Concurrency Control Service 4

7.1 Service Description

The purpose of the Concurrency ControhBee is to mediate concurrent access to an
object such that the consistency of the object is not compromised when accessed by
concurrently executing computations.

The Concurrency Control Service consists of multiple interfaces that support both
transactional and non-transactional modes of operation. The user odrear@ncy
Control Service can choose to acquire locks in one of two ways:
* On behalf of aransaction (transactional modeThe Transaction Service drives
the release of locks as the transaction camor aborts.
» By acquiring locks on behalf of the current thread (that must be executing outside
the scope of a transaction). In this non-transactional mode, the responsibility for

dropping locks at the appropriate time lieghathe user of the Concurrency
Control Service.

The Concurrency Control Service ensures that transactowiahon-transactional

clients are serialized. Hence a non-transactional client that attempts to acquire a lock
(in a conflicting mode) on an object that isked by a transactionalient will block

until the transactional client drops the lock.

7.1.1 Basic Concepts of Concurrency Control

Clients and Resources

The Concurrency Control Service enahiesltiple clientsto coordinate their access to
sharedresources Coordinating access to a resource means that when multiple,
concurrent clients access a single resousiog, conflicting actions by the clients are
reconciled so that the resource remains in a consistent state.

The Concurrency Control Service does not define what a resource is. It is up to the clients

CORBAservices: Common Object Services Specification 7-1

7-2

of the Concurrency Control Service to define resources and to properly identify poten-
tially conflicting uses of those resources. In a typical use, an object would be a resource,
and the objechiplementation wouldse the concurrency control service to coordinate
concurrent access to the object by multipients.

Transactions as Clients

The Concurrency Control Service diffatiateshetween two types of client: a transac-
tional client and a non-transactional client. Conflicting accessdéytslof differentytpes
is managed by the Concurrency Control Service, thereby ensuringdindg elwaysee

the resource in a consistent state.

The Concurrency Control Service does not define what a transaction is. Ticarssare
defined by the Transaction Service. The Concurrency Control Service is designed to be
used with the Transaction Service to coordinate the activities of concurreattians

The Transaction Service suppottgo modes of operation: implicit and explicit. When
operating in the implicit mode, a transaction is implicitly associated with the current
thread of control. When egeting in the explicimode, a transaction is specified explicitly

by the reference to the coordinator that manages the curremtctiamsTo simpfy the

model of locking supported by the Concurrency Control Service when a transactional cli-
entis operating in the implicit transaction mode, transactional clients are limited to a sin-

gle thread per transaction (nested transactions can be used when parallelism is necessary)

and that thread can be executing on behalf of at most onadt@nsat a time.

Locks

The Concurrency Control service coordinates caeotiuse of a resource usirgks. A

lock represents the ability of a specific client to access a specific resource in a particular
way. Each lock is associated with a single resource and a sirgie Cloordination is
achieved by preventing multiple@hts from simultaneously possessing locks for the
same resource if the activitiestbbse clients might conflict. To achieve coordination, a
client must obtain amppropriate lock before accessing a shared resource.

Lock Modes

The Concurrency Control Service definegesallock modeswhich correspond to differ-
ent categories of access. Having detst of lock modes allows moréekible conflict res-
olution. For example, providing different modesifeadingand writing allows a resource
to support multiple concurrent clients that are only reading the data of theceesHug
Concurrency Control Service also defimtgntion lockghat support locking at multiple
levels of granularity.

Lock Granularity

The Concurrency Control Service does not define the greityubf the regurces that are
locked. It defines &ck setwhich is a collection obicks asstiated with a single
resource. Itis up to clients of th@fcurrency Control Service to associate a lock set with

CORBAservices: Common Object Services Specification

7

each resource. Tygally, if an object is a resource, the object would by createand
retain alock set. Howeveithe mapping between objects and resources (and lock sets) is
up to the object implementation; thepping could be one to one, but it could also be one
to many, many to many, or many to one.

