
Externalization Service Specification 8
s and

d

a

re”

re.”

 the

8.1 Service Description

The Externalization Service specification defines protocols and conventions for
externalizing and internalizing objects. To externalize an object is to record the
object’s state in a stream of data. Objects which support the appropriate interface
whose implementations adhere to the proper conventions can be externalized to a
stream (in memory, on a disk file, across the network, etc.) and subsequently be
internalized into a new object in the same or a different process. The externalize
form of the object can exist for arbitrary amounts of time, be transported by means
outside of the ORB, and can be internalized in a different, disconnected ORB.

Many different externalized data formats and storage mediums can be supported by
service implementations. But, for portability, clients can request that externalized dat
be stored in a file using a standardized format that is defined as part of this
Externalization Service specification.

Externalizing and internalizing an object is similar to copying the object. The copy
operation creates a new object that is initialized from an existing object. The new
object is then available to provide service. Furthermore, with the copy operation, there
is an assumption that it is possible to communicate via the ORB between the “he
and “there”. Externalization, on the other hand, does not create an object that is
initialized from an existing object. Externalization “stops along the way”. New
objects are not created until the stream is internalized. Furthermore, there is no
assumption that is possible to communicate via the ORB between “here” and “the

The Externalization Service is related to the Relationship Service. It also parallels
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily related objects, and for graphs of related objects that support compound
operations. (For more information, refer to the Service Dependencies section in
Chapter 2.)

The Externalization Service defines protocols in these areas:
CORBAservices: Common Object Services Specification 8-1

8

to

m

.
s in

ta

n

e

• Client’s view of externalization, composed of the interfaces used by a client
externalize and internalize objects. The client’s view of externalization is defined
by the Stream interface.

• Object’s view of externalization, composed of the interfaces used by an
externalizable object to record and retrieve their object state to and from the
stream’s external form. The object’s view is defined by the StreamIO interface.

• Stream’s view of externalization, composed of the interfaces used by the strea
to direct an externalizable object or graph of objects to record or retrieve their
state from the stream’s external form. The stream’s view of externalization is
given by the Streamable, Node, Role and Relationship interfaces.

8.2 Service Structure

This section explains the model of externalization for client and stream. It also
describes the model of externalization and internalization for objects.

8.2.1 Client’s Model of Object Externalization

A client has a simple view of the externalization service. A client that wishes to
externalize an object first must have an object reference for a Stream object. A Stream
object owns and provides access to the externalized form of one or more objects
Streams may be provided that hold externalized data on various mediums such a
memory or on disk. All Externalization Service implementors provide a Stream object
that saves the externalized data in a file. A client may create a Stream object using the
create() operation on a StreamFactory object, or may specify that a file be used to
store the externalized data using the create() operation of a FileStreamFactory
object.

The client can create a Stream object that supports a standardized externalization da
format. Externalization data that follows this format will be internalizable on all
CORBA-compliant ORBs that can locate compatible object implementations. By
including support for a specific external representation format in the Externalizatio
Service, portability of object state is provided across different CORBA-compliant
implementations and hardware architectures.

Once a client has a Stream object, the client may externalize an object by issuing an
externalize() request on the Stream object, providing the object reference to the
object that should be externalized. In general, the client is unaware of whether
externalizing an object causes any other related objects to be externalized. An
externalizable object may represent a simple object, a set of objects, or a graph of
related objects. The client uses the same interface in all cases.

If a client wishes to externalize multiple objects (or related sets of objects) to the sam
stream, the client issues a begin_context() request before the first externalize
request and then issues an end_context() following the last externalize request for
that same stream.
8-2 CORBAservices: Common Object Services Specification

8

unts

e

s

pport
mIO

ream

e

bject

ta.
n

n

s
The externalized form of the object can exist in the stream object for arbitrary amo
of time, be transported by means outside of the ORB, and can be internalized in a
different, disconnected ORB.

A client that wishes to internalize an object issues an internalize() request on
the appropriate Stream object, providing a factory finder. The Stream object interacts
with the specified factory finder, or uses other implementation dependent mechanisms,
to create an implementation of the object that matches the externalized data. Th
client is returned an object reference to the newly internalized object.

8.2.2 Stream’s Model of Object Externalization

A stream object provides the Stream interface for use by clients. The stream object i
also responsible for providing an object that supports a StreamIO interface for actually
reading and writing data to the externalized data form. The stream object may su
the StreamIO interfaces itself, or may create another object that supports the Strea
interfaces. This is considered an implemenation detail.

Note – When the behavior described in this section may be implemented in either the
Stream or StreamIO objects (or other internal objects they may use), the term “st
service” is used.

When a stream object receives an externalize request from a client, it also gets an
object reference to the object to be externalized. The stream cooperates with the
externalizable object to accomplish externalization and internalization, using the
object’s Streamable interfaces.

The stream service uses the readonly Key attribute of the externalizable object to
decide what information to put into the external data in order to be able to find th
correct factory and implementation with which to subsequently internalize an
equivalent object. The stream service then issues an externalize_to_stream()
request to the externalizable object, providing an object reference to a StreamIO o
that is to be used by the externalizable object to record its state in the stream service’s
external data.

When a stream object receives an internalize request from a client, it also gets a
factory finder. The stream service holds the external form of the object, or set of
objects, to be internalized. The stream service reads the key from its externalized da
It may then pass the key to the factory finder to locate a factory that can create a
object with an implementation that matches the recorded object state. The stream
service implementation may use other implementation specific ways of creating an
appropriate object. The stream service then issues an
internalize_from_stream() request to the newly created object, providing a
object reference to a StreamIO object that is used by the externalizable object to
initialize its state according to the stream service’s externalized data.

