
A New Method for
Compiling Schizophrenic Synchronous Programs

K. Schneider and M. Wenz
University of Karlsruhe, Institute for Computer Design & Fault Tolerance,

Klaus.Schneider@informatik.uni-karlsruhe.de,mwenz@ira.uka.de
http://goethe.ira.uka.de/∼schneider

ABSTRACT
Synchronous programming languages have proved to be advanta-
geous for designing software and hardware for embedded systems.
Despite their clear semantics, their compilation is remarkably dif-
ficult: In particular, one has to take care of potential schizophrenia
problems. Although these problems are correctly translated with
existing compilers, there is still a need for clean algorithms. In this
paper, we present the first solution to eliminate schizophrenia prob-
lems by program transformations. These transformations are used
for compilation, but also for increasing the readability of programs.

Keywords
Synchronous Languages, Reactive Systems, Code Generation.

1. INTRODUCTION
Synchronous languages likeEsterel [1 3] or variants thereof [6 12
11 16] lend themselves well for the design of software and hard-
ware for reactive real time systems, and are therefore already used
in many industrial applications [7]. The basic paradigm of these
languages is theperfect synchrony, which follows from the fact
that most of the statements are executed as ‘microsteps’ in zero
time. Consumption of time must be explicitly programmed with
special statements likeEsterel’s pausestatement: The execution of
apausestatement consumes one logical unit of time, and therefore
separates different macrosteps from each other. As thepausestate-
ment is the only (basic) statement that consumes time, all threads
run in lockstep: they execute the code, (i.e. the microsteps) between
two pausestatements in zero time, and automatically synchronize
at their nextpausestatements.

To understand the data flow of a synchronous program, it is im-
portant to know that any variable, and hence any data expression,
must have a uniquely determined value in each macrostep. If a vari-
able’s value is changed by a microstep of a macrostep, then the new
value is immediately seen in the entire macrostep, i.e. in all its mi-
crosteps. For this reason, the actual order in which the microsteps
of a macrostep are executed is irrelevant.

The abstraction to macrosteps makes synchronous programming
so attractive. It is not only an ideal programmer’s model, it addi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’01,November 16-17, 2001, Atlanta, Georgia, USA.
Copyright 2001 ACM 1-58113-399-5/01/0011 ...$5.00.

tionally allows the direct translation of programs into synchronous
hardware circuits, where macrosteps directly correspond to clock
cycles. As the same translation is also used for software genera-
tion, many optimizations known for hardware circuits can be used
to optimize software as well [2 8]. For this reason, synchronous
programs are a good basis for HW/SW codesign [14].

However, the abstraction to macrosteps is not for free: Causal-
ity cycles and schizophrenic statements are the two major problems
that must be solved by a compiler.Causality cyclesarise when the
value of a variable depends on itself, which corresponds to combi-
natorial loops in hardware circuits. Algorithms for causality analy-
sis, that check if such cycles yield stable values, have been consid-
ered in many areas, and efficient algorithms are already available
[13 10 5 17 4 2].

So far, there are less algorithms to solveschizophrenia problems.
These problems occur if a statement is executed several times at the
same point of time. This may only happen if a loop body terminates
and is entered within the same macrostep. If the scope of a local
variable is thereby left, and a new scope of the same variable is cre-
ated, the compiler must carefully distinguish between the different
incarnations that exist at the same time. This yields a difficult prob-
lem for hardware synthesis [2], since outputs of gates and registers
must have a uniquely determined value at each point of time. As
the software generation is also based on the circuit synthesis, the
same problems appear also there.

Note that schizophrenia problems are not particular problems of
Esterel. They must necessarily arise in all synchronous program-
ming languages that provide local declarations as microsteps. Al-
though it is reported in [2] that schizophrenia problems are rare,
they still must be correctly handled by a compiler. As this is re-
markably difficult, some languages like certain Statechart variants
do not support local declarations at all, and thus support modular
programming only in a limited way.

Simple solutions of schizophrenia problems (like duplication of
loop bodies) generate unnecessarily large code. This is not accept-
able for embedded systems, where resources are still rare. Thus,
methods to compile programs with schizophrenia problems into
small target code are still of high interest. Furthermore, the com-
pilation should be based on ‘simple’ transformations that allow an
efficient verification, if the correctness of a program has to be veri-
fied.

TheEsterel compiler [3 7] is already able to solve all kinds of
schizophrenia problems. Beneath schizophrenic local declarations,
also schizophrenic parallel statements have to be considered there.
The solution given in [2] considers for each schizophrenic state-
ment a couple of copies according to its ‘incarnation level’. This
duplication of code segments is necessary to distinguish between
different incarnations, and can not be circumvented. The compile

time and the code generated by theEsterel compiler is also very
good. On the other hand, the procedure described in [2] is quite
complicated, and therefore it is hard to extend it with optimiza-
tions, or to check its correctness, e.g. with a theorem prover.

In this paper, we present a different solution to solve schizophre-
nia problems, where only one copy of the local variable is neces-
sary, regardless of its incarnation level. Our solution is based on
simple program transformations that allow us to transform poten-
tially schizophrenic programs into equivalent ones without schizo-
phrenia problems. We have proved the correctness of these trans-
formations with the theorem proverHOL [9]. By experimental re-
sults, we moreover show that our compiler compares well with the
sophisticatedEsterel compiler. In fact, there are examples where
our compiler generates significantly smaller code (section 5) with-
out further optimizations.

