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Abstract

The Signal compilation process is based on a formal analysis called clock calculus. It constructively
determines if a specification is endochronous by synthesizing a sequential control structure. The
analysis applies to relations over clocks inferred from specifications and encoded into boolean
equations. This paper first gives an overview of requisite fundamental notions related to clocks
(control in data-flow specifications, link with operational semantics, boolean encoding) then uses
this lighting to present technical aspects of the calculus [1,2].
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1 Introduction

The automatic and safe code generation from specifications is one of the at-
tractive advantages offered by the synchronous development environments.
While they share common concerns such as code efficiency and compactness,
synchronous languages have developed proper and very different compilation
techniques that yield to different code structures (automaton, imperative sin-
gle loop, functional code, circuits, boolean equations, etc). The earlier Lus-

tre and Esterel compilers generate an automaton, while the Signal and
Scade compilers synthesize a sequential control structure. Nevertheless the
Esterel compilation process is strongly evolving toward the generation of se-
quential code from a control-flow graph (Esuif, Saxo-RT [12]), while Signal

might exploit the Lustre generation of automaton for verification purposes.
This suggests that, in spite of paradigm differences, each language could take
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advantage of some others outstanding methods. It requires that their basic
principles are clearly identified and as far as possible abstracted from technical,
implementation-related and language-dependent details.

This paper focuses on the Signal case. The Signal compilation pro-
cess, called clock calculus, is a very rich analysis based on original ideas which
involve both theoretical and implementation-related concepts, non standard
objects (clocks), techniques (transformation of a system of equations into a
set of definitions), data structures (clock trees) and specialized vocabulary.
This variety of aspects makes it difficult to explain and it has been mainly
presented from a technical implementation-related point of view [1,2]. Though
an example-based presentation, or systematic translation schemes into imper-
ative code should be explanatory, the present paper — that adds no research
contribution — focuses on an overview of fundamental requisite notions that
highlight the technical details presented in [1,2]. Section 2 recalls basic syn-
chronous (mostly data-flow) models and operational semantics 2 . Section 3
focuses on clocks as they are defined (as set of instants) and used (for control
purposes) in the data-flow paradigm, then presents their formalization in the
Signal context, emphasizing their combinational nature and their boolean
encoding. Section 4 presents the clock calculus itself, through both intuitive,
theoretical and technical aspects. Finally Sect. 5 concludes.

2 General Synchronous Notions

The synchronous paradigm considers that the execution of a reactive system is
an infinite sequence of reactions (a reaction is the process of inputs acquisition,
computations and outputs emission). The synchronous hypothesis assumes
that a reaction occurs inside a logical instant. Figure 1(a) represents such an
execution, indexed by a discrete sequence of instants ti. In Sect 2.1 we explain
that synchronous variables can be absent inside a reaction. Then we focus on
the data-flow paradigm and present in Sect. 2.2 a general operational model,
instantiated on the Signal case.

2.1 Absence of Signals and Variables

The imperative paradigm is dedicated to control dominated applications. The
control of imperative specifications is specified via emissions and receptions of
events called signals (pure or valued) that have an inherent status of absence
or presence in any reaction. In the case of Esterel the value of a signal can
be modified only in case of presence but is persistent: It can be read when the

2 [1] uses a flow semantics, but an operational one seems to be more intuitive.
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(b) data-flow execution

t1 t2 t3 t4 t5
N � 1 � −2 3 . . .
y � 1 0 −2 3 . . .
py � 0 1 0 −2 . . .
my 0 −→ 0 −→ 1 −→ 0 −→ −2 . . .

(c) adding memories

py = � ∧
y = � ∧

N = �
py = � ∧
y = �

N = � ∧

N �= � ∧ N > 0
py ≤ 0 ∧ y = N

py = 1 ∧ y = 0
N = � ∧

y = py − 1

≤ 0

mymy

> 0

py > 1 ∧ N = �
N ≤ 0 ∧ y = N ∧ py ≤ 0

(d) symbolic automaton

Fig. 1. synchronous models

signal is absent. Things are different in the data-flow paradigm, dedicated to
intensive computations on data: Specifications are systems of equations that
specify how the values of variables 3 are computed. Nevertheless variables also
have a status of presence/absence 4 . Furthermore an absent variable has no
significant value. We denote here absence by a special value 5 �, like in [10].
A data-flow execution exhibits this special value, as shown on Fig. 1(b).

