Licensing Service Specification 12

12.1 Background On Existirigcense Management Products

This section, “Background on Existing License Management Products,” is for readers
who are unfamiliar with the management of softwara$ies. It provides an overview of
licensing and addresses issues that must be faced in developingeatidgsellicense
management system.

Applicaion suppliers need methods for catling the @cess to and use of their products.

In most cases, this is necessary to ensure fair compensation for use. The most common
control method used by software suppliers is licensing, where the license can be provided
through technical (software- orridavare-based) or contractual means. While reamtal
licensing is a viable option, it does not provide the same level of control as technical
licensing, which uses hardware or software tools to control licensing. Therefore, applica-
tion suppliers continue to require technical licensing methods to complement legal con-
tracts.

Along with the expanding need for technical licensing, there are specific requirements for
licensing that must change to reflect today's computing environmeathtidnal licens-

ing methods (nodelocked licensing and site licensing) evolved from computing environ-
ments of the past, specifically timesharing systems and stand-alone systhras BCs

and workstations. These older licensing methods are insufficient for current environments.

While today’s computingnvironments provide significant advantages for application
suppliers and end users, they also present opportunities. Itis apparent that softivare
hardware resources can be managed on a network-wide basis for maximum efficiency.
However, theesulting requirement for netwewide licenselsaring is less apparethe
traditional licensing methods (expensive site licensing and inflexible nodelocked licens-
ing) do not complement today’s fleixible and efficient computing environments.

Given these realities, sophisticated technical licensing tools are required. These licensing

tools are important to all constituents in the market: applicatippliers; hardware ven-
dors; and application users. Software suppliers need a licensing tool to support their busi-

CORBAservices: Common Object Services Specification 12-1

12

ness and pricing models. Hardware vendors embed and offer the technology to support
software developers and end users, and act themselves as application suppliers for their
internallydeveloped japlicatons. End users intact with licensing technologies when

they use, manage, and pay for softwareiaafibns.

12.1.1 Business Policy

In the development andlseion of software licensing systems, the licensing system must
not impose its businessgutices on users. The software license is, fieotfacontact
between suppliers and customers that establishes a busiadisnhipbetween them.
Because aoftware licensing system plays an important role in regulating this contract, it
must provide mechanisms to implement the flexible business practices that smggliers

to deal with a diverse customer base.

One danger in developing a licensing system is that it coldtttfe business practices

of the developing orgaration. This is sometimes the case when a licensing system is
developed for internal use in a large organization and then offered for geserAl

licensing system may work for one company, but will probably not address a wide range
of business policies and practices. Often this problemfassiitself insubtle ways.

12.1.2 License Types

If not fully considered beforehand, it is possible to construct a software licensing
scheme that forces the software supplard end users into arlited model of

software licensing. If a licensing system offers only limited license types and/or offers
few options for applying them, software suppliers are limited in the way they manage
business relationships with their software customers.

Because softwarécknsing touches many aspects atkationship with a customer,
including upgrades, support, enhancements, and follow-on purchases, a licensing
system must provide a wide range of license options and many options for applying
them. Software suppliers—not licensiagstem developers—must choose which
licensing options they want to use.

Theoptions allowed withirvarious license types are also critical to ensiua¢ application
suppliers have all the capabilities necessary thkstidhe business relationshipety

desire with their customers. Capabilities such as allowing a grace period to provide unli-
censed users access to the software for a limited period may be critical in retening
goodwill of a large and infludial customerOther licensing features includdesgive

user inclusion oexclusion lists; reserved licensing (to ensure that a license is always
available to high-priority uss); and multi-use rules that allow multiple use of an applica-
tion with a single license. In addition, different license types can be used together in a sin-
gle application. This ensures that the supplier, not the licensing systermies

business policies.

12-2 CORBAservices: Common Object Services Specification

12

12.1.3 A History of License Types

Providing a wide-ranging portfolio of license types ensures thatapiphsupplersare
able to conduct business and arrange business policies as they deem appropriate.

Nodelocked licenses (which evolved from timesig) allow a software product to be

used at the single node for which the license was created. As the stand-alone workstation
marketgrew, new ktensing models were required. Major workstations usac$) as

insurance companies, banks, and industrial corporations, needing a more economical way
to purchase software, demanded that apiinsuppiers offer a business model that

would provide unlimited use at a given site. That need gagda site licensing.

Site licensing often resulted in dissatisfactiomoth suppliers and customers. Suppliers
were asked to assess a price for usage they did not fully understand. They often felt they
were being asked to discouheir future revenue too deepyusbmers felt that the site
license fees were excessive and made them pay for usage that might not occur in the
future.

As networks of computers developed, system vendors began to introduce the notion of a
concurrent use license. Connt use licenses define the number of users allowed to
access an apphtion at agiven time. These licenses are allowed todf’ aiound the net-

work, tempoarily appropriated by users as apptions arerivoked, thenaturned to the

license repatory when arapplication is terminated. Concurrent use licensitayval end

users to purchase licenses to match their usage and allows software providers to be com-
pensated for use of their products. Additionally, end users can easily add more concurrent
licenses as needed.

12.1.4 Asset Management

Licenses protect expensive corporagseds. Since licenses exist only as data they are

harder to secure than a server or workstation, but every bit as important to control and
manage. Control helps ensure that licenses are used in a manner which supports corporate
goals, such as improvingmpliance with paper software license caontsand reducing
exposure to legal action. This helps keep the corporation out of court and enhances its
relationship with its agftware suppliers. Large corporate software purchasers wantto be
treated agqual partners with their suppliers; licensing makes this easier.

Managing both existing and new licenses maximizeg valie. Old licenses might need

to be redeployed as projects and budgets change. If the license adtoirtatr keep

track of software licenseknow which liceses are and are not being used, and can move
them to where they are needed, corporate waste will be reduced and productivity
improved.

Similarly, if a corporation hasoftwareusage metrics, it has a strong basis for understand-
ing future needs. These mies permit a&orporation to purchase licenses in bulk at lower
prices with the confidence that they are not over or umalgng.

A corporation can also measure whether they have over or under purchased in the past.
An important metric is the "shelfware" measure. How muctwsoé was purchased (per-

Licensing Servicetl.0 Bakground On Existing License Management Products March12936

12

haps as unused components of "suites" of software) that never leaves the user's bookcase?
Reducing such waste is ajor incentive for software customers to use@a#ted soft-
ware licensing and asset management.

12.1.5 License Usage Practices

Applicationsuppiers can implemnt one or more of the license types in their software
products. An apptation can be programmed to require riplét license types, tolalv
the suppkr to sell theproduct in different ways to different customers.

An ideal licensing system should be transparent to end users. For example, a user might
invoke an apptaion, which makes calls to a licensing librafpen, the library function
locates a server with a valid license. Assuming that a valid licengeilsbde and that

person is authorized to use the license, a grant is returned to the application, allowing the
program to execute, all completely transparemtdoend user.

