Gddel’s Incompleteness Theorem
Leon Weber

27 January 2015

In this talk, Godel’s first and second incompleteness theorems will be
formulated and proven. Informally, they assert that every formal sys-
tem that can express certain arithmetic truths contains true sentences
which cannot be proven and that this system cannot prove its own
consistency.

The theory Th(N, +,)

Definition 0.1 (Syntax of Th(N, +, -)).
* Recursive definition of term’:

— Every natural number n € N is a term.
— Every variable x;, i € N is a term.

- Ifty and tp are terms, then (t; + tp) and (t1 - tp) are terms.
* Recursive definition of ‘formula’:

- If ty and tp are terms, then (t; = t) is a formula.

- If F, G are formulae, then —F, (F A\ G) are formulae.

- If x is a variable and F is a formula, then Vx.F and 3x.F are formulae.
Definition 0.2 (Semantics of Th(N, +, -)(informal)). The symbols

signify the structures as given by the standard model of Peano Arithmetic in
the usual way.

Definition 0.3 (Truth of a formula). Let F, G be formulae, t1,ty be terms,
and x be a variable, then
* (1 = tp) is true, iff* ¢(t1 = tp) holds for any assignment ¢.
o —F is true, iff F is not true.
* (FAG) is true, iff F is true and G is true.
* (FV G) is true, iff F is true or G is true.
* 3x.F is true, iff there is a n € IN such that F(x/n)? is true.
* Vx.F is true, iff F(x/n) is true for any n € IN.
Definition 0.4 (Arithmetic Representability of functions). A func-
tion f : INF — IN is arithmetically representable (a.r.), iff there is
a formula of Th(N, +,-) F(x1,x2, ..., Xk, Xgi1), such that for every
ni, My, ..., g, g1 € N holds:
f(ny,ny, ..., ng) = ngq iff F(ny, ny ..., ng, ngyq) is true.

: 4
A :.'5"{ .

(Semi-)random facts about Godel:
* Was a good friend of Albert Einstein

* Provided a formal proof of God’s
existence and contributed to modern
physics

* Was married to a Adele Nimbursky
(a cabaret dancer)

*Read: If and only if

> Read: F with x being replaced by n

GODEL’S INCOMPLETENESS THEOREM 2

The Main Theorem

Lemma o.1 (Important arithmetically representable functions).

e Addition ('+') is a.r.

Multiplication (") is a.r.

Division (of natural numbers) ('div’) is a.r.

Modulo ("mod’) is a.r.
e nj=amod(l1+ (i+1)-b)isa.r

Fact o.1 (Every finite sequence of natural numbers can be iden-
tified by only two numbers). For every sequence of natural num-
bers (ng, 11, . ..,ny) there are natural numbers a and b, such that for
i€0,1,---,k holds:

nj=a-mod(1+ (i+1)-b)

Lemma o.2 (Every WHILE-program is a.r.). For every WHILE-program
3 P with variables xg, X1, . . ., X we can construct a Th(N,+,-)-Formula
Ey, with free variables xo, x1, . .., X and yo, Y1, - - - , Yk such that for any
m; € N and n; € IN:

Fy(mo,my,...,my,ng,n1,...,ny) is true iff the computation of P is
started with xo = mg, x1 = My, ..., X = My and halts with xo = ng, Ny =
ny, ..., X = Ng.

Proof. This proof works by induction on the structure of P:

Basis:

P='x;:= xj+ / —c': Let Fp = (]/, =Xxj+ / — C) /\k#i(yk = xk)

Step:

case P =" Q; R': By induction hypothesis there are Fy and Fg.

Let Fp := J.z9,3.z1,...,3.zk.(Fo(X0, X1, - - -, Zks 20, 21, - - -, Zk) N\
FR<ZQ,Zl, e 2k Yo Y1 - .,yk))

case P =" WHILE x; DO Q END': By induction hypothesis there is
Fg. Let

Fp := Jag.3bg.3a;.3b;.- - - Jap. b3t 4

[G(a(), by, 0, XO) A G({l1,b1,0, x1) VARIIRIVAN G(ak, by, 0, xk)}/\

[G(ao, by, t,y()) VAN G(a1,b1, t,yl) VARIIEAN G(ak, by, t,yk)]/\ 5

Vi < t.3w.(G(a;, by, j,w) A (w > 0)) A G(a;, b;, t,0)A ©

Vj < t.3wo.3ws .- - - Jwy. 3wy Jwy.- - - Jwy.

[Fo(wo, wy, ..., Wy, wy, Wy, ..., W)\

G(LIQ, bo,j, ZU()) A G(al,bl,]', wl) JARIRWAN G(ﬂk, bk,j, wk)/\

G(ag, bo, j+ 1, wy) AG(ay, by, j+1,w)) A+ AGlag, by, j +1,w;)]
7 O

Fact 0.2 (Every Turing Machine is a.r. by a formula with only one
free variable). From the lemma above and the fact that you can simulate a

3 WHILE-programs (which are as
expressive as turing machines) are
composed of the following elements:

e variables: x;

® constants: n € IN

e delimiters: ; :=

® operators: + —

¢ keywords: WHILE DO END

Syntax and semantics of WHILE-
programs are defined in the canonical
way. The only noteworthy difference
from the semantics of some standard
programming languages is: "WHILE x
DO stuff END’ executes stuff until x=o.

