
Gödel’s Incompleteness Theorem
Leon Weber
27 January 2015

In this talk, Gödel’s first and second incompleteness theorems will be
formulated and proven. Informally, they assert that every formal sys-
tem that can express certain arithmetic truths contains true sentences
which cannot be proven and that this system cannot prove its own
consistency.

(Semi-)random facts about Gödel:

• Was a good friend of Albert Einstein

• Provided a formal proof of God’s
existence and contributed to modern
physics

• Was married to a Adele Nimbursky
(a cabaret dancer)

The theory Th(N ,+, ·)

Definition 0.1 (Syntax of Th(N ,+, ·)).

• Recursive definition of ’term’:

– Every natural number n ∈N is a term.

– Every variable xi, i ∈N is a term.

– If t1 and t2 are terms, then (t1 + t2) and (t1 · t2) are terms.

• Recursive definition of ’formula’:

– If t1 and t2 are terms, then (t1 = t2) is a formula.

– If F, G are formulae, then ¬F, (F ∧ G) are formulae.

– If x is a variable and F is a formula, then ∀x.F and ∃x.F are formulae.

Definition 0.2 (Semantics of Th(N ,+, ·)(informal)). The symbols
signify the structures as given by the standard model of Peano Arithmetic in
the usual way.

Definition 0.3 (Truth of a formula). Let F, G be formulae, t1, t2 be terms,
and x be a variable, then

• (t1 = t2) is true, iff1 ϕ(t1 = t2) holds for any assignment ϕ. 1 Read: If and only if

• ¬F is true, iff F is not true.

• (F ∧ G) is true, iff F is true and G is true.

• (F ∨ G) is true, iff F is true or G is true.

• ∃x.F is true, iff there is a n ∈N such that F(x/n)2 is true. 2 Read: F with x being replaced by n

• ∀x.F is true, iff F(x/n) is true for any n ∈N.

Definition 0.4 (Arithmetic Representability of functions). A func-
tion f : Nk → N is arithmetically representable (a.r.), iff there is
a formula of Th(N ,+, ·) F(x1, x2, . . . , xk, xk+1), such that for every
n1, n2, . . . , nk, nk+1 ∈N holds:

f (n1, n2, . . . , nk) = nk+1 iff F(n1, n2 . . . , nk, nk+1) is true.

gödel’s incompleteness theorem 2

The Main Theorem

Lemma 0.1 (Important arithmetically representable functions).

• Addition (’+’) is a.r.

• Multiplication (’·’) is a.r.

• Division (of natural numbers) (’div’) is a.r.

• Modulo (’mod’) is a.r.

• ni = a mod(1 + (i + 1) · b) is a.r.

Fact 0.1 (Every finite sequence of natural numbers can be iden-
tified by only two numbers). For every sequence of natural num-
bers (n0, n1, . . . , nk) there are natural numbers a and b, such that for
i ∈ 0, 1, · · · , k holds:

ni = a ·mod(1 + (i + 1) · b)

Lemma 0.2 (Every WHILE-program is a.r.). For every WHILE-program
3 P with variables x0, x1, . . . , xk we can construct a Th(N ,+, ·)-Formula 3 WHILE-programs (which are as

expressive as turing machines) are
composed of the following elements:

• variables: xi

• constants: n ∈N

• delimiters: ; :=

• operators: + −
• keywords: WHILE DO END

Syntax and semantics of WHILE-
programs are defined in the canonical
way. The only noteworthy difference
from the semantics of some standard
programming languages is: ’WHILE x
DO stuff END’ executes stuff until x=0.

Fp with free variables x0, x1, . . . , xk and y0, y1, . . . , yk such that for any
mi ∈N and ni ∈N:

Fp(m0, m1, . . . , mk, n0, n1, . . . , nk) is true iff the computation of P is
started with x0 = m0, x1 = m1, . . . , xk = mk and halts with x0 = n0, n1 =

n1, . . . , xk = nk.

Proof. This proof works by induction on the structure of P:
Basis:
P =′ xi := xj + /− c′: Let Fp := (yi = xj + /− c)

∧
k 6=i(yk = xk)

Step:
case P =′ Q; R′: By induction hypothesis there are FQ and FR.
Let FP := ∃.z0, ∃.z1, . . . , ∃.zk.(FQ(x0, x1, . . . , zk, z0, z1, . . . , zk) ∧

FR(z0, z1, . . . , zk, y0, y1, . . . , yk))

case P =′ WHILE xi DO Q END′: By induction hypothesis there is
FQ. Let

FP := ∃a0.∃b0.∃a1.∃b1.· · · ∃ak.∃bk.∃t. 4 4 Each ai , bi identifies the sequence
of values of the variable xi . t is the
number of executions after which are
counter variable reaches zero.

[G(a0, b0, 0, x0) ∧ G(a1, b1, 0, x1) ∧· · · ∧ G(ak, bk, 0, xk)]∧
[G(a0, b0, t, y0) ∧ G(a1, b1, t, y1) ∧· · · ∧ G(ak, bk, t, yk)]∧ 5

5 This formula asserts that the ini-
tial/final value of xi is in fact the
first/last number in the sequence
described by ai , bi

∀j < t.∃w.(G(ai, bi, j, w) ∧ (w > 0)) ∧ G(ai, bi, t, 0)∧ 6

6 This formula asserts that the value of
the counter variable is zero exactly after
t steps and never becomes zero at any
step before.