The paper is organized as follows: in the next section, we de-
fine the syntax and semantics of ourEsterel variant Quartz [15
16]. In Section 3, we then consider the two kinds of schizophre-
nia problems that arise inQuartz, namely schizophrenic abortion
statements and schizophrenic local declarations, and present our
program transformations for eliminating schizophrenic statements.
Detailed algorithms for a transformation into equivalent equation
systems are given in section 4, together with a complexity analysis.
We then conclude with some preliminary experimental results.

2. SYNTAX AND SEMANTICS
Quartz [15 16] is a variant ofEsterel [1 3 7] that extendsEsterel
by delayed assignments and emissions, asynchronous concurrency,
nondeterministic choice, and inline assertions. Asynchronous con-
currency is important to model distributed systems, or to allow the
compiler to schedule the threads in an optimal way. The same holds
for nondeterministic choice. Delayed assignments and emissions
are often convenient, since they follow the traditional sequential
programming style and therefore allow simpler translations from
conventional programming languages like C or hardware descrip-
tion languages like VHDL. In the following, we briefly describe
the syntax and semantics ofQuartz. For more details, the reader is
referred to [16 15] or to theEsterel primer, which is an excellent
introduction to synchronous programming [3].

2.1 Syntax and Informal Semantics
Time is modeled by the natural numbersN, so that the semantics of
a data type expression is a function of typeN → α for some typeα.
Quartz distinguishes between two kinds of variables, namelyevent
variablesandstate variables. The semantics of an event variable is
a function of typeN → B , while the semantics of a state variable
may have the more general typeN → α. The main difference
between event and state variables is however the data flow: the
value of a state variabley is ‘sticky’, i.e. if no data operation has
been applied toy, then its value does not change. On the other
hand, the value of an event variablex is not sticky: its value is reset
to 0 (we denote Boolean values as1 and0) in the next macrostep,
if it is not explicitly made1 there. Hence, the value of an event
variable is1 at a point of time if and only if there is a thread that
emits this variable at this point of time (i.e. a corresponding event).

Event variables are made present with theemit statement, while
state variables are manipulated with assignments (:=). Of course,
any event or state variable may also be an input, so that the val-
ues are determined by the environment only.emit statements and
assignments are all data manipulating statements. The remaining
basic statements ofQuartz are given below:

DEFINITION 1. (Basic Statements ofQuartz) The set of basic
statements ofQuartz is the smallest set that satisfies the following
rules, provided thatS, S1, and S2 are also basic statements of
Quartz, ` is a location variable,x is an event variable,y is a state
variable, andσ is a Boolean expression:

• nothing (empty statement)
• emit x andemit delayedx (emissions)
• y := τ andy := delayedτ (assignments)
• ` : pause(consumption of time)
• if σ then S1 elseS2 end (conditional)
• S1; S2 (sequential composition)
• S1 ‖ S2 (synchronous parallel composition)
• S1 9 S2 (asynchronous parallel composition)
• chooseS1 8 S2 end (nondeterministic choice)
• do S while σ (iteration)
• suspendS whenσ (suspension)
• weak suspendS whenσ (weak suspension)
• abort S whenσ (abortion)
• weak abort S whenσ (weak abortion)
• local x in S end (local event variable)
• local y : α in S end (local state variable)
• now σ (instantaneous assertion)
• during S holdsσ (invariant assertion)

In general, a statementS may be started at a certain point of timet1,
and may terminate at timet2 ≥ t1, but it may also never terminate.
If S immediately terminates when it is started (t2 = t1), it is called
instantaneous, otherwise we say that the execution ofS takes time,
or simply thatS consumes time.

Let us now discuss the above basic statements:nothing simply
does nothing, i.e., it neither consumes time, nor does it affect any
data values. Executingemit x makes the event variablex present
for the current macrostep, i.e., the value ofx at that point of time
is 1. Executing an assignmenty := τ means thaty andτ have the
same values in the current macrostep. The variantsemit delayedx
andy := delayedτ are similarly defined asemit x andy := τ ,
respectively, but with a delay of one macrostep. In the latter state-
ment,τ is evaluated at the current point of time, and its value is
passed toy at the next point of time. We emphasize that none of
these statements consumes time, although the delayed versions af-
fect values of variables at the next point of time.

There is only one basic statement that consumes time, namely
thepausestatement. It does not affect any data values. We endow
pausestatements with unique location variables` that we will use
as state variables to encode the control flow automaton.

if σ then S1 elseS2 end is a conditional statement: depending
on the value ofσ in the current macrostep, eitherS1 or S2 is imme-
diately executed.S1; S2 is the sequential execution ofS1 andS2,
i.e., we first enterS1 and execute it. IfS1 never terminates, then
S2 is never executed at all. If, on the other hand,S1 terminates, we
immediately startS2 and proceed with its execution.

S1 ‖ S2 denotes the synchronous parallel execution ofS1 and
S2: If S1 ‖ S2 is entered, we enter bothS1 andS2, and proceed
with the execution of both statements. As long as bothS1 andS2

are active, both threads are executed in lockstep. IfS1 terminates,
butS2 does not, thenS1 ‖ S2 behaves further asS2 does (and vice
versa). If finallyS2 terminates, thenS1 ‖ S2 terminates.

