
Concurrency Control Service 7
n
 by

side
 for

lock

lients
7.1 Service Description

The purpose of the Concurrency Control Service is to mediate concurrent access to a
object such that the consistency of the object is not compromised when accessed
concurrently executing computations.

The Concurrency Control Service consists of multiple interfaces that support both
transactional and non-transactional modes of operation. The user of the Concurrency
Control Service can choose to acquire locks in one of two ways:

• On behalf of a transaction (transactional mode.) The Transaction Service drives
the release of locks as the transaction commits or aborts.

• By acquiring locks on behalf of the current thread (that must be executing out
the scope of a transaction). In this non-transactional mode, the responsibility
dropping locks at the appropriate time lies with the user of the Concurrency
Control Service.

The Concurrency Control Service ensures that transactional and non-transactional
clients are serialized. Hence a non-transactional client that attempts to acquire a
(in a conflicting mode) on an object that is locked by a transactional client will block
until the transactional client drops the lock.

7.1.1 Basic Concepts of Concurrency Control

Clients and Resources

The Concurrency Control Service enables multiple clients to coordinate their access to
shared resources. Coordinating access to a resource means that when multiple,
concurrent clients access a single resource, any conflicting actions by the clients are
reconciled so that the resource remains in a consistent state.

The Concurrency Control Service does not define what a resource is. It is up to the c
CORBAservices: Common Object Services Specification 7-1

7

n-
rce,

 be

l cli-
 sin-
essary)

ular

ith
of the Concurrency Control Service to define resources and to properly identify pote
tially conflicting uses of those resources. In a typical use, an object would be a resou
and the object implementation would use the concurrency control service to coordinate
concurrent access to the object by multiple clients.

Transactions as Clients

The Concurrency Control Service differentiates between two types of client: a transac-
tional client and a non-transactional client. Conflicting access by clients of different types
is managed by the Concurrency Control Service, thereby ensuring that clients always see
the resource in a consistent state.

The Concurrency Control Service does not define what a transaction is. Transactions are
defined by the Transaction Service. The Concurrency Control Service is designed to
used with the Transaction Service to coordinate the activities of concurrent transactions.

The Transaction Service supports two modes of operation: implicit and explicit. When
operating in the implicit mode, a transaction is implicitly associated with the current
thread of control. When executing in the explicit mode, a transaction is specified explicitly
by the reference to the coordinator that manages the current transaction. To simplify the
model of locking supported by the Concurrency Control Service when a transactiona
ent is operating in the implicit transaction mode, transactional clients are limited to a
gle thread per transaction (nested transactions can be used when parallelism is nec
and that thread can be executing on behalf of at most one transaction at a time.

Locks

The Concurrency Control service coordinates concurrent use of a resource using locks. A
lock represents the ability of a specific client to access a specific resource in a partic
way. Each lock is associated with a single resource and a single client. Coordination is
achieved by preventing multiple clients from simultaneously possessing locks for the
same resource if the activities of those clients might conflict. To achieve coordination, a
client must obtain an appropriate lock before accessing a shared resource.

Lock Modes

The Concurrency Control Service defines several lock modes, which correspond to differ-
ent categories of access. Having a variety of lock modes allows more flexible conflict res-
olution. For example, providing different modes for reading and writing allows a resource
to support multiple concurrent clients that are only reading the data of the resource. The
Concurrency Control Service also defines intention locks that support locking at multiple
levels of granularity.

Lock Granularity

The Concurrency Control Service does not define the granularity of the resources that are
locked. It defines a lock set, which is a collection of locks associated with a single
resource. It is up to clients of the Concurrency Control Service to associate a lock set w
7-2 CORBAservices: Common Object Services Specification

7

) is
ne

ds
ith a

her

re

ion

ks

es the

ode.
each resource. Typically, if an object is a resource, the object would internally create and
retain a lock set. However, the mapping between objects and resources (and lock sets
up to the object implementation; the mapping could be one to one, but it could also be o
to many, many to many, or many to one.

