidParameter);

 void end_use (
 in LicenseHandle handle,
 Property::PropertySet license_use_context,
 inout Challenge challenge
)

 raises (InvalidParameter);

};

interface LicenseServiceManager {
 ProducerSpecificLicenseService

obtain_producer_specific_license_service (
 in string producer_name,
 inout Challenge challenge
)

 raises (InvalidProducer, InvalidParameter };
 };
};

#include “CosEventComm.idl”

Figure 12-4 CosLicensingManager Module
12-18 CORBAservices: Common Object Services Specification

12

e
uiring

at

Table 12-1Exceptions Raised by Licensing Service Operations

12.3.1 LicenseServiceManager Interface

The LicenseServiceManager interface defines a single operation: obtaining the
producer specific Licensing Service object.

The LicenseServiceManager interface allows a producer to control the use of their
intellectual property. The
obtain_producer_specific_license_service opera tion returns an
object reference that supports the ProducerSpecificLicenseService interface. This
operation is protected by the use of a producer challenge.

It is likely that implementations of the License ServiceManager will make use of other
Object Services, such as Life Cycle, to create a producer-specific instance of the
Licensing Service. The Life Cycle Service is not used directly in order to allow th
service implementation to cache object references for performance reasons. Req
instance creation on every use of the
obtain_producer_specific_license_service operation is not desirable,
but can be allowed in a particular implementation.

The operation obtain_producer_specific_license_service raises the
InvalidProducer and InvalidParameter exceptions.

12.3.2 ProducerSpecificLicenseService Interface

The ProducerSpecificLicenseService interface defines three operations: notification
that a product has started to be used, notification that a product is still in use, and
notification that a product has finished being used.

Any object that possesses an object reference that supports the ProducerSpecific
LicenseService interface and is capable of satisfying the challenge for that particular
instance of the ProducerSpecificLicenseService interface can perform the following
operations:

Exception Raised Description

 InvalidProducer Indicates that the producer argument is not correct or th
an appropriate producer cannot be found.

 InvalidParameter Indicates that one of the parameters is invalid. No
additional detail is provided in this document since this will
include a failed challenge. Additional information could
assist if someone wanted to make a deliberate attempt to
work out the challenge of a producer.

 ComponentNotRegistered Indicates that the specific component has not been
registered with the Licensing System.
Licensing Service: v1.0 The CosLicensing Module March 1996 12-19

12

g
sing

e

llow

er to

-

t

.
• The start_use operation which allows producers to notify the License
Service that some aspect of their product has started to be used and is to be
controlled by the service.

• The check_use operation which allows the producers to notify the Licensin
Service that some aspect of their product that previously notified the service u
a start_use operation is still in use.

• The end_use operation which allows the producers to notify the Licensing
Service that an aspect of their product, previouslynotified to the service in th
start_use operation, has completed its use.

All of the previously listed operations are protected by a challenge mechanism to a
a producer to be satisfied that the instance of the Licensing ServiceManager is a
legitimate one to control the producer’s intellectual property.

The attribute producer_contact_info may be used to provide information that can be
displayed to an end user. The attribute producer_specific_license_service_info can be
used, if necessary, for a Producer Client to alter the way it interacts with different
ProducerSpecificLicenseService objects. These attributes are defined at creation of the
ProducerSpecificLicenseService instance and do not change during the instance’s life.

The start_use, check_use and end_use capture and propagate information about the
user's runtime context to the Licensing Service via the license_use_context parameter.
This information will typically include the user's name, their node's name, network
address, local time, and so on. This information can then be used by the License
System for a variety of purposes:

• In an access control mechanism to determine whether or not to allow the us
continue.

• In a private, possibly secure, usage logging mechanism.

• To provide data for peripheral management functions, such as triggering an email
message to the network administrator when resources run out.

The operations start_use, check_use , and end_use raise the InvalidParameter
exception.

The action_to_be_taken output parameter in the check_use operation is used to
give the ProducerClient information on actions to be taken as a result of its request to be
active or running. The following describes the Action structure in more detail. Note tha
only the action field must be specified. All other fields can return a value of NULL in
which case behavior is determined by the coded policy defined within the ProducerClient
implementation.

• action : This field indicates if the ProducerClient should continue or terminate its
processing depending on whether the requested license is available from the
Licensing System.

• notification_required : Indicates whether or not the ProducerClient needs to
prompt the local user with a message indicating the results of the licensing
request.

