Externalization Service Specification 8

8.1 Service Description

The Externalization Service specification defines protocolscam¢entions for
externalizing and internalizing objects. To externalize an object is to record the
object’s state in a stream of data. Objects which support the appropriate interfaces and
whose implementations adhere to the proper eatienscan be externalized to a

stream (in memory, on a disk file, across the network, etc.) and subsequently be
internalized into a new object in the same or a different process. The externalized
form of the object caexist for arbitrary amounts of time, be transported by means
outside of the ORB, anchn be internalized in a different, disconnected ORB.

Many different externalized data formatisd storage mediums can be supported by
service implementations. But, for portitlyj clients can request that externalized data
be stored in a file using a standardized format that is defined as part of this
Externalization Service specification.

Externalizingand internalizing an object &milar to copying the object. The copy
operation creates a new object that is initialized from an existing object. The new
object is then available to provide service. Furthermore, witkedpg qoeration, there

is an assumption that it is possible to communicate via the ORB between the “here”
and “there”. Externalization, on the other hand, does not creatkject that is

initialized from an existing object. Externalization “staglesng the way”. New

objects are not created until the stream is internalized. Furthermore, there is no
assumption that is possible to communicate via the ORB between “here” and “there.”

The Externalization Service is related to the Relationship Service. It also parallels the
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily relatedobjects, and for graphs of related objects that support compound
operations. (For more information, refer to the Service Dependencies section in
Chapter 2.)

The Externalization Service defines protocols in these areas:

CORBAservices: Common Object Services Specification 8-1

» Client’s view of externalization, composed of the interfaces used by a client to
externalize and internalize objecfhe client’s view of externalization islefined
by theStreaminterface.

» Object’s view of externalization, composed of the interfaces used by an
externalizable object to record amatrieve theirobject state to and from the
stream’s external form. The object’'®ew is defined by theStreamlQinterface.

» Stream’sview of externalization, composed of the interfaces used by the stream
to direct an externalizable object or graph of objects to recordtioeve their
state from the stream’s external form. The streangw of externalization is
given by theStreamableNode RoleandRelationshipinterfaces.

8.2 Service Structure

This section explains the model of externalization for claant stream. It also
describes the model of externalizatiamd internalization for objects.

8.2.1 Client's Model of Object Externalization

A client has a simpleiew of the externalization service. dient that wishes to
externalize an object first must have an object reference Streamobject. AStream
object owns and provides access to the externalized form of one or more objects.
Streams may be provided that hold externalized data on various mediums such as in
memory or on disk. All Externalization Service implementors provi8éeamobject

that saves the externalized data in a file. A client may createeamobject using the
create() operation on &treamFactoryobject, or may specify that a file be used to
store the externalized data using timeate() operation of &ileStreamFactory

object.

The client can eate aStreamobject that supports a standardized externalization data
format. Externalization data that follows this format will be internalizable on all
CORBA-compliant ORBs that can locate compatible object implemensatiBy
including support for a specific external representation format in the Externalization
Service, portability of objecdtate isprovided across different CORBA-compliant
implementations antardwarearchitectures.

Once a client has &treamobject, the client may externalize an object by issuing an
externalize() request on th&treamobject, providing the object reference to the
object that should be externalized. In general, the client iwaneaof whether
externalizing an object causes any other related objects to be externalized. An
externalizable object may represent a singligect, a set of objects, or a graph of
related objects. The client uses the same interface in all cases.

If a client wishes to externalizaultiple objects (or related sets of objects) to the same
stream, the client issuesbagin_context() request before the first externalize
request and then issuesemd_context() following the last externalize request for
that same stream.

CORBAservices: Common Object Services Specification

8

The externalized form of the object can exist in the stream object for arbitrary amounts
of time, be transported by means outside of the Qi, can be internalized in a
different, disconnected ORB.

A client that wishes to internalize an object issuengarnalize() request on

the appropriate Stream obiject, providinfpatory finder. The Stream object interacts
with the specified factory finder, or uses other implementatependent mechanisms,
to create an implementation of the object that matches the externalized data. The
client is returned an object reference to the newly internalized object.

8.2.2 Stream’s Model of Object Extalization

A stream object provides tHatreaminterface for use by clients. The stream object is
also responsible for providing an object that suppo8#re@amlQinterface for actually
reading and writing data to the externalized data form. The stream object may support
the StreamlOinterfaces itself, or may create another object that supports the StreamlO
interfaces. This is considered an implemenation detail.

Note —When the behavior described in tlsisction may be implemented in either the
Stream or StreamlO objects (or other internal objects they may use), the term “stream
service” is used.

When a stream object receives an externalize reduosta client, it also gets an
object reference to the object to be externaliz€de sream cooperates with the
externalizable object to accomplish externalizatimalinternalization, using the
object’s Streamal® interfaces.

The steam service uses theadonly Key attribute of the externalizable object to
decide what information to put into the external data in order to be able to find the
correct factory and implementation with which to subsequently internalize an
equivalent object. Thetream service then issueseiernalize_to_stream|()

request to the externalizable object, providing an object reference to a StreamlO object
that is to be used by the externalizable object to reitemstate in the stream service’s
external data.

When a stream object receives an internalize redtsta client, it also gets a

factory finder. The stream service holds the external form of the object, or set of
objects, to be internalized@he stream service reads the key from its externalized data.
It may then pass the key to the factory finder to locate a factory that can create an
object with an implementat that matches the recorded object state. The stream
serviceimplemenation may use other implementation specific ways of creating an
appropriate objecfThe steam service then issues an

internalize_from_stream() request to the newly created object, providing an
object reference to treamlOobject that is used by the externalizable object to
initialize its state according to the stream service’s externalized data.

