Event Service Specification 4

4.1 Service Description

4.1.1 Overview

A standard CORBA request results in the synchronous execution of an operation by an
object. If the operation defines parameters or return values, data is communicated
between the client and the server. A request is directegotizular object. For the
request to be successful, both the client and the senwst be available. If a request

fails because the server is unavailable, the client receives an excapdionust take

some appropriate action.

In some scenarios, a more decoupled communication model between objects is
required. For example:

® A system administration tool is interested imolaning if a disk runs out of space.
The software managing a disk is unaware of the existence of the system
administrationtool. The software simply reports that the disk is flllhen a disk
runs out of space, the systaaministration toobpens a window to inform the user
which disk has run out of space.

® A propertylist object is associated with an application object. The propistty
object is physically separate from the application object. The application object is
interested in the changes made to itspprties by a usefhe properties can be
changed without involving thepplication object. That is, in order tave
reasonable response time for the user, changing a property deesivate the
application object. Howevewhenthe application object is activated niéeds to
know about the changes its properties.

® A CASE tool is interested in being notifizehen a sourc@rogram has been
modified. The source pmgram simply reports when it is modified. Itusaware of
the existence of the CASE tool. In response tontiification, the CASE tool
invokes acompiler.

CORBAservices: Common Object Services Specification 4-1

® Several documents are linked to a spreadsheet. The documents are interested in
knowing whenthe value of certain cells have changed. Wherc#ilevalue
changes, the documents updtiteir presentationsased on the spreadsheet.
Furthermore, if a document is unavailable because of a failurestilisnterested
in any changes to the cells and wants to be notified of those chahgasitw
recovers.

4.1.2 Event Communication

The Event Service decouplds®e communication between objects. The Event Service
defines two roles for objects: the supplier raled the consumer rol&uppliers
produce event data amonsuners process event data. Event data are communicated
between suppliers and consumers by issuing standard CORBA requests.

There are two approachesititiating event communication betweenuliers and
consumers, and two orthogonal approaches to the form thabtheunicationcan
take.

The two approaches faitiating event communication are called tpeshmodeland

the pull model The push model allows a supplier of events to initiate the transfer of

the event data to consumers. The pull model allows a consumer of events to request the
event data from a supplier. In the push model, the gipigltaking thanitiative; in

the pull model, the consumer is taking th#iative.

The communication itself can be either generic or typed. In the gecasi, all
communication is by means of genepigsh or pull operations that take a single
parameter that packages all the event data. In the typed case, communication is via
operations defined in OMG IDL. Event data is passed by means of the parameters,
which can be defined in any manner desired. Section 4.2 thismaion 4.5 discuss
generic event communication in detail; section #h®ughsection 4.9 discuss typed
event communication in detalil.

An event channek an intervening object that allowsultiple suppliers to

communicate with multiple consumers asynchronously. An event channel is both a
consumer and a supplier of events. Event channels are standard CORBA objects and
communication with an event channel is @oplished using standard CORBA

requests.

4.1.3 Example Scenario

This section provides a general scenario that illustrates how the &earite can be
used.

The Event Service can be used to provide “charg#ication”. When an object is
changed (its state is modified), an event can be generated that is propagated to all
interested partied=or example, when a spreadsheelt object is modified, all

compound documents which contain a reference (link) toclatan benotified (so

the document can redisplay the referenced cell, or recalculate values that depend on

CORBAservices: Common Object Services Specification

4

the cell). Similarly, vinen an engineeringpecification object is modified, all engineers
who haveregistered an interest in the specification can be notified that the
specification has changed.

In this scenario, objects that can be “ched” act as suppliers, parties interested in
receiving notifications of changes act as consumers, and one or more event channel
objects are used as intermediaries between consumers and supghensthe push or

the pull model can be used at either end.

If the push model is used by suppliers, objects that can bgetiaupport the
PushSupplieinterface so that event communication can be discontinued, use the
EventChanneltheSupplierAdmirand theProxyPushConsumeénterfaces to register as
suppliers of events, and use wxyPushConsumenterface to push events to event
channels.

When a change occurs to an object, a changeable object invpkish apperation on

the channel. It provides as an argument topiligh operation information that

describes the event. Thisfammation is of dataype any - it can be asimple or as
complex as is necessary. For example, the event information might identify the object
reference of the object that has been changed, it mightifgieghe kind of change that

has occurred, it might provide a new displayable image of thegeldaobject or it

might identify one or moreadditional objects that describe tbleange that has been
made.

If the pull model is used by consumers, all client objects that want to be notified of
changes support tHeullConsumelinterface so communication can be discontinued,
using theEventChannelConsumerAdmimandProxyPullSuppliefinterfaces to register
as consumers of events, and usingRhnexyPullSyplier interface to pull events from
event channels.

The consumemay use either a blocking or non-blocking mechanism for receiving
notification of changes. Using thigy pull operation, the consumer can periodically
poll the channel for events. Alternatively, the consumer can usguthe operation

which will block the consumer’s execution thread until an event is generated by some
supplier.

Event dhannels act as the intermediaries between the objects being changed and objects
interested irknowing about changes. The channels that provide chaaotjfication

can be general purpose, Wiehown objects (e.g., “persistent server-based objects” that
are run as part of a workgroup-wide framework of objects that provide “desktop
services”) or specific-to-task objedts.g., temporary objects that are created when
needed). Objects that use event channels may locate the channels by looking for them
in a persistently available server (e.g., by looking for them in a naming service) or they
may be given references to these objects as part of a specific-to-task object protocol
(e.g., when an “open” operation is invoked on an object, the object may return the
reference to an event channel which theleashould use until the object is closed).