If no licenses are immediately available, the aytiondeveloper can program the soft-

ware to respond in a variety of ways. The application camzitcally puthe user on a

wait queue, query the user as to the course of action to take, recommend that the user try
again later, or grant permissionrt; anyway. (Théeveloper can choose to grant permis-
sion to run without a license if, for example, there is a “grace period” instituted to allow

for a smooth transition to a network licensing model.) If all licenses are temporarily
checked out and users go on a wait queue, the naiklale licensean be granted

according to user priority settings defined at the end user site.

These choices and how they are implementeddsethe policy a software provider
chooses as a business model. Policy can be further broken into two compfirethtand
variable.Fixed components are coded into the egabn and deermine hings such as

what license types are permitted; whethertiplel userules apply to the apiphtion; or if

a grace period will be exttded when a license is not available iAlsle components are
defined externally to the client apgdion and include such things as external definition

of the hours a product may be used, or an external list of people allowed to use it. Either
list may be producer- or end user-created.

12.1.6 Scalability

Some networks are small, consisting of just a few nodes, while others grow to thousands
of machines. Typically, large user comnmnities on largeetworks demand licensed appli-
cations from many different vendors. A licensing system and its runtime environment
must, therefore, scale well to the network and all its software.

12.1.7 Reliability

Sometimes, an apphtionobtains a license from a license server and never returns it. A
licensing system must be designed to prevent licenses from being saaddegrevent
other client-server eakdowns.

12-4 CORBAservices: Common Object Services Specification

12

Bre&downs occur foseveral reasons. The ajgplion or server could abort, or the net-
work could becompartitioned between the apgadion and serveilhese sitatons could
arise unintentionally or maliciously (for example, in an attempt to gain unauthorized use
of an applkcaton). Any design must makareful trade-offbetween license avalbbility

and security enforcement. All designs require a scheme to detdaidones.

Generally, there are two detection methods: continuous detection or occasional check-in.
Continuous deiction metods ensure that while a license is in use by ancgiph, the
application and server are both continuously aware of each other's existence and are
immediately notified of &dreakdown. These schemes are typicallgplemented byising

a connection protocol such as a port. The main advantages of a continuous scheme are its
directness, immediacgnd simplicity. The main disadvantage is its negative impact on
network perforrance. If a redundant server high dadaility model is erployed, then con-
tinuous connections need to be ntaned between the application and each of the serv-

ers, thereby multiplyingetwork traffic.

Occasional decton provides a method for the apation to beck in with the server
periodicallybefore some time out has occurred. The breakdown is identified either by the
server (if the time out occurs), or by the apgtion (ifthe check-in is unsuccessful). This
method is very scalable and has a gl impact on péormance. The application sup-
plier should be able to adjust the time-out to allow trade-offs between higher security and
higher availability.

Additionally, the occasional detection model is very tolerant ahamdary interruptins
on the network. Continuous @etion is not tolerant ough interruptions. Lost connec-
tions between theielntand the server in a system using continuous detecdioses a
breakdown or progranetmination.

Applicationsuppiers will want to determine for themsek which action to take in the
case of a client-serverdakdown. Some may want moredtenforcenent and choose to
terminate an application; othersght choose to display a polite message and allow the
application to contiue.

12.1.8 LegacyApplications

Managing a business relationship with a minimum of disruption includes the ability to
accommodate existing customer apations wihin the scope of the licensing system.

This must balone without regjring access to or moddfaion of the application's source
code, as the apparently simple solution of modifying socwde may not always lavail-

able. Consider the personal computer, for which there are tens of thousands of small and
inexpensive applaions. Modifying the sources of all these applications would be an eco-
nomicallyunacceptable approach even if the source code were available.

Software suppliers are eagerly awaiting an integrated licensing technology that will take
existing “shrink-wrapped” applatons and enhance them to function in a licensed envi-
ronment. It may not be possible to provide a security fence as high as a source-modified
application, but the level of license security could be made commensurate with the value
of the appktaton and well beyond the economicsiification for attempting to defeat the
security.

Licensing Servicetl.0 Bakground On Existing License Management Products March12996

12

12-6

12.1.9 Security

Until recently, licensing systems were required to enforce amlyls, shgle-system
application use. Security infractions caused few iicapbns. Today, ecurity require-
ments must be designed to operate in more complex networks.

The distibuted computing networks in use today are designed for easy resource sharing;
demand more complex licensing models (presenting new security challenges); and must
support mass distribution of software (on compact disk, for ex@mplsuppkr's ability

to ship trial copies of apphions relies heavily on the security of the licensing system to
ensure that prospective customers do not transgressehdedtuse permisgis. An
application supplier must also rely on the licensing system’s security when it ships a com-
plete set of applicaihs to its entire installed base: the licensing system must ensure that
only the purchased applications are used.

Each application supplier has a differentuség need. Each will want to choose from a
spectrum of trade-offs, such as security versadability, and effect of breach versus
development effort. A licensingstem should not dictate one peutar level of security,
but should allow appaton suppliers to choose the security level appropriate for their
business needs.

12.1.10 Client/Server Authentication

A secure licensing system should address thsilgitity of someone attapting to create

an impostor license server (an imposter server always grants licenses). Without security,
an impostor could be estadhied by eavesdropping on validecli-server communication

and then mimicking the license grant protocol. Impostor clients should also be addressed,
since a successful impostoietitcould disrupt legitimate licensetadgties by artificially
returning a license to the license server when it is actually still in use, thereby making the
returned license available for other users.

12.1.11 Example: Application Aairing and Releasing a Concurrent License

This section contains an example of how an aptitn might interaawith one of the var-
ious license management products that ¢adsy.

In a system that uses concurrenct licegsend users at their wkstatons and PCs see no
change in their normal working routine. They start @ppbns as they normally would.

The apgkaton has calls to the license library that transparently go over the network to
request a license for the application. Using transport-specific naming and location facili-
ties, a server holding a valid license is located and a “yes” is returned to the requesting
application.

The application need not be downloaded over the netwahleteworkstation each time the
application isvoked. Thepplicaton, once loaded, remains at the kaation as it nor-

mally would. Only a request for a license and a return grant go over the network, thereby
providing a rapid response time that igwally unnoticed by users.

CORBAservices: Common Object Services Specification

12

When end users close an apaton, the license is “returned” to the server. The server
then can make this licensesdlable for other requests as they come in.

Administraton and reporting tools act asetits to the license server, tapping into server
databases and log files to access the stored infomadte license servers, though imple-
mented as multiple physical servers, operate as a single repository managing all license
activity for the network. This single, “logical” server handles licenses for any number of
vendors, for any humber of products, with any number of product versions. The server
also handles any number of clients making requests farcifgiés, theeby automadtially
scaling to accommodate increases in the number of users, machinesitappliand
licenses.

12.2 Service Description

Licensing Service terms are defined ippendix A.