When a stream object receives a begin_context() request, the stream service set
up a context during which the stream service ensures that externalizing multiple
objects that may have overlapping object references and/or object relationships
Externalization Service: v1.0 Service Structure March 1995 8-3

8

us

ject

d
produces single instances of those objects on internalization. An end_context()
request causes the stream service to remove the previous internal context, and
externalize subsequent objects without regard to whether they have already been
externalized in this Stream’s data.

8.2.3 Object’s Model of Externalization

Every object that wishes to be externalizable must support the Streamable interface,
and follow conventions on use of the StreamIO interfaces to record and retrieve their
object state from a Stream’s data.

When an Streamable object receives an externalize_to_stream request from
the stream service, it must write all of its state necessary for internalization to the
StreamIO object provided by the stream service. StreamIO provides
write_<type>() operations for writing each of the CORBA basic data types, pl
string types. If an object has object references that are part of its state, the StreamIO
write_object() operation may be used to cause the object specified by an ob
reference to also be externalized to the stream’s data.

Figure 8-1 Externalization control flow when streamable object is not in a graph of relate
objects

Client calls Stream::externalize (Streamable object)

Stream writes a key for this object to the external representation.

Stream calls the Streamabl e::wri te_to_stream (StreamIO this_sio) so that the
object can write out whatever internal state it needs to save.

If Streamable object is a node in a graph of related objects, flow is giv-
en in Figure 8-2

Streamable object writes out its non-object data using the primitive
StreamIO::write_... (data) functions

Streamable object writes out other objects using the Stream-
IO::write_object (Streamable object) function

Externalization Control Flow (streamable object is not a node)
8-4 CORBAservices: Common Object Services Specification

8

ted
A streamable object may be a node in a graph of related objects, that is, it may use the
Relationship Service to connect to other objects and support the
CosCompoundExternalization::Node interface. Such a streamable object simply
delegates the Streamable::externalize_to_stream() request back to the stream
service, using the StreamIO::write_graph() operation.

The stream service then coordinates the externalization of the graph and calls the
object back using the object’s CosCompoundExternalization::Node interface.

Figure 8-2 Externalization control flow when streamable object is a node in a graph of rela
objects

8.2.4 Object’s Model of Internalization

When a streamable object receives an internalize_from_stream() request
from a stream, it must read data from the StreamIO object provided by the stream
service, and initialize its state to match the externalized state. The externalizable
object requests data from the stream service using the StreamIO read_<type>()

Streamable object, recognizing that it is a node in a graph of related
objects, delegates the externalization of the graph to the stream ser-
vice using StreamIO::write_graph (this_node) operation.

Externalization Control Flow (streamable is a node)

Node writes out its non-object data using the primitive
StreamIO::write_... (data) functions

Node writes out other objects using the
StreamIO::wri te_object (Streamable object) function

StreamIO::wri te_graph ,coordinates the externalization of the
graph using Node::externalize_node (this_sio) operation.

StreamIO object externalizes the involved relationships using Rela-
tionship::externalize(). StreamIO writes traversal scoped ids for the
externalized roles and relationships to the Stream’s data.

Node writes out its role objects using the
Role::externalize_role (this_sio) operation.

StreamIO::wri te_graph uses propagation value to de-
termine next nodes and writes a key for next node
Externalization Service: v1.0 Service Structure March 1995 8-5

8

operations for basic data, and string types. If the object being internalized includes a
reference to another object as part of its state, the StreamIO read_object()
operation may be used to have that object also internalized from the stream’s data.

Figure 8-3 Internalization control flow when object is not in a graph of related objects

A streamable object may be a node in a graph of related objects, that is, it may use the
Relationship Service to connect to other objects and support the
CosCompoundExternalization::Node interface. Such a streamable object simply
delegates the Streamable::internalize_from_stream() request back to the
stream service, using the StreamIO::write_graph() operation.

Client calls Streamable = Stream::internalize (FactoryFinder f)

Stream reads key from the external representation, and uses this and the facto-
ry finder to create an object of the correct interface and implementation. The
stream may use the StreamableFactory interface.

Stream calls the Streamable::re ad_from_stream (StreamIO this_sio) so that
the object can read the data in its external representation and reset or calculate
its internal state

If Streamable object is a node in a graph of related objects, flow is given
in Figure 8-4

Streamable object reads in its non-object data using the primitive
StreamIO::read_... (data) functions

Streamable object internalizes other objects using the
Streamable = StreamIO::read_object() function

Internalization Control Flow (streamable object is not a node)
8-6 CORBAservices: Common Object Services Specification

8

The stream service then coordinates the externalization of the graph and calls the
object back using the object’s CosCompoundExternalization::Node interface.

Figure 8-4 Internalization control flow when object is in a graph of related objects

8.3 Object and Interface Hierarchies

This section identifies the objects required for the Externalization Service and
important inheritance and use relationships that exist between their interfaces.

The Object Externalization Service can only externalize and internalize objects that
inherit the Streamable interface. Streamable does not inherit any other interfaces.
However, it must have an associated StreamableFactory that the Externalization
Service implementation can find and use when internalizing the object.

Streamable object, recognizing that it is a node in a graph of related
objects, delegates the internalization of the graph to the stream ser-
vice using StreamIO::read_ graph (this_node) operation.

Internalization Control Flow (streamable is a node)

Node reads its non-object data using the primitive
StreamIO::read_... (data) functions

Node read other objects using the
StreamIO::read_object (Streamable object) function

StreamIO::read_graph ,coordinates the internalization of the
graph using Node::int ernalize_node (this_sio) operation.

StreamIO object internalizes the traversal scoped identifiers for the
externalized roles and relationships and internalizes the relationships
using Relationship::internalize().

Node reads its role objects using the
Role::internalize_role (this_sio) operation.