2.2 Data-Flow Operational Semantics and Notations

Let us precise where does absence take place in data-flow operational models,
using the very general Symbolic Labeled Transitions Systems (SLTS, see [10]
for more formal details). A SLTS is built over a set of variables S of domain
D and a set of persistent memories M (conventionally mx ∈ M is the memory
associated to x ∈ S). Note that a variable has a status while a memory is by
essence always present. A valuation V : S → D ∪ {�} represents a reaction of
the system. A state is a valuation of memories E : M → D. A SLTS contains
an initialization predicate I (initial state), a memorization predicate M and a
combinational (without state) predicate C. M handles the state of the system,
invisible from the outside. C interfaces the system with its environment and
specifies what occurs inside a reaction. SLTS parallel composition is standard.

3 Lustre has variables but Signal has signals like Esterel: We choose to use the term
“variable” for the whole data-flow paradigm.
4 E.g. the Lustre equation y = x when x>0 induces that y is absent if x is negative.
5 Traditionally ⊥ in the Signal context.
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2.2.1 The Signal Case

Recall that the Signal kernel contains a parallel composition operator |,
a delay operator $, plus operators when, default and functions (see their
syntax on Fig. 2). Only the delay operator involves a memorization part. The
equation py := y $ 1 init v0 is represented by the SLTS:

I : (my = v0) , C : (py = � ⇔ y = �) , M :

⎧⎪⎨⎪⎩m′

y =

{
y if y �= �

my else

if py �= � then py = my

(1)

Other combinational Signal operators induce a SLTS reduced to a predicate
C, as shown on Fig. 2. The Signal parallel composition corresponds to SLTS
composition. Note that absence occurs only in sets of valuations models of the
combinational part, that label transitions of the underlying symbolic automa-
ton (see e.g. Fig. 1(d)). Such an automaton is a classical verification model: Its
extension with � prevents from using standard tools. Accordingly the boolean
verification tool Sigali [9] dedicated to Signal specifications uses an encod-
ing of the three values {�,true,false} into {0,1,-1}, yielding computations in
Z/3Z by means of an extension of BDD to three values. Unfortunately this
original technique does not scale to infinite domains.

Example 2.1 Let y be a counter initialized with an input variable N : while
positive it decreases and is re-initialized with N after it has reached 0:

py := y $ 1 init 0 | y := N default py - 1 | N ^= when py <= 0

These equations are represented by the SLTS containing predicates I and M
shown on Eq. (1) where v0 = 0, and the following combinational part C:

py = � ⇔ y = � ∧ y �= � ⇔ (N �= � ∨ py �= �) ∧ N �= � ⇒ y = N
∧ (N = � ∧ py �= �) ⇒ y = py − 1 ∧ N �= � ⇔ (py �= � ∧ py ≤ 0)

A possible execution is given Fig. 1(c) (arrows show links between variables
and memories). The associated symbolic automaton is given Fig. 1(d). �

y := g(x1, ..., xn) � y = � ⇔ x1 = � ⇔ . . . ⇔ xn = �V
y �= � ⇒ ∀i, xi �= � ∧ y = g(x1, . . . , xn)

y := x when c � c �= true ⇒ y = �
V

c = true ⇒ y = x

y := x default z � x �= � ⇒ y = x
V

x = � ⇒ y = z

Fig. 2. C for Signal combinational operators
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3 Clocks

We explain in Sect. 3.1 what are clocks and how they are used to specify the
control of data-flow systems. Then we present in Sect. 3.2 their formalization
traditionally used when dealing with Signal.

3.1 Data-Flow Clocks

Clock of a System, of a Component The sequences of instants that ap-
pear in models of execution given Fig. 1 are called time scale in the imperative
paradigm, and clocks in the data-flow one. More precisely, the clock of a sys-
tem is the set of its instants of reaction (Fig. 1(a)). This notion is classical
outside the synchronous paradigm (just consider circuits): A clock triggers
the activation of a periodic system. Because there is no reason why concur-
rent components of a system should perform their computations at the same
time, they must have distinct activations, so the system should contain several
clocks: It is the base of the multi-clock approach, opposed to the monolithic
mono-clock one.