12.2.1 Overview

Producer

Cos License
Service
Manager

Client

= — — —

Cos Producer
License
Service

Producer |~ - — = — — — —

\
|
|
\
|
|
\
|
I
1
\
|
\
\
|
Policy |
/

Figure 12-1 Licensing Service Relationships

The Licensing Service provides a matkan for ppducers to control the use of their
intellectual property in a anner determined by their business andatusrneeds. In

Figure 12-1, the Licensing Service Manager, Producer Licensing Service, and the Licens-
ing System are shown as thdistinctobjects. Implementabns of the Licensing Service

Licensing Servicetl.0 Servic®escription March 1996 12-7

12

may differ. The dotted line indicates components that depend on the implementation
design and are addressedamts of arexample solution. Components outside the dotted
line are addressed this chapter.

12.2.2 Key Components of a Licensing System

License Attributes

To implement controls, the Licensing Service needs a set of fundamental attributes. A
license can be thought of as having three dimensions of attributes:

Time includes, but is not limited to the attribute of Expiration/Duration. All licenses
should be able to hawtart/duratiorand expiration dates.

Value Mapping includes, but is nofrited to, the followingattributes:
* A unitis a quantity that can be used by policy mechanisms.
* Allocative Use of an license with an allocative attribute remové&®ih the pool
of available allocative licenses for a given productil it is returned. This is
traditionally known asconcurrent use licensing.

» Consunptive Use of a license with a consumptive attribute permanently records
its use. This can be used to provide metering capability. It can also be used to
implement a “grace period” via the use of overflow licenses when the maximum
number of allowed concurrent licenses has bmeh

Consumerincludes, but is not limited to, tHellowing attributes:

» Assignment or Reervation.All licenses should be able to be assigned to or
reserved for a specific entity or collection of entiti€ke definition of what an
entity may be is implementation-specific. One example is where an entity is
defined to be a specific usand a collection oéntities is a specific organization
comprised of a collection of specific users. Other examples of what an entity
might be include a specific machine or collection of machines, a specific system
resource or resource collectisych as printers and adapters.

Licensing Policy

The Licensing Service allows thiednse attributes to be combined and derived from to
form any policy deemed necessary. This allows the producer and, where appropriate,
the end useadministrators to contrgiroduct use tdit their business environmenst.

The following derived atibutes are representative examples of thosecttrabe used for
a flexible policy implementation:

» Time windows

* Value

» Use by a collection of related objects

* Postage meter

» Gas meter

12-8 CORBAservices: Common Object Services Specification

12

Time Windows

It may be necessary for some policies to constrain the time periods within which a
particular license unit may besed. Atime window attribute can be derived from the
expiration/duration attribute.

Value

A Producer can define, as part of their Producer Policy, the mapping between actual
use of their intellectual property and the way license units are associated with that use
in the Licensing System. Armaplistic example might be where a single unit of control
represents a single active implementation of a given object with no constraints on the
number of instances. A more complex example may be where the number of units of
control required may be calculateddatisfy a combination of requirements: a specific
machine size where an implementation is active, how many instances, and how many
method activations are allowed in parallel.

Use By a Cdection of Related Olgcts

The definition of granularity is veryproad. In an OMA-compliant system, the

Licensing Service will allow control from the fine grain of a method activation to the
coarse grain control of a suite of objects acting together@ationship to represent

an application. The relationship may be defined with the Relationship Service, a future
Collection Service or any other Service providing relational capability for objEuts.
Producer Policy can discoval theseobjectaccording to the implementation.

Postage Meter

Derived from consumptive, use of a license with a postage meter attribute permanently
removes it from the pool of available licenses. The total number of licenses is never
less than zero (0) for any product.

Gas Meter

Derived from consumptive, use of a license with a gas meter attadd&eto the pool
of consumed licenses. The total number of licensastialized to 0.

Examples of how these attribuesn be used in license policy arda®ws:

* An end user administratmould be empowered by the Licensing Service to
combine assignmemind tme constraints on installed license units to constrain
the use of certain products to a set of individuals outside of the normal work
week.

» A producer could provide a personal use license by combining an allocative
attribute with an assignmeittribute to an individual with a unit attribute of 1.

» A producer could enhance the previous example by allowing end user
administrators to reassign the license to a partiqyiaup.

Licensing Servicetl.0 Servic®escription March 1996 12-9

12

Interfaces Isolated FroBusiness Policies

The Licensing Service interfaces aselated from policy iases. The abnt interface only
delivers notificatiorthat a producer wants some or all of the producetdléctial prop-
erty to be controlled riglbly and securely. Once the natidition ismade, the Licensing
Service can identify the appropriate policy.

For example, consider a producer who wantesdrict the activation of a particular

method to &ertain simultaeous number of users. The producer need only tell the Licens-
ing Service interface to indicate that a method has bemtecand who activated it.

When the method activation is complete jraication must beent that the use is done.

The LS can then, in an gtementation-specific way, determine ifeducer-defined limit

has been met. The Licensing Service can notify the object, telling it what to do if a pro-
ducer policy is activated from overuse or another candifThe Producer can still over-

ride a generic policy with an alternate behavior for a particular Produest (Hince

policy responses are inside the Clignplementation.

A Producer Policy implementation requires the use of other object services such as the
Relationship and Property Services. As other services are defireetiicer policy
implementations will broaden to use them. The producer client might change to
address any new producer policy, but the underlying Licensing Service interface will
not require change. These services can be used to find out about objects outside of the
objects themselves.

For example, consider the Relationship Service. If producers choose to license a particular
set of their objects that are related in a manner defined bgltt®nip service, the pro-

ducer policy inplementation can obtain relationship information usireyelationship
service.The objects involved need to have no special knowledge #imiutelationships

to one another other than that required to piwagogether in the relation to achieve their
desired functionality. Mechanisms provided to support this by an particydberimanta-

tion will vary. One inplementation maghoose to support this using a document style of
policy delivery, others magupport producer policy objechplementatin. This can not

be defined or restricted by the Licensing Servigentinterface.

A mechanism for license document delivery is not defined in the Licensing Service: it is
implementation-specific.

12.2.3 Licensing in the CORBA Environment

Licensing in the CORBA world faces many issues. The provision of services by
objects in the ORB environment must allow for service producers to control use of
their intellectualproperty according to their business models.

Constraint of use must range fratmict control to lenign monitoring of intellectual
property. Strict control might allow only a specific number or combination of services
to be used. Benignh monitoring mechams might allow servicase without castraint,

but would track usage for later examination.

If producers require strict control, they will also require assurance that the information
provided by their licensing mechanism is secure. It would be pointless to choose strict

12-10 CORBAservices: Common Object Services Specification

12

control if it were a tuial matter to replace some component within the ORB which nulli-
fied strict control enforcement without the producers’ services lzaiage of it. Théevel

of trust in the Licensing Service must meet the producer’s chosen enforcement policy.
For example, suppose a producer héected a policy that Edws use of his object service
by an end user without cdraint, but the policy requires the Licensing Service to log all
service usage so a monthly péettocharge can be made for use of the service. This
capability is of limited use if theicensing Service’s logging mechanism allows end users
to illicitly modify the logs to show low usage.