Beneath the synchronous parallel execution,Quartz additionally
offers asynchronous parallel executionS1 9 S2. The difference is
that one of the threads may execute more than one macrostep while
the other one executes a single one or even none. One may argue
that the presence of asynchronous parallel execution contradicts

the definition of a synchronous language. However, it is not too
difficult to replaceS1 9 S2 by standardEsterel statements using
additional inputs [16] (that are called control variables). Another
Quartz statement that does not belong toEsterel is the nondeter-
ministic choice:chooseS1 8 S2 end will nondeterministically ex-
ecute eitherS1 or S2. Again, using additional input (control) vari-
ables, nondeterministic choice can be reduced to other statements
[16], so that we neither consider nondeterministic choice nor asyn-
chronous concurrency in the following.

do S while σ implements iteration: if this statement is entered,
S is executed until it terminates. If thenσ holds,S is once more
executed, otherwise the loop terminates. It is required that for any
input, the loop bodyS must not be instantaneous.

(weak) suspendS whenσ implements process suspension:S
is entered when the execution of this statement starts (regardless of
the current value ofσ). For the following points of time, however,
the execution ofS only proceeds ifσ evaluates to0, otherwise its
execution is ‘frozen’ untilσ releases the further execution. Beneath
suspension, abortion of processes is an important means for the
process management. This is realized with theabort statements:
abort S when σ immediately entersS at starting time (regardless
of the current value ofσ). Then,S is executed as long asσ is 0.
If σ becomes1 during the execution ofS, thenS is immediately
aborted. The ‘weak’ variants of suspension and abortion differ on
the data manipulations at suspension or abortion time: While the
strong variants ignoreall data manipulations at abortion or suspen-
sion time,all of themare performed by the weak variants. There are
also immediate variants of suspension and abortion that consider
the conditionσ additionally at starting time. These can be easily
defined in terms of the other variants [16].

The statementslocal x in S end and local y : α in S end are
used to define local event and local state variables, respectively.
Their meaning is that they behave likeS, but the scope of the vari-
ablex or y is limited to S. This means that the local variable is
not seen outside thelocal statement. Without loss of generality,
we assume in the following that there is no shadowing of variables,
i.e., that all local variable names are unique and also different from
input and output variables.

Quartz allows us to demand assertions that must hold when the
control flow reaches certain locations:now σ demands thatσ must
hold in the current macrostep.during S holdsσ behaves likeS,
but additionally demands that whenever the control flow is inside
S, thenσ must hold. There is no further execution if the condition
σ does not hold; the behavior is not defined in this case.

Similar to Esterel, Quartz allows us to define modules so that
systems can be hierarchically organized. Existing modules can be
called in other modules via therun statement which textually re-
places the module body. In general, aQuartz module is of the
following form:

moduleM
input a1, . . . , an, b1 : α1, . . . , bm : αm;
output x1, . . . , xp, y1 : β1, . . . , yq : βq;
S

end moduleM

The above module with the nameM therefore determines an inter-
face in that it declares the input and output variables of the module.
In case of state variables, it also specifies their types (αj andβj).

2.2 Formal Semantics
The semantics ofQuartz and Esterel can be defined in several
ways. In particular, Berry has worked out a semantics based on
SOS transition rules (describing microsteps), and a direct transla-

tion into hardware circuits [2]. Recently, we have defined the con-
trol flow of a statementS by the following control flow predicates
[16] in (S), inst (S), enter (S), andterm (S), and the data flow by
the set of guarded commandsgcmd (ϕ, S). The equivalence to a
simplified hardware synthesis [15] has been proved in [16]:

in (S) is the disjunction of thepauselabels occurring inS. There-
fore, in (S) holds at some point of time iff at this point of
time, the control flow is at some location insideS.

inst (S) holds iff the control flow can not stay inS whenS would
now be started. This means that the execution ofS would be
instantaneous at this point of time.

enter (S) describes where the control flow will be at the next point
of time, whenS would now be started.

term (S) describes all conditions where the control flow is cur-
rently somewhere insideS and wants to leaveS. Note how-
ever, that the control flow might still be inS at the next point
of time sinceS may be entered at the same time, for example,
by a surrounding loop statement.

move (S) describes all internal moves, i.e., all possible transitions
from somewhere insideS to another location insideS.

gcmd (ϕ, S) is a set of pairs of the form(γ, C), whereC is a data
manipulating statement, i.e., either an emission or an assign-
ment. The meaning of(γ, C) is thatC is immediately exe-
cuted whenever the guardγ holds.