StreamIO::read_graph reads the key for next node and
uses the StreamableFactory interface to create the next
node.
Externalization Service: v1.0 Object and Interface Hierarchies March 1995 8-7

8

igure

s

nces

Stream inherits the LifeCycleObject interface because clients of the Externalization
Service need to remove these objects. The StreamFactory or File StreamFactory
interfaces may be used to create stream objects.

In addition to the inheritance relationships described above, the class diagram in F
1 also shows the usage relationships between the service objects. Stream
externalize() and internalize() operations invoke the Streamable
externalize_to_stream() and internalize_from_stream() operations
to write and read the appropriate object internal state. A StreamIO object is passed as
an argument to these operations. The externalized object determines how much of it
state must be put in the external representation, and can minimize saved state by
recreating some state upon internalization. The Streamable
externalize_to_stream() and internalize_from_stream() use
StreamIO operations to actually put various data types and contained object refere
in the external representation. This allows StreamIO to put appropriate headers in the
external representation so that the object can be recreated correctly during
internalization. The Stream is responsible for providing an object that supports the
StreamIO interface. The Stream object may support the StreamIO interface itself, or
create another object that supports the StreamIO interface. The Stream and StreamIO
implementations decide on the storage medium and data type representation
conversion for different hardware, without requiring different implementation of the
objects being externalized.
8-8 CORBAservices: Common Object Services Specification

8

Figure 8-5 Object Externalization Service Booch Class (=Interface) Diagram

write_object()
read_object()
write_graph()
read_graph()
write_...
read_...

external_form_id
externalize_to_stream()
internalize_from_stream()

StreamableFactory

LifeCycleObject

Streamable

IdentifiableObject

Stream

StreamIO

StreamFactory

B inherits from A

A B A has B

A B A uses B

A B

LEGEND

Node Relationship

Role
Externalization Service: v1.0 Object and Interface Hierarchies March 1995 8-9

8

vel
e

8.4 Interface Summary

The Externalization Service defines interfaces (using OMG IDL) to support the
functionality described in the previous sections. The following tables give high le
descriptions of the Externalization Service interfaces. Subsequent sections describe th
interfaces in more detail.

Figure 8-6 Client Functional Interfaces support client’s model of externalization

Interface Purpose Primary Client

Stream Holds external form of objects. Clients that need to externalize
and internalize objects.

StreamFactory Creates and initializes stream
objects.

Clients that need to create stream
objects.

FileStreamFactory Creates and initializes stream
objects that stores data in a file.

Clients that need to create stream
objects, and want the externalized
data in a file.

Figure 8-7 Service Construction Interfaces support service implementation’s model of
externalization

Interface Purpose Primary Client

Streamable Provides its state to a stream for
externalization, and gets its
state from the stream on
internalization.

The stream service
implementation of
externalization and
internalization.

StreamableFactory Creates and initializes
streamable objects

The stream service
internalization implementation.

StreamIO Part of stream implemenation
that writes and reads object
state to appropriately converted
external form.

The externalizable objects that
need to record and retrieve their
state from a stream.
8-10 CORBAservices: Common Object Services Specification

8

client

 The

re part

heir

r

ry
f an

of
Externalization Service Architecture: Audience/Bearer Mapping

Stream and StreamFactory are solely functional interfaces. Their audience is the
of the Externalization Service.

Streamable, StreamableFactory, and StreamIO are solely construction interfaces.
audience for Streamable is both the Stream and StreamIO objects. To be
“externalizable,” objects must inherit the Streamable interface and provide
implementations of its operations. The audience for StreamIO interface is the
externalizable Streamable and StreamableNode objects. The StreamIO objects a
of the Externalization Service implementation.

The Stream, StreamFactory, and StreamIO objects are specific objects because t
purpose is to provide a part of the Externalization Service. However, there may be
many Stream and StreamIO instances in a system, since each represents a particula
external representation of an object or group of objects.

Streamable and StreamableFactory objects are generic objects because their prima
purpose is unrelated to the Externalization Service. Any definer or implementor o
object may choose to inherit the Streamable interface in order to support
externalization/internalization of that object.

In summary:
- Stream and StreamFactory are specific functional interfaces
- Streamable and StreamableFactory are generic construction interfaces
- StreamIO is a specific construction interface

Figure 8-8 Compound Externalization Interfaces support service implementation’s model
graph externalization

Interface Purpose Primary Client

Node Defines externalization and
internalization operations on
nodes in graphs of related
objects.

The stream service
implementation of
externalization and
internalization.

Relationship Defines externalization and
internalization operations on
relationships.

The stream service
implementation of
externlization and
internalization.

Role Defines externalization and
internalization operations on
roles.

The stream service
implementation of
externalization and
internalization.
Externalization Service: v1.0 Interface Summary March 1995 8-11

8

The
8.5 CosExternalization Module

The client-functional interfaces defined by the the CosExternalization module are:

• StreamFactory interface, which creates a stream.

• FileStreamFactory interface, which has an operation that lets clients cause
externalized data be stored in a file or internalize objects from a file they have
been given.

• Stream interface, which can externalize one object or a group of objects; finalize
the externalization, and internalize an object.

8.5.1 StreamFactory Interface

Creating a Stream Object

Clients of the Object Externalization Service must create a Stream object before they
can externalize or internalize any objects. Two factory interfaces are supported.
first, the StreamFactory interface has a create() operation that creates a stream
without specifying any special characteristics of the implementation.