To enable usage control, there must be a rmesimethat provdes the end user with
appropriate autharaton. This authoration is usuallgonveyed as a text string that can
be thought of as a License Document. The size of this document may maraféw tens
of characters to a few thousand reltders depwding on the functionality provided by the
underlying Licensing Service. The content of the document must be protected by an
implementation-specific mechanism.

To support a wide variety of business models, producers require usage constraint policies
(producer polies) thatcan vary for end user conditions. For example, a produiggrtm
deliver a demonstration of d@emt service that allows unlimited use of the service during

the demonstration period, but upon purchase requires a strict usage enforcement policy.
The enforcement policy may need tovagieddepending on cusinerneeds. A large cus-
tomer may negotiate a post-sale period where analysis of use is suppdrérdgoymon-

itoring and hter moved to strict enforcement. Interfaces td_tbensing Service allow

this and many other varieties of usage controls without requiring changes to the producer’s
fundamental product.

The ability for an end user to apply constraints beyond those specified by a producer is a
well-recognized benefit to the end uddre capability in this area will vary acrosspie-
mentations of the Licensing Service.

Because we live in a dynamic economic environment, a prodyneicées must be easily
changed. The best approach for a Licensing Serviceifisp#on is to separate the |

want to be comblled!” requirements of the appdion or service from ththow am | to

be controlled?” requirements of the policy that have to deal with all of the exceptions and
producer businessatces. This separation enables a producer to choose a Licensing Ser-
vice implementation ts@d on considerations of how well a specific Licensing Service
supports the producer’s businesaqtces, as instantiated by theoducer policies.

The nterface to the Licensing Service accomplishes this by allowing the controlled appli-
cations or services to notify the Licensing Service of its wish to be controlled specifying
how the enforcement is to be performed.

Administraton and policy issues are not addressed in detail by the Licensing Service
interface; instead, they are left to implenoeat End users need to contitokir own inter-
face and reporting capabilitieBheability of the underlying Licensing Servicedeneate
management reports, both of historical and snapshidtre usage, will vary widely
depending on the implemgton. The adrmistrative interfaces fdhe Licensing Ser-
vices include command line onigUl only, and combined GUI and coramd lhe. An
administrative interfacevould affect the ability of end users to mandggrtenvironments
as they choose, so itis not defined by the Licensing Service.

Licensing Servicetl.0 Servic®escription March 1996 12-11

12

12.2.4 Design Principles

The design of the Licensing Service interface satisfies the followinglieac

Neutrality. The Licensing Service should niotroduce any onstraint on the way a
Producer can use the interfaces because of some underlying dependency on the LS
implementation. Producers need to be able to choose Licensing&

implementations that allow them to deliver their products in a manner best suited to the
individual Producer's business needs without requirements on the way the interface is
used. It is expected that LiBiplementations will allow manfroducer Client objects

to reference a single instee of the associatdRroducerSpecificLicenseService

interface to reduce the overhead of object creation.

Extensibility. The Licensing Swice allows for extensions to support styles of
Producer Policies that are not currently obvious. The Licensing Service provides
extensibility in its object reference in the returned Action structure irchieek-

use operation. This allows implementation-specific extensions to the cetidh
mechanismThe interface can also be extended by addidditional arguments and/or
operations; for example, in support of the Security Service.

Security. The Licensing Service provides a mechanism such that a degree of trust can
be established between the users ofitherface (theProducers) and the underlying
license management system. This is different from a typical secure environment since,
the Producer does not usually trust the end user or the end user security environment.
A mechanism is provided to allow the Producer to authenticate, in real time, that the
underlying license management system lisgitimate provider of the Licensing

Service. End useadministration can not circumvent this authenticating mechanism.

Performance. Implementations of the Licensing Service mapa$e to optimize
performance by the manner in which Producer Specific Licensing Service objects are
managed. For example, anplementation couldwose to allowmultiple copies of a
Producer Specific Licensing Servicedtribute client operations.

The Licensing Servicenechanisms must allow both synchronamsl asynchronous
messages so a producer can decide what is best for its application. For example, a very
short duration methodctivation may well be best suited, for performance nessm

using asynchronous meechanisms. On the other hand, if producers want to be
extremely strict, they mighthoose synchronous messages to prevent misuse and
accept the resulting loss of performance.

The Licensing Service provid@sechanisms so that an application using the Licensing
Service cannot accidentally orphan a license by acquiring aratille style of license

and nevereleasing vinen an application fails. Current mechanisms include connection-
oriented, client-server communications; client-server heartbeat mechanisms; and
server-based, client status query mechanisms. Keep in mind that the mechanism chosen
may place a performance burden on the producer client.

12-12 CORBAservices: Common Object Services Specification

12

12.2.5 Licensingervice Interfaces

The Licensing Service fiaes the interface between the Producer Clard the

Licensing Service Manageki¢enseServiceManagénterface)and thenterface

between the Producer Client and the Producer Licensing Service
(ProducerSpecificLicenseServiogerface). The interfaces enalfteoducers to control
use of their intellectual property Bny manner they deem appropriate tfogir

business model. The ision of policy from the Licensing Service interfaces enhances
Producer flexidity. The inerfaces for administration, policy creation, and license
document creation are not addressed, because they are implementation-specific.

The LicenseServiceManagénterface provides a mechanism for the Producer to locate
an object supporting the second interfa@mducerSpecificLicenseServicgll of the
operations required to constrain use of producers’ intellectual property are supported
by the second interface. This design allows the implementors of Licensing Services to
make trade-offs such as thdsetweerclient performance, licensing system
performance, and ease of administration.

Once a Producer Client ingghentation has obtainedP?aoducerSpecificLicenseService

object reference, the three operaticstarf_use, end_use, check use) can be
performed on this inteaite within the Client where thed@lucer dems it correct.The
information returned from these operations provides the basis for the Producer to enforce
its chosen usage constraint policy.

Interfaces are Madatory

All the interfaces are mandatory for athplementations. Optional arguments exist in
the LicenseServiceManageénterface. For theheck _use operation the
ProducerNotification component of the returned Action can bi @bject reference
indicating that the implementatiadoes not support this kind oftification

mechanism. In thetart_use operation the call_back argument can balabject
reference indicating that tiroducer client implementation is not using event services
and is designed to operate in a poll only mode. The properties argument to

start use , check use , andend use can be nil.

Constraints on Object Behavior

The Licensing 8rvice interface assumes the provision of an Event Service (the Event
Service is specified iChapter 4 inthis manual If an Event Service implementation
supports true asynchronous events—where delivery of an event can interrupt an
object’s task to invoke the push operation—then the Producer Client implementation
must mamgeits internal state in a re-entrant world.