Note that the above control flow predicates depend on time. De-
tailed definitions of the above predicates and the set of guarded
commands are given in [16]. For example, for the body statement
of moduleAbortReincarnationgiven in Figure 1, we obtain the fol-
lowing results (Xϕ means thatϕ holds at the next point of time, and
st is the start signal):

• in (S) ≡ `
• inst (S) ≡ 0
• enter (S) ≡ X`
• term (S) ≡ 0
• move (S) ≡ ` ∧ X`
• gcmd (st, S) ≡ {(st∨`)∧¬(`∧i), emit a), (`∧¬i, emit b)}

Using the above predicates, one can easily define the control and
the data flow of a program [16]. For moduleAbortReincarnation,
we obtain the following initial conditionsIcf andIdf , and the fol-
lowing transition relationsRcf andRdf of the control and data flow,
respectively:

• Icf = ¬`
• Rcf = (X` ↔ st ∨ `)
• Idf = Rdf = ([a = (st ∨ `) ∧ ¬(` ∧ i)] ∧ [b = ` ∧ ¬i])

3. SCHIZOPHRENIA PROBLEMS
Simply combining the control and data flow, would not reflect the
intended semantics in all cases. Subtle problems may arise when
strong abortion and local declarations are nested within a loop state-
ment. The problem is that loop bodies may be executed more than
once since the loop’s body can be terminated and entered at the
same point of time. For this reason, these problems are called
schizophrenia or reincarnation problems([2], chapter 12).

For example, consider a strong abortion statementabort S when
σ. If the abortion conditionσ holds, and the control flow is cur-
rently insideS, no data manipulation ofS should take place, since
we have a strong abortion. For this reason, the formulain (S) →
¬σ has been added as a conjunct to all guards of body statements

of strong abortion statements with conditionσ (cf. [16] or section
4). However, if the strong abortion statement is nested within a
loop, the loop immediately enters a new incarnation of the strong
abortion statement. The problem is now that also the data manip-
ulations that should take place when entering the new incarnation
are suppressed. Hence, the second incarnation erroneously behaves
like an immediate abortion statement.

moduleAbortReincarnation
input i;
output a, b;

do
abort

emit a;
` : pause;
emit b

when i
while 1

end

Figure 1: A schizophrenic abort statement

This erroneous behavior can be demonstrated with the module
given in Figure 1. We expect the module to always emit the signal
a after starting time, regardless of the inputi, i.e., we expect the
behavior of the finite state machine given in the upper half of Figure
2. The control and data flow as computed in [16] would however
yield the behavior of the lower part of Figure 2 (consider state`
wheni holds).

The problem is that the control flow leaves and enters the abort
statement at the same time, so that two incarnations are concur-
rently exist. In the old incarnation, we have to suppress all data ma-
nipulations due to the strong abortion, but in the new incarnation
all data manipulations must be performed (since we have not an im-
mediate abort statement). Therefore, we must distinguish between
the old and the new incarnation of the statement. As both incar-
nations exist at the same point of time, a distinction is not possible
with predicates that consider macro steps only, since old and new
incarnations refer to different microsteps of the same macro step.
For this reason, there is no way to define the entire semantics with
macro step predicates likein (S), inst (S), enter (S), term (S),
move (S), or any other macro step predicates.

3.1 Surface and Depth of a Statement
To solve schizophrenia problems, we need to consider microsteps:
When a statement is entered, only a part of the statement can be
executed in zero time, and this part is the one whose execution may
overlap with other parts of the same statement. In the following,
we will call this part thesurfaceand denote it assurface (S). The
‘remaining‘ part ofS is called thedepthand will be written as
depth (S).

The names ‘surface’ and ‘depth’ are borrowed from [2], section
12.5. In contrast to [2], we definesurface (S) anddepth (S) as

` `
st/ab

st/ab
i/ab
i/ab

` `

st/ab
st/ab

i/ab
i/ab

Figure 2: Intended (upper half) and erroneous (lower half) be-
havior of module AbortReincarnation

statements that are derived fromS, whereas in [2], surface and
depth are defined to be parts of the circuit generated fromS. Our
formal definition ofsurface (S) is as follows:

DEFINITION 2 (SURFACE). For any basicQuartz statement
S, we recursively define theQuartz statementsurface (S) with the
same assumptions as given in definition 1:

• surface (nothing) :≡ nothing
• surface (emit x) :≡ emit x
• surface (emit delayedx) :≡ emit delayedx
• surface (y := τ) :≡ y := τ
• surface (y := delayedτ) :≡ y := delayedτ
• surface (` : pause) :≡ nothing
• surface (if σ then S1 elseS2 end)

:≡ if σ then surface (S1) elsesurface (S2) end
• surface (S1; S2)

:≡ surface (S1) ;
if inst (S1) then surface (S2) else nothing end

• surface (S1 ‖ S2) :≡ surface (S1) ‖ surface (S2)
• surface (do S while σ) :≡ surface (S)
• surface (suspendS whenσ)

:≡ surface (weak suspendS whenσ)
:≡ surface (S)

• surface (abort S whenσ)
:≡ surface (weak abort S whenσ)
:≡ surface (S)

• surface (local x in S end) :≡ surface (S)
• surface (local y : α in S end) :≡ surface (S)
• surface (now σ) :≡ now σ
• surface (during S holdsσ) :≡ surface (S)

It remains to definedepth (S). Intuitively, depth (S) must not ma-
nipulate data values when it is entered, since these manipulations
are completely contained in the surface partsurface (S). How-
ever, the remaining data flow, and the entire control flow ofS and
depth (S) should be the same. A possible definition ofdepth (S)
that satisfies these criteria is as follows:

DEFINITION 3 (DEPTH). For any basicQuartz statementS,
we recursively define theQuartz statementdepth (S) with the same
assumptions as given in definition 1:

• depth (nothing) :≡ nothing
• depth (emit x) :≡ nothing
• depth (emit delayedx) :≡ nothing
• depth (y := τ) :≡ nothing
• depth (y := delayedτ) :≡ nothing
• depth (` : pause) :≡ ` : pause
• depth (if σ then S1 elseS2 end)

:≡ if σ then depth (S1) elsedepth (S2) end
• depth (S1; S2)

:≡
0
@ depth (S1) ;

if in (S1) then surface (S2) end;
depth (S2)

1
A

• depth (S1 ‖ S2) :≡ depth (S1) ‖ depth (S2)
• depth (do S while σ)

:≡

0
BB@

do
depth (S) ;
if σ then surface (S) end

while σ

1
CCA

• depth (suspendS whenσ)
:≡ suspenddepth (S) whenσ

• depth (weak suspendS whenσ)
:≡ weak suspenddepth (S) whenσ

• depth (abort S whenσ)
:≡ abort depth (S) whenσ

• depth (weak abort S whenσ)
:≡ weak abort depth (S) whenσ

• depth (local x in S end) :≡ depth (S)
• depth (local y : α in S end) :≡ depth (S)
• depth (now σ) :≡ nothing
• depth (during S holdsσ) :≡ during depth (S) holdsσ

The crucial point is that the control flows ofdepth (S) andS are
the same. This is not trivially given, and required some special
constructions in the definition of the depth for sequences and loops
to avoid the introduction of newpausestatements. Using theHOL
system [9], we have proved the following theorem:

THEOREM 1 (CONTROL FLOW OF SURFACE AND DEPTH).
For anyQuartz statementS, the following facts hold:

• surface (S) is instantaneous for all inputs
• S anddepth (S) have the same control flow
• S andsurface (S) ; depth (S) have the same control flow

To be more precise, we have even proved that the control flow pred-
icates ofS, depth (S) andsurface (S) ; depth (S) are all equiva-
lent. One might expect that also the data flow is retained. However,
this is not always the case. To see this, reconsider the body state-
mentS of moduleAbortReincarnationin Figure 1. We compute
the following (with additional Boolean simplifications):

• surface (S) = emit a

• depth (S) =

0
BBBBBBB@

do
abort

` : pause;
emit b

when i;
emit a

while 1

1
CCCCCCCA

• gcmd (st, surface (S)) = {(st, emit a)}
• gcmd (st, depth (S)) = {(`, emit a), (` ∧ ¬i, emit b)}

Hence,surface (S); depth (S) andS do not have the same data
flow: the obtained data flows are given in the upper and lower
part of Figure 2. This difference can however only occur due to
schizophrenic abortion statements. For this reason, we should re-
strict our consideration for a moment to statements where all strong
abortion substatements have an empty surface, i.e., a surface with
no guarded commands. Then, we have the desired equivalence of
the data flows ofS andsurface (S); depth (S) that we have also
proved withHOL:

THEOREM 2 (DATA FLOW OF SURFACE AND DEPTH). For
anyQuartz statementS such that for any substatement of the form
abort P whenσ of S the setgcmd (ϕ, surface (P)) is empty for
any preconditionϕ, the data flows ofsurface (S) ; depth (S) and
S are the same.

Note, however, that the setsgcmd (ϕ, surface (S) ; depth (S)) and
gcmd (ϕ, S) need not be the same. However, under the given as-
sumption, both sets define the same data flow as stated in the above
theorem. For this reason, we have to apply the following transfor-
mation on every strong abortion substatement to eliminate potential
schizophrenic abortion statements:

abort S whenσ ≡ surface (S) ; abort depth (S) whenσ

module LocalReincarnation:
output xOn, xOff;

do
local x in

if x then emit xOnelse emitxOffend;
` : pause;
emit x;
if x then emit xOnelse emitxOffend

end local
while 1

end module

Figure 3: Reincarnation of local declarations.

The thereby obtained statement obviously fulfills the requirement
of the above theorem. Using a microstep based semantics as given
in [2], we can prove that the above two statements are equivalent.
Alternatively, we prefer to use the above transformation todefine
the semantics of abortion statements, thus changing the semantics
given in [16] to agree withEsterel’s semantics.

3.2 Schizophrenic Local Declarations
In the previous subsection, we have shown how schizophrenic abor-
tion statements are eliminated. In this subsection, we show how
to eliminate schizophrenic local declarations, which is more dif-
ficult. Clearly, as any statement, a local declaration can only be
schizophrenic if it is left and entered at the same point of time. If
this happens, we must distinguish between the two incarnations of
the local variable, that may have different values. As both incar-
nations exist in the same macrostep, we need to store one of these
values in a copy of the variable. Some sophisticated techniques –
again based on microsteps rather than on macrosteps – are neces-
sary to compute these different values.

For example, consider moduleLocalReincarnationgiven in Fig-
ure 3 (which is adapted fromP17 in [2], page 132). The intended
behavior of this module is as follows: We first enter the loop, and
also the local variable declaration. At that instant of time,x can
certainly not be present, since there is no emission forx. We there-
fore emitxOff in the first conditional statement and reach with the
next microstep locatioǹ, which completes this macrostep. In the
next macrostep, we first emitx, and therefore emitxOn in the fol-
lowing conditional. In the next microstep, we leave the scope of
the declaration ofx, so that the value of this incarnation ofx will
be forgotten. At the same instant of time, the next microstep starts
a new loop body, thus creating a new local declaration with a new
incarnation ofx. Of course, this new incarnation has nothing to do
with the previous one. In particular, it is not present, since there is
no emission for it. Hence, we also emitxOff in the first conditional
and reach then locatioǹ.