Event channels detmine how changes are propagated betweenisuppind

consumers, i.e., the qualities of serviced®n4.1.6). For example, an event channel
determines the persistence of an event. The channekesgyan event for a specified
period of time, passing it along to any consumer who registers with the channel during

Event Servicerd.0 Service Description March 1995 4-3

that period otime (e.g., it may keep evemiotifications abouthanges to engineering
specifications for a week). lfernatively, thechannel may only pass on events to
consumers who are currently waiting for notificationcbinges (e.gnotifications of
changes to a spreadsheet cell may only be sent to consumers who are currently
displaying that cell).

This scenario exemplifies one way the event service described here forms a basic
building block used in providing higher-level servicegdfic to an application or
commonfacilities framework of objects.

Instead of using the generic event channel, a typed event channel could also have been
used.

4.1.4 Design Principles

The Event Service desigatisfiesthe following principles:

» Events work in aistributed environment. The desidoes not depend on any
global, critical, or centralized service.

» Event services allow multiple consumers of an event and multiple event suppliers.

» Consumers can either request events or be notified of events, whichever is more
appropriate for application desigmd performance.

» Consumers and suppliers of events support standard OMG IDL interfaces; no
extensions to CORBA are necessary to define these interfaces.

» A suppler can issue a single standard request to communicate event d#ta to
consumers at once.

» Suppliers can generate events withoubwimg theidentities of the consumers.
Conversely, consumers can receive events without knowinglémtities of the
suppliers.

« The Event Service interfaces allonultiple qualities of servicefpr example, for
different levels of reliability. It also allows for future interfagetensions, such as
for additional functionality.

» The Event Service interfaces are capable of being implemented and used in
differentoperating environments, for example, in environments that support
threading and those that do not.

4.1.5 Resolution of Technical Issues

This specification addresses the issues identified for event services in theODIG
Services Architectufedocument as follows:

1.0bject Services ArchitecteyDocument Number 92-8-4, Object Managme mtu@r FraminghaniiA,
1992.

CORBAservices: Common Object Services Specification

4

® Distributed environment: The inerfaces are designed to allow consumers and
suppliers of events to be disconnected frimetto time, and do not require
centralized event identification, processing, routing, or other services that might be
a bottleneck or a single point of failure.

Events themselves amot objects because the CORRHstributed object model
does not support passing objects by value.

Event generation: The specification describes how events are generated and delivered
in a very general fashion, with event channels as intermemiatag points. It does

not require (or preclude) polling, nor does it require that an event sugpketly

notify every interested party.

Events involving multiple objects:Complex events may be handled by constructing a
notification tree of event consumer/supplielecking for successively moreesgfic

event predicates. The specification does not require a general or global event predicate
evaluation service as this may not be sufficiently relia@ticient, or secure in a
distributed,heterogeneous (potentially decoupled) environment.

Scoping, grouping, and fitering events: The specification takes advantage of

CORBA's distributedscoping and grouping meahisms for the identifier and type of
events. Eventiltering is easilyachieved through event channdiatt selectively

deliver events from suppliers to consumers. Event channels can be composed; that is,
one event channel can consumer evenpplked by another.

Typed event channels can provide filtering based on event type.

Registration and generation of eventsConsumers and suppliers register with event
channels themselves. Event channels are objects and they are found by any fashion that
objects can be found. A global registration service is not requargdpbject that

conforms to the IDL interface may consume an event.

Event parameters: The specification supports a parameter of tgpg that can be
delivered with an event, used for application-specific data.

Forgery and secure eventsBecause event suppliers are objects, the specification
leverages any ORB work on security for object referemp@scommunication.

Performance: The design is a mimalist one,and requires only one OR&ll per

event received. It supports both push-style antigiyle notification toavoid

inefficient event polling. Since event suppliers, consumerschadnels arall ORB
objects, the service directly benefits from a Library Object Adapter or any other ORB
optimizations.

Formalized Event Information: For specific application environments and
frameworks it may be beneial to formalize the data associated withearent

(defined in this specification as type any). This can be accomplished by defining a
typed structure for this information. Depending on the needs of the environment, the
kinds of information included might be a prioritimesamp, originstring, and
confirmation indicator. This information might be solely for the benefit of the event
consumer or might also be interpreted by particular event chanpkimentations.

Event Servicerd.0 Service Description March 1995 4-5

Confirmation of Reception: Some applications may require that consumers of an
event provide an explicit confirmation of receptioack to the supplier. This can be
supported effectively using a “reverse” event channel through which consumers send
back confirmations as normal events. This obviates the need for any special
confirmation mechanism. Howevetrict atomicdelivery between all supiersand all
consumers requires additional interfaces.

4.1.6 Quality of Sevice

Application domains requiring event-style communicati@ve diverse rellality
requirements, from “at-most-on” semantics (best effort) to guaranteed “exactly-
once” semantics, availaltyt requirements, thraghput requirements, performance
requirements (i.e., howast events are disseminated), and scalability requirements.

Clearly no singlémplementation of the #ent Service can ojmtize such a diverse

range of technical requirements. Henceltiple implementations of event services are

to be expected, with different services targeted toward different environments. As such,
the event interfaces do not dictatealities of serviceDifferent implementations of the
Event Servicanterfaces can support differegtialities of service to meet different
application needs.

For example, aimplementation that trades at most once delivery to a saaylsumer

in favor of performance is useful for some applications; an implementation that favors
performance but cannot preclude duplicate delivery is useful for other applications.
Both are acceptabienplementations of the interfaces described in this chapter.

Clearly, an implementation of an event channel that discards all everdsaisiseful
implementation. Useful implemenitans will at least support “best-effort” delivery of
events.

Note that the interfaces defined in this chapter are incomplete for implementations that
supportstrict notions of atomicity. That is, additional interfacesraeded by an
implementation to guarantee that eithercalhsumers receive an event or none of the
consumers receive an event; and tdilhevents are received in the same order by all
consumers.

