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Systems Biology — Definition

“Systems biology is a relatively new biological study field that focuses
on the systematic study of complex interactions in biological systemes,
thus using a new perspective (integration instead of reduction) to
study them. Particularly from year 2000 onwards, the term is used
widely in the biosciences, and in a variety of contexts. Because the
scientific method has been used primarily toward reductionism, one
of the goals of systems biology is to discover new emergent
properties that may arise from the systemic view used by this
discipline in order to understand better the entirety of processes that
happen in a biological system.”

http://en.wikipedia.org/wiki/Systems_biology (06/06/2008)



Integration vs. Reductionism

e Systems biology as an integrative approach takes the reductionist
approach one step further

Do not only understand the components, but understand
‘emerging properties’ of a system

* Key of this is the integration of different data, covering different
aspects of the system

* Integrated modeling of the whole system can then reveal these
emerging and dynamic properties

Example:

circadian clock — the temporal (dynamic) behavior is an emerging
property of the rather simple interaction of a few key players.



Circadian Clock in Cyanobacteria

e Circadian clocks are internal
osullatqrs |mplement|‘ng a 24 hour fA) m
rhythm in most organisms H

* The model shown on the right is a A ) ) ‘/; B
simple model for cyanobacteria + \l ) :
including three genes (KaiA, KaiB, and B K,
KaiC — A/B/C) Y HeB
* Their interaction, phosphorylation, A
hexamer formation (H), etc. are

simple processes that can be
described mathematically
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«  Together these simple processes give
rise to the oscillation shown on the |
right, which agrees well with

experimental data
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* Looking at each of the processes in
isolation will not reveal the
osciallation

I. Axmann, S. Legewie, and H. Herzel (2007). A minimal circadian clock model. Genome Informatics. 18:54-64.



Central Dogma of Molecular Biology

» First articulation by Francis Crick in 1956
* Published in Nature in 1970

Ideas on Protein Synthesis (Oct. 1956)

The Doctrine of the Triad.

The Central Dogma: "Once information hasc got into a protcin it
can't get out again". Information here means the sequence of
the amino acid residues, or other sequences related to it.

That is, we may be able to have
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where the arrows show the transfer of information.

Origin of the “Central Dogma of Molecular Biology” (Francis Crick, 1956)



Genome sequencing

February 2001 - Publlcatlon of the first draft of the human genome
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‘Postgenomics’ — The Age of Omes

-ome, comb. form
[...]

3. Cell Biol. and Molecular Biol. Forming nouns with the sense ‘all of the specified

constituents of a cell, considered collectively or in total’, as plastidome n.,
plastome n., vacuome n.

(Oxford English Dictionary online)

Ever since the rise of genomics, the suffix "-omics" has been added to many fields to
denote studies undertaken on a large or genome-wide scale. While not everyone agrees

with this change of terms, we felt that the terms are sufficiently widely used to serve as
pointers to our published papers in the area.

(Website of ‘Nature’)

http://www.oed.com
http://www.nature.com/omics/about/index.html
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OMICS Mania

Alphabetically ordered list of omes and omics

Alphabetically ordered Omes and Omics. You can freely add and edit the entries.
--A--

Alignmentome: conceived before 2003. The whole set of multiple sequence and structure alignments in bioinformatics. Alignments
are the most important representation in bioinformatics especially for homology and evolution study.  (Alignmentome.org %)
Alignmentomics: conceived before 2003, The study of aligning strings and sequences especially in bioinformatics.
(Alignmentomics.org &)

Alignome: 2003 . The whole set of string alignment algorithms such as FASTA, BLAST and HMMER. (Alignome.org #)
Alignomics: The omics approach research of Alignomics (Alignomics.org %) in biology

Alternatome: 2006. The totality of alternative spliceable elements. Suggested by people in KOBIC and UCSC. {Alternatome.org &)
Alternatomics: The omics approach research of Alternatomics {(Alternatomics.org %) in biology

Animalome: 2000 . The whole set of animals and their genetic components on Earth. ¥While animal kingdom traditionally means the
totality of animals, animalome indicates the system of animals, animal genes, animality, and complex network of animal genes and
proteins. Animals contain proteins that are special.  {(Animalome.org #)

Animalomics: The omics approach research of Animalomics (Animalomics. org %) in biology

Aniome: 2003 . The whole set of any biologically relevant things in the universe. (Aniome.org %)

Antibodyome: conceived around 2003 in association with immunolome in artificial immune system as computational system
(Jong). (Antibodyome.org &)

Antibodyomics: The omics approach research of Antibodyome (Antibodyomics.org &) in biology

Antiome: The totality of people who object the propagation of omes.