Conflict Resolution

A client obtains a lock on a resource using the Concurrency Contkit&elhe service

will grant a lock to a client only if no otheri@htholds a lock on the resource that would
conflict with the intended access to the resource. The decision to grant a lock depends
upon the modes of the locks held or requested. For example, a read lock conflicts with a
write lock. If awrite lock is held on a resource by one client, a kadwill not be

granted to another client.

Conflict Resolution for Transactions

The decision to grant a lock also depends upon thgoredhips among the traastions
that hold or request a lock. In particular, if the transactionetated bynesting (nested
transactions), a lock may be granted that would otherwise be denied.

Lock Duration

Typically, a transaction will retain all of its locks until the transaction is completed (either
committed or aborted). This policy supports seradility of transactional operations.

Using the two phase commit protocol, locks held by a aetimare aubmatically

dropped when theansaction completes.

There are alsotsiaions where levels of isolation that are weaker than serializability are
acceptable, such as when an application does not want otheasippdi to change an
object while reading it and does not refer to the object again within thadtansIn

these circumstances, it is acceptable to release locks before the containing transaction
complees, hence the duration will be shorter than theaioinig transaction.

To manage the release of the locks held by adrdbs, the Concurrency Control service
defines a lock coordinator. Lock sets that are reldtadexample, bybeing ceated by a
resource manager for resources of the same typahanhgiould drop their locks together
when a transaction commits or aborts may share a locKioadtwor. It is up to clients of

the concurrency control service to associate lock sets together and to release the locks
when a transaction commits or aborts.

7.2 Locking Model

This section covers a number of imamt issues that relate tloe locking model sup-
ported by the Concurrency Control Service. For a complete discussion of these issues the
reader is directed to one of the standard texts on the subject

The Lock Modesection applies to clients thaperate in both traastonal and non-trans-
action modes. The Multiple Possession Ssing, TwoPhase Transactional Locking, and
Nested Transactiorestons are relevant only to clients that operate in transactional mode.

Concurrency Control: v1.0 Locking Model March 1995 7-3

7.2.1 Lock Modes

Read, Write, antpgrade Locks

The Concurrency Control servicefibesread (R) andwrite (W) lock modes that support
the conventional mtiple realers, one writer policy. Read locks conflict with write locks,
and write locks conflict with other write locks.

In addition, the Concurrency Control service definegpgrade(U) mode. An upgrade

mode lock is a read lock that conflicts with itself. It is useful for avoidiognamon form

of deadlockhat occurs when two or more clients attempt to eratithen update ttsmame
resource. If more than one client holds a read lock on the resource, a deadlock will occur
as soon as one of the clients requests a write lock on the resource. If each client requests a
single upgrade lock falived by a write lockhis deadlock will not occur.

Intention Read and Intention Write Locks

The granularity of the resources locked by an apfibn deternmies the concurrency

within the apgdtaion. Coarse granularity locks incur low overhead (since there are fewer
locks to manage) but reduce concurrency since conflicts are more likely to occur. Fine
granularity locksmprove concurrency but rel in a higherdcking overhead since more
locks are requested. 8eting asuitable lock granularity is a balance between the lock
overhead and the degree of concurrency required. Using the Concurrency @ovite) s

an application can be developed to use coarse or fine granularity locks by defining the
associated resources appropriately.

In addition, the Concurrency Control service supports variable grdtydbcking using
two additional lock modesntention read(IR) andintention write(IW). These additional
lock modes are used to exploit the natural hierarchatafionshipbetween locks of dif-
ferent granudrity.

For example, consider the hierarchiaghtionshipinherent in a database: a database con-
sists of a collection of files, with each file holding multiple relsofTo access a record, a
coarse grain lock may be set on the database, but at the cost of restricting other clients
from accessing the databasee@ly, this level of locking is unsaitle. However, only

setting a lock on the record is also inappropriate, because another client might set a lock
on the file holding the record and delete or modify the file.

