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Abstract

We present a new way to define the semantics of imperative
synchronous languages by means of separating the control
and the data flow. The control flow is defined by predi-
cates that describe entering conditions, conditions for in-
ternal moves, and termination conditions. The data flow is
based on the extraction of guarded commands. This defini-
tion principle can be applied to any imperative synchronous
language like Esterel or some statechart variants. Follow-
ing this definition principle, we have embedded our lan-
guage Quartz (an Esterel variant) in the interactive theorem
prover HOL. We use this embedding for formal verifica-
tion (both interactive theorem proving and symbolic model
checking), program analysis, reasoning about the language
at a meta-level, and verified code generation (formal syn-
thesis).

1. Introduction

Synchronous languages are becoming more and more at-
tractive [15, 10, 13, 20] for the design and the verification
of reactive real time systems. There are imperative lan-
guages like Esterel [6, 3, 5, 15], data flow languages like
Lustre [18], and graphical languages like some Statechart
[19] variants as SyncCharts [1]. We concentrate in this
paper on imperative synchronous languages, but note that
graphical and imperative synchronous languages can be nat-
urally translated into each other [1].
The basic paradigm of these languages is the perfect syn-

chrony, which means that most of the statements are exe-
cuted as ‘microsteps’ in zero time. Consumption of time,
i.e., the beginning of a new ‘macrostep’, must be explicitly
programmed with special statements like the pause state-
ment in Esterel: The execution of a pause statement con-
sumes one logical unit of time, and this statement is the
only one of Esterel’s basic statements that consumes time

at all. Consequently, all threads of a synchronous program
run in lockstep: they execute the code between two pause
statements in zero time, and automatically synchronize at
the next pause statement.
As the control flow of a synchronous program P can

therefore only rest at pause statements, it follows that the
control flow of P can be represented by a finite state ma-
chine AP : the states of AP are the possible control points
of the program, i.e., points in the program text, where the
control flow might rest for one unit of time. As the lan-
guage allows the implementation of parallel threads, there
might be more than one current position of the control flow
in the program. A transition between two control states is
enabled if some condition on the data values is satisfied. Ex-
ecution of a transition will then invoke some manipulations
of the data values. Hence, the semantics can be represented
by a finite state control flow that interacts with a data flow
of finitely many variables of possibly infinite data types.
A lot of different ways have already been studied to de-

fine the semantics of imperative synchronous languages: [4]
distinguishes between semantics based on process algebras
(in the structure-of-semantics style due to Plotkin), finite
state machines, and another one that is directly based on
hardware circuits.
In this paper, we present a new way to define the seman-

tics of imperative synchronous languages like Esterel. For
this purpose, we consider our own synchronous language
called Quartz [25] that is a variant of Esterel, but want to
emphasize that the way we embed the language can be ap-
plied to any other imperative synchronous language as well.
Our main interest is thereby that our semantics allows an
easy embedding in an interactive theorem prover. ‘Embed-
ding’ thereby means that the set of programs will be for-
mally defined as a type of the logic of the theorem prover,
so that programs themselves become formulas of the logic.
Based on such an embedding, one is able to formally reason
about the language at a meta-level, and also to reason about
particular programs. For example, we have already proved
the correctness of a hardware synthesis [25] that further-
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more allows us to use the theorem prover for a verified code
generation.

A crucial problem for embedding languages (or more
general theories) in already existing logics is to avoid in-
consistencies: Simply postulating a set of axioms may lead
to inconsistent theories so that everything could be derived.
State-of-the-art theorem provers like HOL [17] therefore
use certain definition principles to preserve the consistency.
One main definition principle that guarantees such a conser-
vative extension is primitive recursion [22, 23]. Primitive
recursive definitions have moreover the advantage that the
theorem prover can immediately derive suitable induction
rules for interactive or automatic reasoning.

However, it is not straightforward to define the seman-
tics of a language by means of primitive recursion. In par-
ticular, the process-algebraic semantics of Esterel does not
allow such a definition, since the rule for loops recursively
calls itself without ‘decreasing’ the program (with respect
to some well-founded ordering). We therefore developed a
new way to define the semantics such that only primitive re-
cursion on the type of Quartz statements was necessary for
all definitions.

One key to our semantics is the separation between con-
trol and data flow, which is a well-known technique for
hardware designers. The definition of the control flow
(Section 3.1) is based on control flow predicates enter (S),
move (S), and term (S), that describe entering conditions,
conditions for internal moves, and termination conditions
of a statement S, respectively. The data flow of a statement
is defined by its guarded commands (Section 3.2). These
are of the form (γ, C), and mean that whenever γ holds, we
execute the data manipulating statement C.
Using our primitive recursive definitions, we have em-

bedded our language Quartz in the interactive theorem
proverHOL [17]. We present the definitions more or less as
they appear in the theorem prover. We use our embedding
for various purposes as e.g., formal synthesis [25], reason-
ing about the languageQuartz, and of course, for the formal
verification of program properties.

Please note that our languageQuartz differs from Esterel
in several points: We found it important to extend the
Quartz language with delayed data assignments since this
is easily allows us to describe many (sequential) algorithms
and also hardware circuits: any register works with a delay
of one cycle, and this is also the case for some Statechart
languages. Moreover, our valued variables do not carry an
additional status, since this if often unwanted and makes
symbolic model checking less efficient. Finally, we only
use one sort of conditional statement, in contrast to Esterel’s
‘if-then-else’ and ‘present-then-else’ statements, and we do
currently not support Esterel’s variables that may change
withing microsteps rather than in macrosteps only. In addi-

tion to Esterel, we also consider nondeterministic behavior
and asynchronous concurrency.
The paper is organized as follows: in the next two sec-

tions, we define the syntax and semantics ofQuartz, respec-
tively. In Section 4, we then briefly list some experiences
with our embedding. The paper then ends with some con-
clusions.