#include <LifeCycle.idl>
#include <Stream.idl>
module CosExternalization {

exception InvalidFileNameError{};
exception ContextAlreadyRegistered{};
interface Stream: CosLifeCycle::LifeCycleObject{

void externalize(
in CosStream::Streamable theObject);

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)

raises(CosLifeCycle::NoFactory,
CosStream::StreamDataFormatError);

void begin_context()
raises(ContextAlreadyRegistered);

void end_context();
void flush();

};
interface StreamFactory {

Stream create();
};
interface FileStreamFactory {

Stream create(
in string theFileName)

raises(InvalidFileNameError);
};

};

Stream create();
8-12 CORBAservices: Common Object Services Specification

8

o

turns

ect
ed to

ed
8.5.2 FileStreamFactory Interface

Creating a Stream Object Associated with a File

For clients that want to cause the externalized data stored in a file, or that need t
internalize objects from a file they have been given, the FileStreamFactory interface
has a create() operation that takes a string input parameter. The client sets this
string to the filename of the file that will be used by the stream service to hold the
extermal representation of the objects externalized, or that contains the external
representation of objects that the client wishes to internalize.
Stream::externalize() requests will append to any existing data in the file
associated with a stream.

8.5.3 Stream Interface

Externalizing an Object

Clients of the Object Externalization Service invoke externalize() on a Stream
object passing the object reference of a CosStream::Streamable object, theObject ,
to be externalized. Only objects that are of type CosStream::Streamable can be
externalized. Subsequently, clients invoke the internalize() operation on the
Stream containing the external representation, and Stream internalize()
operation creates a new object with state identical to what was externalized and re
the new object reference.

The implementation of externalize() writes implementation specific header
information to the external representation it is maintaining, so that the correct obj
can be recreated at internalization time. This could be the factory key that was us
create the CosStream::Streamable object, or could include the interface type,
implemenation repository, or factory object names. The factory key may be obtain
by from the external_form_id attribute of theObject . The externalize()
implementation must then invoke the CosStream::Streamable
externalize_to_stream() operation on theObject to cause the object’s
internal state to be written to the external respresentation. The Stream is responsible
for providing an object that supports the StreamIO interfaces for the externalizable
object to use in writing data to the stream service.

Stream create(
in string theFileName)

raises(InvalidFileNameError);

void externalize(in CosStream::Streamable theObject);
Externalization Service: v1.0 CosExternalization Module March 1995 8-13

8

r

m

cause

 its

 final

Externalizing Groups of Objects

If a client wishes to externalize a set of objects with overlapping references and/o
object relationships, the client invokes begin_context() on the Stream. This
must be called before externalizing any of the set of objects, and end_context()
must be called on the Stream after the entire set of objects has been externalized and
before the Stream is used with another set of objects.

The Stream implementation establishes an association with the specified Stream object
and a logical “context”. The Stream ensures that all objects externalized to this strea
while this association lasts will be externalized in such a way that internalization will
not create any duplicate objects. That is, the implementation of Stream checks for
“context”, and for objects externalized in the same context handles overlapping or
circular references and/or relationships between those objects. The association lasts
until end_context() is called. The Stream raises the ContextAlreadyRegistered
exception if begin_context() is called and a context is already established,
perhaps through some other implementation dependent mechanism or perhaps be
end_context() has not been called following a previous begin_context() .

Completing Externalization

Clients invoke flush() to request that the external representation is committed to
final storage medium, whatever that may be. The implementation of flush() should
attempt to ensure that the external respresentation is completely up-to-date in its
storage (e.g. memory buffer, file, tape, ...).

Internalizing an Object

The implementation of internalize() must create an object with the correct
interface and implementation to match the externalized representation and return a
pointer to the new CosStream::Streamable object. The internalize()
implementation must then invoke the internalize_from_stream() operation
on the new object. The CosStream::StreamDataFormatError exception should be
raised if an error is detected in the data format of the object header. The

void begin_context()
raises(ContextAlreadyRegistered);

void end_context();

void flush();

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)

raises(CosLifeCycle::NoFactory,
CosStream::StreamDataFormatError);
8-14 CORBAservices: Common Object Services Specification

8

ue to

CosLifeCycle::NoFactory exception should be raised if the object cannot be created
because an appropriate factory cannot be found. If the object cannot be created d
other reasons, an ObjectCreationError exception should be raised. Additional
CosStream::StreamDataFormat Exceptions may be raised by the read_<type>
operations invoked by internalize_from_stream() operation due to errors in
the externalized data format.

8.6 CosStream Module

The service construction interfaces defined by the CosStream module are:

• Streamable interface

• StreamableFactory interface

• StreamIO interface

#include <LifeCycle.idl>
#include <ObjectIdentity.idl>
#include <CompoundExternalization.idl>
module CosStream {

exception ObjectCreationError{};
exception StreamDataFormatError{};
interface StreamIO;

interface Streamable:
CosObjectIdentity::IdentifiableObject {

readonly attribute CosLifeCycle::Key external_form_id;
void externalize_to_stream(

in StreamIOtargetStreamIO);
void internalize_from_stream(

in StreamIOsourceStreamIO,
in FactoryFinder there);

raises(CosLifeCycle::NoFactory,
ObjectCreationError,
StreamDataFormatError);

};

interface StreamableFactory {
Streamable create_uninitialized();

};

interface StreamIO {
 void write_string(in string aString);
 void write_char(in char aChar);
 void write_octet(in octet anOctet);
 void write_unsigned_long(

in unsigned long anUnsignedLong);
 void write_unsigned_short(

in unsigned short anUnsignedShort);
 void write_long(in long aLong);
 void write_short(in short aShort);

Figure 8-9 The CosStream module
Externalization Service: v1.0 CosStream Module March 1995 8-15

8

ies
8.6.1 The StreamIO Interface

The write_<type>() and read_<type>() operations on StreamIO are used by
Streamable externalize_to_stream() and
internalize_from_stream() operations to cause internal object state to be
written to or read from the external representation. The
externalize_to_stream() decomposes the internal state of an object in a ser
of primitive data type values that can be written and read with these operations.
StreamIO supports writing and reading all the CORBA basic data types.