Licensing Servicetl.0 Servic®escription March 1996 12-13

12

12-14

Producer

Cos License
Service

Manager

License
Service /™ B/ j
Licensing |
System |
=
Producer e o

Policy

Figure 12-2 Licensing Service Instance Diagram

In Figure 12-2, the Producer Client fiems theoperation
obtain_producer_specific_license_service on thelLicenseServiceMan-
agerinterface (Step 1). The Licensing Service Managg@iementation creates an object
(Steps 2 and 3) or locates an object reference to an object who hésfacéProducer-
SpecificLicenseServiand who is capable of responding to theipaldr poducer chal-
lenge. It then returns the referencehte Producer Client (Step 4). The producemtl

now uses the reference to fmemthe operationstart_use, check use, and
end_use (Steps 5 & 6). In implementatiortsat support true asynchronous events, the
ProducerSpecificLicenseServiobject can asynchronouslyrfim thepush operation
using the reference to the interface in the Producer Client provided as one of the argu-
ments to thetart_use operation in a previous step (in Step 5).

12.2.6 Licensing Eventdce Diagram

Figure 12-3 on page 12-16 represents the flow afitsvierough Producer Client objects
and a Licensing Service ptementabn. The steps below are illuated in the diagram.

1. Producer Gént gets ambject reference to the Producer 8fie Licensing Service.

CORBAservices: Common Object Services Specification

12

2. Producer @ént determines that usage control is reggiiand péorms the
start_use operation.

3. Producer Géntdoes an intiatheck_use c¢ all to retrieve the initial
recommended_check_interval.

4. Producer Specific Licensing Service instance interprets policy and interacts with the
Licensing System as necessary.

5. If asynchronous events are supported, the Producer Specific Licensing Service asks for
event notifcation tothe particular Producer ight at an interval deteiimed by Pol-
icy.(See page 35 for information asynchronous events).

6. Event Service delers the event to the Producer Client.
7. Producer Gént reponds to the event by performing ttleeck _use operation.

Steps 4,5,6,7 are repeateattil the Producer Client instance indicates that usage control is
no longer necessary.

8. Producer G@ént performs thend_use operation when usage control is to be termi-
nated.

If asynchronous events are not supported, then€Ciimplementation will need tgoll”
the Producer Specific Licensing Service with¢heck _use operation at an interval
defined by the check_interval argument to¢heck_use operatbn. To hitially
retrieve this check_interval value, the Client will need to invokkextk_use immedi-
ately aftethestart_use call.

Licensing Servicetl.0 Servic®escription March 1996 12-15

12

Figure 12-3 Licensing Event Trace Diagram

| | | | |
1
|- —— \ \ \
\ | | \ \
-__I--_™ | |
I S | |
o | |
| | -4 |
\ \ \ \ 5 \
——————— >
<« 5]
R \ \
- — = =		
	R	
		- — —
6	e e	
e e		
\ \ \ \ \		
‘ ‘		
	g	
- — — —F — % 4
-~ | |
\ | \ \ \
I I | | |
Client License Producer License Event
Service Specific Manager Service
Manager License
Service
1-obtain_producer_specific_license_service
2- start_use
3. Initial check_use
4- inquiry to the Licensing System
5- ask for event naification
6- event natification
7- check_use
8- end_use

12.3 The CosLicensingodule

The Coslicensing module is a collection of interfaces that together define the
Licensing Service. The module contains timterfaces:

12-16 CORBAservices: Common Object Services Specification

12

The LicenseServiceManagénterface consisting of the following operation:
» obtain_producer_specific_license_service

The ProducerSpecificLicenseServiggerface consisting of the following operations:
* start_use
e check use
* end_use

This section describes thécenseServiceManagandProducerSpecificLicense Service
interfaces and their operatis.

The CosLicensing module is shown below. Note thistmodule defiition uses some
definitions from theCosEventCommodule (in the Event Service) and tbesProperty-
Servicemodule (in the Property Service).

#include “CosEventComm.idl”
#include “CosPropertyService.idl”

Module CosLicensingManager {
exception InvalidProducerd{};
exception InvalidParameter{};
exception ComponentNotRegistered({};

typedef Object ProducerSpecificNotification;
enum ActionRequired { continue, terminate};
enum Answer { yes, no };

struct Action {

ActionRequired action ;

Answer notification_required ;

Answer wait_for_user_confirmation_after_notification ;
unsigned long notification_duration;
ProducerSpecificNotification producer_notification;
string notification_text;

struct ChallengeData {

unsigned long challenge_index;
unsigned long random_number;
string digest;

3

struct Challenge {

enum challenge_protocol { default, producer_defined },
unsigned long challenge_data_size;

any challenge_data;

b

Figure 12-4 CosLicensingManager Module

Licensing Servicetl.0 The CsLicensing Module March 1996 12-17

12

12-18

#include “CosEventComm.idl”
typedef any LicenseHandle;

interface ProducerSpecificLicenseService {

readonly attribute string producer_contact_info
readonly attribute string
producer_specific_license_service_info

LicenseHandle start_use (
in Principle principle,
in string component_name,
in string component_version,
inProperty::PropertySet license_use_context,
CosEventComm::PushConsumer call_back,
inout Challenge challenge

)

raises (InvalidParameter, ComponentNotRegistered);

void check_use (
in LicenseHandle handle,
in Property::PropertySet
license_use_context,
out unsigned long recommended_check_interval,
out Action action_to_be_taken,
inout Challenge challenge

)

raises (InvalidParameter);

void end_use (
in LicenseHandle handle,
Property::PropertySet license_use_context,
inout Challenge challenge

)

raises (InvalidParameter);
3

interface LicenseServiceManager {
ProducerSpecificLicenseService

obtain_producer_specific_license_service (
in string producer_name,
inout Challenge challenge

)

raises (InvalidProducer, InvalidParameter
J
k

b

Figure 12-4 CosLicensingManager Module

CORBAservices: Common Object Services Specification

12

Exception Raised Description

InvalidProducer Indicates that the producer argument is not correct or|that
an appropriate producer cannot be found.

InvalidParameter Indicates that one of the parameters isdniad
additional detail is provided in this document since this will
include a failed challenge. Additional information could
assist if someone wanted to make a deliberate attempt to
work out the challenge of a producer.

ComponentNotRegistered Indicates that the specific component has not been
registered with the Licensing System.

Table 12-1Exceptions Raised by Licensing Service Operations

12.3.1 LicenseServiceManager Interface

The LicenseService Megerinterface defines a single operation: obtaining the
producer specific Licensing Service object.

The LicenseServiceMaagerinterface allows a producer to control the use of their
intellectual propday. The

obtain_producer_specific_license_service opera tion returns an
object reference that supports mducerSpecificLicenseServiggerface. This
operation is protected by the use of a producer challenge.

It is likely that implementations of tHecense ServiceManagevrill make use of other
Object Services, such as Life Cycle, to create a produeeifigpinstance of the

Licensing Service. The Life Cycle Service is not used directly in order to allow the
service implementation to cache object references for performance reasons. Requiring
instance creation on every use of the

obtain_producer_specific_license_service operation is not desirable,

but can be allowed in particular implementation.

The operationobtain_producer_specific_license_service raises the
InvalidProducer and halidParameter exceptions.

12.3.2 ProducerSpecificLamseService Interface

The ProducerSpecificLicenseServirgerface defines three operations: notification
that a product has started to be usedtjfication that gproduct is st in use, and
notification that goroduct has finished being used.