• wait_for_user_confirmation_after_notification : Indicates whether the
ProducerClient needs to wait for a confirmation before continuing its processing
This is applicable only if a notification has been requested.
12-20 CORBAservices: Common Object Services Specification

12

ing
e

 if

 the

er

m

nt

• notification_duration : If the user notification is required without confirmation,
this indicates how long the ProducerClient needs to wait before continuing with
its processing.

• producer_notification : This provides a reference to an object used by a Licens
System to return implementation specific results and control information to th
ProducerClient. For example, producer policy instructions can be part of this
object interface. It could also communicate the expiration date and time.

• notification_text : This provides the text to be communicated to the local user
required.

The check_use operation thus collects into a single client action the ability to address
the following requirements:

• Give the capability to the producer client to get both the results from and the actions
to be performed following a request for permission to be active and/or running.

• Give the capability to the producer client to periodically verify the right to be active
and/or running in the case of 'time dependent' licensing policy (for example, time
based consumable licenses, expiration times, and so forth). The
recommended_check_interval is the parameter strictly tied to this verification.

• Give the capability to both the producer client and the Licensing Service
implementation to detect the following unexpected conditions and then either
release the related active license and/or stop the usage accounting:

• Abnormal termination of either the producer client or the Licensing Service.

• Unrecoverable breakdown in communication between the Producer Client and
Licensing Service.

• The indirect detection of these conditions is performed by forcing the produc
client to issue a check request within the check interval.

The check request concept is left to the specific Licensing System implementations.
However, that does not prevent the Licensing Service from using the check operation as
the heartbeat mechanism. The heartbeat mechanism is a general purpose mechanis
required inside a client/server based application to determine if the other end is still active.
Some applications dedicate a specific process or task to this purpose and rely on eve
detection, others use a polling mechanism, others use system notification exits, and so on.
Furthermore, because of the different concepts, the polling and exits could not be fully sat-
isfied by a single checking rate.

12.4 References

Object Management Group. Object Services RFP 4, OMG Document Number 94.4.18,
May, 1994.
Licensing Service: v1.0 References March 1996 12-21

12

are

po-

 is

histi-
 the

con-

.

he
 As an
i-

ens-
 Appendix A Licensing Service Glossary

License Document: Represents the fundamental element of control. It provides a secure
delivery vehicle describing such things as how many copies of the intellectual property
allowed, how long each copy may be used, and other elements of how producers wish to
constrain usage of their intellectual property.

Licensing Service: The general term for the complete service, it consists of three com
nents: Producer Client; Producer Licensing Service; and Licensing Service Manager.

Licensing Service Manager: The Common Object Service Licensing Service Manager
responsible for managing and creating the Producer Licensing Service objects.

License Unit: License documents may contain the concept of license units that are inter-
preted in a producer-specific manner by the producer policy. A typical example of a
license unit could be one where a single unit is to represent a single concurrent use of a
producer’s intellectual property by an individual user. The term license can be used to
refer to the smallest indivisible quantity of license units that a given Licensing System
implementation supports.

Licensing System: The implementation-specific component that provides fundamental
usage control that, in conjunction with the Producer Licensing Service, provides sop
cated producer policies. The Licensing System is responsible for securely managing
fundamental units of control - the License Documents for all Producers.

Producer: The company or individual who owns the intellectual property that requires
usage control.

Producer Client: Any object, or component of an object, that wants to have its usage
trolled or metered via a Licensing Service.

Producer Policy: A Producer Policy is a collection of data that describes the detailed
terms and conditions, or business policies, which govern control and monitoring of a pro-
ducer’s intellectual property wherever the property can be used. The implementation of
producers’ policies is very specific to the Producer’s selection of a Licensing System
There are two components to business policy implementation in a licensing system. One
component is contained in the License Document and includes fundamental things like
expiration date and quantities. The other component, the Producer Policy, includes t
broader aspects of business policy and may be derived from the License Document.
example of the broader issues that require Policy, the Producer Policy deals with all poss
ble licensing exceptions such as when no license is found.

Producer-Specific Licensing Service: A producer-specific implementation that interacts
with and selects the particular Licensing System and Policy used by a specific Producer to
control the Producer’s intellectual property. In this chapter, the Producer-Specific Lic
ing Service is is also referred to as the Producer Licensing Service.
12-22 CORBAservices: Common Object Services Specification

12

e or

 time.

of

hat

men-

e.

eing
 Appendix B Use of Other Services

This appendix describes the relationship between the Licensing Service and these
Object Services: Property; Relationship; and Security.