When a streamhject receives hegin_context() request, the stream service sets
up a context during which the stream service ensures that externafiitigle
objects that may have overlapping object references and/or object relationships

Externalization Servica/1.0 8rvice Structure March 1995 8-3

8-4

produces single instances of those objects on internalizatiorendmncontext()
request causes the stream service to remove the previous internal context, and
externalize subsequent objects without regard to whether they have already been
externalized in thiStream’sdata.

8.2.3 Objects Model of Externalization

Every object that wishes to lexternalizable must support tisgreamabldnterface,
and follow conventions on use of tBd¢reamlOinterfaces to record and retrieve their

object state from &trean’s data.

When anStreamableobject receives aaxternalize to_stream request from

the stream service, it must write all of its stagzessary for internalization to the
StreamlIOobject provided by the stream servicgtreamIOprovides

write_<type>() operations for writing each of the CORBA basic data types, plus
string types. If an object has object references that are pisst sifite the StreamlIO
write_object() operation may be used to cause the object specified by an object
reference to also be externalized to the stream’s data.

Externalization Control Flow (strewble object is not a node)

Client calls Stream::externalize (Streamable object)

Stream writes a key for this object to the external representation.

Stream calls the Streamabl e::write_to_stream (StreamlO this_sio) so that the
object can write out whatever internal state it needs to save.

If Streamable objectis a node in a graph of related objects, flow is giv-
en in Figure 8-2

Streamable object writes out its non-object data using the primitive
StreamlO::write_... (data) functions

Streamable object writes out other objects using the Stream-
IO::write_object (Streamable object) function

Figure 8-1 Externalization control flow when streamable object is not in a graph of related
objects

CORBAservices: Common Object Services Specification

8

A streamable object may be a node in a graptelated objects, that is, it mayse the
Relationship Service to connect to other objects and support the
CosCompoundExtralization::Nodeinterface. Such a streamable object simply
delegates th8treamableexternalize_to_stream() request back to the stream
service, using th&treamIO:write_graph() operation.

The steam service then coordinates the externalization of the graph and calls the
object back using the object®osCompounBxternalization::Nodenterface.

Externalization Control Flow (streeable is a node)

Streamable object, recognizing that it is a node in a graph of related
objects, delegates the externalization of the graph to the stream ser-
vice using StreamlO::write_graph (this_node) operation.

StreamlO::wri te_graph ,coordinates the externalization of the
graph using Node::externalize_node (this_sio) operation.

Node writes out its non-object data using the primitive
StreamlO::write_... (data) functions

Node writes out other objects using the
StreamlO::wri te_object (Streamable object) function

Node writes out its role objects using the
Role::externalize_role (this_sio) operation.

StreamlO::wri te_graph uses propagation value to de-
termine next nodes and writes a key for next node

StreamlO object externalizes the involved relationships using Rela-
tionship::externalize(). StreamlO writes traversal scoped ids for the
externalized roles and relationships to the Stream’s data.

Figure 8-2 Externalization control flow when streamable object is a node in a graph of related
objects

8.2.4 Objects Model of Internalization

When a streamable object receivesiraernalize_from_stream() request
from a stream, it must read data from SteeamlOobject provided by the stream
service, andnitialize its state to matcthe externalized state. The externalizable
object requests data from the stream service usin§tiieamIOread_<type>()

Externalization Servica/1.0 8rvice Structure March 1995 8-5

operations for basic data, astting types. If the object being internalized includes a
reference to another object as part of its state,StreamIOread_object()
operation may be used to have that object also interndliagedthe stream’s data.

Internalization ControFlow (streanable object is not a node)

Client calls Streamable = Stream::internalize (FactoryFinder f)

Stream reads key from the external representation, and uses this and the facto-
ry finder to create an object of the correct interface and implementation. The
stream may use the StreamableFactoryinterface.

Stream calls the Streamable::re ad_from_stream (StreamlO this_sio) so that
the object can read the data in its external representation and reset or calculate
its internal state

If Streamable objectis a node in a graph of related objects, flow is given
in Figure 8-4

Streamable object reads in its non-object data using the primitive
StreamlO::read_... (data) functions

Streamable object internalizes other objects using the
Streamable = StreamlO::read_object() function

Figure 8-3 Internalization control flow when object is not in a graph of related objects

A streamable object may be a node in a graptelated objects, that is, it mase the
Relationship Service to connect to other objects and support the
CosCompoundExtealization::Nodeinterface. Such a streamable object simply
delegates th&treamableinternalize_from_stream() request back to the
stream service, using tt&treamIO:write_graph() operation.

8-6 CORBAservices: Common Object Services Specification

8

The steam service then coordinates the externalization of the graph and calls the
object back using the objectBosCompounBxternalization::Nodenterface.

Internalization Control Flow (streamable is a node)

Streamable object, recognizing that it is a node in a graph of related
objects, delegates the internalization of the graph to the stream ser-
vice using StreamlO::read_ graph (this_node) operation.

StreamlO::read_graph ,coordinates the internalization of the
graph using Node:int ernalize_node (this_sio) operation.

Node reads its non-object data using the primitive
StreamlO:read_... (data) functions

Node read other objects using the
StreamlO::read_object (Streamable object) function

Node reads its role objects using the
Role:internalize_role (this_sio) operation.

StreamlO::read_graph reads the key for next node and
uses the StreamableFactory interface to create the next
node.

StreamlO object internalizes the traversal scoped identifiers for the
externalized roles and relationships and internalizes the relationships
using Relationship::internalize().

Figure 8-4 Internalization control flow when object is in a graph of related objects

8.3 Object andnterface Hierarchies

This section identifies the objects required for the Externalization Seamite
important inheritance and uselationships that exidietweenrtheir interfaces.

The Object Eternalization Service can only externalaed internalize objects that
inherit theStreamablénterface. Streamabledoes not inheriany otherinterfaces.
However, it must have aassociate®GtreamableFactoryhat the Externalization
Service implementationan find and use whenternalizing the object.