Any object that possesses an object reference that suppoRsothécerSpecific
LicenseServicinterface and is capable of satisfying the challenge forgasicular
instance of theProducerSpecificLicenseServiggerfacecan perform the following
operations:

Licensing Servicetl.0 The CsLicensing Module March 1996 12-19

12

» The start_use operation which allows producers to notify the License
Service that some aspect of their product $staged to be sed and is to be
controlled by the service.

e Thecheck _use operation which allows the producers to notify the Licensing
Service that some aspect of their product that previously notified the service using
astart_use operation isstill in use.

* The end_use operation which allows the producers to notify the Licensing
Service that an aspect of their product, previouslynotified to the service in the
start_use operation, has completets use.

All of the previously listed operations are protected by a challenge mechanism to allow
a producer to be satisfied that timstance of the Licensing ServiceManager is a
legitimateone to control the produceristellectual property.

The attibute producer_contact_info may be used to proinfiermation thatcan be
displayed to an end user. Ta#ributeproducer_spcific_license_service_infoan be
used, if necessary, for a Producer Client to alter the wiayeitacts with different
ProducerSpecificLicenseServiobjects. Thesattributesare defined at creation of the
ProducerSpecificLicenseServigestance and do not change during ihstance’s life.

The sart_use, check_use and end_use capture and propafgateationabout the
user's runtime context to thécensing Service via thkcense_use_conteparameter.
This information will typically include the user's name, their node's name, network
address, local time, and so on. Timfrmationcan then be used by the License
System for a variety gurpcses:
* In an access control mechanism to determine whether or not to allow the user to
continue.

* In a private, possibly secure, usage logging mechanism.

» To provide data for peripheral management functions, such as triggeringaih e-
message to the netwoddministrator when resources run out.

The opertionsstart_use, check use ,andend_use raise the InvalidParameter
excepton.
Theaction_to_be_taken output parameter in treheck_use operation isused to

give the ProducerClient information on actions to be taken asul of its request to be
active or running. Thiollowing describes the Action structure in more detail. Note that
only theactionfield must be speciéd. All oter fields can return a ke of NULL in

which case behavior is determined by the coded policpettfivithin the RrducerClient
implementation.

« action: This field indicates if the ProducerClient should continue oniteate its
processinglepending on whether the requested license is avaitainethe
Licensing System.

* notification_required: Indicates whether or not the ProducerClient needs to
prompt the local user with a message indicating the results of the licensing
request.

« wait_for_user_confirmation_after_notificatian Indicates whether the
ProducerClient needs toait for a confirmation before continuing its processing.
This is applicable only if a notificatiohas been requested.

12-20 CORBAservices: Common Object Services Specification

12

12.4 References

* notification_duration: If the user natication is required without confmation,
this indicates how long the ProducerClient needsda before continuing with
its processing.

 producer_naotification This provides a reference to an object used by a Licensing
System to return implementation specific results and control information to the
ProducerClient. For example, produgmlicy instructionscan be part of this
object interface. It could also communicate the expiration date and time.

« notification_text This provides the text to be communicated to the local user if
required.

Thecheck_use operation thusallects into a single clierdctionthe ability to address
the following requirements:

® Give the capability to the producer client to get both the results from ardtibas
to be performed follwing a requestor permission to be active and/or running.

® Give the capbility to theproducer client to periodically verify the right to be active
and/or running in the case tifme dependent' licensing policy (for example, time
based consumable licenses, expiration tiraes, so forth). The
recommended_check_interval is the paramsttéctly tied to this verification.

® Give the capability to both the producer cliamd the Licensing Service
implementation to detect the followinmexpectedonditionsand then either
release the related active license and/or stop the usage accounting:

» Abnormalterminaion of either the producer client or the Licensing Service.

» Unrecoverable breakdown in communication between the Producer Client and the
Licensing Service.

» The indirect detection of these conditions is performed by forcing the producer
client to issue a check request within the check interval.

The check request concept is left to the specific Licensing Systel@nmantations.
However, that does not prevent the Licensing Service from usiradnéiol opeation as

the heartbeat mechanism. The heartbeat mechanism is a general purpose mechanism
required inside a client/ssr based application to determine if the other end is stilleac
Some applicatins dedicate a specific process or task to this purpose and rely on event
detection, others use a polling mechanism, others use system notifiodtioand so on.
Furthermore, because of the different concepts, the palfidgxits could not be fully sat-
isfied by a single checking rate.

Object Managemen®roup.Object Services RFP, ©DMG Document Number 94.4.18,
May, 1994.

Licensing Servicetl.0 Refereces March 1996 12-21

12

Appendix A

12-22

Licensing Service Glossary

License DocumentRepresents the fundamental element of control. It gesva secure
delivery vehicle describinguch things as how many copies of the intellectual property are
allowed, how long each copy may be used, and elleenents ohow producers wish to
constrain usage of themtellectual property.

Licensing Service The general term for the complete service, it consists of three compo-
nents: Producer @nt;Producer Licensing Service; and Licensing Service Manager.

Licensing Service Manager The Common Object Service Licensing Service Manager is
responsible for managing ancatingthe Producer Licensing Service objects.

License Unit License documents may contain the concept of licensethaitare inter-
preted in a producer-spécimanner bythe producer policy. A typical example of a
license unit could be one where a single unit is to represent a singlereahase of a
producer’s mtellectual property by aimdividual user. Théermlicensecan be used to
refer to the smallest indivisible quantity of license units thavargiicensing System
implementation supports.

Licensing System The implementation-sp#ic conponent that provides fundamental
usage control that, in conjunction with the Producer Licensing Service, provides sophisti-
cated producer policies. The Licensing System is responsible for securely managing the
fundamental units of control - the License Documents for all Producers.

Producer: The company or indidual who ownsghe intellectual property that requires
usage control.

Producer Client: Any object, or component of an object, that wants to have its usage con-
trolled or metered via kicensing Service.

Producer Policy. A Producer Policy is a decion of data that derbes the detailed

terms and conditions, or business pelgiwhich govern control andomitoring of a pro-
ducer’s intellectual property wherever the property can be used. The impdeioe of
producers’ policies is very specific to the Producer’s selection of a Licensing System.
There are two components to business policy implementation in a licepstegisOne
component is contained in the License Document and includes funtéhéngs like
expiration date and quantities. The other component, the Producer Policy, includes the
broader aspects of business policy and may be derived from the License Document. As an
example of the broader issues that require PdheyProducer Policy deals with all possi-

ble licensing exceptions such as when no license is found.

Producer-Specific Licensing ServiceA producer-specific iplementation that interacts

with and selects thgarticular Licensing System and Poliesed by a specific Producer to
control the Producer’s intellectual property. In this chapter, the Producer-Specific Licens-
ing Service is is also referred to as the Producer Licensing Service.

CORBAservices: Common Object Services Specification

12

Appendix B Use of OtherServices

This appendix describes thelationship between the Licensing Service and these
Object Services: Property; Réionship; and Security.