 B.1 Property Service

The properties argument to the start_use , check_use and end_use
operations enables implementations to choose between using the Property Servic
providing name value pairs directly to the Licensing Service. This decision can be
based on performance considerations or other practical concerns. For example, the
inability to differentiate ownership where a single property is used in a single operation
(method) but has differing values (as far as the Licensing Service is concerned)
because more than one principal is using the particular instance’s method at one

Examples of properties that are useful:

• UNITS_TO_RESERVE provides a hint to the producer policy implementation
indicating that the currently controlled aspect of the producers intellectual
property has some idea about what it is going to ‘use’ over the next amount
time.

• VALUE_TO_CONSUMER provides a hint to the producer policy implementation
indicating that the currently controlled aspect has some idea of the value of w
it is currently doing.

• NODE_NAME provides a hint to the producer policy implementation about
where the currently being controlled object is executing.

These are currently always producer-specific. The Licensing Service places no semantic
or syntactic interpretation on these properties but makes them available, in an imple
tation-specific way, to the producers policy.

 B.1.1 License_Use_Context

There will need to be a set of information about each producer client made available to the
ProducerSpecificLicenseService as a "PropertySet" as specified by the Property Servic
The PropertySet is a dynamic equivalent of CORBA attributes. This set of information is
made available to the start_use , check_use and end_use operations for the
Licensing System to use in determining various aspects of policy. As one example, this
data structure could contain:

• All data from the principal, as retrieved through the new context information
provided by the CORBA 2.0 specification and as used, for example, by the
Transaction Service.

• Any data the producer client may need, either in the present or the future. B
all inclusive early on reduces the need to re-deploy the licensed software if
subsequent licenses need additional data.

• Fields from the example list of licensing attributes (provided below.)
Licensing Service: v1.0 References March 1996 12-23

12

 it

for
The example list is useful to allow people other than the original producer to create license
documents for an object implementation. This happens in the case of either acquisitions
or distribution agreements. The example list makes it easier for one object implementa-
tion to be licensed by multiple license systems depending on the environment in which
finds itself.

The list items are suggestions. Currently, no central registry of names exists; also, many
items are not clearly defined. The list is a starting point and can serve as a check list
Producers.

Canonical List of user_context Properties:

• DATE_TODAY

• Today's date and time.

• GROUP_ID

• Integer group

• ID GROUP_NAME

• Name of group of users

• HARDWARE_FAMILY

• String of compatible hardware family

• HARDWARE_MODEL

• Hardware model

• HARDWARE_PRODUCER

• Manufacturer name

• NETWORK_ID

• Integer network identifier

• NETWORK_NAME

• String network identifier

• NETWORK_PROTOCOL

• String protocol name, for example, "TCP/IP" or "DECnet"

• NETWORK_STYLE

• 1 is local, 2 is LAN, 3 is WAN.

• NODE_ID

• Integer node identifier

• NODE_NAME

• Name of computer

• OPERATING_SYSTEM

• String identifying the OS

• OS_VERSION

• String identifying the OS version

• PROCESS_FAMILY

• String identifying a group of related processes

• PROCESS_ID

• Integer identifying a process number

• PROCESS_NAME
12-24 CORBAservices: Common Object Services Specification

12

iron-

e
n
nse

se is

• String identifying the name of the process

• PROCESS_TYPE

• 1 is batch, 2 is interactive, 3 is other

• PRODUCT_NAME

• Name of intellectual property being protected

• PRODUCT_PUBLISHER

• Owner of intellectual property being protected

• PRODUCT_VERSION

• Version string of intellectual property

• PUBLIC_KEY

• String containing public key to test against Product

• RELEASE_DATE

• Integer indicating the date the software was released

• USER_ID

• Integer indicating user

• USER_NAME

• String containing user name

 B.1.2 Dependent Licenses

The Licensing Service can examine not only the most recent set of user runtime env
ment data but it can also examine data from previous runtime contexts collected along a
particular thread of control. For example, a user may log in as "Fred" and begin som
action under that name. This action may include an operation being dispatched to a
object implementation logged in as "root". If this second process needs to obtain a lice
which was reserved for "Fred" then it ought to be able to do so. The user should be known
by all the names associated with that thread of control.

Another example of a recursive license right is the "embedded" license. Such a licen
not valid unless another object implementation was used earlier on the thread of control.
A database software vendor might issue License Documents for use within, say, an
accounting package. Other uses which might be worth more must be licensed separately.
An example of an interface which would support a stack of License Use Context is as fol-
lows:

interface UserContext {
Property::PropertySet License_Use_Context create ();
void push(in Property::PropertySet License_Use_Context);
void pop ();
unsigned long getDepth ();
Property::PropertySet License_Use_Context top ();
Property::PropertySet License_Use_Context get (in unsigned long

which_frame);

void clear ();
void remove ();
}

Licensing Service: v1.0 References March 1996 12-25

12

ge

the

not

re

als
 B.2 Relationship Service

Support for collections and relationships will be determined by the mechanisms made
available to producers by the particular implementations of the Licensing Service. It is
expected that the preferred mechanisms will be to allow the Producer Policy to make use
of Object Services such as the Relationship and Property Services, but this is not a require-
ment of the Licensing Service.