Clock of a Variable Let us examine now how clocks are communicated
to components. In the case of Lustre 6 the activation of a component is
triggered by the presence of at least one of its input variable, say y. The
clock of the component corresponds exactly to the set of instants where y is
present: This set is by extension called the clock of y, denoted by ŷ in the
Signal context. Note that the potential absence of variables is now justified a
posteriori: A variable has the double identity of a data-flow conveyer and (via
its clock) of a sporadic event used to control behaviors like in the imperative
paradigm.

Clocks and Control The Signal philosophy emphasizes this last point:
Clocks are fundamentally the main way the programmer has to specify the
control of its specification 7 , indicating the instants when some computations
take place. Clocks are very widely used in Signal: Any object related to
a computation (e.g. an expression, a data dependency) is associated a clock
which activates it. An intuitive case is the clock ŷ of a variable y, which
triggers the computation of y. Following this principle, the executable code
associated to a system contains tests over clocks; For instance “at instant t,
if t belongs to clock h then activate computations associated to h”.

6 The Signal mechanism is more general, see [10] for a detailed discussion.
7 Recall that data-flow equations offer no control structure like in the imperative paradigm;
The plain execution of equations is very inefficient.
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3.2 The Signal Clocks Formalization

Clock Algebra In the Signal context relations over clocks are described
using the clock algebra (denoted here by H). Clocks were defined in Sect. 3.1
as sets of instants; The clock algebra accordingly uses set notations:

H = 〈U,∩,∪, \, O〉

where U is a reference set of instants and O is the empty clock. Given a set
of clock variables K interpreted as subsets of U (containing e.g. x̂), H can
represent relations like x̂ = ŷ ∪ ẑ. We also use the set inclusion operator ⊆.

Expressiveness Even if in their very first definition clocks are subsets of
the time scale that indexes executions (see Fig. 1(a) and 1(b)), relations over
clocks do not describe such executions (that are sequences of valuations) but
only sets of valuations/reactions. Indeed, consider the equation x̂ = ŷ. It is
true of an execution if, for any indexing instant t, x and y are both present
or absent in the reaction that occurs at t. In other words, x̂ = ŷ is true if in
any reaction/valuation of the execution, x and y are both present or absent:
The reference to time has disappeared and so did the order of valuations.
The expressiveness of relations over clocks is then purely combinational. The
equation x̂ = ŷ denotes the set of valuations V s.t. V (x) = � ⇔ V (y) = �.

Practical Encoding into the Propositional Calculus This set of val-
uations can be described equivalently by associating to clocks x̂ and ŷ the
propositional variables bx and by and by considering the boolean equation
bx ⇔ by, which describes the set of distributions δ : {bx, by} �→ {0,1} where
δ(bx) = 0 ⇔ δ(by) = 0. We just have to interpret δ(bx) = 0 (resp. 1) as
“x is absent (resp. present)”. More generally [2] proposes a correspondence
between H and boolean functions. We prefer the propositional calculus PC
like [10]. The encoding is very simple: Each variable k ∈ K is associated a
propositional variable bk; Each set operator is associated the logical operator
corresponding to its characteristic function. Informally consider the following
example:

H U O x̂ ∩ ŷ = ẑ ∪ ŵ x̂ \ ẑ = ŷ

PC true false bx ∧ by ⇔ bz ∨ bw bx ∧ ¬bbz ⇔ by

Thanks to this encoding, the executable code handles clocks as propositional
variables and not sets of instants 8 . A clock has a value true or false in a
reaction, and tests over clocks mentioned in Sect. 3.1 are nothing but the test

8 Note that Lustre clocks of variables are directly particular boolean variables of specifi-
cations, with the drawback that the notion of clock is recursive.
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of a boolean variable: “if t belongs to h then” is encoded by “if bh then”.

4 Principles of the Signal Clock Calculus

The compilation process of synchronous languages is not limited to code gen-
eration: Some analyses are first applied to determine if the specification is
indeed executable. Let us mention the Lustre [6] and Esterel [4] causal-
ity analyses, the Lustre [6] and Lucid Synchrone [5] clock analyses and
the Esterel constructive analysis [4]. The Signal compilation process con-
tains one major analysis called clock calculus [1,2] from which code generation
and causality analysis [1] directly follow. As a consequence the clock calculus
contains various aspects, which makes it very rich but difficult to explain.