2. Syntax and Informal Semantics

The presentation of the language Quartz and its semantics
should be done in the usual way, i.e., we should first de-
fine the available types, the expressions, the statements, and
finally the programs. As Quartz statements mainly concen-
trate on the control flow of concurrent programs, we do nei-
ther consider particular types nor particular expressions in
the following, and simply assume that we have some ex-
pressions over a type α (the HOL implementation used a
polymorphic type α so that we may consider the HOL logic
as a host language that provides us with the expressions and
types).
Time is modeled by the natural numbers N, so that the

semantics of a data type expression is a function of type
N → α for some type α. In general, we distinguish be-
tween two kinds of variables, namely event variables and
state variables. The semantics of an event variable is a func-
tion of type N → B, while the semantics of a state variable
may have the more general type N → α. The data flow of
these two kinds of variables is quite different: the value of a
state variable y is ‘sticky’, i.e. if no data operation has been
applied to y, then its value does not change at the next point
of time. On the other hand, the value of an event variable x
is not sticky: when time elapses, the value of x is reset to 0
(we denote Boolean values as 1 and 0), if it is not explicitly
made 1 at the considered point of time. Hence, the value of
an event variable is 1 at a point of time if and only if there
is a thread that emits this variable at this point of time.
Event variables are made present with the emit state-

ment, while the values of state variables are manipulated
with usual assignments (:=). Of course, any event or state
variable may also be an input variable, so that their values
are determined by the environment only. emit statements
and assignments := are all data manipulating statements.
The remaining basic statement of Quartz are given below:

Definition 1 (Basic Statements of Quartz) The set of ba-
sic statements of Quartz is the smallest set that satisfies the
following rules, provided that S, S1, and S2 are also basic
statements of Quartz, � is a location variable, x is an event
variable, y is a state variable, and σ is a Boolean expres-
sion:

• nothing (empty statement)
• emit x and emit delayed x (emissions)
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• y := τ and y := delayed τ (assignments)

• � : pause (consumption of time)

• if σ then S1 else S2 end (conditional)

• S1; S2 (sequential composition)

• S1 ‖ S2 (synchronous parallel composition)

• S1 9 S2 (asynchronous parallel composition)

• choose S1 8 S2 end (nondeterministic choice)

• while σ do S end (iteration)

• suspend S when σ (suspension)

• weak suspend S when σ (weak suspension)

• abort S when σ (abortion)

• weak abort S when σ (weak abortion)

• local x in S end (local event variable)

• local y : α in S end (local state variable)

• now σ (instantaneous assertion)

• during S holds σ (invariant assertion)

• run m(τ1, . . . , τn) (running modules)

Before giving a precise formal semantics, we informally
discuss the meaning of the above statements (for further
explanations and examples, we refer to [5]). In general, a
statement S is started at a certain point of time t1, and may
terminate at time t2 ≥ t1, but it may also never terminate.
If S immediately terminates when it is started (t2 = t1), it
is called instantaneous, otherwise we say that the execution
of S takes time, or simply that S consumes time.
Let us now discuss the above basic statements: nothing

simply does nothing, i.e., it neither consumes time, nor does
it affect any data values. Hence, nothing is an instantaneous
statement. Executing emit xmakes the event variable x im-
mediately present, i.e., the value of x at that point of time is
then 1. Executing an assignment y := τ will immediately
change the value of y to the current value of the expression
τ . The statements emit delayed x and y := delayed τ are
similarly defined as emit x and y := τ , respectively, but
with a delay of one unit of time. In the latter statement, τ is
evaluated at the current point of time, and its value is passed
to y at the next point of time. We emphasize that none of
these statements consumes time, although the delayed ver-
sions affect values of variables at the next point of time.
There is only one basic statement that consumes time,

namely the pause statement. It does not affect any data val-
ues, but just consumes one logical unit of time. pause state-
ments are endowed with location variables � that we will
use later on as a state variables to encode the control flow
automaton. Of course, location variables must be unique for
all occurrences.

if σ then S1 else S2 end is a conditional statement: it
immediately checks whether σ evaluates to 1 or 0, and then
immediately either executes S1 or S2 (depending on the
value of σ). S1; S2 is the sequential execution of S1 and

S2, i.e. we first enter S1 and execute it. If S1 never termi-
nates, then S2 is never executed at all. If, on the other hand
S1 terminates, we immediately start S2 and proceed with
the execution of S2.

S1 ‖ S2 denotes the synchronous parallel execution of
S1 and S2: If S1 ‖ S2 is entered, we enter both S1 and S2

and proceed with the execution of both S1 and S2. As long
as both S1 and S2 are active, both threads are synchronously
executed in lockstep. If S1 terminates, but S2 does not ter-
minate, then S1 ‖ S2 behaves further as S2 does (and vice
versa). If finally S2 terminates, then so does S1 ‖ S2. Be-
neath the synchronous parallel execution,Quartz offers also
the asynchronous parallel execution S1 9 S2 of statements
S1 and S2. The difference is that one of the threads may
execute more than one macrostep while the other one only
executes a single one or even none. One may argue that the
presence of asynchronous parallel execution contradicts the
definition of a synchronous language. However, it is not too
difficult to replace S1 9 S2 by standard Esterel statements
using additional inputs (cf. section 3.4).
AnotherQuartz statement that does not belong to Esterel

is the nondeterministic choice: choose S18S2 endwill non-
deterministically either execute S1 or S2. There is no need
for such a statement as long as we want to write programs
that are further translated to software or hardware. How-
ever, when reactive systems are modeled, e.g., for verifica-
tion, there is often a requirement to hide certain details, and
this will naturally yield nondeterministic systems. Nonde-
terministic systemsmay also be useful in early design stages
where some implementation details are not yet fixed.

while σ do S end implements iteration: if this statement
is entered, two cases are to be distinguished: If σ does not
hold, then the statement instantaneously terminates. Other-
wise, we immediately execute S. It is then possible that S
never terminates. However, if S terminates, and at that point
of time σ holds again, then S is immediately restarted.

(weak) suspend S when σ implements process suspen-
sion, i.e. S is entered when the execution of this statement
starts (regardless of the current value of σ). For the follow-
ing points of time, however, the execution of S only pro-
ceeds if σ evaluates to 0, otherwise its execution is ‘frozen’
until σ releases the further execution.
Beneath suspension, abortion of processes is an impor-

tant task for the process management. This is realized with
the abort S when σ statement: S is immediately entered
at starting time (regardless of the current value of σ). S is
then executed as long as σ is 0. If σ becomes 1 during the
execution of S, then S is aborted. Hence, abort S when
σ can ‘normally’ terminate, i.e., when the execution of S
terminates, or it may terminate by process abortion when σ
enforces this.
The ‘weak’ variants of process suspension and abortion

differ on the data manipulations at suspension or abortion
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time: While the strong variants ignore all data manipula-
tions at abortion or suspension time, all of them are per-
formed by the weak variants. There are also immediate
variants of suspension and abortion that do not ignore the
value of the condition σ at starting time (cf. section 3.4).
The statements local x in S end and local y :

α in S end are used to define local event and local
state variables, respectively. Their meaning is that they
behave like S, but the scope of the variable x or y is limited
to S. This means that the local variable is not seen outside
the local statement. Without loss of generality, we assume
that there is no shadowing of variables, i.e., that all local
variable names are different from each other and also
different from all input and output variables.