Conflict Resolution

A client obtains a lock on a resource using the Concurrency Control Service. The service
will grant a lock to a client only if no other client holds a lock on the resource that would
conflict with the intended access to the resource. The decision to grant a lock depen
upon the modes of the locks held or requested. For example, a read lock conflicts w
write lock. If a write lock is held on a resource by one client, a read lock will not be
granted to another client.

Conflict Resolution for Transactions

The decision to grant a lock also depends upon the relationships among the transactions
that hold or request a lock. In particular, if the transactions are related by nesting (nested
transactions), a lock may be granted that would otherwise be denied.

Lock Duration

Typically, a transaction will retain all of its locks until the transaction is completed (eit
committed or aborted). This policy supports serializability of transactional operations.
Using the two phase commit protocol, locks held by a transaction are automatically
dropped when the transaction completes.

There are also situations where levels of isolation that are weaker than serializability a
acceptable, such as when an application does not want other applications to change an
object while reading it and does not refer to the object again within the transaction. In
these circumstances, it is acceptable to release locks before the containing transact
completes, hence the duration will be shorter than the containing transaction.

To manage the release of the locks held by a transaction, the Concurrency Control service
defines a lock coordinator. Lock sets that are related (for example, by being created by a
resource manager for resources of the same type) and that should drop their locks together
when a transaction commits or aborts may share a lock coordinator. It is up to clients of
the concurrency control service to associate lock sets together and to release the loc
when a transaction commits or aborts.

7.2 Locking Model

This section covers a number of important issues that relate to the locking model sup-
ported by the Concurrency Control Service. For a complete discussion of these issu
reader is directed to one of the standard texts on the subject1.

The Lock Modes section applies to clients that operate in both transactional and non-trans-
action modes. The Multiple Possession Semantics, Two-Phase Transactional Locking, and
Nested Transaction sections are relevant only to clients that operate in transactional m
Concurrency Control: v1.0 Locking Model March 1995 7-3

7

,

ccur
uests a

wer
e

e

n-

nts

 lock

t

d
7.2.1 Lock Modes

Read, Write, and Upgrade Locks

The Concurrency Control service defines read (R) and write (W) lock modes that support
the conventional multiple readers, one writer policy. Read locks conflict with write locks
and write locks conflict with other write locks.

In addition, the Concurrency Control service defines an upgrade (U) mode. An upgrade
mode lock is a read lock that conflicts with itself. It is useful for avoiding a common form
of deadlock that occurs when two or more clients attempt to read and then update the same
resource. If more than one client holds a read lock on the resource, a deadlock will o
as soon as one of the clients requests a write lock on the resource. If each client req
single upgrade lock followed by a write lock, this deadlock will not occur.

Intention Read and Intention Write Locks

The granularity of the resources locked by an application determines the concurrency
within the application. Coarse granularity locks incur low overhead (since there are fe
locks to manage) but reduce concurrency since conflicts are more likely to occur. Fin
granularity locks improve concurrency but result in a higher locking overhead since more
locks are requested. Selecting a suitable lock granularity is a balance between the lock
overhead and the degree of concurrency required. Using the Concurrency Control service,
an application can be developed to use coarse or fine granularity locks by defining th
associated resources appropriately.

In addition, the Concurrency Control service supports variable granularity locking using
two additional lock modes, intention read (IR) and intention write (IW). These additional
lock modes are used to exploit the natural hierarchical relationship between locks of dif-
ferent granularity.

For example, consider the hierarchical relationship inherent in a database: a database co
sists of a collection of files, with each file holding multiple records. To access a record, a
coarse grain lock may be set on the database, but at the cost of restricting other clie
from accessing the database. Clearly, this level of locking is unsuitable. However, only
setting a lock on the record is also inappropriate, because another client might set a
on the file holding the record and delete or modify the file.