4.2 Generic Event Communication

There are two basic moddlsr communicating event data between suppliers and
consumers: theush modeand thepull model

4.2.1 Push Model

In the push model, suppliers “push” event data to consumers; that is, suppliers
communicate event data by invokipgsh operations on thBushConsumeinterface.

To set up a push-style communication, consumers and suppliers exchange
PushConsumeandPushSupplieiobject references. Event communication can be
broken by invoking alisconnect_push_consumer operation on the

CORBAservices: Common Object Services Specification

4

PushConsumenterface or by invoking disconnect_push_supplier operation
on thePushSupplieinterface. If thePushSpplier object reference is nil, the
connection cannot be broken via thelier.

Figure 4-1 illustrates push-style communication between aisunid a consumer.

PushSupplier

consumer) supplier
|
1

PushConsumer

Figure 4-1 Push-style Communication Between a Supplier and a Consumer

4.2.2 Pull Model

In the pull model, consumers “pull” event data from suppliers; that is, consumers
request event data by invokimgll operations on thBullSupplierinterface.

To set up a pull-style communication, consunserd sypliers musexchange
PullConsumerandPullSupplierobject references. Event communication can be broken
by invoking adisconnect_pull_consumer operation on th@ullConsumer
interface or by invoking disconnect_pull_supplier operation on the
PullSupplierinterface. If thePullConsumembject reference is nil, the coaetion

cannot be broken via the consumer.

Figure 4-2 illustrates pull-style communicatibatween a supplier and a consumer.

PullConsumer

|
consumer .) | \ supplier
l
>

PullSupplier

Figure 4-2 Pull-style Communication Between a Supplier and a Consumer

Event Servicerl.0 Generic Event Communication March 1995 4-7

4

4.3 The CosEventComm Module

The communication styleshown in kgure 4-1 and Figure 4-2 are both supported by
four simple interfacesPushConsumeiPushSupplierandPullSupplierand
PullConsumerThese interfaces are defined in an OMG IDL module named
CosEventComm, as shown in Figure 4-3.

module CosEventComm {
exception Disconnected{};

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

h

interface PushSupplier {
void disconnect_push_supplier();

h

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)
raises(Disconnected);
void disconnect_pull_supplier();

b

interface PullConsumer {
void disconnect_pull_consumer();

b

Figure 4-3 The OMG IDL Module CosEventComm

4.3.1 The PushConsumer Interface

A push-style consumer supports tReshConsumeinterface to receive event data.

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

A supplier communicates event data to the consumer by invokingugte operation
and passinghe event data as ammeter. If the event communication has alrdasbn
disconnected, thBisconnected exception is raised.

4-8 CORBAservices: Common Object Services Specification

4

The disconnect_push_consumer operation terminates the event communication;
it releases resources used at the consumasgport the event communicatiofhe
PushConsumeobiject reference is disposed.

4.3.2 The PushSupplier Interface

A push-style supjdr supports th@ushSuppér interface.

interface PushSupplier {
void disconnect_push_supplier();

h

Thedisconnect_push_supplier operation terminates the event communication;
it releases resources used at the sappd support the event communication. The
PushSupplieobject reference is disposed.

4.3.3 The PullSupplier Interface

A pull-style supplier supports tHeullSupplierinterface to transmit event data.

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)
raises(Disconnected);
void disconnect_pull_supplier();

A consumer requests event data from the supplier by invoking eitheuthe
operation or théry pull operation on the supplier.

®* Thepull operation blocks until the event data is available or an exception is
raised? It returns the event data to the consumer. If the event communication has
already been disconnected, thesconnected exception is raised.

®* Thetry pull operation does not block: if the event data is available, it returns
the event data and sets tes_event parameter tdrue; if the event is not
available, it sets theas_event parameter tdalse and the event data is returned
as long with an undefined value. If the event communication has already been
disconnected, thBisconnected exception is raised.

2.This, of course, may be a standardRB® excepton.

Event Servicer1.0 Th€osEventComm Module March 1995 4-9

The disconnect_pull_supplier operation terminates the event communication;
it releases resources used at the sappd support the event communication. The
PullSupplierobject referace is disposed.

4.3.4 The PullConsumer Interface

A pull-style consumesupports théePullConsumeiinterface.

interface PullConsumer {
void disconnect_pull_consumer();

h

Thedisconnect_pull_consumer operation terminates the event communication;
it releases resources used at the consumasgport the event communicatiofhe
PullConsumembiject reference is disposed.

4.4 Event Channels

The event channelks a service that decouples the communicatietween suppliers
and consumers. The event channel is itself both a consumer apgliersaf the event
data.

An event channel can provide asynchronous communication of event data between
suppliers and consumers. Although consumers andisopgbmmunicate with the

event channel using standard CORBA requests, the event channel does not need to
supply the event data to its consumer at the same tioomstumes the data froits
supplier.

4.4.1 Push-Style Communication with an Event Channel

The suppekr pushes event data to the event channel; the event channel, in turn, pushes
event data to the consumer. Figure 4-4 illustrates a push-style communizttiia@en
a suppler and the eventhannel, and a consumer and the event channel.

4-10 CORBAservices: Common Object Services Specification

\ PushSupplier : PushSupplier

|
consumer 1 L > / | | {’

supplier

I |
PushConsumer\ event channel PushConsume

Figure 4-4 Push-style Communication Between a Supplier and an Event Channel, and a
Consumer and an Event Channel

4.4.2 Pull-Style Communication with an Event Channel

The consumer pulls event ddtam the event channel; the event channel, in tpoils
event data from the supplier. Figure 4-5 illustrates a pull-style communication between
a suppier and the eventhannel, and a consumer and the event channel.

\PullSuppller /\PullSuppher I/

consumer | suppller

I I
PullConsumer event channel PuIIConsumer

Figure 4-5 Pull-style communication between a supplier and an event channel and a consumer
and the event channel

4.4.3 Mixed StylecCommunication with an Event Channel

An event channel can communicate with a sigoplsingone style ocommunication,
and communicate with a consumer using a different stytmofmunication.