 void write_float(in float aFloat);
 void write_double(in double aDouble);
 void write_boolean(in boolean aBoolean);
 void write_object(in Streamable aStreamable);
 void write_graph(in CosCompoundExternalization::Node);
 string read_string()

raises(StreamDataFormatError);
 char read_char()

raises(StreamDataFormatError);
 octet read_octet()

raises(StreamDataFormatError);
 unsigned long read_unsigned_long()

raises(StreamDataFormatError);
 unsigned short read_unsigned_short()

raises(StreamDataFormatError);
 long read_long()

raises(StreamDataFormatError);
 short read_short()

raises(StreamDataFormatError);
 float read_float()

raises(StreamDataFormatError);
 double read_double()

raises(StreamDataFormatError);
 boolean read_boolean()

raises(StreamDataFormatError);
 Streamable read_object(

in FactoryFinder there,
in Streamable aStreamable)

raises(StreamDataFormatError);
 void read_graph(

in CosCompoundExternalization::Node
starting_node,

in FactoryFinder there)
raises(StreamDataFormatError);

};
};

Figure 8-9 The CosStream module
8-16 CORBAservices: Common Object Services Specification

8

 for

meter

me

tion
The implementation of the write_... and read_... operations are responsible
for any desired conversion of the data and transfering the data to or from the desired
external representation. Actual transfer of the representation to the final storage
medium may be deferred until the flush() operation. All details of the external
respresentation format, storage medium, and buffering are specific to the
implementation. Different implementations may support buffering of the external
representation data in memory, converting data values to a canonical binary form
exchange across big/little endian CPU hardware, conversion of data to a canonical text
form for readability or to facilitate mailing objects across networks, use of various
storage mediums such as memory, filesystem, tape or other differences. See the
Standard Stream Data Format section for information on a portable external
representation. A StreamDataFormatError exception should be raised if errors
are detected in the data format of the external representation.

In support of integrating the Externalization Service with the Transaction and
Persistent Object Services, the read_object operation supports the internalization
to existing objects. The semantics of the operation are that if the streamable para
is Null, then the FactoryFinder parameter is used to create an instance for internalize.
If the streamable parameter is not Null, then the StreamIO implementation will
internalize to the a streamable object. This semantic allows the Externalization Service
to be used as a Persistent Object Service protocol and support the restore operation on
existing objects in the case of an aborted transaction.

8.6.2 The Streamable Interface

Object implementors must inherit from the Streamable interface if they want an object
to be externalizable. Three operations must be implemented.

Comparing Streamable Objects

A Streamable object inherits from CosObjectIdentity::IdentifiableObject, and therefore
must support a constant_random_id attribute and an is_identical()
operation. The stream service uses these to compare objects when detecting cycles or
overlapping references in objects being externalized to the same stream in the sa
context or within the same graph. The constant_random_id attribute value does not
have to be unique, but a unique value may substantially speed up the externaliza
process.

Creation Key for a Streamable Object

boolean CosObjectIdentity::IdentifiableObject::is_identical(
in CosObjectIdentity::IdentifiableObject anObject);

readonly unsigned long constant_random_id;

readonly attribute CosLifeCycle::Key external_form_id;
Externalization Service: v1.0 CosStream Module March 1995 8-17

8

uld

s,

re

that

An Streamable object must support a readonly attribute, external_form_id ,
which is a key that can be given to a factory finder in order to find a factory that co
have created this object. The stream service may use this attribute during
internalization to create an object that can reinitialize itself from the externalized data.

Writing the Object’s State to a Stream

The externalize_to_stream() operation is responsible for decomposing an
externalizable object’s internal state into a series of primitive data type values and
object references. The externalize_to_stream() function must write out all
the neccessary primitive data values using the write_<type>() operations on the
targetStreamIO for non-object data types. If this object has other object reference
then, normally, those objects should also be written out using the write_object()
operation on the targetStreamIO. However, it is up to the Streamable implementor to
decide which referenced objects should be externalized with this object. The primitive
data values must all be written before any of the embedded objects references a
written.

If the Streamable is a node in a graph, then it should delegate the
externalize_to_stream() to the StreamIO by invoking write_graph() .
The object would subsequently receive an externalize_node_to_stream()
and write out its internal state as described above. Node objects should not call
write_object() for other nodes in their graph, but may call write_object()
for object references that are not for nodes in their graph.

Reinitializing the Object’s State from a Stream

The internalize_from_stream() operation is responsible for reinitializing the
object’s internal state from the series of primitive data type values and object
references that are written/flattened during externalize_to_stream() . The
internalize_from_stream() operation should read in all the neccessary
internal state of the object using the read_<type>() operations on the
sourceStreamIO for non-object data types. If this object has other object references
were externalized using write_object() , then those objects should be recreated
using the read_object() operation on the sourceStreamIO with the same
FactoryFinder argument as the there parameter passed in to the
internalize_from_stream() operation. The read_<type>() and

void externalize_to_stream(
in StreamIOtargetStreamIO);

void internalize_from_stream(
in StreamIOsourceStreamIO,
in FactoryFinder there);
8-18 CORBAservices: Common Object Services Specification

8

ry

le

ct.

. In
read_object() operations for the various portions of the object’s internal state
must be invoked in the same order in which they are written by the
externalize_to_stream() implementation. The
internalize_from_stream() must also initialize any additional state that was
not externalized because it can be derived from other state information. Therefore, the
externalize_to_stream() and internalize_from_stream() operations
must be designed to complement each other.

If the Streamable is a node in a graph, then it should delegate the
internalize_to_stream() to the sourceStreamIO by invoking
read_graph() with the same FactoryFinder argument as the there parameter passed
in to the internalize_from_stream() operation. The Streamable (also Node) object
would subsequently receive an internalize_node_to_stream() and read in
its internal state as described above. Node objects should not call read_object()
for other nodes in their graph, but may call read_object() for object references
that are not for nodes in their graph..