Using \ariable granularitydcking, a client first obtains intention locks on the ancés)to
of the required resource. To read a record in the database, for example, the ciast obt
an intention read lock (IR) on the database and the file (in this order) befaneirggtihe
read lock (R) on the record. Intention read locks (IR) conflict with write locks (W), and
intention write locks (IW) conflict with read (R) and write (W) locks.

1. SeeConcurrency Cotrol and Recovery in Database Systdap®.A. Bernstein, \Hadzilacos, and N.
Goodman, offransaction Processg: Concepts and Tectiquesby J.N. Gray and A. Reuter.

CORBAservices: Common Object Services Specification

Lock Mode Compatibility

Table 1, “Lock Compatibility,” on page 5 deés the compatibility ieveen the various

Table 1: Lock Compatibility

Granted Requested Mode

Mode

IR R u W W

Intention *
Read (IR)

Read (R) * *

Upgrade * * *
(V)

Intention * * *
Write

(W)
Write (W) | * | % |* x|

locking modes (the symbol * is used to indicate when locks conflict). When a client
requests a lock on a resource that cannot be granted because aiethieolds a lock on

the resource in a conflicting mode, the clientst wait until thenolding clent releases its

lock. The Conarrency Control Service enforces a queueing policy such thatealt<|

waiting for a new lock are serviced in afirst in, first out order, and subsequent requests are
blocked by the first request waiting to be granted the lock, unless the requeastihgs @
transaction that is a member of the same transaction family as an existing holder of the
lock.

7.2.2 Multiple Possession Semantics

The Concurrency Control Service interface supports a locking model calléglenubs-
session semantics. In this model, a cleant hold mulple locks onthe same resource
simultaneously. The locks can be of different modes. In addition, a client can hold multi-
ple locks of the same mode on the same resourestieély, acount is kept of the num-

ber of locks of a given mode that have been granted toithmt. @Vhen a dent holds

locks on a resource in more than one mode, otientslwillnot be granted a lock on the
resource unless the requested lock mode is caohpatith all of themodes of the exist-

ing locks.

In contrast, using the conventional locking motdehen a dent holding dock on a

resource requests a lock on the same resource in a stronger mode, the existing lock is pro-
moted from theveaker mode to the stronger mode (once the stronger lock can be granted
without causing a conflict). Since lock modes form only a partial order, there will not

Concurrency Control: v1.0 Locking Model March 1995 7-5

always be a stronger mode; in cases where neither mode is stronger, the lock will be pro-
moted to the weakest mode that is at least as strong as either of the two modes.

7.3 Two-Phaserénsadional Locking

The Concurrency Control Service provides primitives to supportacans-duration

locking. Tranactionduration locking is a special case of strict two-phase locking. In the
first phase (the growing phase), a transaction obtains locks that are kept until the second
phase (the shrinking phase), at which point they are released. A transaction must not
release locks during the first phase, and must not obtain new locks during the second
phase, otherwise concurrent computations may be able to vieméutate results of the
transaction.

Two-phase locking is sufficient to guarangegializability,hence this technique is used by
transactins. Duing the normal execution of a transaction, no locks will beraatically
dropped before the end of the transaction. When theattoscompletesthe Concur-
rency Control Service must be informed so that the locks the transaction holds may be
released. While releasing locks, no new locks may benautdiy the tramection.

When a transaction holds a lock that is no longer needed to ensure the transactabn’s s
izability, or if aweaker level ofsolation is acceptable, it is permissible to release the lock.
The Concurrency Control Service tafare provides an operation that releases individual
locks. This operation should be used with caution to ensure that the isolation level is
appropriate for the apphtion.

7.4 Nested Transactions

Lock conflicts within a trarection family are treatesbmewhat diffezntly than conflicts
between unrelated transiacts. Theunderlying principle is the same for both: transactions
must not be able to observe the effects of other transactions that might later abort. Unre-
lated transaabins can abort independently; therefore, one transaction must not be permit-
ted to acquire a lock that conflicts with a lock on the same resource held by an unrelated
transaction.