Figure 4-6 illustrates a push-style communicatimween a spplier and an event
channel, and aull-style communicatiofbetween a consumer and the event channel.
The consumer pullthe event data that the supplier has pushed to the event channel.

Event Servicer1.0 Everthannels March 1995 4-11

PullConsumer PushSupplier

| r >

consumer supplier

PullSupplier event channel

PushConsumer

Figure 4-6 Push-style Communication Between a Supplier and an Event Channel, and Pull-
style Communication Between a Consumer and an Event Channel

4.4.4 Multiple Consumers and Multiple Suppliers

Figure 4-4, Figure 4-5, and Figure 4-6 iitege eventhannels with a single supplier
and a single consumer. An event channel can also provide many-to-many
communication. The channel consumes events fsomor more suppliers, and
supplies events to one or more consumers. Subject tguiddéy of service of a
particular implementation, an event chanpedvides an event tall consumers.

Figure 4-7 illustrates an event channel with multiple push-style consumers and
multiple push-style suppliers.

\PushSU|O|0|i6‘r | PushSupplier
> |
i B

consumer } i

| L supplier
/ PushConsurper IPushConsumer
event channel
PushSupplier F’ushSUplolier| /
consumer \I : \> | l&’supplier
/'PushConsumer IPushConsumer

Figure 4-7 An Event Channel with Multiple Suppliers and Multiple Consumers

An event channel can support consumers and suppliers using different communication
models.

4-12 CORBAservices: Common Object Services Specification

4

If an event channel has at leasie push-style consumer orlaastone pending pull
request, the event channel requires an event. If the event channel has pull suppliers, it
will issue a request on a pull supplier to satisfy its requirement.

4.45 Event Channel Administration

The event channel isuilt up incrementally. When an event channel is created, no
suppliers or consumers are connected to the event channel. Upon creation of the
channel, the factory returns an object reference that suppoiEvémChannel
interface, as illustrated in Figure 4-8.

event channel

EventChannel

Figure 4-8 A newly created event chaal. The diannel has no suppliers or consumers.

The EventChanneinterface defines three administrative operations: an operation
returning aConsumerAdmimbject for adding consumers, an operation returning a
SupplierAdminobject for adding suppliers, and an operation for destroying the
channel.

The operationgor adding consumers retuproxy suppliersA proxy suppkr is
similar to a normal supplier (in fact, it inherits the interface sfigplier), but includes
an additional method for coenting a consumer to the progypplier.

The operationgor adding suppliers returproxy consumersA proxy consumer is
similar to a normal consumer (in fact, it inherits the interface of a consumer), but
includes an additional method for connecting a supplier to the proxy consumer.

Registration of groducer or consumer is a two step process. An event-generating
application first obtains proxy consumer from a channel, then “connects” to the
proxy consumer by providing it with a suppliermarly, anevent-receiving
application first obtains proxy supplier from a&hannel, then “connects” to the proxy
supplier by providing it with a consumer.

Event Servicer1.0 Everthannels March 1995 4-13

4-14

The reasorfor the two-step registration process isstgpport composing event
channels by an external agent. Such an agent would compose two channels by
obtaining a proxy supplier from one and a proxy consumer from the atfbpassing
each of them a reference to the other as pattief connect operation.

Proxies are in one of threstatesdisconnectedconnectedor destroyedFigure 4-9

gives a state diagram for a proxy. The nodes of the diagram are the states and the edges
are labelled with the operations that changestia¢ge ofthe proxy.Push/pull

operations are only valid in trebnnectedstate.

event
commurgation

obtain . connect
disconnecteg

Figure 4-9 State diagram of a proxy.

CORBAservices: Common Object Services Specification

45 The CosEventChannelAdmin Module

The CosEventChannelAdmin module defines the interfaces for making
connections between suppliers and consunidre CosEventChannelAdmin
module is defined in Figure 4-10.

#include “CosEventComm.idl”

module CosEventChannelAdmin {

exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(
in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

h

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(
in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

b

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(
in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

b

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(
in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

Event Servicer1.0 Th€osEventChannelAdmin Module March 1995

4-15

4-16

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

b

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

h

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

Figure 4-10 The CosEventChannelAdmin Module

45.1 The EventChannel Interface

The EventChanneinterface defines three administrative operations: adding consumers,
adding suppliers, and destroying the channel.

interface EventChannel {

ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

Any object that possesses an object reference that suppoBEsehtChanneinterface
can perform these operations:

The ConsumerAdmiimterface allows consumers to be connected to the event
channelThefor_consumers operation returns an object reference that supports
the ConsumerAdmimterface.

The SupplierAdminnterface allows suppliers to lmennected to the event channel.
Thefor_suppliers operation returns an object reference that supports the
SupplierAdmininterface.

Thedestroy operation destroys the event channel.

Consumer administration and suigpladministration are defined as separate objects so
that the creator of the channel can controlatidition of suppliers andonsumers. For
example, a creator mightish to be the sole supplier of event data but allow many
consumers to be connected to the channel. In such a case, the creator would simply
export theConsumerAdmimbject.

CORBAservices: Common Object Services Specification

45.2 The ConsumerAdmin Interface

The ConsumerAdminnterface defines the first step forramecting consumers to the
event channel; clients use it to obtain proxpiers.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

The obtain_push_supplier operation returns RroxyPushSupplieobject. The
ProxyPushSupplieobject is then used to connect a push-style consumer.

The obtain_pull_supplier operation returns RroxyPullSupplierobject. The
ProxyPullSupplierobject is then used to connegpall-style consumer.

4.5.3 The SupplierAdmin Interface

The SupplierAdminnterface defines the first step foonnecting suppliers to the event
channel; clients use it to obtain proxy consumers.