Antiomics: The omics study of analyzing the trend of attaching omics suffix to debunk it.

Archaeome: 2002 . All the species of archae and their proteins especially. {(Archaeome.org %)

Archaeomics: The omics approach research of Archaeomics (Archaeomics.org %) in biology

Archiome: 2002 . The same as archaeome. (Archiome.org &)

http://omics.org/index.php/Alphabetically_ordered_Llist_of_omes_and_omics



The World of Omes
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Technologies

N wwA
Genome Transcriptome Proteome Metabolome
Epigenome RNOme Interactome Lipidome

Next-Generation Sequencing Mass Spectrometry
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Cost per Raw Megabase of DNA Sequence

$10K
$1K
Moore's Law
$100
$10
$1
National Human Genome
$0.1 Research Institute
genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013



Human Proteome

Nature cover May 2014
nature - Two draft versions of

THE HUMAN the human proteome
PROTEOME (for various) tissues

Mass spectrometry -
based global analyses

et - Claim ~90% coverage
of the proteome
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OMICS Data

* High-throughput techniques provide data for one specific type of
relationship

* Genomics: DNA sequence data
* Transcriptomics: mRNA concentration

* Proteomics: protein concentrations/sequence

Metabolomics: metabolite concentrations

Interactomics: protein-protein interaction data

 OMICS data is reductionist, but at a very large scale

* OMICS data is often voluminous, but of low quality/noisy

14



Classical Data vs. Omics Data

Classical

Low-throughput

Low-dimensional, often
single facts

High accuracy, every data
point supported by
multiple experiments

Analysis of experiments
simple (small data volume!)

Omics

High-throughput

High-dimensional,
measuring many
parameters in parallel

Often low accuracy, lots of
noise

Often not interpretable
without statistics/
bioinformatics

15



Omics is a Matter of Perspective!




Omics is a Matter of Perspective

* Each omics technology/level provides a cross-
section of one particular type of biomolecules

e Different levels thus correlate (roughly) to

* Genomics: what can the cell potentially do?
* Transcriptomics: what is currently being turned on?

* Proteomics: what enzymes are currently active? which
signals are being transduced?

* Metabolomics: what is being produced/consumed?

* Different levels thus provide a different functional
perspective

17



Omics Technologies

Transcriptome <

Proteome <

Metabolome =S Nucleotides

Lipids
(Lipidome)

J

Metabolites

Phenotype/Function

http://en.wikipedia.org/wiki/File:Metabolomics schema.png , accessed 2014-03-10, 11:42:00 UTC
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Integrative Analysis

* Analyzing individual data set is trivial

* Simultaneous integrated analysis of data from multiple
layers/types of data is currently still the major challenge!

Ascorbate and

CARBOHYDRATE aldarate metabolism

METABOLISM

Glyrolysis /

Gluconeogenesis 3¢
Galactose Pentose and
metabolis glucuronate
interconversions
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Computational Systems Biology

The complexity and also
the sheer amount of data
produced with high-
throughput techniques
makes manual analysis
difficult

Systems biology thus
requires a strong
computational component:

Computational Systems
Biology

"And that's why we need a computer.”

http://www.sys-bio.org/contentimages/WhyWeNeedComputer.png



Challenges in Data Integration

* Semantic integration of data from different sources
* Different data formats

 Ambiguities, nomenclature

 Lack of data

* We do not know everything!
* High-throughput methods show only a fraction of
‘everything’ (detection limits!)
* Different scales
* Time scales different, length scales different

* How to model different resolutions simultaneously?

21



Protein

* A protein or polypeptide consists of a linear chain
of amino acids that build 3-dimensional structures

 Amino acids are connected via peptide bonds

% Peptide bonds

QL g moel WO
| | .
N-terminus H,N — C—C+ N|+<|:—C+NH—|C—C4:NH C-C—OH  C-terminus
| 1 |
Ry i R, | Ry i R,
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Proteomics

a
* Proteomics: study of a proteome 800
* Proteome: sum of all proteins in a g 250
given sample (e.g., tissue, cell, time- il
point) by

. . . 50' l ' l I

* Proteomics typically tries to L

0] ]
* Catalog the proteins in a sample B ey
(qualitative proteomics) C
108

* Quantify the proteins in a sample, i.e., k

determine the concentrations of all
proteins (quantitative proteomics)

* Concentrations in a sample vary
drastically — large dynamic range
required (see figure on the right)

Copy numbers, HelLa
5&-

Copy number rank (104)

Kulak et al., Nat. Methods 11, 319-324 (2014) doi:10.1038/nmeth.2834
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Proteomics — Typical Questions

 There are some problematic issues on defining a
protein

* Protein identity: unigue amino acid sequence and single
source of origin?