Externalization Servicez1.0 Object anihterface Hierarchies March 1995 8-7

8-8

Streaminherits thelifeCycleObjecinterface because clients of the Externalization
Service need to remove these objects. $treamFactoryor File StreamFactory
interfaces may be used to create stream objects.

In addition to the inheritance relationships described above, the class diagram in Figure
1 also slows the usage rationships between the servichjects. Stream

externalize() andinternalize() operations invoke th8treamable
externalize_to_stream() andinternalize_from_stream() operations

to write and read the apppriate object internal state. $treamlOobject is passed as

an argument to these operatiornEhe externalized object determines how much of its
state must be put in the external representation, and camizensaved state by
recreating some state upon internalization. $treamable

externalize_to_stream() andinternalize_from_stream() use
StreamIOoperations to actually put various data types and contained object references
in the external representation. This allo8tseamIOto put appropriate headers in the
external representation so that the object can be recreated correctly during
internalization. TheStreamis responsible for providing an object that supports the
StreamlQinterface. The Streamobject may support thtreamlOinterface itself, or

create another object that supports $teamIQinterface. ThestreamandStreamlO
implementations decide on the storage medium and data type representation
conversion for different hardware, withougiquiring different implementation of the
objects being externalized.

CORBAservices: Common Object Services Specification

LifeCycleObject

Streamable

StreamableFactory external form id
externalize_to_stream()

internalize_from_stream

write_object()
read_object()
write_graph()
read_graph()
write_...

read ...

StreamFactory

LEGEND

A<@— B Binherits from A
A@————B AhasB
AQ—— B AusesB

IdentifiableObject

Relationship

Figure 8-5 Object Externalization Service Booch Class (=Interface) Diagram

Externalization Servicez1.0 Object anihterface Hierarchies March 1995

8-9

8.4 InterfaceSummary

8-10

The Externalization Service defines interfaces (using OMG IDLgupport the
functionality described in the previous sections. The following tables give high level

descriptions of the Externalization Service interfa@ssequent sections describe the

interfaces in more detail.

Figure 8-6 Client Functional Interfaces support client’s model of externalization

objects that stores data in a file.

objects, and want the externalizg
data in a file.

Interface Purpose Primary Client
Stream Holds external form of objects. | Clients that need to externalize
and internalize objects.
StreamFactory Creates and initializes stream Clients that need to create stream
objects. objects.
FileStreamFactory | Creates and initializes stream Clients that need to create strean

Figure 8-7 Service Construction Interfaces support service implementation’s model of
externalization

Interface

Purpose

Primary Client

Streamable

Provides its state to a stream fq
externalizatbn, and gets its
state from the stream on
internalization.

The stream service
implementation of
externalization and
internalization.

StreamableFactory

Creates and initializes
streamable objects

The stream service
internalization implementation.

StreamlO

Part of stream implemenation
that writes and reads object
state to appropriately converte
external form.

The externalizable objects that]
need to record and retrieve the
state from a stream.

=

CORBAservices: Common Object Services Specification

Figure 8-8 Compound Externalization Interfaces support service implementation’s model of

graph externalization

Interface Purpose Primary Client
Node Defines externalization and The stream service
internalization operations on implementation of
nodes in graphs of related externalization and
objects. internalization.
Relationship Defines externalization and The stream service
internalization operations on | implementation of
relationships. externlization and
internalization.
Role Defines externalization and The stream service
internalization operations on implementation of
roles. externalization and
internalization.

Externalization Service Architecture: Audience/Bearer Mapping

Stream and StreamFactory are solely functional interfaces. Their audience is the client
of the Externalization Service.

Streamable, StreamableFactory, and StreamlO are solely construction interfaces. The
audience foiStreamablds both the Stream and StreamlO objects. To be
“externalizable,” objects must inherit tigtreamablénterfaceand provide

implementations of its operations. The audienceStoeam|Ointerface is the

externalizable Streamable and StreamableNode objects. The StreamlO objects are part
of the Externalization Service implementation.

The Stream, StreamFactory, and StreamlO objects are specific objects because their
purpose is to provide a part of the Externalization Serviceweder,there may be

many StreamandStreamlOinstances in a system, since each represents a particular
external representation of an object or group of objects.

Streamable an&treamableFactory objects are generic objects because their primary
purpose is unrelated to the Externalization Service. Any definer or implementor of an
object may choose to inherit the Streamable interface in order to support
externalization/internalization of that object.

In summary:

- StreamandStreamFactoy are specific functional interfaces

- Streamab® and SeamableFactoryare generic construction interfaces
- StreamlOis a specific construction interface

Externalization Service/1.0 hterface Summary March 1995 8-11

8.5 CosExternalization Module

The clientfunctional interfaces defined by the the CosExternalization module are:

» StreamFactoy interface, which creates a stream.

» FileStreamFactoryinterface, which has an operation that lets clients cause
externalized data be stored in a file or internalize objects from a filehinesy
been given.

» Streaminterface, which can externalize one object or a group @fctdyjfinalize
the externalizationand internalize an object.

#include <LifeCycle.idl>
#include <Stream.idl>
module CosExternalization {
exception InvalidFileNameError{};
exception ContextAlreadyRegistered{};
interface Stream: CosLifeCycle::LifeCycleObject{
void externalize(
in CosStream::Streamable theObject);
CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,
CosStream::StreamDataFormatError);
void begin_context()
raises(ContextAlreadyRedgistered);
void end_context();
void flush();
%
interface StreamFactory {
Stream create();
5
interface FileStreamFactory {
Stream create(
in string theFileName)
raises(InvalidFileNameError);

8.5.1 StreamFactory Interface

Creating a Stream Object

Stream create();

Clients of the Object Externalization Service must cregdtr@amobject before they

can externalize or internalize any objects. Two factory interfaces are supported. The
first, the StreamFactoryinterface has areate() operation that creates a stream
without specifying any speciatharacteristics of the implementation.