Quartz does also allow us to write down assertions that
must hold when the control flow reaches a certain point.
Instantaneous assertions are given by the now statements:
The meaning of now σ is that σ must hold at this point of
time; if σ would not hold, the execution will immediately
stop (in a deadend state). Moreover, an assertion can also
be required to hold during the execution of a statement S
using the statement during S holds σ. It behaves like S,
but additionally demands that whenever the control flow is
inside S, then the condition σ must hold.
Finally, the run statement is used to call already existing

Quartz modules (see below). There are also a lot of other
convenient statements that can be defined as macro expan-
sions of basic statements (cf. Section 3.4 and [5]).
Similar to Esterel, Quartz allows us to define modules

so that systems can be hierarchically organized. Moreover,
these parts can be reused, which means that they can be
multiply instantiated within another statement using the run
statement. In general, a Quartz module is of the following
form:

Definition 2 (Quartz Modules) Given a basic Quartz
statement S with the event variables a1, . . . , an, x1, . . . ,
xp and the state variables b1, . . . , bm, and y1, . . . , yq, such
that S contains no emission of a variable a1, . . . , an and
no assignment to a variable b1, . . . , bm. Moreover, assume
that c1, . . . , cr are some further Boolean variables. Then,
the following is a Quartz module:

module m
input a1, . . . , an, b1 : α1, . . . , bm : αm;
output x1, . . . , xp, y1 : β1, . . . , yq : βq;
control c1, . . . , cr;
S

end module m

The abovemodule with the namem therefore determines an
interface in that it declares the input and output variables of
the module. In case of state variables, it furthermore speci-
fies their types (αj and βj). The control variables are used

to implement asynchronous concurrency and nondetermin-
ism in that these variables are used as additional inputs (that
are however not visible in the interface for other modules).

3. The Formal Semantics

In this section, we define the formal semantics of Quartz
statements in that we first define the control flow, then the
data flow, and finally combine both. Due to several tech-
nical problems, we first neglect asynchronous concurrency,
nondeterministic choice, and local variable declarations in
the next subsections. Section 3.4 will then explain how the
semantics of these statements is defined.
Throughout the paper, the Boolean operators are meant

to work on time dependent Boolean values. We use the
usual Boolean operations ¬, ∧, and ∨ for negation, con-
junction, and disjunction, respectively. The Boolean con-
stants for true and false are denoted as 1 and 0, respectively.
Moreover, for any expression ϕ, Xϕ denotes the value of ϕ
at the next point of time. Furthermore, to avoid confusion
with our definitions and the assignment operator :=, we use
the symbol :≡ for our definitions.

3.1. Defining the Control Flow

Recall that the control flow can only rest at the pause state-
ments of a program. Hence, to define the control flow, we
need to consider the movement of the control flow from cer-
tain pause statements at the current point of time to possibly
other pause statements at the next instant of time. For this
reason, we have labeled the pause statements with unique
location variables � that are also called the labels of the
pause statements.
The control flow of a Quartz statement S is therefore a

finite state machine whose states are encoded by the state
variables labels (S). We define for any statement S the
predicates enter (S), move (S), and term (S) that describe
the entering conditions of S, the conditions of S for in-
ternal moves, and the termination conditions of S, respec-
tively. The transition relation of the control flow machine
is then obtained by combining these conditions. We intro-
duce the following abbreviations: for any statement S, the
set labels (S) is the set of labels � occurring in S, and

in (S) :≡
∨

�∈labels(S)

�

denotes all situations where the control flow is currently
somewhere inside S. As the first primitive recursive defi-
nition, we need to define the cases when a statement instan-
taneously terminates:

Definition 3 (Instantaneous Statements) Given a Quartz
statement S, the formula inst (S) describes all conditions
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where S instantaneously terminates. inst (S) is recursively
defined as follows:

• inst (nothing) :≡ 1

• inst (emit x) :≡ inst (emit delayed x) :≡ 1

• inst (x := τ) :≡ inst (x := delayed τ) :≡ 1

• inst (� : pause) :≡ 0

• inst (if σ then S1 else S2 end)
:≡ σ ∧ inst (S1) ∨ ¬σ ∧ inst (S2)

• inst (S1; S2) :≡ inst (S1) ∧ inst (S2)
• inst (S1 ‖ S2) :≡ inst (S1) ∧ inst (S2)
• inst (while σ do S end) :≡ ¬σ ∨ inst (S)
• inst ((weak) suspend S when σ) :≡ inst (S)
• inst ((weak) abort S when σ) :≡ inst (S)
• inst (local x in S end)

:≡ inst (local y : α in S end) :≡ inst (S)
• inst (now σ) :≡ 1

• inst (during S holds σ) :≡ inst (S)

Note that one and the same statement can be instanta-
neous for a certain input/output combination and may con-
sume time for another input/output combination. For ex-
ample, inst (if i then � : pause; emit y else emit x end) =
¬i. Using inst (S), we define enter (S), which describes
the entering conditions of the statement S.