Using variable granularity locking, a client first obtains intention locks on the ancestor(s)
of the required resource. To read a record in the database, for example, the client obains
an intention read lock (IR) on the database and the file (in this order) before obtaining the
read lock (R) on the record. Intention read locks (IR) conflict with write locks (W), an
intention write locks (IW) conflict with read (R) and write (W) locks.

1.See Concurrency Control and Recovery in Database Systems by P.A. Bernstein, V. Hadzilacos, and N.
Goodman, or Transaction Processing: Concepts and Techniques by J.N. Gray and A. Reuter.
7-4 CORBAservices: Common Object Services Specification

7

ts are

the

ulti-

 is pro-
nted
Lock Mode Compatibility

Table 1, “Lock Compatibility,” on page 5 defines the compatibility between the various

locking modes (the symbol * is used to indicate when locks conflict). When a client
requests a lock on a resource that cannot be granted because another client holds a lock on
the resource in a conflicting mode, the client must wait until the holding client releases its
lock. The Concurrency Control Service enforces a queueing policy such that all clients
waiting for a new lock are serviced in a first in, first out order, and subsequent reques
blocked by the first request waiting to be granted the lock, unless the requesting client is a
transaction that is a member of the same transaction family as an existing holder of
lock.

7.2.2 Multiple Possession Semantics

The Concurrency Control Service interface supports a locking model called multiple pos-
session semantics. In this model, a client can hold multiple locks on the same resource
simultaneously. The locks can be of different modes. In addition, a client can hold m
ple locks of the same mode on the same resource; effectively, a count is kept of the num-
ber of locks of a given mode that have been granted to the client. When a client holds
locks on a resource in more than one mode, other clients will not be granted a lock on the
resource unless the requested lock mode is compatible with all of the modes of the exist-
ing locks.

In contrast, using the conventional locking model,2 when a client holding a lock on a
resource requests a lock on the same resource in a stronger mode, the existing lock
moted from the weaker mode to the stronger mode (once the stronger lock can be gra
without causing a conflict). Since lock modes form only a partial order, there will not

Table 1: Lock Compatibility

Granted
Mode

Requested Mode

 IR R U IW W

Intention
Read (IR)

*

Read (R) * *

Upgrade
(U)

* * *

Intention
Write
(IW)

* * *

Write (W) * * * * *
Concurrency Control: v1.0 Locking Model March 1995 7-5

7

 pro-

e
cond
t
d

be

 s
k.
al

s
nre-

rmit-
ated

on can-
cess-

cquire
always be a stronger mode; in cases where neither mode is stronger, the lock will be
moted to the weakest mode that is at least as strong as either of the two modes.

7.3 Two-Phase Transactional Locking

The Concurrency Control Service provides primitives to support transaction-duration
locking. Transaction duration locking is a special case of strict two-phase locking. In th
first phase (the growing phase), a transaction obtains locks that are kept until the se
phase (the shrinking phase), at which point they are released. A transaction must no
release locks during the first phase, and must not obtain new locks during the secon
phase, otherwise concurrent computations may be able to view intermediate results of the
transaction.

Two-phase locking is sufficient to guarantee serializability, hence this technique is used by
transactions. During the normal execution of a transaction, no locks will be automatically
dropped before the end of the transaction. When the transaction completes, the Concur-
rency Control Service must be informed so that the locks the transaction holds may
released. While releasing locks, no new locks may be obtained by the transaction.

When a transaction holds a lock that is no longer needed to ensure the transaction’serial-
izability, or if a weaker level of isolation is acceptable, it is permissible to release the loc
The Concurrency Control Service therefore provides an operation that releases individu
locks. This operation should be used with caution to ensure that the isolation level is
appropriate for the application.

7.4 Nested Transactions

Lock conflicts within a transaction family are treated somewhat differently than conflicts
between unrelated transactions. The underlying principle is the same for both: transaction
must not be able to observe the effects of other transactions that might later abort. U
lated transactions can abort independently; therefore, one transaction must not be pe
ted to acquire a lock that conflicts with a lock on the same resource held by an unrel
transaction.