Hence, the module will emitxOff in the first macrostep, and af-
terwards bothxOnandxOff, which seems to be contradictory since
at any point of time, any variable must have one and only one value.
However, this is not a contradiction, since there is notonevariable
x, but two, namely the old and the new incarnation ofx.

A statement may even have more than one incarnation in a single
macrostep, which is shown with moduleMultipleReincarnation2 of
Figure 4 (it is an adaptation ofP18 of [2], page 138). The intended
behavior is quite complicated and is described in detail in [2] (con-
sider also Figure 6). The interesting issue is that after starting time,
the body of the innermost loop (drawn in the box) yields three in-
carnations, with different values of the local variables. For this rea-
son, three incarnations of the conditional statement in the box are

module MultipleReincarnation2 :
output x00

12, x
01
12, x

10
12, x

11
12;

do
local x1 in

weak abort
[`1 : pause; emit x1]

‖
do

local x2 in
weak abort

[`2 : pause; emit x2]
‖

do
if x1 then

if x2 then emit x11
12

else emitx10
12 end

else
if x2 then emit x01

12

else emitx00
12 end

end;
`0 : pause

while 1
whenx2

end local
while 1

whenx1

end local
while 1
end module

Figure 4: Multiple Reincarnations.

concurrently executed. Each one emits one variable, so thatx11
12,

x10
12, andx00

12 are all present after starting time.
Module MultipleReincarnation2 can be extended in an obvious

way to MultipleReincarnation3, and so on. By induction, we can
prove that the innermost local variable ofMultipleReincarnationn
will have n incarnations, its next local variable will haven − 1
incarnations, and so on.

Hence, a statement can be arbitrarily often started at the same
point of time. Consequently, several incarnations of the surface
may be simultaneously executed with its depth.

For this reason, it seems that we need more than one copy of a lo-
cal variable to store the values of all of its incarnations. Indeed, the
solution for handling schizophrenic local variables as suggested in
[2], generatesn copies of a local variable, wheren is the so-called
incarnation level: this is the number oflocal declarationsandpar-
allel statementsin which its declaration is enclosed. For example,
in MultipleReincarnation2, we reach the incarnation level 4, and
the declaration ofx2 is at level 2. According to the incarnation
level n of a local variable declaration, the translation given in [2]
createsn copies of that variable. The interaction of these copies is
very complicated [2].

In the following, we will present a different solution to correctly
translate statements with schizophrenic local variables, whereonly
one copy of the local variable is sufficient. However, our solu-
tion still requires to copy surfaces multiple times according to their
nestings inloopsandsequences. Note that this is not too problem-
atic, since these copies refer to combinatorial gates only, and there-
fore do not introduce further states to the control flow automaton.
This is very important for hardware and software code generation,

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

depth(S)

depth(S)

surface(S)

s3

s2

s1

s5

s4

S5: emit x

S6: emit delayed x

S1: emit x

S2: emit delayed x

S3: emit x

S4: emit delayed x

ol
d

sc
op

e
ne

w
 s

co
pe

Figure 5: The reincarnation problem.

in particular when automaton code is generated to speed up worst
case execution time.

In general, we have the situation pictured in Figure 5. Circles in
Figure 5 represent states of the program, and the arrows between
them represent macrosteps of the execution. The gray shaded area
is moreover the scope of a local variable declarationx. Considering
Figure 5, we can identify the following situations:

• Clearly, immediate emissions of a macrostep that is com-
pletely inside the scope likeS1 are uncritical.

• Delayed emissions of such a macrostep likeS2 should how-
ever only be seen in the old scope, but not in a possible new
incarnation. Hence, the emission ofS2 must not be seen in
the surface of the new scope, but in the depth of the old one.

• The same holds for immediate emissions of the depth of the
old scope likeS3. They must not be seen in the surface of
the new scope, but must be seen in the depth of the old one.

• Delayed emissions in the old scope that occur at termination
time likeS4, have no effect at all, and can thus be ignored.

• Immediate emissions in the surface likeS5 of the new scope
must be seen there, but not in the depth of the old scope.

• Delayed emissions in the surface likeS6 must not be seen
there, also not in the depth of the old scope, but of course in
the depth of the new scope.