B.1 Property Service

The properties argument to tséart use , check use andend use

operations enables implementations to choose between using the Property Service or
providing name value pairs directly to the Licensing Service. This dedsiotfe

based on performance considerations or other practical conEemexample, the

inability to differentiate nership where a single property is used in a sing&ration
(method) but has differing values (as far as the Licensing Service is concerned)
because more than one principal is using the particular instance’s method at one time.

Examples of properties that are useful:

* UNITS_TO_RESERVE provides laint to the producer policy implementation
indicating that the currently controlled aspect of the produiceedlectual
property has some idea about what it is going to ‘use’ over the next amount of
time.

 VALUE_TO_CONSUMER provides a hint to tipeoducer policyimplementation
indicating that the currently controlled aspect has some idea of the value of what
it is currently doing.

« NODE_NAME provides a hint to the producer policy implementasibaut
where the currently being controlled object is executing.

These are cuently always producer-spiic. The Licensing Service places narsmtic
or syntactic interpretation on these properties but makes them available, in an implemen-
tation-specific way, to the producers policy.

B.1.1 License_Use Context

There will need to be a set of ammation aboueach producer client made dadie to the
ProducerSpecificLicenseServiae a "PropertySet" as specified by the Property Service.
The PropertySet is a dynamic equivalent of CORBA attributes. This sebohition is
made available to thefart use , check use andend use operations for the

Licensing System to use in determining various aspects of policyonéexample, this
data structure could contain:

 All data from theprincipal, as retrieved tlmugh the new contextfarmation
provided by theCORBA 2.0specification and assed, for example, by the
Transaction Service.

» Any data the producer client may need, either in the present or the future. Being
all inclusive early on reduces tineed to re-deploy the licensed software if
subsequent licenses need additional data.

» Fields from the examplist of licensing attributegprovided below.)

Licensing Servicetl.0 Refereces March 1996 12-23

12

12-24

Theexample list is useful to allow people other than thgioal producer to create license
documents for an object ptementabn. This happens in the case of either acqarssti

or distribution agreements. The exae list makes it easier fone object implementa-
tion to be licensed by migie license systems depending on the environment in which it
finds itself.

The list itemsare suggestions. Cently, no central registry of names exists; alsanyn
items are not clearly deked. The list is a starting point and can serve as a check list for
Producers.

Canonical List of user_contextdprerties:

* DATE_TODAY

» Today's date and time.

« GROUP_ID

* Integer group

* ID GROUP_NAME

* Name of group of users

* HARDWARE_FAMILY

» String of compatibldardwarefamily
* HARDWARE_MODEL

* Hardware model

+ HARDWARE_PRODUCER

* Manufacturer name

* NETWORK_ID

* Integer network identifier

* NETWORK_NAME

» String network iéntifier

* NETWORK_PROTOCOL

» String protocol name, for example, "TCP/IP" or "DECnet"
* NETWORK_STYLE

* 1lis local, 2 is LAN, 3 is WAN.
 NODE_ID

* Integer node identifier

+ NODE_NAME

» Name of computer

* OPERATING_SYSTEM

» String identifying the OS

« OS_VERSION

 String identifying the OS version

* PROCESS_FAMILY

 String identifying agroup of related processes
* PROCESS_ID

* Integer identifying a process number
* PROCESS_NAME

CORBAservices: Common Object Services Specification

12

» String identifying the name of the process

* PROCESS_TYPE

» 1 is batch, 2 is interactive, 3 is other

* PRODUCT_NAME

« Name of intellectual property being protected

« PRODUCT_PUBLISHER

» Owner of intellectuaproperty being protected

« PRODUCT_VERSION

» Version string of intellectugbroperty

* PUBLIC_KEY

» String containing publikey to est against Product
« RELEASE_DATE

* Integer indicating the date the software was released
« USER_ID

* Integer indicating user

« USER_NAME

 String containing user name

B.1.2 Dependent Licenses

The Licensing Service can examine not only the most recent set of user runtime environ-
ment data but it can als@a@mnine data from previous runtime contexts colleetedg a
particular thread of control. For example, a user may log in as "Fred" and begin some
action under that name. This action may include an operation being dispatched to an
object implementatiotogged in as "root". If this second process needs to obtain a license
which wagreserved for "Fred'hen it ought to be able to do sbhe user should denown

by all the names associated with that thread of control.

Another example of a recursive license right is the "embedded" license. Such a license is
not valid unless another object impleméiotawas used earlier on the thread of control.

A database software vendor might issue héseDoaments foluse within, say, an

accounting package. Other uses whiéghtbe worth more must be licensed sapely.

An example of an intéace which would support a stack otense Use Context is as fol-
lows:

interface UserContext {

Property::PropertySet License_Use_Context create ();

void push(in Property::PropertySet License_Use_Context);

void pop ();

unsigned long getDepth ();

Property::PropertySet License_Use_Context top ();

Property::PropertySet License_Use_Context get (in unsigned long
which_frame);

void clear ();
void remove ();

}

Licensing Servicetl.0 Refereces March 1996 12-25

12

B.2 Relationship Service

Support for coktctons andelationships will be deterimed by the mectmsms made
available to producers by the particulaplementations of the Licensing Service. It is
expected that the perfed mechanisms will be td@k the Producer Policy to make use
of Object Services such as the Relationship and Propettic&e but this is not a require-
ment of the Licensing Service.

Each implemetation of the Licensingervice can address the problem of how to manage
the relationships among licenses. The types of relations one can assume @xigts am
licenses can be generically classified as follows:

» Prerequisite licenses, for example. firevious example of a database vendor.

» Corequisite licenses, that is, a set of licenses which must all coexist to give the
producer client the right to be running.

« Exrequisite licenses, that is, a set of licenses that can run only if others are not
active.

» Generic dependent licenses, that is, a set of licenses whose dependencies are
described through a specific constraint expression.

B.3 Security Service

The Security Swice will probably replace the logic in each Licensing System that deals
with producer client authentication and access control.

12-26 CORBAservices: Common Object Services Specification

12

Appendix C Producer Client Implementation Issues

C.1 Client Implementation

In this example, a Producer decides to controhwabdctivaton. In the Producer’s object
activation, the implementation performs the
obtain_producer_specific_license_service operation on theicenseSer-
viceManageilinterface and stores the resultant object reference. In fllermantation of
each method that is to be caited, thestart_use operation is performed on the
stored object reference.

Depending on whether asynchronous events are supported, the Produeereiniglion
will vary as follows:

« If true asynchronous events are supported, the Producer implementation needs to
provide an interface inherited from CosEventComm,RashConsuménterface.

« If asynchronous events are not supported, or the Producer chooses to not use
events, then each implementation that usesthe _use operationneeds to
use thecheck _use operation no less frequently than the period specified in the
recommended_check_interval argumantil the implementation performs an
end_use operation. If, within the recommendetieck interval, the Producer
Client does not perform theheck_use operation, the Paucer Policy may
choose to release the associated licenses assuming that the Producer Client has
ceased functioning.