Nesting imposes abort dependencies among related transactions. A parent transacti
not abort without causing all of its children to abort. A child transaction that ends suc
fully cannot abort without causing its parent to abort. A transaction that cannot abort
without causing another related transaction to abort (according to these guidelines and
logical deductions) is said to be committed relative to that other transaction.

These dependencies make it possible to relax the rule that two transactions cannot a
locks of conflicting modes on the same resource, without breaking the underlying princi-
ple. No partial effects can be observed and committed if all transactions that have done

2.See Notes On Data Base Operating Systems in Operating Systems: An Advanced Course (ed. Bayer,
Graham, and Seegmuller) by J.N. Gray for further information.
7-6 CORBAservices: Common Object Services Specification

7

ted

ck, it is

cks on

p
t did

r to

e
e

ous

up-

f
t.

orted
t

ional

t

perat-
work cannot abort without the observer being aborted. This property translates into a sim-
ple rule for nested locking: if all transactions holding locks on a resource are commit
with respect to a transaction trying to acquire a lock on the resource, no conflict exists.

The multiple possession model (see previous section) facilitates the use of locks with
nested transactions. In this model, multiple related transactions may hold locks of conflict-
ing modes on a resource at the same time. When a nested transaction requests a lo
granted if all of the transactions holding locks on the resource are committed relative to
the requestor. Both the requestor and previous holders are then considered to hold lo
the resource.

A child transaction can acquire a lock on a resource locked by its parent and then drothat
lock without causing its parent to lose its lock. A transaction cannot drop a lock that i
not acquire itself. The lock possession semantics also require that each transaction acquire
locks on its own behalf. It is improper to take locks on behalf of another transaction o
depend on locks held by other transactions.

Other approaches to nested transactions3 treat a resource as being locked by a single trans-
action at a time. When a nested transaction requests a lock on a resource that is alrady
locked by an ancestor transaction, the nested transaction becomes the new owner of th
lock. When a nested transaction commits, ownership of all of its locks is transferred to its
parent. When a nested transaction aborts, ownership of its locks reverts to the previ
owners. The Concurrency Control service performs these lock transfers automatically. The
multiple possession semantics model is functionally equivalent to this model, but it s
ports simpler interfaces.

7.5 CosConcurrencyControl Module

The Concurrency Control Service is defined by the CosConcurrencyControl module,
which provides interfaces that support both transactional and non-transactional modes o
operation. This section defines the interfaces and describes the operations they suppor

• The interfaces provide two modes of operation that correspond to those supp
by the Transaction Service; in both modes, locks are identified by the lock se
they are associated with and the mode of the lock.

• A client of the Concurrency Control Service may operate in an implicit mode
such that locks are acquired on behalf of the current transaction (for transact
clients) or current thread (for non-transactional clients).

• For transactional clients, a second alternative is possible that involves the clien
identifying the transaction by means of a reference to the transaction’s
coordinator object (the explicit mode of operation).

Locks are acquired on lock sets. Two sets of operations are provided by the LockSetFac-
tory interface to create lock sets, one creates a lock set that can be used by clients o

3.See Nested Transactions: An Approach To Reliable Distributed Computing by J.E.B. Moss for further
information.
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-7

7

ing in the implicit mode (the LockSet interface), the other creates a lock set for explicit
mode transactional clients (the TransactionalLockSet interface). In addition, the LockCo-
ordinator interface is provided to allow a client to release all locks held by a specific trans-
action.

The following sections define the types and exceptions common to both types of interface,
the interfaces themselves, and describes the responsibilities of a user for managing trans-
action-duration locks.

OMG IDL for the CosConcurrencyControl module shown on the following page.