Definition 4 (Entering Statements) Given a Quartz state-
ment S, the formula enter (S) describes all conditions
where the control flow enters S. enter (S) is recursively
defined as follows:

• enter (nothing) :≡ 0

• enter (emit x) :≡ enter (emit delayed x) :≡ 0

• enter (x := τ) :≡ enter (x := delayed τ) :≡ 0

• enter (� : pause) :≡ X�

• enter (if σ then S1 else S2 end)

:≡
(

enter (S1) ∧ ¬Xin (S2) ∧ σ∨
enter (S2) ∧ ¬Xin (S1) ∧ ¬σ

)
• enter (S1; S2)

:≡
(

enter (S1) ∧ ¬Xin (S2)∨
enter (S2) ∧ ¬Xin (S1) ∧ inst (S1)

)
• enter (S1 ‖ S2)

:≡

 enter (S2) ∧ inst (S1) ∧ ¬Xin (S1)∨

enter (S1) ∧ inst (S2) ∧ ¬Xin (S2)∨
enter (S1) ∧ enter (S2)




• enter (while σ do S end) :≡ σ ∧ enter (S)
• enter (suspend S when σ)

:≡ enter (weak suspend S when σ) :≡ enter (S)
• enter (abort S when σ)

:≡ enter (weak abort S when σ) :≡ enter (S)
• enter (local x in S end)

:≡ enter (local y : α in S end) :≡ enter (S)

• enter (now σ) :≡ 0

• enter (during S holds σ) :≡ enter (S)

Note that if S is instantaneous, then we can not enter S.
Therefore, the entering condition for the instantaneous basic
statements is 0. We proceed with defining term (S) that
describes the termination conditions of S. For this reason,
we assume that the control flow already rests somewhere
inside S and now leaves S (but may reenter S at the same
time).

Definition 5 (Termination of Statements) Given a Quartz
statement S, the formula term (S) describes all termination
conditions of S. term (S) is recursively defined as follows:

• term (nothing) :≡ 0
• term (emit x) :≡ term (emit delayed x) :≡ 0

• term (x := τ) :≡ term (x := delayed τ) :≡ 0

• term (� : pause) :≡ �

• term (if σ then S1 else S2 end)

:≡
(

term (S1) ∧ ¬in (S2)∨
term (S2) ∧ ¬in (S1)

)
• term (S1; S2)

:≡
(

term (S1) ∧ ¬in (S2) ∧ inst (S2)∨
term (S2) ∧ ¬in (S1)

)
• term (S1 ‖ S2)

:≡

 term (S1) ∧ ¬in (S2)∨

term (S2) ∧ ¬in (S1)∨
term (S1) ∧ term (S2)




• term (while σ do S end) :≡ ¬σ ∧ term (S)
• term (weak suspend S when σ)

:≡ term (suspend S when σ)
:≡ ¬σ ∧ term (S)

• term (weak abort S when σ)
:≡ term (abort S when σ)
:≡ in (S) ∧ σ ∨ term (S)

• term (local x in S end)
:≡ term (local y : α in S end) :≡ term (S)

• term (now σ) :≡ 0

• term (during S holds σ) :≡ term (S)

Note that term (S) says nothing about the next location,
which is not possible, since S may or may not be reentered
when S terminates. The above defined formulas inst (S),
enter (S), and term (S) are now combined to define the in-
ternal transitions move (S). For this reason, we use the ab-
breviation stutter (S) :≡ ∧

�∈labels(S) (� = X�) for stutter-
ing states, i.e., the situations where the control flow remains
the same at the next instant of time.

Definition 6 (Internal Moves of Statements) Given a
Quartz statement S, the formula move (S) describes all
conditions where the control flow moves from somewhere
inside S to possibly another location inside S. move (S) is
recursively defined as follows:
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• move (nothing) :≡ 0

• move (emit x) :≡ move (emit delayed x) :≡ 0

• move (x := τ) :≡ move (x := delayed τ) :≡ 0

• move (� : pause) :≡ 0

• move (if σ then S1 else S2 end)

:≡
(

move (S1) ∧ ¬in (S2) ∧ ¬Xin (S2)∨
move (S2) ∧ ¬in (S1) ∧ ¬Xin (S1)

)
• move (S1; S2)

:≡

 move (S1) ∧ ¬in (S2) ∧ ¬Xin (S2)∨

move (S2) ∧ ¬in (S1) ∧ ¬Xin (S1)∨
term (S1) ∧ ¬Xin (S1) ∧ ¬in (S2) ∧ enter (S2)




• move (S1 ‖ S2)

:≡




move (S1) ∧ ¬in (S2) ∧ ¬Xin (S2)∨
move (S2) ∧ ¬in (S1) ∧ ¬Xin (S1)∨
move (S1) ∧ move (S2)∨
move (S1) ∧ term (S2) ∧ ¬Xin (S2)∨
move (S2) ∧ term (S1) ∧ ¬Xin (S1)




• move (while σ do S end)
:≡ ( move (S) ∨ term (S) ∧ σ ∧ enter (S)

)
• move (suspend S when σ)

:≡ move (weak suspend S when σ)
:≡ σ ∧ in (S) ∧ stutter (S) ∨ ¬σ ∧ move (S)

• move (abort S when σ)
:≡ move (weak abort S when σ)
:≡ ¬σ ∧ move (S)

• move (local x in S end)
:≡ move (local y : α in S end) :≡ move (S)

• move (now σ) :≡ 0

• move (during S holds σ) :≡ move (S)

Note that we always require in the definition of move (S)
that the control flow is currently somewhere inside S and
will remain somewhere inside S at the next point of time. It
is important that for the conditional and for the sequential
composition S1; S2, we add constraints to assure that the
control flow could not be both in S1 and S2. Otherwise,
it would be possible that new threads could be randomly
generated. The relations enter (S), term (S) and move (S)
can now be used to define the control flow of a statement S
as follows:

Definition 7 (Control Flow) Given a Quartz statement S,
and a start variable st that does not occur in S, we define
the set of initial states Icf(st, S) and the transition relation
Rcf(st, S) of the control flow automaton as follows:

Icf(st, S) :≡ ¬in (S)
Rcf(st, S) :≡


(¬in (S) ∨ term (S)) ∧ st ∧ inst (S) ∧ ¬Xin (S)∨
(¬in (S) ∨ term (S)) ∧ st ∧ enter (S)∨
(¬in (S) ∨ term (S)) ∧ ¬st ∧ ¬Xin (S)∨
move (S)




The control flow automaton is therefore a finite state ma-
chine whose states are encoded by the state variables
labels (S). Transitions are labeled by conditions that are all
encoded in the transition relation Rcf(st, S). The automa-
ton has only a single initial state, namely the one encoded by
Icf(st, S) :≡ ¬in (S). The automaton remains in this state
until the start variable st holds (third disjunct). If st holds,
there are two possibilities: Either S can be instantaneous,
which is described in the first disjunct ofRcf(st, S), or the
control flow can enter S which is described in the second
disjunct. Once inside S, we may follow internal transitions
(fourth disjunct), or the control flow might leave S (third
disjunct). Note that the start variable st is only respected
when ¬in (S)∨ term (S) holds. This means that an already
active statement S is not restarted unless it terminates.
Using the HOL theorem prover we have proved a cou-

ple of simple properties of the control flow predicates that
have been defined above. These properties are important
for any kind of formal reasoning about programs, in par-
ticular, they could be important as lemmas for automatic
proof procedures. The most important of these properties
are summarized in the following lemma.