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

The obtain_push_consumer operation returns RroxyPushConsumaerbject. The
ProxyPushConsumaerbject is then used twonnect a push-style gplier.

The obtain_pull_consumer operation returns RroxyPullConsumenbbject. The
ProxyPullConsumenpbiject is then used to connect a pull-style supplier.

4.5.4 The ProxyPushConsumer Interface

The ProxyPushConsumenterface defines the second step for connecting push
suppliers to the event channel.

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(
in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

Event Servicer1.0 Th€osEventChannelAdmin Module March 1995 4-17

A nil object reference may be passed todbenect_push_supplier operation;
if so a channel cannot invoke tbessconnect_push_supplier operation on the
supplier; the suppr may be disconnected from the channel without being informed.

If the ProxyPushConsumes already connected toRushSupplierthen the
AlreadyConnected exception is raised.
4.5.5 The ProxyPullSupplier Interface

The ProxyPullSupplieiinterface defines the second step for connecting pull consumers
to the event channel.

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(
in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

A nil object reference may be passed todbenect_pull_consumer operation; if
so a channel cannot invokedesconnect_pull_consumer operation on the
consumer; the consumer may be disconnected from the channel without being
informed.

If the ProxyPullSupplieris already connected toRullConsumerthen the
AlreadyConnected exception is raised.
4.5.6 The ProxyPullConsumer Interface

The ProxyPullConsumeinterface defines the second step for connecting pull suppliers
to the event channel.

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(
in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

Implementations should raise the CORBA standard BAD_PARAM exception if a nil
object reference is passed to t@nect_pull_supplier operation.

If the ProxyPullConsumeis already connected toRullSupplier then the
AlreadyConnected exception is raised.

An implementation of @roxyPullConsumemay put additional requirements on the
interface supported by the pull supplier. If the pull supplier does not meet those
requirements th@roxyPullConsumeraises thelypeError exception. (See section
4.7.2for an example.)

4-18 CORBAservices: Common Object Services Specification

4.5.7 The ProxyPushSupplier Interface

The ProxyPushSupplieinterface defines the sewd step for connecting push
consumers to the event channel.

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(
in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

Implementations should raise the CORBA standard BAD_PARAM exception if a nil
object reference is passed to tenect_push_consumer operation.

If the ProxyPushSupplieis already connected toRushConsumethen the
AlreadyConnected exception is raised.

An implementation of @roxyPushSuppliemay put additional requirements on the
interface supported by the push consumer. If the push consumer does not meet those
requirements th@roxyPushSupplieraises thel'ypeError exception. (See section
4.7.1for an example.)

4.6 Typed Event Communication

Section 4.2 discusses generic event communication pastg andpull operations.
The next fewsections describe how event communication can be described in OMG
IDL and how typed event channels can support such typed esemhunication.

4.6.1 Typed Push Model

In the typed push model, suppliers caleogtions on consumers using some mutually
agreed interfacé The inerfacel is defined in IDL, and may contain any operations
subject to the followingestrictions:

® All parameters must bim parameters only.
® No return values are permitted

These are the samestrictions as CORBA imposes oneway operations, and for
similar reasons: event communication is unidirectional,does notdirectly support
responses. The operations can beatecloneway, but need not be.

To set up tped push-styleommunication, consumeend syppliers exchange
TypedPushConsumandPushSpplier object references. (Note that the supplier
interface is the same as the untyped case.) Theisugpdn invokes the
get_typed_consumer operation of thdypedPushConsuménterface, which
returns an object reference supporting the typed interfaceferred to as ah
reference The particular interfacel, that the reference supports is dependent on the

Event Servicevl.0 Typed Eve@ommunication March 1995 4-19

particular TypedPushConsumesndmust be mutually agreed by supplier and
consumer. Once the supplier hdstaned thd-reference, it can call operations in
interfacel on the consumer.

As in the case of the generic push-style, ex@mimunicationcan be broken by
invoking adisconnect_push_consumer operation on th@ypedPushConsumer
interface or by invoking disconnect_push_supplier operation on the
PushSupplieinterface. If thePushSupplieobject reference is nil, the connection
cannot be broken via the supplier.

Figure 4-11 illustrates typed push-style communication between supplier and
consumer.

PushSupplier

I K’ supplier

1
- ! TypedPushConsumer
i
ro

Figure 4-11 Typed Push-style Communication Between a Supplier and a Consumer

consumer)

4.6.2 Typed PulModel

In the typed pull model, consumers call operations on supplienseséggevent
information, using some mutually agreed interfRel<I>3. For every interfacé
having the properties describedsaction 46.1, aninterfacePull<I> is defined as
follows:

® For every oprationo in |, Pull<I> contains two operations:

* pull_o , with allin parameters changed ¢ot parameters. When calletthis
operation will return with the event data in thet parameters. If no-event is
currently available, it wilblock.

e boolean try 0, with allin parameters changed to out parameters. When
called, this operation will check whether ag-event is currently available. If so,
it will returntrue , with the event data in thmut parameters. If not, it will
returnfalse , with theout parameters ndefined

3.Pulll> isused as notation for acomputed interface frominterface I. THis afh interface
DocumeitEvents Pulll> is an interfac@®ullDocumentEvents.

4-20 CORBAservices: Common Object Services Specification

4

TheinterfacePull<I> is designed to allow pulling of exactly the same events that can
be pushed usinmterfacel.

To set up tped pulistyle communication, consumers and suppliers exgba
PullConsumerand TypedPullSupplieobject references. (Note that the consumer
interface is the same as the untyped case.) The consumer then invokes the
get_typed_supplier operation of th@ypedPullSupplierwhich returns an object
reference supporting the typed interfad&yli<I>, referred to as ull<l>-reference
The particular interfacePull<I>, that the refenece supports is dependent on the
particular TypedPullSupplierandmust be mutually agreed Isyppler andconsumer.
Once the consumer has obtained Fhal<|>-reference it cancall operations in
interfacePull<l> on the supplier.