Each implementation of the Licensing Service can address the problem of how to mana
the relationships among licenses. The types of relations one can assume exists among
licenses can be generically classified as follows:

• Prerequisite licenses, for example. the previous example of a database vendor.

• Corequisite licenses, that is, a set of licenses which must all coexist to give
producer client the right to be running.

• Exrequisite licenses, that is, a set of licenses that can run only if others are
active.

• Generic dependent licenses, that is, a set of licenses whose dependencies a
described through a specific constraint expression.

 B.3 Security Service

The Security Service will probably replace the logic in each Licensing System that de
with producer client authentication and access control.
12-26 CORBAservices: Common Object Services Specification

12

ds to

se

he

 has

 is
f-

nts
 Appendix C Producer Client Implementation Issues

 C.1 Client Implementation

In this example, a Producer decides to control method activation. In the Producer’s object
activation, the implementation performs the
obtain_producer_specific_license_service operation on the LicenseSer-
viceManager interface and stores the resultant object reference. In the implementation of
each method that is to be controlled, the start_use operation is performed on the
stored object reference.

Depending on whether asynchronous events are supported, the Producer implementation
will vary as follows:

• If true asynchronous events are supported, the Producer implementation nee
provide an interface inherited from CosEventComm, the PushConsumer interface.

• If asynchronous events are not supported, or the Producer chooses to not u
events, then each implementation that uses the start_use operation needs to
use the check_use operation no less frequently than the period specified in t
recommended_check_interval argument until the implementation performs an
end_use operation. If, within the recommended check interval, the Producer
Client does not perform the check_use operation, the Producer Policy may
choose to release the associated licenses assuming that the Producer Client
ceased functioning.

Producers must decide how they want to use the Property Service to provide properties to
the start_use, check_use and end_use operations. In the Producer implemen-
tation, the returned argument action_to_be_taken from the check_use operation needs
to influence how the object continues after each check_use operation.

The Producer needs to determine the name for each component and the version for each
component. The Producer will then need to produce the Licensing System implementation
dependant policy and license document for the Producer's chosen policy.

When a particular use of the Producer object is completed the end_use operation is
used to let the Licensing Service know that control is no longer required for that compo-
nent.

 C.2 Asynchronous Events

In CORBA implementations where true asynchronous events are supported, provision
made in the start_use operation to provide the Licensing Service with the object re
erence that corresponds to a client PushConsumer interface. This will allow the license
service to asynchronously send a push event to the specified interface with the argume
defined in the following pseudocode:
Licensing Service: v1.0 References March 1996 12-27

12
 C.3 Pseudocode

struct AsyncLicenseData{

ProducersSpecificLicenseService service;

LicenseHandle handle;

Challenge challenge;

};

/* Producer client implements an interface for the 'push' operation:
*/

void xxxx_push(Object o, Environment *e, any data)

{

struct AsyncLicenseData *check;

/* get the actual information that is needed to proceed */

check = (struct AsyncLicenseData *)(data->_value);

/*

perform producer specific testing and lookup on:

 check->handle

 check->challenge

need to make sure that the component of this instance

that handle refers to is still active and that the

challenge is valid.

 */

 /*

 providing all is well, cause a check_use operation for

 the handle. Have to assemble the challenge, decide which

 properties are important for this handle and so forth.

 */

check->service->check_use(ev,

 check->handle,

 properties,
12-28 CORBAservices: Common Object Services Specification

12
 interval,

 action,

 challenge);

/* test the challenge returned and so forth */

}

When the Producer Client has the push operation invoked, activating the routine
xxxx_push in the pseudocode example, the producer implementation should determine
which aspect of the implementation is referenced by the handle argument and then invoke
the check_use operation on the handle provided as one of the arguments to the push
operation. At thar point, the implementation should determine if the object related to the
handle is still active; determine if the challenge is valid; and then perform the
check_use operation on the provided object reference. The results from this operation
will indicate whether any action is to be taken and, if so, the implementation should pro-
ceed according to the Producer Policy.
Licensing Service: v1.0 References March 1996 12-29

12

 be

om

 the

he

-
.

sents

t
 Appendix D Challenge Mechanism

 D.1 Default

For a producer to verify that a particular instance of the LicenseServiceManager is legiti-
mate, a challenge mechanism is required. This requirement may either disappear or
reduced if the Security Service delivers a similar mechanism that can then be inherited by
the LicenseServiceManager.