4 Each a;, b; identifies the sequence

of values of the variable x;. t is the
number of executions after which are
counter variable reaches zero.

5 This formula asserts that the ini-
tial/final value of x; is in fact the
first/last number in the sequence
described by a;, b;

® This formula asserts that the value of
the counter variable is zero exactly after
t steps and never becomes zero at any
step before.

7 This formula asserts that the transition

of the value of x; in step j = j+ 1isin
fact governed by the formula F.

GODEL’S INCOMPLETENESS THEOREM 3

Turing Machine (TM) with a WHILE-program, follows that every TM is a.r.
In fact, given a TM M and a string w it is possible to construct a formula
@M With a single free variable x such that

Ix.pp e iff M accepts w

Theorem o.1. Th(N,+, -)is undecidable

Proof. We prove this by mapping the Halting Problem® to the problem ® Here for convenience, the form of the
; R¥ -G ; Halting Problem is taken to be {(M :
if a formula of Th(N, —|—.,)is .true. Given a TM M and a string w Code of TM, w0 - String)| M accepis w}
construct @p; 4 as described in the fact above.

Let D be a TM that decides if a formula of Th(N, +,-)is true. It is

obvious that D accepts ¢y iff M accepts w. O

Definition o.5 (Partial characterization of proof systems). Let 7t be
a sequence of FOL-Formulae and 1 be a sentence® of FOL. If (note the 9 A formula with no free variables
missing ‘f’) 7t is a proof, then

1. {(¢, m)|mis a proof of } is decidable.
2. if 7t proves P then P is true.
3. if 7t proves ¢ — P A\ @ then 7T proves ¢.™° ©© This rule is called ‘modus ponens’.

Theorem o.2. The language {w € FOL — Formulae | w is provable in
Th(N, +,-)} is Turing-recognizable.

Proof. Proofs (as characterized here) are finite sequences of formulae.
Those formulae too are finite and comprised of elements from a finite
set of symbols. Thus, there is a way of systematically generating all
possible formulae without missing one.

Consequently, we can give an algorithm P for recognizing if a
sequence of formulae 7 is a proof for a given statement : For each
sequence run the proof checker asserted in our characterization of
proofs on (¢, 7). If it accepts accept, otherwise try the next sequence.

O

Theorem o.3 (First Incompleteness Theorem). There is a true statement
of Th(N, +, -)which is not provable.

Proof. This can be proved by contradiction. Assume that every state-

ment of Th(N, +, -)is provable. Then, consider the following algo-

rithm: Given a statement ¥ of Th(N,+,-). Run the recognizer P on ¢

and -1 in parallel. By the preceding theorem and the law of the ex-

cluded middle™, one of the two threads must accept. This algorithm " For every formula ¢ holds: either ¢
decides Th(N, +, -)and thus, contradicts a theorem above. / O or — is true.

Theorem o.4. It is possible to construct a formula 1 which is unprovable in

Th(N, +,-).
Proof.

GODEL’S INCOMPLETENESS THEOREM 4

e Idea: Define a sentence which says "This sentence is not provable’.

¢ Construction: Let S be a Turing Machine implementing the follow-
ing algorithm:

1. Obtain self-description (S). 12 2 That this is always possible is guar-
anteed by the Recursion Theorem: For

2. Construct ¢y = ~3x.¢50 every TM T that computes the function

3. Run algorithm P from above on . t: XFaX* — L* there is a TM R that
. . computes the function r : ¥* — X* such
4. If P accepts, accept. If P rejects, reject. that for every w € £*, r(w) = t((R),).

e Assume ¢ is provable in Th(N, +,). Thus, for any input S will
halt and accept after a finite amount of time. But, from the con-
struction of ¢ follows that S will accept ¢ iff i is not true in
Th(N,+,-). This contradicts our assumption that only true state-
ments can be proven. J

Theorem o.5 (Second Incompleteness Theorem). It is impossible to
prove the consistency of Th(N', +, -)by means of Th(N,+, -).

Proof. Idea: Assume it is possible to prove the consistency of Th(N, +, -)from
within Th(N, +, -). Then because 'Th(N/, +, -)is consistent’ is a.r.,

the implication “if Th(N, +, -)is consistent then ¢’ is provable in

Th(N,+,-). But then by modus ponens and our assumption, ¥ is

provable, which contradicts the theorem above. Thus, Th(N, +, -)cannot
prove its own consistency. O

References

John Dawson. Logical Dilemmas: The Life and Work of Kurt Godel. A K
Peters/CRC Press, 1996.

Panu Raatikainen. Godel’s incompleteness theorems. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Spring 2015
edition, 2015.

Uwe Schoning. Theoretische Informatik - kurz gefasst (German Edition).
Spektrum Akademischer Verlag, 2001.

Michael Sipser. Introduction to the Theory of Computation. PWS Pub.
Co., 1996.

	The theory Th(N, +,)
	The Main Theorem