* There may be different genes encoding the identical amino acid
sequence

» Different organisms may encode identical proteins
* Splice variants: A gene can give rise to different mRNAs

* Polymorphisms: many genes occur in allelic variants
encoding sequence variations

e Posttranslational modifications: PTMs are very hetero-
geneous and significantly alter the function of the protein

24



Proteomics - Examples

Understanding phenotypes:
Genome remains the same...

Understanding signaling:

Platelets are non-nucleated O PGSK3asea
cells - to understand their .| W PGSKs

. . Il P-LASPSertés
behavior (blood clotting) B pvaspsew
phosphoproteomics is g P.VASPSe

P-GRP2Sersé?

required. It reveals time-
resolved activation of

kinases. A :
Control 15 30 60
[sec]
Activated platelets Time course of selected phosphopeptides

(Beck et al., 2014)
, accessed: 14/10/2013 6 PM

Beck et al., Blood (2014), 123(5):e1-e10. doi: 10.1182/blood-2013-07-512384 25



Main fields of proteomics

protein interaction

protein localization

protein characterization
(identification + PTMs)

protein expression
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Applications of proteomics

protein interaction

 Drug target identification

protein characterization
(identification + PTMs)

* Determine content of a
protein mixture
* Understanding regulation
of protein activity

\;\J
* Functional annotation

(compartment and function)
 Drug target identification

protein localization

0.5—. ﬁru

fThe peutic
target identi

|

 Gene annotation

=l

arkers
IC:

ation

T

I3

protein expression
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Metabolites

Metabolites are intermediates and products of
metabolic processes — everything that biochemistry can
create

Technically speaking also DNA, RNA and proteins could
be considered metabolites

The term is usually restricted to small molecules
Spans a variety of substance classes (not complete):

e Amino acids

Alcohols
* Lipids
* Sugars

Chemically much more diverse than proteome!

28



Metabolomics — The Big Picture

Personalized health care

» Patient stratification
* Individualized drug therapy

* Nutrition and lifestyle
management

Individual Metabonomics Population

profiling  Biofluid sampling  profiling
NMR spectroscopy
Mass spectrometry
Chemometrics
Bioinformatics

Identifying
biological targets

New drug targets

Nicholson and Lindon. Nature 2008, 455, 1054-1056

Molecular epidemiology

Metabolome-wide associations *
Novel risk biomarkers =
Risk hypothesis testing ®

Public-health policy and action *

29



Metabolic Networks
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Technologies

Modern Proteomics and Metabolomics studies are
based on

Chromatography coupled to Mass spectrometry (MS)

http://en.wikipedia.org/wiki/High-performance_liquid_chromatography. www.planetorbitrap.com
Access 14/10/2013, 5 PM Access 14/10/2013, 5 PM
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Technologies

* Chromatography (GC/LC)

* Chromatography separates proteins/peptides or
metabolites

 Reduces complexity of samples

* Mass spectrometry (MS)

 |dentifies the biomolecules (mass spectrum often used
similar to a ‘fingerprint’ of the molecule)

* Signal intensity is proportional to concentration of the
molecule in the sample

32



Shotgun proteomics

Protein Trypsin /I Peptide fractionation
extraction digestion (e.g., isoelectric focusing)
= Vol
ﬁU I /l% I
, bl l
MSspectrum
A < — b NM
,&J 7\ ‘ u ""-"'\WJUA
‘ < ]
MS/MS spectrum
Computational Mass Spectrometry High Performace

proteomics

(MS) Liquid Chromatography
(HPLC)
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At its core: HPLC-MS

| HPLC ESI TOF Spectrum (scan)
| [Em /\ RT
, ) /\ — ‘ > 0200.‘60 Dlol"_ E—
= - 03""' \ = — ‘ |
Separation 1 lonization Separation 2
separate peptides electrospray, MS separates by
by their retention transfers charge mass-to-charge

time on column to the peptides  ratio (m/z)
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Mass Spectrometry
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Proteomics: Database Search

* |dentification of mass spectra
is easily done through
database search

* Search all peptides of
matching mass from a
database

e Construct a theoretical
mass spectrum for these
peptide candidates

e Score against the
experimental spectrum

* Post-genomics: database

search is possible because we
have a genome sequence

—

NI

Sequence DB
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Integrative Analysis

* Analyzing individual data set is trivial

* Simultaneous integrated analysis of data from multiple
layers/types of data is currently still the major challenge!