The calculus applies to the synchronizations of a specification, presented
in Sect. 4.1. It synthesizes a control structure from which single loop code
directly follows (examples of control structures inferred from synchronizations
are given in Sect 4.2). Its core is a constructive decision procedure which de-
termines if a specification is endochronous (Sect. 4.3). We describe in Sect. 4.4
the data structures and algorithms, and their implementation in Sect. 4.5.

4.1 Synchronizations of a Signal Specification

A Signal equation specifies a relation 1. over the values of present variables
2. over the status of variables. For example y := x default z states that
y is present iff x is present or z is present. This statement describes the
synchronizations of the equation, or a relation over clocks. It can be described
equivalently using the clock algebra (e.g. ŷ = x̂ ∪ ẑ) or Signal high-level
operators (e.g. y ^= x ^+ z). But clocks of variables are not sufficient: The
synchronizations induced by the under-sampling when operator involve the
value of a boolean variable, y := x when c states that y is present iff x and
c are present and c has value true.

It is therefore necessary to introduce a new kind of clock that deals with
boolean values. Such a condition-clock is denoted by [c] ∈ K (when c in Si-

gnal), meaning the set of instants when c is present with value true ([¬c]
corresponds to value false). [c] is said to be obtained by under-sampling (or
extraction) of ĉ by the condition c. Signal synchronizations are shown on
Fig. 3. Expressed in the clock algebra they form a system of equations called
clock system/equations. The braced equations are optional: They correlate
[c], [¬c] and ĉ by specifying that when c is present, c takes either the value
true or false (in short that ([c], [¬c]) is a partition of ĉ).

Let us precise now the link between the propositional encoding of synchro-
nizations and boolean models extended with � like Z/3Z. The encoding of
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P
synchronizations

of P in Signal

synchronizations

of P in H

y := g(x1,...,xn) y ^= x1 | ...| y ^= xn ŷ = x̂1 . . . ŷ = x̂n

py := y $1 init v0 py ^= y p̂y = ŷ

y := x when c y ^= x ^* when c

ŷ = x̂ ∩ [c]

[c] ∪ [¬c] = ĉ

[c] ∩ [¬c] = O

}
y := x default z y ^= x ^+ z ŷ = x̂ ∪ ẑ

Fig. 3. synchronizations

relations over clocks of variables into PC (Sect. 3.2) is very intuitive because
the status of a variable is clearly boolean. A condition-clock [c] is similarly
encoded into a propositional variable b[c] but distributions indicate both the
status and the value of c, e.g. δ(b[c]) = 0 means that c is either absent or
present with value false. As explained in Sect. 2.1 the semantical computa-
tion domain is {�,true,false} but the introduction of condition-clocks makes
possible an encoding into the only two values of the propositional calculus.
This trick is nothing but the classical encoding of a tri-values logic into a
boolean algebra using auxiliary variables 9 :

bc = b[c] = b[¬c] = 0 � c = � bc = 1,

{
b[c] = 0, b[¬c] = 1 � c = false

b[c] = 1, b[¬c] = 0 � c = true

In other words thanks to condition-clocks the clock algebra can describe the
whole boolean combinational part of Signal specifications 10 and similarly
any boolean combinational predicate C (Sect. 2.2). It means that, by applying
such an encoding to C, Sigali could be implemented using standard stuff.

From now, we assimilate clock variables (resp. relations over clocks) and
their correspondent propositional variables (resp. boolean equations).

4.2 From Synchronizations to Control Structure: Main Ideas

As explained in Sect. 3.1 the Signal philosophy strongly emphasizes that
clocks indicate the control of data-flow specifications. Accordingly the control-

9 Note that one of the variables b[c], b[¬c] and bbc is redundant with others: The clock
calculus uses only b[c] and b[¬c].
10 For example if x, y and z are boolean variables the equation y := x default z can be
encoded into the boolean system ŷ = x̂ ∪ ẑ, [y] = [x] ∪ ([z] \ x̂).
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flow of the target executable code is synthesized from relations over clocks, or
synchronizations. Since clocks can describe only what occurs inside a reaction,
we address only the control-flow corresponding to combinational instructions
(see Sect. 5 for a complete example). We give here an intuition of the main
ideas (they will be detailed in the following sections), illustrated by exam-
ples. The first example concerns the equation y := x default z, the second
one the counter of Ex. 2.1, the third one equations y := x + 2 | z := y