Figure 4-12 illustrates typed pull-style communicatimiween supplier and consumer.

PullConsumer

supplier

|
consumer 4 1

g
. 1
TypedPullSupplier
1
|

Pull<I>

Figure 4-12 Typed Pull-style Communication Between a Supplier and a Consumer

4.7 The CosjpedEventComm Module

The typed communication styles shown in Figure 4-11 and Figure 4-12 are both
supported by two new interfaceBjpedPushConsumandTypedPullSupplieand two
existing interfaes,PushSupplieandPullConsumerThe first twointerfaces are

Event Servicevl.0 Th€osTypedEventComm Module March 1995 4-21

4-22

defined in an OMG IDL module namegibsTypedEventComms shown in
Figure 4-13. The last two are the same as for untyped eeemnunicationand were
defined in theCosEventCommmodule in Figure 4-3.

#include “CosEventComm.idl”
module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

k

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();
|3

Figure 4-13 The IDL ModuleCosTypedEventComm

4.7.1 The TypedPushConsumer Interface

A typed pish-style consumer supports thgpedPushConsuménterface both to
receive event data in the generic manner, and to supplgdisgyped interface
through which to receive it in typefdrm.

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();
3

The TypedPushConsumean behave just like an untypBPdshConsumedescribed in
section 4.31. In addition, if the supplier wishes mbmmunicate event data to the
consumer in typed rather than generic form, it first invokes the
get_typed_consumer operation. This returns drreferencesupporting an

interfacel. The particular interfacd, that the reference supports is dependent on the
particular TypedPushConsumeFhe return type of the operation@bject because
different TypedPushConsumevsdill return references of different types, so the actual
type cannot be specified in a general definition. Once the supplier has obtained the
reference it can narrow it td, and then call perations in interfacé on the consumer.
Mutual agreement abouts needed between the supplier and consumer. If they do not
agree, the narrow operation will fail.

As noted above, dypedPushConsumenust support theush operation, inherited
from CogventComm::PushConsumémplementingoush fully is an unnecessary
burden if the consumer is intended for typed use only. It is therpBomaissible to
implement aTypedPushConsumaevith a null implementation gbush that merely
raises the standard CORBA except® IMPLEMENTClearly, suppliers musnow
this and confine themselves to typeammunication with such consumers.

CORBAservices: Common Object Services Specification

4.7.2 The TypedPullSupplier Interface

A typed pul-style suppier supports th@ypedPullSupplieinterface both to allow
consumers to pull event data in the generic manner, and to supply a specific typed
interface through which they can pull it in typed form.

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();
3

The TypedPullSuppliecan behave just like an untyp@dillSupplier described in
section 4.33. In addition, if the consumer wishes to pull event data from the mrppl
in typed rather than generic form fitst invokes theget_typed_supplier

operation. This returns Rull<l>-referencesupporting an interfacull<I>. The
particular interfacePull<l>, that the reference supports is dependent on the particular
TypedPullSupplierThereturn type of the operation @bject because different
TypedPullSuppliersvill return references of different types, so the actual gg®ot
be specified in a general definitio@ncethe consumer has obtained thell<I>-
reference it can narrow it tdPull<I>, and then call operations in interfaéall<I> on
the supplier. Mutual agementaboutPull<I> is needed between thepglier and
consumer. If they do not agree, tharrow operation will fail.

As noted above, @ypedPullSuppliemust support theull andtry _pull

operations, inherited from CBsentComm::Pull8pplier. Implementing these

operations fully is an unnecessary burden if the supplier is intended for typed use only.
It is therefore permissible to implementgpedPullSpplier with null implementations

of pull andtry_pull that merely raise the standard CORBA exception
NO_IMPLEMENTCIearly, consumers must know tlaisd confine themselves to typed
communication with such suppliers.

4.8 Typed Event Channels

Typed event channels are analogous to generic event channels, but they support both
typed and generic event communication. These forms can be mixed at will. A single
channel can handle eventgpgliedand consumed in any combination of fbems

defined earlier (push/pull, generic/typed). An event suppliedpedjorm can be
consumed in generic form, or vice vefsa.

4.Doing this does require an understanding on the part of the generic suppliers and co ndumettssof
channel packages parameters of typed calls when converting them to generic form. Details of this
packaging are dependent on the implementation of the channel.

Event Servicevl.0 Typed Eve@hannels March 1995 4-23

4

4.9 The CosjpedEventChannelAdmin Module

The CosTypedEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumers that use either generic or typed
communication. It is defined in Figure 4-14. Most of its interfaces are specializations
of the corresponding interfaces in tBesEventChannel module defined in

Figure 4-10.

4-24 CORBAservices: Common Object Services Specification

#include “CosEventChannel.idl”
#include “CosTypedEventComm.idl”

module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {};
exception NoSuchimplementation {};
typedef string Key;

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer {};

interface TypedProxyPullSupplier :
CosEventChannelAdmin::ProxyPullSupplier,
CosTypedEventComm::TypedPullSupplier { };

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {
TypedProxyPushConsumer obtain_typed_push_consumer(
in Key supported_interface)
raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises(NoSuchimplementation);

b

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {
TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)
raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(
in Key uses_interface)
raises(NoSuchlmplementation);

h

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

Figure 4-14 The CosTypedEventChannelAdmin Module

Event Servicevl.0 Th€osTypedEventChannelAdmin Module March 1995

4-25

4.9.1 The TypedEventChannel Interface

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

This interface is analogous to G&ntChannelAdmin::EventChannel

However, it returns typedersions of the ansumer and supplier administration
interfaces, which are capable of providing proxies for either generic or typed
communication.

4.9.2 The TypedConsumerAdmin Interface

The TypedConsumerAdminterface defines the first step for connecting consumers to
typed event channel; clients use it to obtain proxy suppliers.