Lemma 1 (Properties of Control Flow Predicates) For
any Quartz statement S, the following facts hold for the
control flow predicates:

• enter (S) → Xin (S)
• enter (S) → ¬inst (S)
• term (S) → in (S)
• move (S) → in (S) ∧ Xin (S)
• move (S) → ¬term (S)
• stutter (S) → (in (S) = Xin (S))
• ¬in (S) → (stutter (S) = ¬Xin (S))

The proofs of the above properties are all straightforwardly
done by a simple induction over the Quartz statement S.
Although, they are all easy to prove, they nevertheless give
some more insight in the meaning of the control flow pred-
icates.
The transition relation for the control flow has been given

in a disjunctive form above. Using the above lemma, it is
furthermore possible to convert the transition relation into
a conjunctive form, which is for many applications more
advantageous. For example, if Rcf(st, S) appears as an
assumption in a goal to be proved, then one can use sim-
ple logical inference rules (like STRIP_TAC in HOL) to
split Rcf(st, S) into a couple of smaller assumptions, if it
is given in a conjunctive form. On the other hand, the dis-
junctive form has advantages for model checking, since it
directly supports a disjunctive partitioning of the transition
relation [8].
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Lemma 2 (Conjunctive Form of Control Flow Transi-
tion Relation) For any Quartz statement S, the control flow
can be alternatively defined with the following conjunctive
transition relation:


((¬in (S) ∨ term (S)) ∧ st ∧ inst (S) → ¬Xin (S))∧
((¬in (S) ∨ term (S)) ∧ st ∧ ¬inst (S) → enter (S))∧
((¬in (S) ∨ term (S)) ∧ ¬st → ¬Xin (S))∧
(in (S) ∧ ¬term (S) → move (S))




For the proof of the above lemma, we have to note that for
conditionals and sequences, at most one substatement may
be active. Hence, for S ≡ if σ then S1 else S2 end or S ≡
S1; S2, we can derive from the assumption in (S), and the
fact that the transition relationRcf(st, S) always holds, that
in (S1) �= in (S2) holds. Note that (in a propositional sense)
the above formula is not equivalent to Rcf(st, S), but both
formulas nevertheless define the same transition system.
Using these facts, it is even possible to prove a recursive

computation schema for the transition relation. The rules
given in the following theorem can be used to construct the
transition relation of a statement from the transition rela-
tions of its substatements. Note, however, that we still need
the definitions of the control flow predicates in (S), inst (S),
and term (S) in the following theorem. However, we could
circumvent the computation of move (S) by the following
computation:

Theorem 1 (Recursive Definition of Control Flow) For
any Quartz statement S, the transition relation Rcf(st, S)
can be recursively computed according to the following
laws, provided that the assumption st → ¬in (S)∨term (S)
holds, i.e., that statements are only started when they are not
active or are currently terminating:

• Rcf(st, nothing) ⇔ 1

• Rcf(st, emit x) ⇔ Rcf(st, emit delayed x) ⇔ 1

• Rcf(st, x := τ) ⇔ Rcf(st, x := delayed τ) ⇔ 1

• Rcf(st, � : pause) ⇔ (X� = st)
• Rcf(st, if σ then S1 else S2 end)

⇔

 Rcf(st ∧ σ, S1)∧

Rcf(st ∧ ¬σ, S2)∧
(in (S1) → ¬in (S2))




• Rcf(st, S1; S2)

⇔

 Rcf(st, S1)∧

Rcf(st ∧ inst (S1) ∨ term (S1) , S2)∧
(in (S1) → ¬in (S2))




• Rcf(st, S1 ‖ S2) ⇔ (Rcf (st, S1) ∧Rcf(st, S2))
• Rcf(st, while σ do S end)

⇔
( Rcf(σ ∧ (st ∨ term (S)) , S)∧

(term (S) ∧ σ → ¬inst (S))

)
• Rcf(st, suspend S when σ)
⇔ Rcf(st, weak suspend S when σ)

⇔
( Rcf(st, S) ∧ (in (S) → ¬σ)∨

(in (S) ∧ σ ∧ stutter (S))

)

• Rcf(st, abort S when σ)
⇔ Rcf(st, weak abort S when σ)

⇔




Rcf(st, S) ∧ (in (S) ∧ Xin (S) → ¬σ)∨
in (S) ∧ σ ∧ st ∧ inst (S) ∧ ¬Xin (S)∨
in (S) ∧ σ ∧ st ∧ enter (S)∨
in (S) ∧ σ ∧ ¬st ∧ ¬Xin (S)




• Rcf(st, local x in S end) ⇔ Rcf(st, S)
• Rcf(st, local y : α in S end) ⇔ Rcf(st, S)
• Rcf(st, now σ) ⇔ 1

• Rcf(st, during S holds σ) ⇔ Rcf(st, S)

The restriction st → ¬in (S) ∨ term (S) for the start vari-
able st is not a severe one and must hold for any reasonable
setting.

3.2. Defining the Data Flow

We will now define the data flow of a statement S. This is
based on the set of guarded commands of S, which are pairs
of the following kind:

Definition 8 (Guarded Commands) A guarded command
is a pair (γ, C), where γ is a Boolean expression called the
guard, and C is a Quartz statement of one of the following
forms: emit x, emit delayed x, y := τ , y := delayed τ ,
and now σ.

The intuition behind a guarded command (γ, C) is that
whenever the condition γ is satisfied, then we immediately
execute the command C. In case of the now statement, we
instead demand that at this point of time, the condition σ
must hold. Guarded commands may be viewed as a pro-
gramming language like Unity [11, 12] in that the guarded
commands run as separate processes in parallel.
The set of guarded commands of the remaining Quartz

statements is computed as follows, where we use a so called
precondition ϕ. The precondition ϕ contains the informa-
tion about the current control flow state and the current
variable values that provoke the execution of the statement.
Clearly, we initially start with the precondition st.