+ 2 when y <= 0 | w := z when z < 0. Their synchronizations are given
respectively by Eq. (2), (3) and (4):

ŷ = x̂ ∪ ẑ (2)

ŷ = p̂y ŷ = N̂ ∪ p̂y N̂ = [c] (3)

ŷ = x̂ ẑ = ŷ ∩ [c′] ŵ = ẑ ∩ [c′′] (4)

where c, c′ and c′′ abstract respectively conditions py ≤ 0, y ≤ 0 and z < 0.
The corresponding code is given on Fig. 4(a), 4(b), and 4(c) respectively. It
appears clearly that the control-flow is materialized by tests over clocks 11 .

(1) by := bx or bz;
(2) if by

then // compute y
(3) if bx then y := x

end if
(4) if (bz and not bx)

then y := z
end if

end if
(a)

(1) if by
then

(2) b[c] := py ≤0
(3) bN := b[c] ;

if bN
then y := N
else y := py - 1
end if

(4) end if
(b)

(1) if by
then

(2) y := x + 2
(3) bz := y <= 0
(4) if bz
(5) then z := y + 2

bw := z < 0
if bw
then w := z
end if

end if
end if

(c)

Fig. 4. control structures inside reactions

Clocks are fundamentally used as r/w guards for the value of variables.
Any access to the value of a variable y is embedded into a test over ŷ: On
Fig. 4(c) z := y + 2 (line 5) is guarded by a test on ŷ (y is read) and on ẑ
(z must be computed), lines 1 and 4. Testing the value of clocks implies that
clocks must be chosen a definition: It is the main goal of the clock calculus 12 .
Some definitions are quite intuitive: The choice for the definition of by line 1
Fig. 4(a) directly follows from transforming the equation (2) into an oriented
definition. A glance at the counter shows that in the general case extracting

11 The connection between control-flow (clocks) and data-flow (computations of values of
variables) is determined syntactically. For example the parsing of equation y := x default

z attaches to ŷ the need of computing y, to x̂ the definition of y by x, and to ẑ \ x̂ the
definition of y by z. Hence the code of Fig. 4(a) from line 2. So, once the control-flow has
been inferred from synchronizations, the code directly follows.
12 The definition of a condition-clock is not dealt with by the calculus, since not specified
by synchronizations (see also Sect. 4.3). See for example the definition of b[c] Fig. 4(b) line
2 (in fact the Signal compiler suppresses this useless variable).
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definitions from relations over clocks is more complex: Eq. (3) implies that ŷ

is constrained by the recursive equation ŷ = N̂ ∪ ŷ; Moreover ŷ is in fact not
given a definition since considered as an input clock, line 1 Fig. 4(b).

Finally the knowledge of some clock inclusions and equivalences is used
to optimize the control structure by avoiding useless tests at execution time.
Synchronizations of Eq. (4) imply inclusions ẑ ⊆ ŷ and ŵ ⊆ ẑ (for instance bz
cannot be true if by is not also true). Consequently on Fig. 4(c) tests over by,
bz and bw are nested. Tests are also factorized : by is tested only once while y is
written (line 2) and read (line 5). Additionally the number of clock variables
is optimized: Since synchronizations imply ŷ = x̂ there is no need for some
variable bx.

4.3 Endochrony: From Equations to Definitions

A component is endochronous if it can be executed in an asynchronous envi-
ronment which provides only values of inputs, with no information about their
status (see [3] for more details). The component has no way to test determin-
istically the status of its inputs (intuitively because such a test is blocking): It
cannot test deterministically more than one input clock. So an endochronous
component must own an identified master clock (which is nothing but its acti-
vation clock), which is the only input clock of the executable code. Hence all
other (necessarily slower) clocks must be recursively defined from the master.

Lustre components are endochronous by construction: A reference mas-
ter clock is given and any other clock is either an already existing clock, or
a clock defined functionally by the under-sampling of an existing clock. Si-

gnal is more general: Endochrony is not ensured. Moreover as explained
in Sect. 4.1 Clocks are linked together not only through under-sampling but
also by any combination of operators ∪, ∩ and \. Finally some fundamentally
relational synchronizations cannot be transformed into functions.