8-12 CORBAservices: Common Object Services Specification

8.5.2 FileStreamFactory Interface

Creating a Stream Object Asciated with a File

Stream create(
in string theFileName)
raises(InvalidFileNameError);

For clients that want to cause the externalized data stored in a file, or that need to
internalize objects from a file they habeen given, th&ileStreamFactoryinterface

has acreate() operation that takes a string input paraméfke client setshis

string to the filename of the file that will hesed by the stream service to hold the
extermal representation of the objects externalized, or that contains the external
representation of objects that the client wishes to internalize.

Stream:externalize() requests will append to any existing data inftlee
associated with a stream.

8.5.3 Stream Interface

Externalizing an Object

void externalize(in CosStream::Streamable theObject);

Clients of the Object Externalization Service invakeernalize() on aStream

object passing the object reference @a@sStream::$¢amableobject,theObject

to be externalized. Only objects that are of t@uesStream::Streamablean be

externalizd. Subsemntly, clients invoke thénternalize() operation on the
Streamcontaining the external representation, &tieéaminternalize()

operation creates a new object with state identical to what was externalized and returns
the new object reference.

The mplementation oéxternalize() writes implementation specifiteader
information to the external representation it is maintaining, so that the correct object
can be recreated at internalization time. This could be the factory key that was used to
create theCosStream::3¢amableobject, or could include the interface type,
implemenation repository, or factory object names. The factory key may be obtained

by from theexternal_form_id attribute oftheObject . Theexternalize()
implementation must then invoke tk®sStream::Streaable
externalize_to_stream() operation ortheObject to cause the object’s

internal state to be written to the external respresentation.Sfeamis responsible
for providing an object that supports tB&eamlQOinterfaces for the externalizable
object to use in writing data to the stream service.

Externalization Servica/1.0 ©sExternalization Module March 1995 8-13

8-14

Externalizing Groups of Objects

void begin_context()
raises(ContextAlreadyRegistered);
void end_context();

If a client wishes to externalize a set of objects with overlapping references and/or
object relatimships, the client invokdsegin_context() on theStream This

must be called before externaliziagy of theset of objects, andnd_context()

must be called on th8treamafter the entire set of objedtas been externalized and
before theStreamis used with another set of objects.

The Streamimplementation establishes an association with the spe@fredmobject

and a logical “context”. Th8treamensures that all objects externalized to this stream
while this association lasts will be externalized in suetag that inérnalization will

not create any duplicate objects. That is,ithplementation oStreamchecks for

“context”, and for djects externalized in the same context handles overlapping or
circular references and/or relationships between those objects. The asstasédion

until end_context() is called. TheStreamraises the ContextAlregBegstered

exception ifbegin_context() is called and a context is already established,

perhaps through some other implementation dependent mechanism or perhaps because
end_context() has not been called following a previolisgin_context()

Completing Externalization

void flush();

Clients invokeflush() to request that the external representation is committed to its
final storage medium, whatever that may be. The implementatitasbf{) should
attempt to ensure that the external respresentation is completely up-to-date in its final
storage (e.g. memory buffer, file, tape, ...).

Internalizing an Object

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,
CosStream::StreamDataFormatError);

The mplementation ofnternalize() must create an object with the correct
interface andmplementation to match the externalized representation and return a
pointer to the newCosStrea::Streamableobject. Thenternalize()

implementation must then invoke tidernalize_from_stream() operation

on the new object. Th@osStreamStreamDataFormatError exception should be
raised if an error is detected in the data format of the obpader. The

CORBAservices: Common Object Services Specification

8

CosLifeG/cle:NoFactory exception should be raised if the object cannotreated
because an appropriate factory cannot be found. If the object cannot be created due to
other reasons, an ObjectCreationError exception should be raised. Additional
CosStreamStreamDataFormat Exceptions may be raised bydhd <type>

operations invoked binternalize_from_stream() operation due to errors in

the externalized data format.

8.6 CosStream Module

The service construction interfaces defined by the CosStream module are:
» Streamablanterface
» StreamableFactorynterface
» StreamlQOinterface

#include <LifeCycle.idl>

#include <Objectldentity.idl>

#include <CompoundExternalization.idl>

module CosStream {
exception ObjectCreationError{};
exception StreamDataFormatError{};
interface StreamlO;

interface Streamable:
CosObjectldentity::IdentifiableObject {
readonly attribute CosLifeCycle::Key external_form_id;
void externalize_to_stream(
in StreamlOtargetStream|O);
void internalize_from_stream(
in Streaml|OsourceStreaml|O,
in FactoryFinder there);
raises(CosLifeCycle::NoFactory,
ObjectCreationError,
StreamDataFormatError);

h

interface StreamableFactory {
Streamable create_uninitialized();

h

interface StreamlO {
void write_string(in string aString);
void write_char(in char aChar);
void write_octet(in octet anOctet);
void write_unsigned_long(
in unsigned long anUnsignedLong);
void write_unsigned_short(
in unsigned short anUnsignedShort);
void write_long(in long aLong);
void write_short(in short aShort);

Figure 8-9 The CosStream module

Externalization Servica/1.0 CosStreaModule March 1995 8-15

8-16

void write_float(in float aFloat);
void write_double(in double aDouble);
void write_boolean(in boolean aBoolean);
void write_object(in Streamable aStreamable);
void write_graph(in CosCompoundExternalization::Node);
string read_string()
raises(StreamDataFormatError);
char read_char()
raises(StreamDataFormatError);
octet read_octet()
raises(StreamDataFormatError);
unsigned long read_unsigned_long()
raises(StreamDataFormatError);
unsigned short read_unsigned_short()
raises(StreamDataFormatError);
long read_long()
raises(StreamDataFormatError);
short read_short()
raises(StreamDataFormatError);
float read_float()
raises(StreamDataFormatError);
double read_double()
raises(StreamDataFormatError);
boolean read_boolean()
raises(StreamDataFormatError);
Streamable read_object(
in FactoryFinder there,
in Streamable aStreamable)
raises(StreamDataFormatError);
void read_graph(
in CosCompoundExternalization::Node
starting_node,
in FactoryFinder there)
raises(StreamDataFormatError);

b

Figure 8-9 The CosStream module

8.6.1 The StamlO Interface

The write_<type>() andread_<type>() operations orStreamlOare used by
Streamableexternalize_to_stream() and

internalize_from_stream() operations to cause internal object state to be
written to or read from the external representation. The

externalize_to_stream() decomposes the internal state of an object in a series
of primitive data type values thaén be written and read with these operations.
StreamIOsupports writing and reading all the CORBA basic data types.