Nesting imposes abort dependencies among related transactions. A parent transaction can-
not abort without causing all of its children to abort. A child transaction that ends success-
fully cannot abort without causing its parent to abort. A transaction that cannot abort
without causing anotheelated transaction @bort (according to these deiines and

logical deductions) is said to be committed relative to that otheatams.

These dependencies make it possible to relax the rule that two transactions cannot acquire
locks of conflicting modes on the same resource, without breaking the underlyicig pr
ple. No partial effects can be observed and committed if all transactiohatieadone

2.SeeNotes On Data Base @pating System® Operating Systems: Akdvanced Coursged. Bayer,
Graham, and Seegmuller) by J.N. Gray for further information.

CORBAservices: Common Object Services Specification

7

work cannot abort without the observer being aborted. This property tesnisieo a sim-
ple rule for nested locking: if all transactions holding locks on a resource are committed
with respect to a transaction trying to acquire a lock on the resourcenfliotexists.

The muliple possession model (see poas section) facilitates the use of locks with

nested transactions. In this model, multiple related tréiosaamay hold locks of conflict-

ing modes on a resource at the same time. When a nested transaction requests a lock, it is
granted if all of the transactions holding locks on the resource are committteeerto

the requestor. Both the requestor and previous holders are then considered to hold locks on
the resource.

A child transaction can acquire a lock on a resource locked by its parent and thigratirop
lock without causing its parent to lose its lock. A transaction cannot drop a lock that it did
not acquire itself. The lock possession aatits also require thatich transaction acquire
locks on its own behalf. It is improper to take locks on behalf of another transaction or to
depend on locks held by other transactions.

Other approaches to nested tamtons treat a resource as beimgked by a single trans-
action at a time. When a nested transaction requests a lock on a resource tlaalyis alre
locked by an ancestor tratdbon, the nested transaction becomes the new owner of the
lock. When a nested transaction commits, awtmip of all of its locks is transferred to its
parent. When a nested transaction aborts, ownership of its locks reverts to the previous
owners. The Concurrency Contsarvice performs thesedk transfers aomatically. The
multiple possession semantics model is functionally equivalent to this model, but it sup-
ports simpler interfaces.

7.5 CosConcurrencyControl Module

The Concurrency Control Service is defined by the CosConcurrencyControl module,
which provides intdaces that support both trasonal and non-transactional modes of
operation. This section defines timeirfaces and describes the operations they support.

» The interfaces provide two modes of operation that correspond to those supported
by the Transaction Service; in both modes, locks are identified by the lock set
they are associated with and the mode of the lock.

« A client of the Concurrency Control Service may operate imgaticit mode
such that locks are acquired on behalf of the current transaction (for transactional
clients) or current thread (for non-transactional clients).

» For transactional clients, a sew alternative is possible that involves the client
identifying the transaction by means of a reference to the transaction’s
coordinator object (the explicihode of operation).

Locks are acquired on lock sets. Two sets of operations are providedUnck&etFac-
tory interface to create lock sets, one creates a lock set that can be used by clients operat-

3. SeelNested Transactions: Alpproach To Reliable Distributed ComputimgJ.E.B. Moss for further
information.

Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-7

ing in the implicit mode (theockSeinterface), the other creates a lock set for explicit
mode transactional clients (tieansactionalLockSenterface). In additin, theLockCo-
ordinatorinterface is provided to allow a client to release all locks held pgéifi trans-
action.

The followingsections define the types and exceptions common toyqueh bfinterface,
the interfaces themselves, andatibes theesponibilities of auser for managing trans-
action-duration locks.

OMG IDL for the CosConcurrencyControl ndaile shown ornthe following page.