The mechanism proposed, by default, assumes the use of shared secrets in the producer
implementations of their objects and the specific instance of the Licensing Service that is
involved to control the producer’s intellectual property.

The challenge mechanism is straightforward. When any operation is requested by a pro-
ducer’s instance a challenge structure is provided along with the normal parameters. This
challenge structure consists of the MD5 of all the arguments to the operation, a rand
number, and a forward secret value known only to the producer. The Licensing Service
instance for this producer can confirm that the client instance is legitimate by verifying
that the challenge is correct. In return the instance of the license system sends back
MD5 of the same random number and a reverse secret value again known only to the pro-
ducer. The instance invoking the operation on the Licensing Service can verify that t
Licensing Service is legitimate by validating the generated MD5.1 The challenge mecha-
nism defined in the proposed interfaces supports more than one set of shared for-
ward/reverse secrets. As part of the ChallengeData structure an index is provided,
challenge_index, that allows the client to choose which shared secret set is to be used in
the challenge. A conforming implementation of the LS needs to support at least four sets
of shared secrets whose indices are 0 through 3.

This mechanism is not intended to be completely secure. Instead, it provides trust
between the producer and the producer-specific instance of the Licensing Service. Eventu
ally, the Security Service will probably replace the need for the challenge mechanism

 D.2 Alternative

As an alternative to the default challenge, a Producer can choose to define its own
challenge protocol. By setting the challenge_protocol enumerated element of a
challenge to 'producer_defined' the definition of what the challenge element repre
becomes the responsibility of the producer and not the Licensing Service directly. This

1. MD5 is a message digest algorithm defined by R. Rivest in the Internet RFC 1321. It is in the public
domain and provides a mechanism to generate a 128-bit “fingerprint” of messages of arbitrary length. I
is conjectured that the difficulty of coming up with two messages that have the same digest is 2^64
operations and that generating a specific digest for a message is 2^128 operations, making it suitable for
the basis of the challenge protocol described in this specification.
12-30 CORBAservices: Common Object Services Specification

12

ce is

one
hal-
cer

r.

echa-

e, that
f
ider

-

will depend on the implementation of the Licensing Service, since the mechanisms
available to the producer to support this are defined by the way a Licensing Servi
implemented.

Note

If the object producer so chooses, the same program can be licensed by more than
Licensing System. It is simply a matter of who satisfies the challenge. In fact, the c
lenge mechanism supports as many Licensing Service providers as an object produ
chooses to pick up. They can choose sets of challenge data to deal with particular provid-
ers and use a standard set of challenge data to get the first available service provide

It is not guaranteed to be true that all object producers will use the same challenge m
nism. However, as long as the object producer chooses to use the default challenge, this
will be the case. As soon as an object producer decides to use an alternate challeng
will be defined by the license system provider. At that point, only that implementation o
the Licensing Service can satisfy the challenge and remove the multiple service prov
capability. Default challenge mechanisms must be supported; however, if licensing sys
tem providers offer an alternative, a producer need not use the default.
Licensing Service: v1.0 References March 1996 12-31

12
12-32 CORBAservices: Common Object Services Specification

	Licensing Service Specification
	12.1 Background On Existing License Management Pro...
	12.1.1 Business Policy
	12.1.2 License Types
	12.1.3 A History of License Types
	12.1.4 Asset Management
	12.1.5 License Usage Practices
	12.1.6 Scalability
	12.1.7 Reliability
	12.1.8 Legacy Applications
	12.1.9 Security
	12.1.10 Client/Server Authentication
	12.1.11 Example: Application Acquiring and Releasi...

	12.2 Service Description
	12.2.1 Overview
	12.2.2 Key Components of a Licensing System
	License Attributes
	Licensing Policy
	Time Windows
	Value
	Use By a Collection of Related Objects
	Postage Meter
	Gas Meter

	Interfaces Isolated From Business Policies

	12.2.3 Licensing in the CORBA Environment
	12.2.4 Design Principles
	12.2.5 Licensing Service Interfaces
	Interfaces are Mandatory
	Constraints on Object Behavior

	12.2.6 Licensing Event Trace Diagram

	12.3 The CosLicensing Module
	12.3.1 LicenseServiceManager Interface
	12.3.2 ProducerSpecificLicenseService Interface

	12.4 References