Example 4.1 The code of Fig. 4(a) cannot be executed deterministically and
does not represent an endochronous component: The greatest clock ŷ is not a
master, since computed as a function of the input clocks x̂ and ẑ. The master
clock on Fig. 4(b) and 4(c) is ŷ. Consider the equation y ^< x. It specifies
the clock inclusion ŷ ⊆ x̂ but does not indicate how ŷ is computed from x̂. �

To check that a specification is endochronous, the calculus must infer a
master clock (if it exists) and compute for any other clock a definition which
is a function of other clocks (if possible): If it succeeds the specification is
declared endochronous. To do so it makes the clock system triangular 13 (this

13 The notion of triangular system is very generally defined in the theory of boolean
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process is called resolution). It uses a particular strategy that focuses on
under-sampling, whose importance appears clearly in Lustre. A condition-
clock like [c] depends on the status and value of c, but this value is unknown
since not defined by synchronizations. So [c] cannot be given a definition
and may carry any value: Condition-clocks play the role of special parameters
present in the initial system. All other clock variables play the role of variables:
From now only these ones are called clock variables. So the strategy consists
in defining clock variables by a function of condition-clocks. Inclusions [c] ⊆ ĉ
and [¬c] ⊆ ĉ are particularly meaningful 14 and widely exploited.

4.4 Data Structure and General Algorithms

From now we enter into technical details taken from [1,2,10]. Because the
resolution exploits under-sampling inclusions, the used data-structure is based
on trees whose nodes are clock variables and s.t. for two nodes n1 and n2, “n1

is a descendant of n2” means that “the clock n1 is included into the clock n2”.
Its goal is to reduce the size of definitions and to represent both the shape of a
triangular system and the control structure of the specification. We distinguish
two types of definitions for clocks: Syntactical definitions appear in code (e.g.
definition of ŷ by x̂∪ ẑ on Fig. 4(a)) while semantical definitions characterize a
clock h by a function def (h) of condition-clocks (e.g. assume given syntactical
definitions h3 := h1∪h2 and h4 := h3 ∩h1 where def (h1) = [c1] and def (h2) =
[c2], then def (h4) = [c1]). We denote by var(h) the set of condition-clocks on
which def (h) depends (e.g. {[c1], [c2]} for h3). To simplify we consider only
syntactical definitions of the kind h1 op h2 where op ∈ {∪,∩, \}. Semantical
definitions will be of fundamental importance in Sect. 4.5.

4.4.1 Clocks Layout in Trees

An inclusion induced by under-sampling is represented by an intuitive basic
tree (called partition tree) represented on Fig. 6(a). Lustre synchronizations
can be directly represented by a tree containing only under-samplings and
which root is the master clock. Signal trees must also represent inclusions
induced for instance by defining a clock h by [c2] ∩ h1 (see Fig. 5(a)). The

equations. Solving a consistent boolean system amounts to compute all solutions of
f(x1, . . . , xn) = 0. Instead, one can give to this equation a general solution under para-
metric form, given by a family of boolean functions {ψi(p1, . . . , pn)}i=1...n where pi are
parameters that can take any value in {0, 1}. The triangular form of the general solution
is: x1 = ψ1(p1) x2 = ψ2(p1, p2) . . . xn = ψn(p1, . . . , pn) where ψis are definitions. An ir-
redundant solution is obtained by constraining parameters by a constraint system C which
ensures an injection between vectors p1, . . . , pn and solutions of the equation.
14 For instance adding [c] ⊆ p̂y to Eq. (3) suppresses the recursive constraint on ŷ since

N̂ ∪ p̂y is now trivially equivalent to ŷ.
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principle is not to represent all inclusions (here h ⊆ [c2] and h ⊆ h1) but only
those which indicate the corresponding code structure. A depth first traversal
(dft) of the tree exhibits the order of computations induced by definitions.
An example of control structure directly inferred from a tree is given Fig. 5.
Note that nested tests follow exactly the tree structure and that the partition
([c1], [¬c1]) corresponds to an if then else statement.