#include <CosTransactions.idl>
module CosConcurrencyControl {

enum lock_mode {
read,
write,
upgrade,
intention_read,
intention_write

3
exception LockNotHeld{};

interface LockCoordinator

{
void drop_locks();

k

interface LockSet

{
void lock(in lock_mode mode);
boolean try_lock(in lock_mode mode);

void unlock(in lock_mode mode)
raises(LockNotHeld);
void change_mode(in lock_mode held_mode,
in lock_mode new_mode)
raises(LockNotHeld);
LockCoordinator get_coordinator(
in CosTransactions::Coordinator which);

b

interface TransactionalLockSet
{
void lock(in CosTransactions::Coordinator current,
in lock_mode mode);
boolean try_lock(in CosTransactions::Coordinator current,
in lock_mode mode);
void unlock(in CosTransactions::Coordinator current,
in lock_mode mode)
raises(LockNotHeld);
void change_mode(in CosTransactions::Coordinator current,
in lock_mode held_mode,

7-8 CORBAservices: Common Object Services Specification

in lock_mode new_mode)
raises(LockNotHeld);
LockCoordinator get_coordinator(
in CosTransactions::Coordinator which);

b

interface LockSetFactory

{

LockSet create();

LockSet create_related(in LockSet which);

TransactionalLockSet create_transactional();

TransactionalLockSet create_transactional_related(in
TransactionalLockSet which);

7.5.1 Types and Exceptions

The types and excBpns desclied in thissection apply to both theocksetand
TransactionalLocksenterfaces.

TABLE 2.

module CosConcurrencyControl {
enum lock_mode {
read,
write,
upgrade,
intention_read,
intention_write

exception LockNotHeld{};

lock_mode
Thelock_mode type represents the types of lock that can be acquired on a resource.

LockNotHeld

TheLockNotHeld exception is raised when an operation to unlock or change the mode
of a lock is called and the specified lock is not held.

7.5.2 LockCoordinator Interface

TheLockCoordinatorinterface enables a trattionservice to drop all locks held by a
transactin. TheLockSetndTransactionalLockSehterfaces create instances of the

Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-9

LockCoordinatorfor each trarecton. TheLockCoordinatorinterface provides a single
operation:

TABLE 3.

interface LockCoordinator {
void drop_locks();

drop_locks

Releases all locks held by the tracton. This call is designed to be used by transactional
clientswhen a transaction commits or aborts. For nested transactions, this operation must
be called when the nested transaction aborts, but the call need only be made once for a
transaction family when that family commits (recall that nested transaction commits are
handled implicitly by the Concurrency Control service).

7.5.3 LockSet Interface

For clients operating in the implicit mode, locks are acquénedi released on lock sets
which are defined by means of the LockSet interfd¢e LockSet intdace only
provides operations tacquire and release locks on behalf of the calling thread or
transaction. The interface doest provide support for transactional clients that use the
explicit Transaction Service interfaces.

TABLE 4.

interface LockSet {
void lock(in lock_mode mode);

boolean try_lock(in lock_mode mode);

void unlock(in lock_mode mode)
raises(LockNotHeld);

void change_mode(in lock_mode held_mode,
in lock_mode new_mode)
raises(LockNotHeld);

LockCoordinator get_coordinator(in
CosTransactions::Coordinator which);

When calls to acquire or release locks are made outside the scope ddcitamen it is
assumed that the client is operating innbe-transactionamode (the concurrency con-
trol implementation must use tappropriate Transaction Service operation to deter

7-10 CORBAservices: Common Object Services Specification

whether the current thread is executing on behalf of azicéins).

lock

Acquires a lock on the specified lock set in the specified mode. If a lock is held on the
same lock set in an incompatible mode by another client then the operation will block the
calling thread of control until the lock is acquired. If a call that is on behalf of a transac-
tional client is blocked and the tragsion is abortechen the call will ratrn with the
Transactions:: TransactionRolledBack exception.