 #include <CosTransactions.idl>
module CosConcurrencyControl {

 enum lock_mode {
 read,
 write,
 upgrade,
 intention_read,
 intention_write
 };

 exception LockNotHeld{};

 interface LockCoordinator
 {
 void drop_locks();
 };

 interface LockSet
 {
 void lock(in lock_mode mode);
 boolean try_lock(in lock_mode mode);

 void unlock(in lock_mode mode)
 raises(LockNotHeld);
 void change_mode(in lock_mode held_mode,
 in lock_mode new_mode)
 raises(LockNotHeld);
 LockCoordinator get_coordinator(
 in CosTransactions::Coordinator which);
 };

 interface TransactionalLockSet
 {
 void lock(in CosTransactions::Coordinator current,
 in lock_mode mode);
 boolean try_lock(in CosTransactions::Coordinator current,
 in lock_mode mode);
 void unlock(in CosTransactions::Coordinator current,
 in lock_mode mode)
 raises(LockNotHeld);
 void change_mode(in CosTransactions::Coordinator current,
 in lock_mode held_mode,
7-8 CORBAservices: Common Object Services Specification

7

e.

ode
 in lock_mode new_mode)
 raises(LockNotHeld);
 LockCoordinator get_coordinator(
 in CosTransactions::Coordinator which);
 };

 interface LockSetFactory
 {
 LockSet create();
 LockSet create_related(in LockSet which);
 TransactionalLockSet create_transactional();
 TransactionalLockSet create_transactional_related(in
 TransactionalLockSet which);
 };
};

7.5.1 Types and Exceptions

The types and exceptions described in this section apply to both the Lockset and
TransactionalLockset interfaces.

lock_mode

The lock_mode type represents the types of lock that can be acquired on a resourc

LockNotHeld

The LockNotHeld exception is raised when an operation to unlock or change the m
of a lock is called and the specified lock is not held.

7.5.2 LockCoordinator Interface

The LockCoordinator interface enables a transaction service to drop all locks held by a
transaction. The LockSet and TransactionalLockSet interfaces create instances of the

TABLE 2.

module CosConcurrencyControl {

 enum lock_mode {

 read,

 write,

 upgrade,

 intention_read,

 intention_write

 };

 exception LockNotHeld{};
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-9

7

al
 must
or a
are

e
LockCoordinator for each transaction. The LockCoordinator interface provides a single
operation:

drop_locks

Releases all locks held by the transaction. This call is designed to be used by transaction
clients when a transaction commits or aborts. For nested transactions, this operation
be called when the nested transaction aborts, but the call need only be made once f
transaction family when that family commits (recall that nested transaction commits
handled implicitly by the Concurrency Control service).

7.5.3 LockSet Interface

For clients operating in the implicit mode, locks are acquired and released on lock sets
which are defined by means of the LockSet interface. The LockSet interface only
provides operations to acquire and release locks on behalf of the calling thread or
transaction. The interface does not provide support for transactional clients that use th
explicit Transaction Service interfaces.

When calls to acquire or release locks are made outside the scope of a transaction then it is
assumed that the client is operating in the non-transactional mode (the concurrency con-
trol implementation must use the appropriate Transaction Service operation to determine

TABLE 3.

interface LockCoordinator {

 void drop_locks();

};

TABLE 4.

interface LockSet {

 void lock(in lock_mode mode);

 boolean try_lock(in lock_mode mode);

 void unlock(in lock_mode mode)

. raises(LockNotHeld);

 void change_mode(in lock_mode held_mode,

 in lock_mode new_mode)

 raises(LockNotHeld);

 LockCoordinator get_coordinator(in

 CosTransactions::Coordinator which);

};
7-10 CORBAservices: Common Object Services Specification

7

e
k the
c-

that

n the

of

k is

n a
whether the current thread is executing on behalf of a transaction).

lock

Acquires a lock on the specified lock set in the specified mode. If a lock is held on th
same lock set in an incompatible mode by another client then the operation will bloc
calling thread of control until the lock is acquired. If a call that is on behalf of a transa
tional client is blocked and the transaction is aborted then the call will return with the
Transactions::TransactionRolledBack exception.