Definition 9 (Guarded Commands of Statements) Given
a Quartz statement S without local variable declarations,
nondeterministic choice, and asynchronous parallel execu-
tion, we define the set of its guarded commands gcmd (ϕ, S)
of S for a precondition ϕ as follows:

• gcmd (ϕ, nothing) :≡ {}
• gcmd (ϕ, emit x) :≡ {(ϕ, emit x)}
• gcmd (ϕ, emit delayed x) :≡ {(ϕ, emit delayed x)}
• gcmd (ϕ, x := τ) :≡ {(ϕ, x := τ)}
• gcmd (ϕ, x := delayed τ) :≡ {(ϕ, x := delayed τ)}
• gcmd (ϕ, � : pause) :≡ {}
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• gcmd (ϕ, if σ then S1 else S2 end)
:≡ gcmd (ϕ ∧ σ, S1) ∪ gcmd (ϕ ∧ ¬σ, S2)

• gcmd (ϕ, S1; S2)
:≡ gcmd (ϕ, S1)

∪ gcmd (ϕ ∧ inst (S1) ∨ term (S1) , S2)
• gcmd (ϕ, S1 ‖ S2)

:≡ gcmd (ϕ, S1) ∪ gcmd (ϕ, S2)
• gcmd (ϕ, while σ do S end)

:≡ gcmd ((ϕ ∨ term (S)) ∧ σ, S)
• gcmd (ϕ, suspend S when σ)

:≡ {(γ ∧ (in (S) → ¬σ), α) | (γ, α) ∈ gcmd (ϕ, S)}
• gcmd (ϕ, abort S when σ)

:≡ {(γ ∧ (in (S) → ¬σ), α) | (γ, α) ∈ gcmd (ϕ, S)}
• gcmd (ϕ, weak suspend S when σ)

:≡ gcmd (ϕ, weak abort S when σ)
:≡ gcmd (ϕ, S)

• gcmd (ϕ, now σ) :≡ {(ϕ, now σ)}
• gcmd (ϕ, during S holds σ) :≡ {(in (S) , now σ)}

The above definition should be clear for most statements.
We just consider the definition for a sequence S1; S2: Of
course, the control flow first enters S1, so that gcmd (ϕ, S1)
is to be computed. For the second part (S2), we have to
distinguish between two cases: On the one hand, S1 may
be instantaneous, so that the precondition to reach S2 is ϕ∧
inst (S1). On the other hand, S1 may not be instantaneous.
In this case, we have to compute the last location inside S1

where the control flow has been before leaving S1. As this
is encoded by term (S1), we furthermore have to add guards
of S2 with the precondition term (S1).
It is easily seen by induction along the above definition

that the precondition ϕ will always be a propositional for-
mula that refers to the current control flow location and the
current variable values. In particular, it does neither refer to
the next control flow location nor to the next inputs/outputs.
For the definition of the data flow, we have to take into

account that event variables and state variables are handled
differently. Recall that the values of event variables are
‘not sticky’, i.e. are computed anew at each point of time,
whereas the values of state variables are stored unless an
assignment changes them.

Definition 10 (Data Flow of Event Variables) Assume the
guarded commands (α1, emit x), . . . , (αm, emit x) and
(β1, emit delayed x), . . . , (βn, emit delayed x) are the
only emissions of an event variable x in a Quartz statement
S for the initial precondition st. Then, we define:

• Idf(st, x, S) :≡
(

x =
m∨

i=1

αi

)

• Rdf(st, x, S) :≡
(

Xx =

(
n∨

i=1

βi

)
∨ X

(
m∨

i=1

αi

))

For the definition of the semantics of the event variables,
we have to take care about two things: (1) only output event
variables should be present that have an emitter, and (2) all
output event variables should be present that have an emitter
(condition (1) is often called the ‘coherency’ principle [4]).
At the initial point of time, there is an emitter for x iff

one of the αi’s holds. This already explains our definition
of the initial equation. For the remaining points of time,
there are two possibilities for an emitter for x: on the one
hand, one of the αi’s may hold, but on the other hand, one
of the βi’s may have been true at the previous point of time.
This yields in the more complicated form of the transition
equation of x.
We will shortly define also the data flow of state out-

put variables in form of an initial and a transition equation.
However, for an intermediate discussion about write con-
flicts, we first give the following intermediate definition of
the data flow of these variables.

Definition 11 (Data Flow of Flow of State Variables) As-
sume the guarded commands (α1, y := τ1), . . . , (αm, y :=
τm) and (β1, y := delayed π1), . . . , (βn, y := delayed πn)
are the only assignments to the state variable y in a state-
ment S for the initial precondition st. Then, we define:

• Idf(st, y, S) :≡
m∧

i=1

(αi → [y = τi])

• Rdf(st, y, S)

:≡

 (

∧m
i=1 X [αi → (y = τi)])∧

(
∧n

i=1 [βi → (Xy = πi)])∧
([
∧m

i=1 ¬Xαi ∧
∧n

i=1 ¬βi] → [Xy = y])




Clearly, whenever αi holds, we have to execute the com-
mand y := τi, so that the equation y = τi must then im-
mediately hold. This holds for the initial point of time as
well as for the remaining ones. If, however, βi holds at a
point of time, then we immediately execute the command
y := delayed πi, so that the equation Xy = πi must hold
at this point of time, i.e., the value of y at the next point
of time is πi (πi is evaluated at the current point of time).
Finally, if neither a guard αi nor a guard βi holds, the value
of y must be stored, i.e., we then have the equation Xy = y.
The above definition directly formalizes our intuitive use

of guarded commands. However, the above formulas may
become false in certain locations for certain variable val-
ues, since different equations could be enabled at the same
time so that different equations should then hold. In these
situations, we have a write conflict. Note that we do not
have to care about these write conflicts for the output event
variables: if an event variable is emitted twice, it is still
present, and if one thread emits a variable x at some point
of time, but another one does not, the variable will never-
theless be present. For the state variables, we must however
face the problem that different threads assign different state
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to a variable. It is not decidable whether a given program
has a write conflict or not. Nevertheless, we can postulate
the (undecidable) conditions when write conflicts appear:

Definition 12 (Write Conflicts) Assume the guarded com-
mands (α1, y := τ1), . . . , (αm, y := τm) and (β1, y :=
delayed π1), . . . , (βn, y := delayed πn) are the only as-
signments to the state variable y in a Quartz statement S
for the initial condition st. Then, the formula WC(y, st, S)
defined as below covers all situations where different as-
signments are made for y:

WC(y, st, S) :≡




m∨
i=1

m∨
j=1

(αi ∧ αj ∧ ¬[τi = τj ])∨
n∨

i=1

n∨
j=1

X (βi ∧ βj ∧ ¬[πi = πj ])∨
m∨

i=1

n∨
j=1

(Xαi ∧ βj ∧ ¬[Xτi = πj ])




Hence, a program is free of write conflicts, if we compute
its control and data flow as shown above, and are then able
to verify that the above write conflict situations never take
place. For first order data types, this is however an unde-
cidable problem. An alternative approach, that is still un-
decidable, but nevertheless potentially simpler, is to check
the above write conflict situations statically, thus ignoring
reachable and unreachable states of the program. A first or-
der theorem prover is sufficient for that purpose, and in case
the data types were finite, also tautology checking could be
feasible.
Beneath the possible write conflicts, another problem has

to be solved for a deterministic representation of the data
flow: It could be the case that the initial value of a state
variable y is not determined, i.e., that the disjunction of the
guards αi is not true at initial time. In this case, different
ways can be followed to define the semantics. On the one
hand, the initial value can be an arbitrary value of the cor-
responding type, but it is also reasonable to define for any
type a default initial value τ0 that is to be used in this case.
We use the second suggestion in the following definition:

Definition 13 (Data Flow of State Variables) Assume the
guarded commands (α1, y := τ1), . . . , (αm, y := τm) and
(β1, y := delayed π1), . . . , (βn, y := delayed πn) are the
only assignments to the state variable y in a statement S for
the initial precondition st. Assume further, that there are no
write conflicts for y in S. Then, we define:

• Idf(st, y, S) ≡


y =




if α1 then τ1

...
elsif αm then τn

else τ0






• Rdf(st, y, S) ≡




Xy =




if Xα1 then Xτ1

elsif Xα1 then Xτ1

...
elsif Xαm then Xτm

elsif β1 then π1

...
elsif βn then πn

else y







Note that the above definition is well-defined, i.e., it does
not depend on the order of the guarded commands, since
the absence of write conflicts means that the conditions αi

and Xβi either exclude each other or do not lead to a contra-
diction. It is therefore easily seen that the above definition
is equivalent to the previous one.
Our previous definitions did only define the data flow for

one variable of a statement S. It is obvious how to extend
this definition for all variables of a statement S as shown in
the next definition.

Definition 14 (Data Flow of Statements) Given a Quartz
statement S with the output (event or state) variables y1,
. . . , ym. Let moreover be (ϕ1, now σ1), . . . , (ϕp, now σp)
are all guarded commands of S with assertions for the ini-
tial precondition st. Then, we define the data flow of S as
follows, provided that there are no write conflicts for the
state output variables:

• Idf(st, S) :≡
m∧

i=1

Idf(st, yi, S)

• Rdf(st, S) :≡
m∧

i=1

Rdf(st, yi, S) ∧
p∧

i=1

(ϕi → σi)

It may be the case that the variable yi occurs both on the left
and right hand side of a data flow equation. In this case, one
speaks about causality cycles that may also extend to more
than one equation. We do not consider the issue of causality
analysis in this paper, but note that this is an important stage
for compiling synchronous languages.

3.3. Combining Control and Data Flow

Having defined the control flow and the data flow of a state-
ment, it is now easy to combine both to obtain the entire
semantics of the statement. This is simply defined as given
below:

Definition 15 (Semantics of a Statement) Given a Quartz
statement S, with the start variable st. Then, we define the
semantics for st and S as follows:

• I(st, S) :≡ Icf(st, S) ∧ Idf(st, S)
• R(st, S) :≡ Rcf(st, S) ∧Rdf(st, S)
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3.4. Further Statements

We have only considered basic statements for defining the
semantics of Quartz in the previous sections. There are
many macro statements whose semantics is then simply
given by a corresponding macro expansion to basic state-
ments [5]. However, we have also excluded in the previous
sections the asynchronous concurrency, the nondeterminis-
tic choice, and local variable declarations. We will now ex-
plain how these statements are handled.
Local variable declarations can be ignored for the se-

mantics provided all variables are uniquely renamed, and
reincarnation problems [5] are avoided. The latter can be
simply done by unrolling loop bodies [5], although there
are better possibilities [5].
Asynchronous concurrency and nondeterministic choice

are easily implemented by additional control variables.
Control variables are treated as input variables, but neither
the user nor the environment of a module is not allowed to
connect them with outputs of other modules. Hence, values
of control variables are nondeterministically generated by
the environment (which is our source of nondeterminism).
Nondeterministic choice statements are reduced by the

following equation to deterministic choices with a new con-
trol variable c:

choose S1 8 S2 end :≡ (if c then S1 else S2 end)

As inputs occur nondeterministically, it follows that due to
the above replacement, we deterministically react to inputs
that are nondeterministically generated by the environment.
In a similar way, we reduce the asynchronous concurrency
to a synchronous one by the following equation, where we
need two new control variables r1 and r2:

S1 9 S2 :≡




during
suspend S1 when ¬r1

‖
suspend S2 when ¬r2

holds [in (S1) ∧ r1] ∨ [in (S2) ∧ r2]




For the elimination of the asynchronous parallel execution,
we have added two control variables r1 and r2 that allow
thread S1 and S2 to run, respectively: Si will proceed with
its execution iff ri holds. The additional constraint will
furthermore demand that at least one of the two threads
will proceed with its execution when both are active. Note
that under the assumption in (S1) ∨ in (S2), the constraint
[in (S1) ∧ r1] ∨ [in (S2) ∧ r2] is equivalent to:

 [in (S1) ∧ in (S2) → (r1 ∨ r2)]∧
[in (S1) ∧ ¬in (S2) → r1]∧
[in (S2) ∧ ¬in (S1) → r2]




In the same manner, we could also introduce other forms
of concurrency, as e.g., interleaving: With the same re-
placement of the statement, we have to use the constraint

[in (S1)∧ r1]⊕ [in (S2)∧ r2] which is under the assumption
in (S1) ∨ in (S2) equivalent to:

 [in (S1) ∧ in (S2) → (r1 ⊕ r2)]∧
[in (S1) ∧ ¬in (S2) → r1]∧
[in (S2) ∧ ¬in (S1) → r2]