∀j < t.∃w0.∃w1.· · · ∃wk.∃w′0.∃w′1.· · · ∃w′k.
[FQ(w0, w1, . . . , wk, w′0, w′1, . . . , w′k)∧
G(a0, b0, j, w0) ∧ G(a1, b1, j, w1) ∧· · · ∧ G(ak, bk, j, wk)∧
G(a0, b0, j + 1, w′0) ∧ G(a1, b1, j + 1, w′1) ∧· · · ∧ G(ak, bk, j + 1, w′k)]

7

7 This formula asserts that the transition
of the value of xi in step j → j + 1 is in
fact governed by the formula F.

Fact 0.2 (Every Turing Machine is a.r. by a formula with only one
free variable). From the lemma above and the fact that you can simulate a

gödel’s incompleteness theorem 3

Turing Machine (TM) with a WHILE-program, follows that every TM is a.r.
In fact, given a TM M and a string w it is possible to construct a formula
ϕM,w with a single free variable x such that
∃x.ϕM,w iff M accepts w

Theorem 0.1. Th(N ,+, ·)is undecidable

Proof. We prove this by mapping the Halting Problem8 to the problem 8 Here for convenience, the form of the
Halting Problem is taken to be {(M :
Code o f TM, w : String)|M accepts w}

if a formula of Th(N ,+, ·)is true: Given a TM M and a string w
construct ϕM,w as described in the fact above.

Let D be a TM that decides if a formula of Th(N ,+, ·)is true. It is
obvious that D accepts ϕM,w iff M accepts w.

Definition 0.5 (Partial characterization of proof systems). Let π be
a sequence of FOL-Formulae and ψ be a sentence9 of FOL. If (note the 9 A formula with no free variables

missing ’f’) π is a proof, then

1. {(ψ, π)|π is a proo f o f ψ} is decidable.

2. if π proves ψ then ψ is true.

3. if π proves ϕ→ ψ ∧ ϕ then π proves ϕ.10 10 This rule is called ’modus ponens’.

Theorem 0.2. The language {w ∈ FOL− Formulae | w is provable in
Th(N ,+, ·)} is Turing-recognizable.

Proof. Proofs (as characterized here) are finite sequences of formulae.
Those formulae too are finite and comprised of elements from a finite
set of symbols. Thus, there is a way of systematically generating all
possible formulae without missing one.

Consequently, we can give an algorithm P for recognizing if a
sequence of formulae π is a proof for a given statement ψ: For each
sequence run the proof checker asserted in our characterization of
proofs on (ψ, π). If it accepts accept, otherwise try the next sequence.

Theorem 0.3 (First Incompleteness Theorem). There is a true statement
of Th(N ,+, ·)which is not provable.

Proof. This can be proved by contradiction. Assume that every state-
ment of Th(N ,+, ·)is provable. Then, consider the following algo-
rithm: Given a statement ψ of Th(N ,+, ·). Run the recognizer P on ψ

and ¬ψ in parallel. By the preceding theorem and the law of the ex-
cluded middle11, one of the two threads must accept. This algorithm 11 For every formula ψ holds: either ψ

or ¬ψ is true.decides Th(N ,+, ·)and thus, contradicts a theorem above.

Theorem 0.4. It is possible to construct a formula ψ which is unprovable in
Th(N ,+, ·).

Proof.

gödel’s incompleteness theorem 4

• Idea: Define a sentence which says ’This sentence is not provable’.

• Construction: Let S be a Turing Machine implementing the follow-
ing algorithm:

1. Obtain self-description 〈S〉. 12 12 That this is always possible is guar-
anteed by the Recursion Theorem: For
every TM T that computes the function
t : Σ∗xΣ∗ → Σ∗ there is a TM R that
computes the function r : Σ∗ → Σ∗ such
that for every w ∈ Σ∗, r(w) = t(〈R〉, w).

2. Construct ψ = ¬∃x.ϕS,0

3. Run algorithm P from above on ψ.

4. If P accepts, accept. If P rejects, reject.

• Assume ψ is provable in Th(N ,+, ·). Thus, for any input S will
halt and accept after a finite amount of time. But, from the con-
struction of ψ follows that S will accept ψ iff ψ is not true in
Th(N ,+, ·). This contradicts our assumption that only true state-
ments can be proven.

Theorem 0.5 (Second Incompleteness Theorem). It is impossible to
prove the consistency of Th(N ,+, ·)by means of Th(N ,+, ·).

Proof. Idea: Assume it is possible to prove the consistency of Th(N ,+, ·)from
within Th(N ,+, ·). Then because ’Th(N ,+, ·)is consistent’ is a.r.,
the implication ’if Th(N ,+, ·)is consistent then ψ’ is provable in
Th(N ,+, ·). But then by modus ponens and our assumption, ψ is
provable, which contradicts the theorem above. Thus, Th(N ,+, ·)cannot
prove its own consistency.

References

John Dawson. Logical Dilemmas: The Life and Work of Kurt Gödel. A K
Peters/CRC Press, 1996.

Panu Raatikainen. Gödel’s incompleteness theorems. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Spring 2015

edition, 2015.

Uwe Schöning. Theoretische Informatik - kurz gefasst (German Edition).
Spektrum Akademischer Verlag, 2001.

Michael Sipser. Introduction to the Theory of Computation. PWS Pub.
Co., 1996.

	The theory Th(N, +,)
	The Main Theorem