CORBAservices: Common Object Services Specification

8

The mplementation of thevrite_... andread_... operations are responsible
for any desiredconwversion of the datand transfering the data to or from the desired
external representation. Actual transfer of the representation to the final storage
medium may be deferred until tflesh() operation. All details of the external
respresentation format, storage medium, and buffering are specific to the
implementation. Different implementations may support buffering of the external
representation data in memory, converting data values to a canonical binary form for
exchange across big/little dian CPU hardware, comvsion ofdata to a canonical text
form for readability or to facilitate mailing objects acrossworks, use of various
storage mediums such as memory, filesystem, tape or other differedeeghe
Standard Stream Datafmnat section for information on a portable external
representation. AStreamDataFormatError exception should be raised if errors
are detected in the data format of the external representation.

In support ofintegrating the Externalization Service with the Transaction and

Persistent Object Services, thead_object operation supports thaternalization

to existing objects. The semantics of the operation are that if the streamable parameter
is Null, then the FactoryFinder parameter is used to createstance for internalize.

If the streamable parameter is not Null, then the Streami@@ementaibn will

internalize to the a streamable object. This semantic allo&&xternalization Service

to be used as a Persistent Object Service protocol and suppoesthe operation on
existing objects in the case of an aborted transaction.

8.6.2 The Streamable Interface

Object implementors must inherit from tBéreamablanterface if they want an object
to be externalizable. Three operations must be implemented.

Comparing Streamable Objects

boolean CosObjectldentity::IdentifiableObject::is_identical(
in CosObjectldentity::IdentifiableObject anObject);

readonly unsigned long constant_random_id;

A Streamablebject inherits fromCosObjectldentity::IdentifiableObjecand therefore
mustsupport aconstant_random_id attribute and arns_identical()

operation. The stream service uses these to compare obfetsdetecting cycles or
overlapping references in objects being externalized to the same stream in the same
context or within the same grh. The constant_random_idrétute value does not

have to be unique, but a unique value may substantially speed up the externalization
process.

Creation Key for a Streamable Object

readonly attribute CosLifeCycle::Key external_form_id;

Externalization Servica/1.0 CosStreaModule March 1995 8-17

8-18

An Streamableobject must support a readordstribute,external_form_id ,

which is a key that can be given to a factory finder in order to find a factory that could
have createdhis object. The stream service may use ttagtributeduring

internalization to create an object that can reinitialigelf from the externalized data.

Writing the Object’s State to a Stream

void externalize_to_stream(
in StreamlOtargetStream|O);

The externalize_to_stream() operation is responsible for decomposing an
externalizable object’s internal state into a series of pviendata type values and
object references. Thexternalize_to_stream() function must write out all

the neccessamgrimitive data alues using tharite_<type>() operations on the
targetStreamICfor non-object data types. If this object has other object references,
then, normally, those objects should also be written out usingrite object()
operation on theéargetStreamlO However, it is up to th&treamableémplementor to
decide which referenced objects shouldelsgernalized with this object. The primitive
data values must all be written before any of the embedded objects references are
written.

If the Streamablds a node in a graph, then it should delegate the
externalize_to_stream() to theStreamIOby invokingwrite_graph()
The object would subsequently receive externalize_node_to_stream()

and write outits internal state adescribed aboveNodeobjects should not call
write_object() for other nodes in their graph, but megil write_object()
for object references that are not for nodes in their graph.

Reinitializing the Object’s State from a Stream

void internalize_from_stream(
in StreamlOsourceStreamlO,
in FactoryFinder there);

Theinternalize_from_stream() operation is responsible for reinitializing the
object’s internal state from the seriespoimitive data type values and object

references that are wen/flattened duringxternalize_to_stream() . The
internalize_from_stream() operation should read in all the neccessary
internal state of the object using thead_<type>() operations on the
sourceStreaml@or non-object data types. If this object has other object references that
were externalized usingvrite_object() , then those objects should be recreated
using theread_object() operation on theourceStream|Qvith the same
FactoryFinderargument as ththere parameter passed in to the
internalize_from_stream() operation. Theead_<type>() and

CORBAservices: Common Object Services Specification

8

read_object() operations for the various portions of the object’s internal state
must beinvoked in the same order in which they are written by the
externalize_to_stream() implementation. The

internalize_from_stream() must alsdnitialize anyadditional state that was
not externalized because it can be derived from aitage information. ferefore, the
externalize_to_stream() andinternalize_from_stream() operations
must be designed to complement each other.

If the Streamablds a node in a graph, then it should delegate the
internalize_to_stream() to thesourceStreamly invoking

read_graph() with the samd-actoryFinderargument as thiéhere parameter passed
in to the internalize_from_stream() operation. BieeamablegalsoNodg object
would subsequently receive amernalize_node_to_stream() and read in
its internal state as described abo Node objects should not catead_object()

for other nodes in their graph, but megll read_object() for object references
that are not for nodes in their graph..

The ObjectCeationErrorand StreamDataFormatError exceptions origifiadm the
read_object() andread_<type> operations on theourceStreamlQand are not
explicitly raised by thenternalize_from_stream() code.