try_lock

Attempts to acquire a lock on the specified lock set. If the lock is already held in an incom-
patible mode by another client then the operation returns a FALSE result to indicate
the lock could not be acquired.

unlock

Drops a single lock on the specified lock set in the specified mode (recall that a lock can
be held multiple times in the same mode). Calls to drop a lock that is not held result i
LockNotHeld exception being raised

change_mode

Changes the mode of a single lock (recall that multiple locks may be held on the same lock
set). If the new mode conflicts with an existing mode held by an unrelated client, then the
change_mode operation blocks the calling thread of control until the new mode can be
granted. Like the lock call, if the client is a transaction and it aborts while the thread
control if blocked then the Transactions: :TransactionRolledBack exception
will be raised. Similarly, when a call is made to change the mode of a lock, but the loc
not held in the specified mode, the LockNotHeld exception will be raised.

get_coordinator

Returns the lock coordinator associated with the specified transaction.

7.5.4 TransactionalLockSet Interface

The TransactionalLockSet interface provides operations to acquire and release locks o
lock set on behalf of a specific transaction. The operations that make up the Transactional-
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-11

7

LockSet interface are:

The operations provided by the TransactionalLockSet interface operate in an identical
manner to the equivalent operations provided by the LockSet interface. The interfaces dif-
fer in that for the TransactionalLockSet interface the identity of the transaction is passed
explicitly as a reference to the coordinator for the transaction instead of implicitly through
an association with the calling thread.

TABLE 5.

interface TransactionalLockSet {

 void lock(in CosTransactions::Coordinator which,

 in lock_mode mode);

 boolean try_lock(in CosTransactions::Coordinator which,

 in lock_mode mode);

 void unlock(in CosTransactions::Coordinator which,

 in lock_mode mode)

 raises(LockNotHeld);

 void change_mode(in CosTransactions::Coordinator which,

 in lock_mode held_mode,

 in lock_mode new_mode)

 raises(LockNotHeld);

 LockCoordinator get_coordinator(in

 CosTransactions::Coordinator which);

};
7-12 CORBAservices: Common Object Services Specification

7

nal
7.5.5 LockSetFactory Interface

Lock sets are created using the LockSetFactory interface.

This interface provides two sets of operations that return new LockSet and Transactional-
LockSet instances.

create

Creates a new lock set and lock coordinator.

create_related

Creates a new lock set that is related to an existing lock set. Related lock sets drop their
locks together.

create_transactional

Creates a new transactional lock set and lock coordinator for explicit mode transactio
clients.

create_transactional_related

Creates a new transactional lock set that is related to an existing lock set. Related lock sets
drop their locks together.

TABLE 6.

interface LockSetFactory {

 LockSet create();

 LockSet create_related(in LockSet which);

 TransactionalLockSet create_transactional();

 TransactionalLockSet

 create_transactional_related(in

 TransactionalLockSet which);

};
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-13

7

7-14 CORBAservices: Common Object Services Specification

	7.1 Service Description
	7.1.1 Basic Concepts of Concurrency Control
	Clients and Resources
	Transactions as Clients
	Locks
	Lock Modes
	Lock Granularity
	Conflict Resolution
	Conflict Resolution for Transactions
	Lock Duration

	7.2 Locking Model
	7.2.1 Lock Modes
	Read, Write, and Upgrade Locks
	Intention Read and Intention Write Locks
	Lock Mode Compatibility

	7.2.2 Multiple Possession Semantics

	7.3 Two-Phase Transactional Locking
	7.4 Nested Transactions
	7.5 CosConcurrencyControl Module
	7.5.1 Types and Exceptions
	lock_mode
	LockNotHeld

	7.5.2 LockCoordinator Interface
	drop_locks

	7.5.3 LockSet Interface
	lock
	try_lock
	unlock
	change_mode
	get_coordinator

	7.5.4 TransactionalLockSet Interface
	7.5.5 LockSetFactory Interface
	create
	create_related
	create_transactional
	create_transactional_related