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {
TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)
raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed push_supplier(
in Key uses_interface)
raises(NoSuchimplementation);

The obtain_typed_pull_supplier operation takes a Key parameter that
identifies an interfaceRull<I>. The scope of the key is the typed event channel. It
returns alypedProxyPullSpplier for interfacePull<|>. The TypedProxyPullSupplier
will allow an attached pull consumer to pull events either in generic form or using
operations in interfacBull<l>. It is up to the implementation of

obtain_typed_pull_supplier to create or find an appropriate
TypedProxyPullSupplier If it cannot, it raises the exception
InterfaceNotSupported

The obtain_typed_push_supplier operation takes KHey parameter that

identifies an interfacd, The scope of the key is the typed event channel. It returns a
ProxyPushSuppliethat calls operations in interfaterather tharpush operations. It

is up to the implementation abtain_typed_push_supplier to create or find

an appropriate ProxyPushSuppliér If it cannot, it raises the exception
NoSuchimplementation

4-26 CORBAservices: Common Object Services Specification

4

Such aProxyPushSupplieis guaranteed only to invoke etions defined in interface
I. Any event on the channel that does not correspond to an operation defined in
interfacel is not passed on to the consumer. SuoxyPushSupplieis therefore an
eventfilter based on type.

4.9.3 The TypedSupplierAdmin Interface

The TypedSpplierAdmininterface defines the first step foonnecting suppliers to the
typed event channel; clients use it to obtain proxy consumers.

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {
TypedProxyPushConsumer obtain_typed_push_consumer(
in Key supported_interface)
raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises(NoSuchimplementation);

The obtain_typed_push_consumer operation takes Hey parameter that
identifies an interfacd, The scope of the key is the typed event channel. It returns a
TypedProxyPushConsumfar I. An attached supplier can provide events by using
operations in interfack It is up to the implementation of

obtain_typed_push_consumer to create or find an appropriate
TypedProxyPushConsuméf it cannot, it raises the exception
InterfaceNotSupported

The obtain_typed_pull_consumer operation takes Key parameter that

identifies an interfaceRull<l>. The scope of the key is the typed event channel. It
returns aProxyPullConsumethat calls operations in interfac¢aull<I>, rather than
pull operations. It is up to the implementation of

obtain_typed_pull_consumer to create or find an appropriate
ProxyPullConsumerif it cannot, it raises the exceptiddoSuchlmplementation

Such aProxyPullConsumers guaranteed only to involaperations defined in
interfacePull<l> . Any event request that does not cormgpto an opration defined
in interfacePull<I> is not pulled from the supplieBuch aProxyPullConsumeis
therefore an event filter based on type.

5.see Appendix 4A for immplementat considerations.

Event Servicevl.0 Th€osTypedEventChannelAdmin Module March 1995 4-27

4.9.4 The TypedProxyPushConsumer Interface

The TypedProxyPushConsumieiterface defines the second step for connecting push
suppliers to the typed event channel.

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm:: TypedPushConsumer {};

* By inheriting from both CdsventChannelAdmin::ProxyPushConsumer
and Co3ypedEventComm::TypedPushConsumer , this interfacesuppots:

» Connection and disconnection of push suppliers, exactly as in the generic event
channel,

» Genericpush operation and

« Obtaining the typed view, so that thepglier can use typed push
communicationThe eference returned byet_typed_consumer has the
interface identified by th&ey used when thiFypedProxyPushConsumemss
obtained. (Sesection 4.9.3)

4.9.5 The TypedProxyPullSupplier Interface

The TypedProxyPullSupgr interface defines the second step for connecting pull
consumers to the typed event channel.

interface TypedProxyPullSupplier :
CosEventChannelAdmin::ProxyPullSupplier,
CosTypedEventComm::TypedPullSupplier {};

By inheriting from both CdsventChannelAdmin::ProxyPullSupplier and
CosTypedEventComm::TypedPullSupplier , this interface supports:
» Connection and disconnection of pull consumerscty as in the generievent
channel,
» Genericpull andtry_pull operations and
» Obtaining the typed view, so that the consumer can use typed pull
communication.The eference returned byet_typed_supplier supports

the interface identified by thifey used wherthis TypedProxyPullSuppliewas
obtained. (Sesection 4.R).

4.10 Composing Event Channels and Filtering

4-28

The event channadministration operations defined in section dupport the
composition of event channels. Thatase event channel can consume events
supplied by another. This architecture allows the implementation of an event channel
that filters the events supplied by another.

CORBAservices: Common Object Services Specification

4

Since theProxyPushSpplier for interfacel of a typed event channel only pushes
events that corregmd tol, it acts as a filtebased on type. Sitarly, the
ProxyPullConsumefor interfacePull<I> of a typed event channel only pulls events
that correspond tBull<I>, it also acts as a filtdvased on type.

4.11 Poliges for Finding Event Channels

The Event Service does nesgtablish a policy for finding event channels. Finding a
service is orthogonal to using the service. Higher levels of software (such as the
desktop) can make policies for using the event channel. That is, higher layers will
dictate when an eveghannel is created and how references to the event channel are
obtained. By representing the event channel asbjact it hasall of the properties

that apply to objects, including support by finding mechanisms.

For example, when a user performdrag-and-drop or cut-and-paste

operation, an event channel could be created atiftkd to suppliersnd corsumers.
Alternatively, the event channel could be named iraming context, or itould be
exported through an operation on @lnject.

Event Servicerd.0 Policies for Finding Event Channels March 1995 4-29

4

Appendix 4A Implementing Typed Event Channels

Note —Implementation details do not form part of an OMG specification, and should
not be standardized. On the other hand, it is not obvious that typed channels can be
implemented without extensions to CORBA. This section indicatestrategy for
implementing typed event channels. It is included to show that typed event channels
can be implemented; it is not intended in any way testrain implementations.
Optimized implement&ns are certainly possible.