[c1] [¬c1] [c2]

h1 h2

[c2] ∩ h1

(a)

compute c1;
if c1 then compute h1; if h1 then... endif

else compute h2; if h2 then... endif
endif /* if c1 */
compute c2; if c2 then... endif;
if c2 and h1 then... endif

(b)

Fig. 5. control structure inferred from a tree

4.4.2 Construction of Trees

The initial step is to build all partition trees: Any clock variable is root of
such a tree or of a tree reduced to a root. Then the algorithm iterates the
following process: 1. choice from synchronizations of a syntactical definition
for some clock variable h3 of the type h1 op h2 s.t. h1 and h2 belong to a tree
a′; 2. computation of def (h3) and insertion of the sub-tree a whose root is
h3 into a′ (it is a fusion, see Fig 6(b)). Hence, the root excluded, each node
corresponds either to a condition-clock (never defined) or to a clock variable
which has been given a definition. The root r is a temporary “local” master
clock: def (r) = true. All the problem is to find a convenient placement for
h3. Two ideas are important here.

Sub-tree Properties A sub-tree a contains a set of condition-clocks from
which other clocks can be defined (we call it its context) and must respect
two principles: 1. any clock h in a is such that var(h) belongs to this context
(locality criteria); 2. a dft finds all variables of var(h) before h (this ensures
a triangular shape for the clock system, i.e. the respect of dependencies in
computations).

Branching of Nodes Since h1 and h2 belong to the same sub-tree a′ they
share the same context and have a common ancestor h (called their branch-
ing), which is of particular interest: If def (h3) = def (h1) op def (h2) it is easy
to check that the insertion of h3 as the right-most child of h respects the above
two principles (whatever op be, the inclusion h1 op h2 ⊆ h holds), see Fig 6(b).
In fact, some deeper insertions may be correct, leading to more nested control
structure and more inclusions made explicit: We refer to Sect. 4.5.
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If a single tree is obtained the specification is declared endochronous, its mas-
ter clock being the root. The algorithm progresses by computing definitions
h1 op h2 s.t. h1 and h2 belong to the same tree. If no such expression can
be found in synchronizations, another compilation module applies them some
rewriting rules. The used rewriting system is ad-hoc and in particular incom-
plete. If no convenient expression appears after rewriting, the calculus stops
and the specification is declared not to be endochronous (while it may be so).

ĉ

[c] [¬c]

(a)

h

h1 h2

a′ a′

h3

a

h

h1 h2

h3

(b) tree fusion

Fig. 6. construction of trees

4.4.3 Proof of Boolean Properties

Synchronizations are represented by a set of equivalence classes. Assume that
two clocks of the same class h1 and h2 have been given a definition. Since
h1 and h2 are equivalent, the equivalence def (h1) = def (h2) must be verified
for synchronizations to be coherent. The calculus can only check that this
equivalence is a logical consequence of the set of already computed definitions
def (h) 15 . If the proof fails, the equivalence is reported to the user as a clock
constraint which makes the specification not endochronous.

4.5 Implementation of Definitions and Insertions

Definitions def (h) are implemented by BDD. Condition-clocks [c] and [¬c] are
represented by complementary elementary BDD (Fig. 7(a)), which implements
their partition of ĉ provided ĉ is represented by the BDD 1 (1 “defines” any
root r of a tree). The set var(def (h)) is the corresponding BDD support.

c

10

[c]

c

[¬c]

1 0

(a)

[c2]

[c1]

(b) c1 ≺ c2

1
2 3

c1

c2c2

(c) c1 ≺ c2

1 2 3
0

c2

c1c1

(d) c2 ≺ c1

Fig. 7. BDD and trees

15 The still relational part of synchronizations cannot be exploited since the algorithm only
considers semantical definitions, thus the proof is necessarily incomplete.
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The tree and BDD properties are exploited to uniquely characterize def (h)
from its syntactical definition. For any clock k in a tree a of root r, let f(k)
denote the father clock of k. We define the enlarged definition of k as [2]:

defe(k) = def (h) ∧ def (f(h)) ∧ . . . ∧ def (f i(h)) ∧ def (r)

Because of inclusion k ⊆ f(k), defe(k) is equivalent to def (k) but takes into
account inclusions such as [c] ⊆ ĉ. Consider again a clock h3 defined by
h1 op h2 where the branching of h1 and h2 is h. We have:

defe(h1) =

F1︷ ︸︸ ︷
def (h1) ∧ def (f(h1)) ∧ . . . ∧ def (f i(h1)) ∧defe(h)