try_lock

Attempts to acquire a lock on the specified lock set. If the lock adireeld in an incom-
patible mode by another client then the operation returns a FALSE result to indicate that
the lock could not be acquired.

unlock

Drops a single lock on the specified lock set in theifipd mode (recall that a lock can
be held multiple times in the same mode). Calls to drop a lock that is not held result in the
LockNotHeld exceptiorbeing raised

change_mode

Changes the mode okmgle lock (recall that multipletks may be held on the same lock
set). If thenew mode conflicts with an existing mode held by an unrelatedtcthenthe
change_mode operation blocks the calling thread of control until the newdercan be
granted. Like théock call, if the client is a transaction and it aborts while the thread of
control if blocked then th&ransactions: ‘TransactionRolledBack exception

will be raised. Similarlywhen a call is made to change the mode of a lock, but the lock is
not held in the specified mode, theckNotHeld exception will be raised.

get_coordinator
Returns the lock coordinator associated with the specified transaction.

7.5.4 TransactionalLockSet Interface

The TransactionalLockSenhterface provides operations to acquire and release locks on a
lock set on behalf of a specific transaatiThe opeationsthat nake up th@ransactional-

Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-11

LockSetinterface are:

TABLE 5.

interface TransactionalLockSet {
void lock(in CosTransactions::Coordinator which,
in lock_mode mode);

booleantry_lock(in CosTransactions::Coordinatorwhich,
in lock_mode mode);

void unlock(in CosTransactions::Coordinator which,
in lock_mode mode)
raises(LockNotHeld);

void change_mode(in CosTransactions::Coordinator which,
in lock_mode held_mode,
in lock_mode new_mode)
raises(LockNotHeld);

LockCoordinator get_coordinator(in

CosTransactions::Coordinator which);

The operations provided by tAeansactionalLockSenterface operate in an identical
manner to the equivalent operations provided by tiekSetinterface. The interfaces dif-
fer in that for theTransactionalLockSenterface the identity of the transaction is passed
explicitly as a reference to the coordinator for the transaictgiad of implicitly through
an association with the calling thread.

7-12 CORBAservices: Common Object Services Specification

7.5.5 LockSetFactory Interface
Lock sets are created using theckSetFactonnterfece.

TABLE 6.

interface LockSetFactory {
LockSet create();
LockSet create_related(in LockSet which);

TransactionalLockSet create_transactional();
TransactionalLockSet
create_transactional_related(in
TransactionalLockSet which);

This interface provides two sets of operations tharmenewLockSetandTransactional-
LockSetinstances.

create
Creates a new lock set and lock coordinator.

create_related

Creates a new lock set thatédated to an existingptk set. Related lock sets drop their
locks together.

create_transactional

Creates a new transactional lock set and lock coordinator for explicit mode transactional
clients.

create_transactional_related

Creates a new transactional lock set that is relatedewisting lock setRelated lock sets
drop their locks together.

Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-13

7-14 CORBAservices: Common Object Services Specification

	7.1 Service Description
	7.1.1 Basic Concepts of Concurrency Control
	Clients and Resources
	Transactions as Clients
	Locks
	Lock Modes
	Lock Granularity
	Conflict Resolution
	Conflict Resolution for Transactions
	Lock Duration

	7.2 Locking Model
	7.2.1 Lock Modes
	Read, Write, and Upgrade Locks
	Intention Read and Intention Write Locks
	Lock Mode Compatibility

	7.2.2 Multiple Possession Semantics

	7.3 Two-Phase Transactional Locking
	7.4 Nested Transactions
	7.5 CosConcurrencyControl Module
	7.5.1 Types and Exceptions
	lock_mode
	LockNotHeld

	7.5.2 LockCoordinator Interface
	drop_locks

	7.5.3 LockSet Interface
	lock
	try_lock
	unlock
	change_mode
	get_coordinator

	7.5.4 TransactionalLockSet Interface
	7.5.5 LockSetFactory Interface
	create
	create_related
	create_transactional
	create_transactional_related