Note that we only need to have equivalence for the cases
where in (S1) ∨ in (S2) holds, since in the other cases the
statement is not active. We can view the constraint of the
during statement as a scheduler that controls the execution
of the different threads.
Finally, we show how to define the weak immediate

forms of suspension and abortions. To this end, we have
to define the part of a statement that is instantaneously exe-
cuted:

Definition 16 (Surface of a Statement) Given a Quartz
statement S, we define the Quartz statement surface (S) re-
cursively as follows:

• surface (nothing) :≡ nothing
• surface (emit x) :≡ emit x

• surface (emit delayed x) :≡ emit delayed x

• surface (x := τ) :≡ x := τ

• surface (x := delayed τ) :≡ x := delayed τ

• surface (� : pause) :≡ nothing
• surface (if σ then S1 else S2 end)

:≡ if σ then surface (S1) else surface (S2) end
• surface (S1; S2)

:≡ surface (S1) ;
if inst (S1) then surface (S2) else nothing end

• surface (S1 ‖ S2) :≡ surface (S1) ‖ surface (S2)
• surface (while σ do S end)

:≡ if σ then surface (S) else nothing end
• surface (suspend S when σ)

:≡ surface (weak suspend S when σ)
:≡ surface (S)

• surface (abort S when σ)
:≡ surface (weak abort S when σ)
:≡ surface (S)

• surface (now σ) :≡ now σ

• surface (during S holds σ) :≡ surface (S)

Using the above definition, we can now define the weak
immediate versions as follows:

Definition 17 (Immediate Abortion and Suspension) We
define immediate abortion and suspension as follows:

• abort S when immediate σ
:≡ if σ then nothing else abort S when σ

• � : suspend S when immediate σ
:≡ while σ do � : pause end; suspend S when σ
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• weak abort S when immediate σ

:≡
(

if σ then surface (S)
else weak abort S when σ

)
• � : weak suspend S when immediate σ

:≡




if σ then
surface (S) ;
while σ do � : pause end

end;
weak suspend S when σ




4. Results

Using the definitions of the previous section, we have em-
bedded Quartz in the HOL theorem prover. We use this
embedding for several applications:

4.1. Formal Synthesis

In general, formal synthesis [21] is the process to derive a
lower level implementation from a higher level implemen-
tation, such that each transformation step must be proved
within a formal proof calculus. As Quartz programs are
now terms of the HOL logic, we can manipulate them by
HOL’s inference rules. In particular, we can use HOL’s
rewrite machinery to translate Quartz statements S to their
finite state machines AS . Note that HOL’s rewrite machin-
ery thus computes a formal proof for the equivalence of S
and AS . This is particularly useful when a high level of
safety has to be assured: HOL’s implementation [17] guar-
antees the absence of errors in the code generation.
For reasons of efficiency, we note that it is really neces-

sary to share common subformulas to achieve an efficient
translation. For example, we obtain the following trans-
lation times for the arbiter program given in [27] (time in
seconds for n processes; on a Pentium III with 450 MHz):

n time n time n time n time

5 1.610 30 13.060 55 38.070 80 74.600
10 3.160 35 16.650 60 42.560 85 87.080
15 5.040 40 20.590 65 49.360 90 96.060
20 7.870 45 25.340 70 59.110 95 107.200
25 10.060 50 30.450 75 64.930 100 123.170

4.2. Reasoning about Quartz

As we have implemented the new HOL type of Quartz pro-
grams, we can now write down formulas such as ∀P, Q :
Quartz(α).(P ‖ Q) = (Q ‖ P ). Hence, we can formally
argue about all Quartz programs and prove theorems about
the language. In particular, we have proved the determin-
ism of a program whenever there are no data conflicts! We
have moreover proved the correctness of the hardware cir-
cuit synthesis as given in [4]. This also ensures that our
semantics is equivalent to Berry’s ones. Finally, we have

proved a technique to avoid the schizophrenia problem for
local variables. A future direction in this area will be to
formally define the notions of reactivity and causality [4],
so that even the causality analysis can be performed by the
theorem prover.

4.3. Verifying Quartz Programs

Our major field of interest is the formal verification of prop-
erties. We consider temporal logic properties as well as
more general higher order logic specifications. The latter
are not limited to finite data types, and even allow us to ver-
ify program schemes. We have already considered some ex-
amples, including the Island Traffic Control problem [16],
the Mine Pump [24], and the arbitration process of [27].

4.3.1 Verification by Theorem Proving

Due to our definitions, Quartz programs can now be used
as formulas of the HOL logic. Hence, we can use the whole
inference machinery of HOL to verify specifications given
in higher order logic. Using theorem proving, we are able
to prove invariants, to apply induction on the number of
threads or on the data types. In particular, we found it very
useful to use the conjunctive form of the control flow as
given in lemma 1.

4.3.2 Verification by Model Checking

A main application of synchronous programs is to im-
plement complex control behavior with closely interacting
threads. For these applications, it is typical that only fi-
nite data types are used, so that the entire semantics may be
represented by a finite state machine. Therefore, symbolic
model checking [7, 9] lends itself well for the verification
of these systems. For this purpose, we have combined the
HOL temporal logic library [26] with the presented Quartz
theory to obtain a model checking tool for verifying tem-
poral properties of Quartz programs. We note that the dis-
junctive form of the control flow as given in definition 7 is
better suited for this purpose than the conjunctive one (cf.
lemma 2), since it naturally supports a disjunctive partition-
ing of the BDDs [8]. For example, we have obtained the
following runtimes for the arbitration process of [27] (on a
450 MHz Pentium III with 256 MBytes main memory):

n BDD time
nodes [sec.]

5 10046 0.07
10 13486 0.28
15 28553 0.92
20 49920 1.71
25 65837 2.96

n BDD time
nodes [sec.]

30 93122 4.43
35 125201 6.32
40 180803 8.60
45 197822 11.43
50 248658 14.75
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5. Conclusions

We have shown a new way to define the semantics of im-
perative synchronous programming languages. In particu-
lar, we have shown how our Esterel variant Quartz can be
easily embedded in a higher-order theorem prover by us-
ing this semantics. For this purpose, it is important that our
definition of the semantics is based on primitive recursive
definitions that can directly be used for embedding Quartz
within an interactive theorem prover like HOL. As a re-
sult, we can use HOL’s inference machinery for reasoning
about Quartz, for formal code generation (in particular for-
mal hardware synthesis) [25], and of course, for formal ver-
ification of program specifications.
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