The above problems indicate that it is reasonable to split the body
S of a local declarationlocal x in S end into its surface and depth.
If no further local declaration is included inS (this can be achieved
by a bottom up traversal), and if all strong abortion statements have
also been split into their surfaces and depths, we already know that
this transformation neither changes the control nor the data flow.
Hence, we consider now the equivalent statement

local x in surface (S) ; depth (S) end

In the following, we use a new variablex0 to hold the value that
is generated in the surface, while the original variablex is used to
hold the value generated in the depth. For this reason, we replace in
surface (S) all occurrences ofx with x0, except for delayed emis-
sions ofx.

moduleMultipleReincarnation′2 :
output x00

12, x
01
12, x

10
12, x

11
12;

local x1, x1,0, x2, x2,0 in
do

if x1,0 then
if x2,0 then emit x11

12

else emitx10
12 end

else
if x2,0 then emit x01

12

else emitx00
12 end

end;
weak abort

[`1 : pause; emit x1]
‖

do
weak abort

[`2 : pause; emit x2]
‖

do
`0 : pause;
if x1 then

if x2 then emit x11
12

else emitx10
12 end

else
if x2 then emit x01

12

else emitx00
12 end

end
while 1

whenx2;

if x1 then
if x2,0 then emit x11

12

else emitx10
12 end

else
if x2,0 then emit x01

12

else emitx00
12 end

end
while 1

whenx1

while 1
end module

Figure 6: Transformation of MultipleReincarnation2

This already solves many of the above problems, however, the
transformation is not yet complete. Nevertheless, all problems that
appear in moduleMultipleReincarnation2 are already solved with
this simple transformation. The result, which is also the result of
our complete solution outlined below, is given in Figure 6 (again,
we have simplified the code). As can be seen, copiesx1,0 and
x2,0 of the local variablesx1 andx2 have been generated, and the
bodies of the local declarations have been transformed in sequences
of their surfaces and depths.

As the depth of a loop generates a copy of the surface of its body,
and the depth of a sequenceS1; S2 generates a copy of the surface
of S1, some surfaces are copied in our approach, too. Different
copies refer to different incarnations, which reveals the behavior
of moduleMultipleReincarnation2: Considering Figure 6, we see
that our transformation has generated two copies of the conditional
statement and each one is responsible for one emission: The copy

with x1,0 andx2,0 emitsx00
12, the copy withx1 andx2,0 emitsx10

12,
and the original statement withx1 andx2 emitsx11

12.
In general, the duplication of the surfaces can not be avoided:

Without them, it is not possible to generate correct code for mod-
ules with schizophrenia problems.

The transformation we have outlined so far is not yet complete.
Consider again a statementlocal x in S end. AssumeS is trans-
formed intosurface (S); depth (S), and x is replaced byx0 in
surface (S) (except for delayed emissions). If the statement is
started, its surface is instantaneously executed, anddepth (S) is
entered. Hence, we may have to evaluate some conditions of con-
ditional statements indepth (S). If such a condition refers tox,
we should refer tox0 instead, which is however not the case with
our so far incomplete transformation. As the same condition may
be also evaluated not at starting time, we can not simply replacex
with x0.

Hence, to complete our translation, we have toadapt someof
the conditions in the depth part. This completes our transforma-
tion: Note that no assignment of the depth will usex0, since the
depth simply performs no assignments at starting time. Hence, all
assignments and emissions of the depth are already correct, and we
can concentrate on evaluations of conditions for the control flow.
The only basic statement that evaluates such a condition at starting
time is the conditional statement. Hence, it remains to changex
into x0 in some of the conditions of conditional statements of the
depth. Note that only those conditions must be replaced that are
evaluated at starting time (which depends on the current inputs).
For this reason, we apply the following transformation to the depth,
which moreover disables delayed emissions at termination time:

DEFINITION 4 (FIXING SURFACE CONDITIONS).
Given aQuartz statementS without local signal declarations, we
define the statementsurfconds0

s (t, ϕ, S) of S for a termination
conditiont and a preconditionϕ as follows:

• surfconds0
s (t, ϕ, nothing) :≡ nothing

• surfconds0
s (t, ϕ, emit x) :≡ emit x

• surfconds0
s (t, ϕ, emit delayedx)

:≡
�

if ¬t then emit delayeds end :if x ≡ s
emit delayedx :if x 6≡ s

• surfconds0
s (t, ϕ, y := τ) :≡ y := τ

• surfconds0
s (t, ϕ, y := delayedτ)

:≡
�

if ¬t then s := delayedτ end :if y ≡ s
y := delayedτ :if y 6≡ s

• surfconds0
s (t, ϕ, ` : pause) :≡ ` : pause

• surfconds0
s (t, ϕ, if σ then S1 elseS2 end)

:≡ if ϕ ∧ [σ]s0
s ∨ ¬ϕ ∧ σ

then surfconds0
s

�
t, ϕ ∧ [σ]s0

s , S1

�
elsesurfconds0

s

�
t, ϕ ∧ ¬ [σ]s0

s , S2

�
end

• surfconds0
s (t, ϕ, S1; S2)

:≡ surfconds0
s (t, ϕ, S1) ;

surfconds0
s

�
t, ϕ ∧ [inst (S1)]

s0
s , S2

�
• surfconds0

s (t, ϕ, S1 ‖ S2)
:≡ surfconds0

s (t, ϕ, S1) ‖ surfconds0
s (t, ϕ, S2)

• surfconds0
s (t, ϕ, do S while σ)

:≡ do surfconds0
s (t, ϕ, S) while σ

• surfconds0
s (t, ϕ, suspendS whenσ)

:≡ suspendsurfconds0
s (t, ϕ, S) whenσ

• surfconds0
s (t, ϕ, weak suspendS whenσ)

:≡ weak suspendsurfconds0
s (t, ϕ, S) whenσ

• surfconds0
s (t, ϕ, abort S whenσ)