8.6.3 The StreamableFactory Interface

Creating a Streamable Object

Streamable create_uninitialized();

The streanservice must be able to creatSteeamableobject in order to internalize an
object from the streamxtemalized data. For any externalizable object, a
StreamableFactorpbject must exist that supports creation of that object. This factory
must be findable using threadonly external_form_id Key attribute of the
streamableobject. The stream servicmplementabn could store this key during
externalizationand use it duringnternalization to find the factory that can create the
externalized object. However, a stream implementation usayother means to create
the object during internalization. Tlteeate_uninitialized() operation on the
StreamableFactorghould create the associated streamable object. This streamable
object does not have to be ialized, since that can be done on the subsequent
internalize_from_stream() operation on the newly created streamable object.

8.7 CosCompound Externalization Module

If a Streamableobject participates as a node inragh of related objects, the
Streamableobject can delegate the externalization operation to the stream service. In
particular, theStreamableobject simply uses therite _graph() operation. The
write_graph() operation expects a streamable object referenceststangnode.

The steam service narrows tlstreamable object reference to

Externalization Service/1.0 ©sCompound Externalization Module March 1995 8-19

CosCompoundExtealization::Node Thewrite_graph() then coordinates the
orderly externalization of the graph of related objects. For more details orooachp
operations, see the Relationship Service specification and the Compound Life Cycle
section in the Life Cycle Service specification.

The Cos@mpoundExternalization modutiefines theNode Rolg Relationshipand
PropagationCriteriaFactoryinterfaces for use by therite _graph() operation.

The Cos@mpoundExternalization module $hown in Figure 8-10Detailed
descriptions of the interfaces follow.

#include <Graphs.idl>
#include <Stream.idl>

module CosCompoundExternalization {
interface Node;
interface Role;
interface Relationship;
interface PropagationCriteriaFactory;

struct RelationshipHandle {
Relationship theRelationship;
::CosObjectldentity::Objectldentifier constantRandomld;

b

interface Node : ::CosGraphs::Node, ::CosStream::Streamable{
void externalize_node (in ::CosStream::Stream|O sio);
void internalize_node (in ::CosStream::StreamlO sio,
in ::CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)
raises (::CosLifeCycle::NoFactory);

h

interface Role : ::CosGraphs::Role {
void externalize_role (in ::CosStream::Stream|O sio);
void internalize_role (in ::CosStream::StreamlO sio);
::CosGraphs::PropagationValue externalize_propagation (
in RelationshipHandle rel,
in ::CosRelationships::RoleName toRoleName,
out boolean sameForAll);

k

Figure 8-10 The CosCompoundExternalization Module

8-20 CORBAservices: Common Object Services Specification

interface Relationship :
::CosRelationships::Relationship {

void externalize_relationship (
in ::CosStream::Stream|O sio);

void internalize_relationship(
in ::CosStream::StreamIO sio,
in ::CosGraphs::NamedRoles newRoles);

::CosGraphs::PropagationValue externalize_propagation (
in ::CosRelationships::RoleName fromRoleName,
in ::CosRelationships::RoleName toRoleName,
out boolean sameForAll);

b

interface PropagationCriteriaFactory {
::CosGraphs::TraversalCriteria create_for_externalize();

b
h

Figure 8-10 The CosCompoundExternalization Mod&ontinued)

8.7.1 The Node Interface

The Nodeinterface defines operations to internalimel externalize a node.

Externalizing a Node

void externalize_node (in ::CosStream::StreamlO sio);

The externalize_node() operation transfers the node’s state to the stream given
by thesio parameterThe node isesponsible to externalize it's roles as w&he node

can acomplish this by writing the role’gey to the seam and using the

Role: externalize_role() operation.

Internalizing a Node

void internalize_node (in ::CosStream::StreamlO sio,
in ::CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)
raises (::CosLifeCycle::NoFactory);

Theinternalize_node() operation causes a nodedits roles to be internalized
from the streansio.

Externalization Service/1.0 ©sCompound Externalization Module March 1995 8-21

It is the node’s responsibility to creadad internalizets roles. Itcan do this by
reading the key for a roleom the streanand using the
CosStream::Streamableletory interface to create the uninitialized ralad the
CosCompoudExternalizatiortinternalize_role() operation to internalize the
role. The new roles should be collocated with fiagtory finder given by thé¢here
parameter.

The result of ainternalize_node() operation is a sequence of roles.

Figure 8-11 illustrates the result of an internalize.ol®, when it is born, is not in any
relationships with other object$hat is, the roles in the new node are “disconnected”.
It is theread_graph() operation’s job to correctly establish neglationships.

nternalizeW
document

Figure 8-11 Internalizing a node returns the new object and the correspondesy rol

If an appropriate factory to internalize the roles cannot badptheNoFactory
exception is raised. The exception value indicates the key used to find the factory.

In addition to theNoFactory exception, implementations may raise standard
CORBA exceptions. For example, if resources cannot be acquired for the internalized
node,NO_RESOURCESIll be raised.

8.7.2 The Role Interface

The Roleinterface defines operations to externalize and internalize aTiodeRole
interface also defines an operation to return the propagation value for the externalize
operation.

The mplementation of &£ompoundExternatation::Nodeoperation can call these
operations on roles. For example, an implementatie@xiafrnalize on a node can
call theexternalize operation on th&®ole

Externalizing a Role

void externalize_role (in ::CosStream::StreamlO sio);

The externalize_role() operation transfers the role’s state to the strefm

8-22 CORBAservices: Common Object Services Specification

Internalizing a Role

void internalize_role (in ::CosStream::StreamlO sio);

Theinternalize_role() operation causes a role to read its state from the stream
given bysio.

Getting a Propagation Value

::CosGraphs::PropagationValue externalize_propagation (
in RelationshipHandle rel,
in::CosRelationships::RoleName toRoleName,
out boolean sameForAll);

The externalize_propagation() operation returns the propagation value to the
role toRoleName for the externalization operati@nd therelationshiprel . If the

role can guarantee that the propagation value is the same felatitnships in wich

it participates sameForAll s true.