Produers must decide howey want to use theroperty Service to provide properties to
thestart_use, check use andend_use operations. In the Producerpfemen-
tation, the retured argumerdction_to_be_taken from titheck_use operation needs
to influence how the object continues after ectock _use operation.

The Producer needs to danine the name fa@ach component and the version for each
component. The Producer will then need to produce thenking System implementation
dependant policy and license document for the Pexthohosen policy.

When a particular use of thed@ucer object is copeted theend _use operation is
used to let the Licensing Servikeow hat control is no longer required for that compo-

nent.

C.2 Asynchronous Events

In CORBA implementabns where true asynchronous events are supported, provision is
made in thestart_use operation to provide the Licensing Service with the object ref-
erence that corresponds to etPushConsumenterface. This will allow the license
service to asynchronousdend a push event to the specified interface with the arguments
defined in the following pseudocode:

Licensing Servicetl.0 Refereces March 1996 12-27

12

C.3 Pseudocode

struct AsyncLicenseData{
ProducersSpecificLicenseService service;
LicenseHandle handle;
Challenge challenge;

/*Producer clientimplements an interface for the 'push’ operation:
*/

void xxxx_push(Object o, Environment *e, any data)

{

struct AsyncLicenseData *check;

[* get the actual information that is needed to proceed */
check = (struct AsyncLicenseData *)(data->_value);

/*
perform producer specific testing and lookup on:

check->handle

check->challenge

need to make sure that the component of this instance

that handle refers to is still active and that the

challenge is valid.

*/

/*
providing all is well, cause a check_use operation for
the handle. Have to assemble the challenge, decide which
properties are important for this handle and so forth.

*/

check->service->check_use(ev,

check->handle,
properties,

12-28 CORBAservices: Common Object Services Specification

12

interval,
action,

challenge);

/* test the challenge returned and so forth */

When the Producer Client has {mgsh operation invoked, agtting the routine
xxxx_push in the pseudocode example, the produgeeimentatiorshould determine
which aspect of the impinentation is referenced by the handle argument andrihekei
thecheck_use operation on the handle provided as one of the argumentspaghe
operaton. Atthar point, the implementation shouldeknine if theobject related to the
handle is still active; determine if the challenge is valid; and thdarpethe

check _use operation on the provided objeeference. The ults from thisoperation
will indicate whether any action is to be taken and, if so, the impii@n should pro-
ceed according to the Producer Policy.

Licensing Servicetl.0 Refereces March 1996 12-29

12

Appendix D

Challenge Mechanism

D.1 Default

For a producer to vidy that a particular instance of tlhdécenseServicebhageris legiti-
mate, a challenge mechanism is required. This requirement may either disappear or be
reduced if the Security Servidelivers a similar mechanism that can theinberited by
theLicenseServiceManager

The mechanism proposed, by default, assumes the sbarmed secretm the producer
implementations of their objectsd the specifimstance of the Licensing Service that is
involved to control the producer’s intellectual property.

The challenge mechanism is straightforward. When ansatipe isrequested by a pro-
ducer’s instance aallenge structure jgrovided along with the normal paratars.This
challenge structure consists of the MD5 of all the arguments to the operation, a random
number, and &orward secret valu&gnown only to thgroducer. The Licensing Service
instance for this producer can confithat the client instance is legitimate \osrifying

that the challenge is correct. In return the instance of the license system sends back the
MD5 of the same&andom number andraverse secret valuggainknown only to thepro-
ducer. The instance invoking the operation on the Licensing Service can verify that the
Licensing Service iehitimate by validating thgenerated MD3.The challenge mecha-
nism defined in the proposed interfaces supports more than one set of shared for-
ward/reverse seets. As part othe ChallengeData structure an index is provided,
challenge_index, that allows the client to choose which shaceet set is to based in

the challenge. A conforming implemtation of the LSheeds to support atdst four sets

of shared secrets whose indices are 6uttjin 3.

This mechaism is not inknded to be comglely secure. Instead, it provides trust
between the producer and the produceci$ipanstance of the Licensing Service. Eventu-
ally, the Security Service will probably replace the need for the challenge mechanism.

D.2 Alternative

12-30

As an alternative to the default challgn a Producer can choose to define its own
challenge protocol. Bgettingthe challenge_protocol enumeratelément of a

challenge to 'producer_defined' the definition of what the challenge element represents
becomes the responsibility of the produaed not the Licensing Servickrectly. This

1. MD5 is a message digest algorithm defined by R. Rivestin the InRF@2121. Itisin the public
domain and provides a mechanism to generate a 128-bit “fingerprint” of messages of arbitrary length. It
is conjectured thatthe difficulty of coming up with two messages that have the same @ittt is
operations and that generating a specific digest for a mesdge@&erations, making it suitable for
the basis of the challenge protocol described in gesification.

CORBAservices: Common Object Services Specification

12

will depend on the implementation of the Licensing Service, since the megtgni
available to the producer to support this are defined by the way a Licensing Service is
implemented.

Note

If the object producer so chooses, the same program can be licensed by more than one
Licensing System. It is simply a matter of who satisfies the challenge. In fact, the chal-
lenge mechanism supports as many Licensing Service providers as an object producer
chooses to pick up. They can choose sets of challenge data to deal vathgpgmtovid-

ers and use a standard set of challenge data to get the first available service provider.

It is not guaranteed to be true that all object producers will use the same challenge mecha-
nism. However, as long as the object producer chooses to use the defiterige, this

will be the case. As soon as an object producer decides to use an alternate challenge, that
will be defined by the licensgstem provider. At that point, only that implementation of

the Licensing Service can satisfy the challenge and remove the multiple service provider
capability. Default challenge mechanismsst be supported; however, if licensing sys-

tem providers offer an alternative, a producer need not use the default.

Licensing Servicetl.0 Refereces March 1996 12-31

12

12-32 CORBAservices: Common Object Services Specification

	Licensing Service Specification
	12.1 Background On Existing License Management Pro...
	12.1.1 Business Policy
	12.1.2 License Types
	12.1.3 A History of License Types
	12.1.4 Asset Management
	12.1.5 License Usage Practices
	12.1.6 Scalability
	12.1.7 Reliability
	12.1.8 Legacy Applications
	12.1.9 Security
	12.1.10 Client/Server Authentication
	12.1.11 Example: Application Acquiring and Releasi...

	12.2 Service Description
	12.2.1 Overview
	12.2.2 Key Components of a Licensing System
	License Attributes
	Licensing Policy
	Time Windows
	Value
	Use By a Collection of Related Objects
	Postage Meter
	Gas Meter

	Interfaces Isolated From Business Policies

	12.2.3 Licensing in the CORBA Environment
	12.2.4 Design Principles
	12.2.5 Licensing Service Interfaces
	Interfaces are Mandatory
	Constraints on Object Behavior

	12.2.6 Licensing Event Trace Diagram

	12.3 The CosLicensing Module
	12.3.1 LicenseServiceManager Interface
	12.3.2 ProducerSpecificLicenseService Interface

	12.4 References