Ascorbate and

CARBOHYDRATE aldarate metabolism

METABOLISM

Glyrolysis /

Gluconeogenesis 3¢
Galactose Pentose and
metabolis glucuronate
interconversions
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Growth of Omics Data (EBI Repositories)

EMBL-EBI data growth by repository/platform
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Multi-Omics/Polyomics

e Systems biology requires an integrative view
spanning more than one omics level — this is
called ‘multi-omics’ or ‘polyomics’

* Data sets are

* Huge (often hundreds of GB)
* Heterogeneous
e Complex in their structure

* |Integrative analysis is complex (usually takes
longer than data generation)

 Complex analysis workflows are hard to
reproduce
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Big Data and Reproducible Science
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Error prone

Biologists must realize the pitfalls of work on
massive amounts of data.

is becoming increasingly clear that the field is havang to deal
with growing pains

Ina Comment piece this week, Daniel MacArthur, a researcher at
Massachusetts General Hospatal in Boston, argues that the massive
pools of data generated in even routine genome studies make it casy to
misinterpret artefacts as biologacally important results (see page 427).
Such false positives, he says, can lead to embarrassing retractions,
futile projects and stalled careers. More careful attention to methods
and greater awareness of the potential pitfalls wall help to cut down
on the needless mistakes.

Ina field as competitive as genomics, scientists will inevitably seck
faster, more effictent ways to generate and analyse data. Just this week,
the firm lon Torrent in Guilford, Connecticut — part of Life Technolo
gies in Carlsbad, California — announced that it will tackle a com
petitzon to accurately sequence 100 genomes in 30 days for less than
USS 1,000 per genome — and to win the US$10-million prize offered
by the X Prize Foundation in Playa Vista, California (see page 417).

Genomics is not the only field of science to battle wath quality-
control 1ssues. In March, Nature lamented the high number of cor
rections to research papers in the life sciences that arise from avoidable
errors { see Nature 483, 509; 2012). Scientists are making too many
careless mustakes, and those mistakes are getting publshed

Much of this sloppy science comes from the pressure to generate
‘surprising’ results and to publish them quickly, even though they
are more likely to be driven by errors than are findings that more or
less tollow from previous work. A researcher who reveals something

Gcmmics has the potential to revolutionize medical care, but it

40 NATUKRE VOL 447 2o JULY 2012

Big Data and Reproducible Science

exciting is more likely to get a high-profile paper (and a permanent
posation} than is someone who spends years providing solxd evidence
for something that everyone in the field expected to be true.

This pressure extends throughout the careers of scientists, and
is compounded by the preference of journals (including Nature)
to publish significant findings — and of the media to report them
MacArthur asks scientists to weigh up the importance of avosding
being scooped against the embarrassment of a mistake, but to an ambi-
tsous scientist in a competitive field such as genomacs, the risk of being
out-published will often outwegh the potential damage of retraction.

Many areas of the life sciences now work with massive amounts
of data, so technology-based artefacts are unlikely to be restricted to
senomics. Any life saentist who works at a university or is atfiliated
with a hospital can now collect human samples and sequence them
to create huge amounts of genomic data, with which they are perhaps
not used to working. The problem goes beyond analysis — time and
time again, baologists fail to design experiments properly, and so sub-
mit underpowered studies that have an insufficient sample size and
trumpet chance observations as baological effects.

The problems are not hard to solve. Biologists must seek relevant
training in experimental methods and collaborate with good statist
aans. Principal investagators have a responsibility to their labsand to
colleagues to ensure that any data they publish are robust. And the
efforts of peer reviewers who thoroughly reanalyse data to double
check that submissions are solid deserve more formal acknowledge
ment, albest in private.

Meanwhile, researchers who deal with large amounts of data must
agree on standards that will protect against avoidable errors. Fields
such as RNA sequencng have been slow to establish such guidelines
{see Nature 484, 428; 2012), but others have shown that it can be done

The human-genetics community, for instance,
ONATURECOM has established critera for genome-wide assoc
Tocommentonbme,  ation studses to ensure that findings are rigorous
clickonEditeriglsat:  and comparable. Less- proactive genomics fields,
go.natera com/ yhuagy and the rest of biology, should follow that lead. m
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