If we define similarly F2 for h2 then we can indeed insert h3 as a child of h
and give it the factorized definition def (h3) = F1 op F2. In fact [2] shows that
there exists a unique deepest clock h′ descendant of h and a unique expression
F s.t. h3 can be defined by F and inserted under h′: 1. defe(h1) op defe(h2) =
F ∧ defe(h

′) and 2. the two sub-tree properties of Sect. 4.4.2 are verified. To
find h′, one just need to consider the greatest node n (for a dft) that appears in
var(defe(h1) op defe(h2)) and to follow the path from n to h while condition
1. is verified.

Since BDD have canonical forms and the pair (h′, F ) is unique, trees are a
canonical representation of synchronizations, very efficient for two reasons.
Firstly thanks to the tree structure only parts of the boolean system are
represented (definitions def (h)) and considered at each operation (enlarged
definitions defe(h)). Moreover the order ≺ of variables in BDD supports is
not chosen randomly but incrementally determined during trees construction
by the dft order. As a consequence BDD are naturally small. For instance
the tree of Fig. 7(b) induces the order c1 ≺ c2, meaning “compute first c1

then c2”. This order leads to a smaller BDD (Fig. 7(c)) than the reverse order
(Fig. 7(d)).

5 Conclusion

This paper gives an overview of the Signal compilation process under its
main aspects. Before entering into technical details it focuses on fundamental
notions that must be understood to fully appreciate principles of the clock
calculus. It explains in particular what are clocks, how they are formalized as
sets of instants but used as propositional variables to encode the combinational
boolean part of specifications, and what is the difference with the encoding
into Z/3Z (traditionally misunderstood).

The calculus has remained stable since 1995. It could be intrinsically
improved: Lustre-like assertions should be introduced and algorithmically
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considered not as constraints to prove but as hypotheses for proofs mentioned
in Sect. 4.4.3; These proofs could take into account relational aspects and
not only functional ones. The other synchronous compilation process must
also be examined: A deep comparison with the Lustre [6] and Lucid Syn-

chrone [5] approaches must be done (for example consequence of simpler
synchronizations on the complexity and modularity of analyses); New Este-

rel techniques that infer a control-flow from an event-graph must also be
considered. We make here a few remarks about the Lustre compilation into
automata.

Contrary to Signal, Lustre synthesizes the control-flow of the executable
code from the evolution of the specification boolean memories [7]. So code
optimization consists in testing these values only when necessary: Such tests
are suppressed by statically computing these values. The generated code is
structured like an automaton, whose states are values of boolean memories and
transitions represent combinational reactions specific to the source state. It
implies that the reachable boolean state space is explored. On the contrary, the
Signal process is bounded to the purely combinational analysis of relations
over clocks, so can only structure the control flow inside reactions. States
are not distinguished and the generated code is an single loop whose body
represents all possible reactions that can occur in any state of the system.
For instance the complete code for the counter contains an initialization of
my by 0, followed by a single loop which embeds the code of Fig. 4(b) where
memories have been inserted: Addition of py := my before line 2 and of my :=
y before line 4.

It is well known that the single loop code is very compact, while the size of
an automaton is exponential (Lustre algorithms essentially aim at reducing
this size [7]). But the automaton structure is very well adapted to verification
purposes (for which state explosion is a common problem). Lustre verifica-
tion tools take as input the interpreted automaton synthesized by the compiler.
Such an automaton looks like the one of Fig. 1(d) with a major great partic-
ularity: Transitions are labeled by formal imperative-like expressions. These
expressions are similar in nature to the code encountered in the Signal loop
body: Absence is also compiled through tests over clocks [11]. For instance
the left to right transition could be labelled by if by then if py <= 0 then

y := N. In this way Lustre avoids the use of models extended with � and
commonly addresses numerical infinite domains (e.g. with the NBac tool [8]).
So the Lustre approach could bring to Signal a standard model for verifi-
cation hence a basis for numerical tools, following the work of [10].

Acknowledgements: Thanks are due to anonymous referees for their useful
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comments, some of them were not taken into consideration for lack of space.
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