8.7.3 The Relationship Interface

The Relationshipinterface defines operations to externalize and internalize a
relationship. TheRelationshipinterface also defines an operation to return the
propagation values for the exteranlize operations.

Externalizing the Relationship

void externalize_relationship (
in ::CosStream::StreamlO sio);

The externalize_role() operation transfers the role’s state to the strefm

Internalizing the Relationship

void internalize_relationship(
in ::CosStream::StreamlO sio,
in::CosGraphs::NamedRoles newRoles);

The internalize_relationship() operation internalizes the state of a
relationship from the streagiven bysio.

Externalization Service/1.0 ©sCompound Externalization Module March 1995 8-23

The values othe internalized relationship’s attributes are defined by the
implementation of this operation. However, tr@med_roles attribute of the newly
created relationship must matobwRolesThat is, the internalized relationship relates
objects represented mewRolegparameter, not the by the original relationship’s
named roles.

Getting a Propagation Value

::CosGraphs::PropagationValue externalize_propagation (
in::CosRelationshps::RoleName fromRoleName,
in::CosRelationship::RoleName toRoleName,
out boolean sameForAll);

The propagation_for() operation returns the relationship’s propagation value
from the rolefromRoleName to the roletoRoleName for the externalization
operation. If the role named somRoleNamean guarantee that the propagation
value is the same for all relationships in which it participagasyeForAll s true.

8.7.4 The PropagationCriteriaFactomyterface

The CosGaphs module in the &ationship Service defines a general service for
traversing agraph of related object3he service accepts acéll-back” object
supporting the:CosGraphs::TraversalCriteridanterface. Given a node, this object
defines which edges tmitand which nodes to visit next.

The PropgationCriteriaFactorycreates draversalCriteriaobject that determines
which edges to emit and which nodes to visit based on propagation values for the
compound externalization operations.

Create a Traversal Criteria Based on Externalization Propagation

::CosGraphs::TraversalCriteria create_for_externalize();

The create operation returns a TraversalCriteria object for an operation op that
determineswvhich edges to emit and which nodesvisit based on prmagation values
for op. For a moreletailed discussion see the Relationship Service chapter, section
9.4.2.

8-24 CORBAservices: Common Object Services Specification

8.8 Specific Externalization Relationships

The Relationship Servicgefines two important relationships: containmand

reference. Containment is a one-to-many relationship. A container can contain many
containees; a containee is contained by one contaipégréRce, on the other hand, is

a many-to-many relationship. An object can reference many objects; an object can be
referenced by many bjects.

Containment is represented by a relationship with two role<CdmeainsRoleand the
ContainedInRoleSimilarly, reference is represented by a relationship with two roles:
ReferencesRole and ReferencedByRole

Compound externilation adds externalization semantics to these specific
relationships. That is, it defines propagation values for containamhteference.

Externalization Service/1.0 Pecific Externalization Relationships March 1995 8-25

8.9 The CosExternalizationContainment Module

8-26

The CoskternalizationContainmemhodule defines the following interfaces:

 Relationshipinterface
» ContainsRolanterface
» ContainedInRolénterface

#include <Containment.idl>
#include <CompoundExternalization.idl>

module CosExternalizationContainment {

interface Relationship :
::CosCompoundExternalization::Relationship,
::CosContainment::Relationship {};

interface ContainsRole :
::CosCompoundExternalization::Role,
::CosContainment::ContainsRole {};

interface ContainedInRole :
::CosCompoundExternalization::Role,
::CosContainment::ContainedInRole {};

Figure 8-12 The CosExternalizationContainment module

The CosExternalizationGuainment moduleloes not define new operations. It merely
“mixes in” interfaces from th€osCompoundExternalizaticend CosContainment

modules. Although it does not add any new operations, it refines the semantics of these
operations:

The CosExternalizationContainment .. ContainsRole ::propagation_for
operation returns the following:

operation ContainsRole to ContainedInRole
externalize deep

The

CosExtemalizationContainment :» ContainedInRole ::propagation_for()

operation returns the following::

operation ContainedInRole to ContainsRole

externalize none
The CosRelationships::RoleFactory:: create_role() operation will
raise theRelatedObjectTypeError if the related object passed as a parameter

does not support theosCompoudExternalization::Nodenterface.

CORBAservices: Common Object Services Specification

8

The CosRelationships::RelationshipFactory :create() operation

will raise DegreeError if the number of roles passed as arguments is not 2. It will
raiseRoleTypeError if the roles are not
CoskEternalizatimContainmentContainsRoleand
CoskEternalizatinContainmentContainedInRolelt will raise

MaxCardinalityExceeded if the
CoskternalizatinContainmentContainedIinRoléds already participating in a
relationship.

Externalization Servica/1.0 The @sExternalizationContainment Module March 18337

8

8.10 The CosExternalizainReference Module

8-28

The CoskternalizationReferencmodule defines these interfaces:
» Relationshipinterface
» ReferencesRolmterface
» ReferencedByRolaterface

#include <Reference.idl>
#include <CompoundExternalization.idl>

module CosExternalizationReference {

interface Relationship :
::CosCompoundExternalization::Relationship,
::CosReference::Relationship {};

interface ReferencesRole :
::CosCompoundExternalization::Role,
::CosReference::ReferencesRole {};

interface ReferencedByRole :
::CosCompoundExternalization::Role,
::CosReference::ReferencedByRole {};

Figure 8-13 The CosExternalizationReference module

The CoskternalizationReference module does not define new operations. It merely
“mixes in” interfaces from th€osCompoundExternalizatiend CosReference

modules. Although it does not add any new operations, it refines the semantics of these
operations:

The CosExternalizationReference::RefacesRolgpropagation_for() operation
returns the following:

operation ReferencesRole to ReferencedByRole

externalize none

The CosExternalizationReference::RefacedByRoleropagation_for()
operation returns the following::

operation ReferencedByRole to ReferencesRole
externalize none
The CosRelationships::RoleFactory create_role() operation will raise the
RelatedObjectTypeError if the related object passed as a paranudes not

support theCosCompoun@xternalization::Nodédnterface.