The ObjectCreationError and StreamDataFormatError exceptions originate from the
read_object() and read_<type> operations on the sourceStreamIO, and are not
explicitly raised by the internalize_from_stream() code.

8.6.3 The StreamableFactory Interface

Creating a Streamable Object

The stream service must be able to create a Streamable object in order to internalize an
object from the stream’s externalized data. For any externalizable object, a
StreamableFactory object must exist that supports creation of that object. This facto
must be findable using the readonly external_form_id Key attribute of the
streamable object. The stream service implementation could store this key during
externalization and use it during internalization to find the factory that can create the
externalized object. However, a stream implementation may use other means to create
the object during internalization. The create_uninitialized() operation on the
StreamableFactory should create the associated streamable object. This streamab
object does not have to be initialized, since that can be done on the subsequent
internalize_from_stream() operation on the newly created streamable obje

8.7 CosCompound Externalization Module

If a Streamable object participates as a node in a graph of related objects, the
Streamable object can delegate the externalization operation to the stream service
particular, the Streamable object simply uses the write_graph() operation. The
write_graph() operation expects a streamable object reference as a starting node.
The stream service narrows the streamable object reference to

Streamable create_uninitialized();
Externalization Service: v1.0 CosCompound Externalization Module March 1995 8-19

8

cle
CosCompoundExternalization::Node. The write_graph() then coordinates the
orderly externalization of the graph of related objects. For more details on compound
operations, see the Relationship Service specification and the Compound Life Cy
section in the Life Cycle Service specification.

The CosCompoundExternalization module defines the Node, Role, Relationship and
PropagationCriteriaFactory interfaces for use by the write_graph() operation.

The CosCompoundExternalization module is shown in Figure 8-10. Detailed
descriptions of the interfaces follow.

#include <Graphs.idl>
#include <Stream.idl>

module CosCompoundExternalization {
interface Node;
interface Role;
interface Relationship;
interface PropagationCriteriaFactory;

struct RelationshipHandle {
Relationship theRelationship;
::CosObjectIdentity::ObjectIdentifier constantRandomId;

};

interface Node : ::CosGraphs::Node, ::CosStream::Streamable{
void externalize_node (in ::CosStream::StreamIO sio);
void internalize_node (in ::CosStream::StreamIO sio,

in ::CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)

raises (::CosLifeCycle::NoFactory);
};

interface Role : ::CosGraphs::Role {
void externalize_role (in ::CosStream::StreamIO sio);
void internalize_role (in ::CosStream::StreamIO sio);
::CosGraphs::PropagationValue externalize_propagation (

in RelationshipHandle rel,
in ::CosRelationships::RoleName toRoleName,
out boolean sameForAll);

};

Figure 8-10 The CosCompoundExternalization Module
8-20 CORBAservices: Common Object Services Specification

8

en
8.7.1 The Node Interface

The Node interface defines operations to internalize and externalize a node.

Externalizing a Node

The externalize_node() operation transfers the node’s state to the stream giv
by the sio parameter. The node is responsible to externalize it’s roles as well. The node
can accomplish this by writing the role’s key to the stream and using the
Role:: externalize_role() operation.

Internalizing a Node

The internalize_node() operation causes a node and its roles to be internalized
from the stream sio.

interface Relationship :
::CosRelationships::Relationship {

void externalize_relationship (
in ::CosStream::StreamIO sio);

void internalize_relationship(
in ::CosStream::StreamIO sio,
in ::CosGraphs::NamedRoles newRoles);

::CosGraphs::PropagationValue externalize_propagation (
in ::CosRelationships::RoleName fromRoleName,
in ::CosRelationships::RoleName toRoleName,
out boolean sameForAll);

};

interface PropagationCriteriaFactory {
::CosGraphs::TraversalCriteria create_for_externalize();

};

};

void externalize_node (in ::CosStream::StreamIO sio);

void internalize_node (in ::CosStream::StreamIO sio,
in ::CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)

raises (::CosLifeCycle::NoFactory);

Figure 8-10 The CosCompoundExternalization Module (Continued)
Externalization Service: v1.0 CosCompound Externalization Module March 1995 8-21

8

”.

.

lized

lize
It is the node’s responsibility to create and internalize its roles. It can do this by
reading the key for a role from the stream and using the
CosStream::StreamableFactory interface to create the uninitialized role and the
CosCompoundExternalization::internalize_role() operation to internalize the
role. The new roles should be collocated with the factory finder given by the there
parameter.

The result of a internalize_node() operation is a sequence of roles.

Figure 8-11 illustrates the result of an internalize. A node, when it is born, is not in any
relationships with other objects. That is, the roles in the new node are “disconnected
It is the read_graph() operation’s job to correctly establish new relationships.

Figure 8-11 Internalizing a node returns the new object and the corresponding roles.

If an appropriate factory to internalize the roles cannot be found, the NoFactory
exception is raised. The exception value indicates the key used to find the factory

In addition to the NoFactory exception, implementations may raise standard
CORBA exceptions. For example, if resources cannot be acquired for the interna
node, NO_RESOURCES will be raised.

8.7.2 The Role Interface

The Role interface defines operations to externalize and internalize a role. The Role
interface also defines an operation to return the propagation value for the externa
operation.

The implementation of a CompoundExternalization::Node operation can call these
operations on roles. For example, an implementation of externalize on a node can
call the externalize operation on the Role.

Externalizing a Role

The externalize_role() operation transfers the role’s state to the stream sio.

void externalize_role (in ::CosStream::StreamIO sio);

internalized
document
8-22 CORBAservices: Common Object Services Specification

8

am

e
Internalizing a Role

The internalize_role() operation causes a role to read its state from the stre
given by sio.