Figure A-1 demonstrates a possibiglementation of dyped event channel. This
appendix concentrates on push stydenmunication. The implementation of pull-style
communication is analogous.

The mplementation interposes @ancoderbetween typed-style ppliersand the
channel and a@ecoderbetween the channel and typed-style consumers.

l i |
| I
[PC encode | typed

supplier

event
channe

PC = PushConsumer
| = interface |

Figure A-1A possible implementation of a typed event channel.

At the supplier end, aencoderconverts operation calls fmush calls.
At the consumer end, decoderconvertspush calls back to operation calls.

The efect of such a communication is thus that the original operation is eventually
called on the consumdrut the communication is routed via the channel. Of course,
there can benultiple suppliersandmultiple consumers on the same channel.
Whenever one of the supgxis calls an operation, it is delivered by the channel to all
consumers.

The encoder must package thygeration identificatiorand theparameters in a manner
that the decoder can unpack thearrectly.

Given the OMG IDL definition of an interfacg, an encoder generator could generate
an implementation thaupports the interfackand convertsll calls on this interface
to push calls on an event channel.

Similarly, it is possible to generate an I-decoder from the OMG IDL definition of I.

4-30 CORBAservices: Common Object Services Specification

The typed eent channel is responsible for findingeating or implementing the
appropriate encoders. An appropriate encoder is found or created in response to the
obtain_typed_push_consumer request on the typed event channel. The encoder
is returned in response to thet typed_consumer request.

Similarly, the typedevent channel is responsible for findirtgeating or implementing
the appropriate decoders. An appropriate decoder is found or created in response to the
connect_push_consumer request on the typed event channel.

Implementing Typed Event Channels Policies for Finding Event Channels Marchi®95

4

Appendix 4B An Event Channel Use Example

4-32

This section illustrates an examplee of the event channel, including the following:
» Creating an everthannel
» Consumers and/or suppliers finding the channel
» Suppliers using the event channel

* In this example, the document object creates event channels and defines
operations in its interface to allow consumers t@abded.

» TheDocumentinterface defines two operations to retesrent channels:

interface Document {
ConsumerAdmin title_changed();

ConsumerAdmin new_section();

Thetitle_changed operation causes the document to generate an event when
its title ischanged; th@ew_section operation causes the document to generate
an event when a nesection isadded. Both operations retuBonsumerAdmin

object references. This allows consumers to be added to the event channel.

® Thetitle_changed implemenation contains instance variables for using and
administering theevent channels.

[* Factory for creating event channels. */
EventChannelFactoryRef ecf;

[* For title changed event channel */
EventChannelRef event_channel;

ConsumerAdminRef consum_admin;
SupplierAdminRef supplier_admin;

ProxyPushConsumerRef proxy_push_consumer;
PushSupplierRef doc_side_connection;

CORBAservices: Common Object Services Specification

® At some point, the document implementation creates the ehannel, gets
suppler andconsumer adimistrative references, and adds itself as a supplier

event_channel = ecf->create_eventchannel(env);

supplier_admin = event_channel->for_suppliers(env);
consumer_admin = event_channel->for_consumers(env);
proxy_push_consumer = supplier_admin->obtain_push_consumer(env);

proxy_push_consumer->connect_push_supplier(env,
doc_side_connection)

®* Thetitle_changed operation returns th€onsumerAdmimbject reference.

return consumer_admin;

Clients of this operationan add consumers.

®* When the tie changes, the documemhplementatiorpushes the event to the
channel.

proxy_push_consumer->push(env,data);

The documentmplementation similarly initializes, expor@nd uses the event channel
for reporting new sections.

6. For readability, exception handling is omitted from these cadefents.

Event Channel Use Example Policies for Finding EventChannels March 1995 4-33

4-34 CORBAservices: Common Object Services Specification

	Event Service Specification
	4.1 Service Description
	4.1.1 Overview
	4.1.2 Event Communication
	4.1.3 Example Scenario
	4.1.4 Design Principles
	4.1.5 Resolution of Technical Issues
	4.1.6 Quality of Service

	4.2 Generic Event Communication
	4.2.1 Push Model
	4.2.2 Pull Model

	4.3 The CosEventComm Module
	4.3.1 The PushConsumer Interface
	4.3.2 The PushSupplier Interface
	4.3.3 The PullSupplier Interface
	4.3.4 The PullConsumer Interface

	4.4 Event Channels
	4.4.1 Push-Style Communication with an Event Chann...
	4.4.2 Pull-Style Communication with an Event Chann...
	4.4.3 Mixed Style Communication with an Event Chan...
	4.4.4 Multiple Consumers and Multiple Suppliers
	4.4.5 Event Channel Administration

	4.5 The CosEventChannelAdmin Module
	4.5.1 The EventChannel Interface
	4.5.2 The ConsumerAdmin Interface
	4.5.3 The SupplierAdmin Interface
	4.5.4 The ProxyPushConsumer Interface
	4.5.5 The ProxyPullSupplier Interface
	4.5.6 The ProxyPullConsumer Interface
	4.5.7 The ProxyPushSupplier Interface

	4.6 Typed Event Communication
	4.6.1 Typed Push Model
	4.6.2 Typed Pull Model

	4.7 The CosTypedEventComm Module
	4.7.1 The TypedPushConsumer Interface
	4.7.2 The TypedPullSupplier Interface

	4.8 Typed Event Channels
	4.9 The CosTypedEventChannelAdmin Module
	4.9.1 The TypedEventChannel Interface
	4.9.2 The TypedConsumerAdmin Interface
	4.9.3 The TypedSupplierAdmin Interface
	4.9.4 The TypedProxyPushConsumer Interface
	4.9.5 The TypedProxyPullSupplier Interface

	4.10 Composing Event Channels and Filtering
	4.11 Policies for Finding Event Channels