CORBAservices: Common Object Services Specification

The CosRelationships::RelatinshipFactory.create() operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are no€osEcternalizationReferencdReferencesRole
andCosExternalizationBference ReferencedByRale

8.11 Standard Stream Data Format

An externalization client may create a stream that supports a specific external
representation data format that is intended to be portable aliffesent CORBA
implementations and on different CRPldrdware. A client creates such a Streanectb]
using a factory found by specifying a Key whose adgmeComponertias an
NameComponenid whose value is the string literal
“StandardExternalizationFormat”.

That format is described in this section.

8.11.1 OMG Externalized Object Data

1 byte

tag byte = xX’FO’

Key info Object info

1 byte

A leading “tag” byte with a value of X"FO" marks the beginning ofcéject’s
externalized data. Following this is data associated with a Key that asebtdo
internalize the object. The key information is then followed by the data written to the
Stream|Ofor the object’s state.

Key Info

length =i

1stid string 2nd id string . i'th id string

The keyinformation consists of a byte containing an integaue, “i", that indicates
how manyNaming::NameComponéatmake up the associated Key.

This byte is follaved by “i” null-terminatedsequences of char values that represent the
Naming::NameComponent values for the Key. These values cor@spto the C
mapping of a CORBA string type. The NameComponent::kind values are not stored in
this external data format.

Externalization Service/1.0 Standard Stream DatarRmt March 1995 8-29

8-30

1 byte

Object Info
1 byte

tag byte

data value tag byte data value

The object information is the seqnee of bytes generated for one or more

write_<type> operation. For eachrite <type> operation, a single “tag” byte
identifying the type of th@rimitive data isfollowed bythe data. The tag byte gives

the internalization implementation emgh infomation to skip past object state for

objects that cannot be created, for example when a compatible implementation cannot
be found on the internalizing ORB.

The tag byte values, and ddtamats for each type are as indicatediolv for basic
CORBA data types:

Table 8-1 CORBA Tag Byte Values and Data Formats

tag CORBA type data format
x'F1" | Char one byte
x'F2' | Octet one byte

X'F3’ UnsignedLong four bytes, big-endian format

x'F4" | Unsigned Short two bytes, big-endian format

X'F5’ Long four bytes, big-endian format
xX'F6’ | Short two bytes, big-endiaformat
X'F7’ Float four bytes, IEEE/54 singleprecision format, sign bit

in first byte

X'F8’ Double eight bytes, IEEE 754 double precision format, sign |bit

first byte

X'F9’ Boolean TRUE=>o0ne byte==1, FALSE=>0ne byte==

xX'FA" | String null-terminated sequence of bytes

8.11.2 Externalized Repeated RefereDe¢a

(bytes)

x'04’ | Object number

CORBAservices: Common Object Services Specification

8

This format is used only en mutiple objects reference the same object. Instead of
storing the referenced objetiultiple timesthe duplicate reference objects are stored
in this format. Note that the object is represented by a long object number which
indicates that the object has been stored already.

8.11.3 Externalized NIL Data

1 (byte)

X' 05’

8.12 References

This is a special formatsed to indicate that there is no object stored in the stream.

1. James Rumbaugh, “Controlling Propagation oé@gions using Attributes on
Relations.”OOPSLA 1988 Proceedingsg. 285-296

2. James Rumbaugh, Michael Blaha|l\dm Premerlani, Frederickdgly and Wiiam
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

3. Grady Booch, “Object Oriented Design with Applications.” The
Benjamin/Cummings Publishingathponay, Inc., 1991.

Externalization Servica/1.0 Rferences March 1995 8-31

8-32 CORBAservices: Common Object Services Specification

	Externalization Service Specification
	8.1 Service Description
	8.2 Service Structure
	8.2.1 Client’s Model of Object Externalization
	8.2.2 Stream’s Model of Object Externalization
	8.2.3 Object’s Model of Externalization
	8.2.4 Object’s Model of Internalization

	8.3 Object and Interface Hierarchies
	8.4 Interface Summary
	Externalization Service Architecture: Audience/Bea...

	8.5 CosExternalization Module
	8.5.1 StreamFactory Interface
	Creating a Stream Object

	8.5.2 FileStreamFactory Interface
	Creating a Stream Object Associated with a File

	8.5.3 Stream Interface
	Externalizing an Object
	Externalizing Groups of Objects
	Internalizing an Object

	8.6 CosStream Module
	8.6.1 The StreamIO Interface
	8.6.2 The Streamable Interface
	Writing the Object’s State to a Stream
	Reinitializing the Object’s State from a Stream

	8.6.3 The StreamableFactory Interface
	Creating a Streamable Object

	8.7 CosCompound Externalization Module
	8.7.1 The Node Interface
	Externalizing a Node
	Internalizing a Node

	8.7.2 The Role Interface
	Externalizing a Role
	Internalizing a Role
	Getting a Propagation Value

	8.7.3 The Relationship Interface
	Externalizing the Relationship
	Internalizing the Relationship
	Getting a Propagation Value

	8.7.4 The PropagationCriteriaFactory Interface
	Create a Traversal Criteria Based on Externalizati...

	8.8 Specific Externalization Relationships
	8.9 The CosExternalizationContainment Module
	8.10 The CosExternalizationReference Module
	8.11 Standard Stream Data Format
	8.11.1 OMG Externalized Object Data
	8.11.2 Externalized Repeated Reference Data
	8.11.3 Externalized NIL Data

	8.12 References