Getting a Propagation Value

The externalize_propagation() operation returns the propagation value to th
role toRoleName for the externalization operation and the relationship rel . If the
role can guarantee that the propagation value is the same for all relationships in which
it participates, sameForAll is true.

8.7.3 The Relationship Interface

The Relationship interface defines operations to externalize and internalize a
relationship. The Relationship interface also defines an operation to return the
propagation values for the exteranlize operations.

Externalizing the Relationship

The externalize_role() operation transfers the role’s state to the stream sio.

Internalizing the Relationship

The internalize_relationship() operation internalizes the state of a
relationship from the stream given by sio.

void internalize_role (in ::CosStream::StreamIO sio);

::CosGraphs::PropagationValue externalize_propagation (
in RelationshipHandle rel,
in::CosRelationships::RoleName toRoleName,
out boolean sameForAll);

void externalize_relationship (
in ::CosStream::StreamIO sio);

void internalize_relationship(
in ::CosStream::StreamIO sio,
in::CosGraphs::NamedRoles newRoles);
Externalization Service: v1.0 CosCompound Externalization Module March 1995 8-23

8

s

e

n
The values of the internalized relationship’s attributes are defined by the
implementation of this operation. However, the named_roles attribute of the newly
created relationship must match newRoles. That is, the internalized relationship relate
objects represented by newRoles parameter, not the by the original relationship’s
named roles.

Getting a Propagation Value

The propagation_for() operation returns the relationship’s propagation value
from the role fromRoleName to the role toRoleName for the externalization
operation. If the role named by fromRoleName can guarantee that the propagation
value is the same for all relationships in which it participates, sameForAll is true.

8.7.4 The PropagationCriteriaFactory Interface

The CosGraphs module in the Relationship Service defines a general service for
traversing a graph of related objects. The service accepts a “call-back” object
supporting the ::CosGraphs::TraversalCriteria interface. Given a node, this object
defines which edges to emit and which nodes to visit next.

The PropgationCriteriaFactory creates a TraversalCriteria object that determines
which edges to emit and which nodes to visit based on propagation values for th
compound externalization operations.

Create a Traversal Criteria Based on Externalization Propagation

The create operation returns a TraversalCriteria object for an operation op that
determines which edges to emit and which nodes to visit based on propagation values
for op. For a more detailed discussion see the Relationship Service chapter, sectio
9.4.2.

::CosGraphs::PropagationValue externalize_propagation (
in::CosRelationshps::RoleName fromRoleName,
in::CosRelationship::RoleName toRoleName,
out boolean sameForAll);

::CosGraphs::TraversalCriteria create_for_externalize();
8-24 CORBAservices: Common Object Services Specification

8

any

n be

s:
8.8 Specific Externalization Relationships

The Relationship Service defines two important relationships: containment and
reference. Containment is a one-to-many relationship. A container can contain m
containees; a containee is contained by one container. Reference, on the other hand, is
a many-to-many relationship. An object can reference many objects; an object ca
referenced by many objects.

Containment is represented by a relationship with two roles: the ContainsRole, and the
ContainedInRole, Similarly, reference is represented by a relationship with two role
ReferencesRole and ReferencedByRole.

Compound externalization adds externalization semantics to these specific
relationships. That is, it defines propagation values for containment and reference.
Externalization Service: v1.0 Specific Externalization Relationships March 1995 8-25

8

these

8.9 The CosExternalizationContainment Module

The CosExternalizationContainment module defines the following interfaces:

• Relationship interface
• ContainsRole interface
• ContainedInRole interface

Figure 8-12 The CosExternalizationContainment module

The CosExternalizationContainment module does not define new operations. It merely
“mixes in” interfaces from the CosCompoundExternalization and CosContainment
modules. Although it does not add any new operations, it refines the semantics of
operations:

The CosExternalizationContainment :: ContainsRole ::propagation_for
operation returns the following:

The
CosExternalizationContainment :: ContainedInRole ::propagation_for()
operation returns the following::

The CosRelationships::RoleFactory:: create_role() operation will
raise the RelatedObjectTypeError if the related object passed as a parameter
does not support the CosCompoundExternalization::Node interface.

#include <Containment.idl>
#include <CompoundExternalization.idl>

module CosExternalizationContainment {

interface Relationship :
::CosCompoundExternalization::Relationship,
::CosContainment::Relationship {};

interface ContainsRole :
::CosCompoundExternalization::Role,
::CosContainment::ContainsRole {};

interface ContainedInRole :
::CosCompoundExternalization::Role,
::CosContainment::ContainedInRole {};

};

operation ContainsRole to ContainedInRole

externalize deep

operation ContainedInRole to ContainsRole

externalize none
8-26 CORBAservices: Common Object Services Specification

8

ill

The CosRelationships::RelationshipFactory ::create() operation
will raise DegreeError if the number of roles passed as arguments is not 2. It w
raise RoleTypeError if the roles are not
CosExternalizationContainment::ContainsRole and
CosExternalizationContainment::ContainedInRole. It will raise
MaxCardinalityExceeded if the
CosExternalizationContainment::ContainedInRole is already participating in a
relationship.
Externalization Service: v1.0 The CosExternalizationContainment Module March 19958-27

8

ly

these
8.10 The CosExternalizationReference Module

The CosExternalizationReference module defines these interfaces:
• Relationship interface
• ReferencesRole interface
• ReferencedByRole interface

Figure 8-13 The CosExternalizationReference module

The CosExternalizationReference module does not define new operations. It mere
“mixes in” interfaces from the CosCompoundExternalization and CosReference
modules. Although it does not add any new operations, it refines the semantics of
operations:

The CosExternalizationReference::ReferencesRole::propagation_for() operation
returns the following:

The CosExternalizationReference::ReferencedByRole::propagation_for()
operation returns the following::

The CosRelationships::RoleFactory:: create_role() operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosCompoundExternalization::Node interface.

#include <Reference.idl>
#include <CompoundExternalization.idl>

module CosExternalizationReference {

interface Relationship :
::CosCompoundExternalization::Relationship,
::CosReference::Relationship {};

interface ReferencesRole :
::CosCompoundExternalization::Role,
::CosReference::ReferencesRole {};

interface ReferencedByRole :
::CosCompoundExternalization::Role,
::CosReference::ReferencedByRole {};

};

operation ReferencesRole to ReferencedByRole

externalize none

operation ReferencedByRole to ReferencesRole

externalize none
8-28 CORBAservices: Common Object Services Specification

8

the

he

d in
The CosRelationships::RelationshipFactory::create() operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosExternalizationReference::ReferencesRole
and CosExternalizationReference::ReferencedByRole.

8.11 Standard Stream Data Format

An externalization client may create a stream that supports a specific external
representation data format that is intended to be portable across different CORBA
implementations and on different CPU hardware. A client creates such a Stream object
using a factory found by specifying a Key whose only NameComponent has an
NameComponent::id whose value is the string literal
“StandardExternalizationFormat”.

That format is described in this section.

8.11.1 OMG Externalized Object Data

A leading “tag” byte with a value of x”F0” marks the beginning of an object’s
externalized data. Following this is data associated with a Key that can be used to
internalize the object. The key information is then followed by the data written to
StreamIO for the object’s state.

Key Info

The key information consists of a byte containing an integer value, “i”, that indicates
how many Naming::NameComponent’s make up the associated Key.

This byte is followed by “i” null-terminated sequences of char values that represent t
Naming::NameComponent::id values for the Key. These values correspond to the C
mapping of a CORBA string type. The NameComponent::kind values are not store
this external data format.

Key info Object infotag byte = x’F0’

1 byte

1st id string 2nd id stringlength = i

1 byte

i’th id string. . .
Externalization Service: v1.0 Standard Stream Data Format March 1995 8-29

8

nnot

it
Object Info

The object information is the sequence of bytes generated for one or more
write_<type> operation. For each write_<type> operation, a single “tag” byte
identifying the type of the primitive data is followed by the data. The tag byte gives
the internalization implementation enough information to skip past object state for
objects that cannot be created, for example when a compatible implementation ca
be found on the internalizing ORB.

The tag byte values, and data formats for each type are as indicated below for basic
CORBA data types:

8.11.2 Externalized Repeated Reference Data

Table 8-1 CORBA Tag Byte Values and Data Formats

tag CORBA type data format

x’F1’ Char one byte

x’F2’ Octet one byte

x’F3’ Unsigned Long four bytes, big-endian format

x’F4’ Unsigned Short two bytes, big-endian format

x’F5’ Long four bytes, big-endian format

x’F6’ Short two bytes, big-endian format

x’F7’ Float four bytes, IEEE 754 single precision format, sign bit
in first byte

x’F8’ Double eight bytes, IEEE 754 double precision format, sign b
first byte

x’F9’ Boolean TRUE=>one byte==1, FALSE=>one byte==0

x’FA’ String null-terminated sequence of bytes

data valuetag byte

1 byte

tag byte data value . . .

1 byte

x’04’

1 (bytes)4

Object number
8-30 CORBAservices: Common Object Services Specification

8

f
d

.
This format is used only when multiple objects reference the same object. Instead o
storing the referenced object multiple times, the duplicate reference objects are store
in this format. Note that the object is represented by a long object number which
indicates that the object has been stored already.

8.11.3 Externalized NIL Data

This is a special format used to indicate that there is no object stored in the stream

8.12 References

1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.” OOPSLA 1988 Proceedings, pg. 285-296

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

3. Grady Booch, “Object Oriented Design with Applications.” The
Benjamin/Cummings Publishing Componay, Inc., 1991.

x’05’

1 (byte)
Externalization Service: v1.0 References March 1995 8-31

8

8-32 CORBAservices: Common Object Services Specification

	Externalization Service Specification
	8.1 Service Description
	8.2 Service Structure
	8.2.1 Client’s Model of Object Externalization
	8.2.2 Stream’s Model of Object Externalization
	8.2.3 Object’s Model of Externalization
	8.2.4 Object’s Model of Internalization

	8.3 Object and Interface Hierarchies
	8.4 Interface Summary
	Externalization Service Architecture: Audience/Bea...

	8.5 CosExternalization Module
	8.5.1 StreamFactory Interface
	Creating a Stream Object

	8.5.2 FileStreamFactory Interface
	Creating a Stream Object Associated with a File

	8.5.3 Stream Interface
	Externalizing an Object
	Externalizing Groups of Objects
	Internalizing an Object

	8.6 CosStream Module
	8.6.1 The StreamIO Interface
	8.6.2 The Streamable Interface
	Writing the Object’s State to a Stream
	Reinitializing the Object’s State from a Stream

	8.6.3 The StreamableFactory Interface
	Creating a Streamable Object

	8.7 CosCompound Externalization Module
	8.7.1 The Node Interface
	Externalizing a Node
	Internalizing a Node

	8.7.2 The Role Interface
	Externalizing a Role
	Internalizing a Role
	Getting a Propagation Value

	8.7.3 The Relationship Interface
	Externalizing the Relationship
	Internalizing the Relationship
	Getting a Propagation Value

	8.7.4 The PropagationCriteriaFactory Interface
	Create a Traversal Criteria Based on Externalizati...

	8.8 Specific Externalization Relationships
	8.9 The CosExternalizationContainment Module
	8.10 The CosExternalizationReference Module
	8.11 Standard Stream Data Format
	8.11.1 OMG Externalized Object Data
	8.11.2 Externalized Repeated Reference Data
	8.11.3 Externalized NIL Data

	8.12 References