:≡ abort surfconds0
s (t, ϕ, S) whenσ

• surfconds0
s (t, ϕ, weak abort S whenσ)

:≡ weak abort surfconds0
s (t, ϕ, S) whenσ

• surfconds0
s (t, ϕ, local x in S end)

:≡ local x in surfconds0
s (t, ϕ, S) end

• surfconds0
s (t, ϕ, local y : α in S end)

:≡ local y : α in surfconds0
s (t, ϕ, S) end

• surfconds0
s (t, ϕ, now σ) :≡ now σ

• surfconds0
s (t, ϕ, during S holdsσ)

:≡ during surfconds0
s (t, ϕ, S) holdsσ

Intuitively, in the above definition forsurfconds0
s (t, ϕ, S), it is as-

sumed that the preconditionϕ describes all conditions where the
execution up toS will not take time (some further execution ofS
may also not take time). Hence, ifϕ holds, we have to replaces
with its surface values0 to obtain[σ]s0

s , otherwise the conditionσ
is left unchanged. Note that the expressionϕ ∧ [σ]s0

s ∨ ¬ϕ ∧ σ
either corresponds to the substituted condition[σ]s0

s or to the orig-
inal oneσ, depending on whether the expression is evaluated at
starting time (which is encoded byϕ). To summarize, a local dec-
laration local x in S end that can be reached with the precondition
ϕ is transformed into the following sequence:

subst_immed(surface (S) , x, x0);
surfcondx0

x (term (S) , ϕ, depth (S))

wheresubst_immed is meant to replace all occurrences ofx in S
by x0 except for delayed emissions ofx or assignments tox. We
can now convince ourselves that this transformation behaves like
S, but does no longer suffer from schizophrenia problems:

• Immediate emissions in the surface (likeS5 in Figure 5) are
transformed into emissions of the new variablex0, and are
therefore only seen in the surface and in conditions of the
depth that are evaluated at starting time.

• Delayed emissions in the surface (likeS6 in Figure 5) are not
changed, thus they are correctly seen in the depth.

• Immediate emissions in the depth that are not executed at
termination time of the depth (likeS1 in Figure 5) are not
changed. If the macrostep is entirely contained in a local
declaration, then it can never overlap with surfaces of other
incarnations. Also delayed emissions (likeS2 in Figure 5)
are not changed, even if the statement may terminate at the
next point of time. If it would terminate, then the surface of
a new incarnation will refer tox0 and not tox.

• Immediate emissions of the depth at termination time of the
depth (likeS3 in Figure 5) are seen there, but neither in the
possibly overlapping surface of a new incarnation, nor in the
conditions of the depth in the new scope that are evaluated at
this point of time, since these parts refer tox0.

• Delayed emissions ofx or assignments tox in the depth at
termination time (likeS4 in Figure 5) have been disabled by
embracing them in a conditionalif ¬t then . . . end, where
t hold exactly at termination time.

Hence, all situations are correctly handled, so that the obtained
statement does no longer suffer from schizophrenia problems. A
similar transformation is applied to local declarations of state vari-
ables. Hence, we now end up with the following definition:

DEFINITION 5 (ELIMINATING SCHIZOPHRENIA). For any
Quartz statementS, we define a corresponding statement that is
obtained by rewriting with the following equations during a bottom-
up traversal over the syntax tree ofS, wheresubst_immed(P, x, x0)
is supposed to replacex by x0 in P except in delayed emissions of
x or delayed assignments tox:

• abort S whenσ :≡ surface (S) ; abort depth (S) whenσ

• local x in S end :≡
�
subst_immed(surface (S) , x, x0);
surfcondx0

x (term (S) , ϕ, depth (S))

�

The equation of the local declaration is used both for local event
and state variables. Note that the above transformation eliminates
local declarations (recall that we have not allowed shadowing of
local variables, i.e., all local variable names must be unique). The
main theorem of this paper is then the following one:

THEOREM 3 (ELIMINATING SCHIZOPHRENIAPROBLEMS).
The transformation described in definition 3 yields an equivalent
statement that has no schizophrenia problems.

4. ALGORITHMS FOR COMPILATION
In the previous section, we have developed program transforma-
tions to transform synchronous programs into equivalent ones with-
out schizophrenia problems. In this section, we list a complete al-
gorithm for translating synchronous programs into equivalent equa-
tion systems and analyse its complexity. Of course, the algorithm
applies our transformation to eliminate schizophrenia problems dur-
ing the translation. The algorithm given in Figure 7 is based on
an improvement of the circuit synthesis that has been presented in
[15]. We have proved the equivalence of the older circuit synthe-
sis presented in [15], the one given in Figure 7, and the semantics
given via the control flow predicates in [16] with the interactive the-
orem proverHOL [9]. In particular, we have proved the following
theorem (the second assumption is an invariant of the construction):

THEOREM 4 (TRANSLATION TO EQUATION SYSTEMS).
Given anyQuartz statementS, and Boolean expressionsst, ϕ, sp,
andkl such that the following conditions hold at any time:

• for any loop ‘do P while x’ in S, we have¬inst (P)

• st ∧ in (S) → ¬sp ∧ (term (S) ∨ kl)

AbbreviateS0 :≡ suspend abortS whenkl whensp, and letS′

be the statement that is obtained fromS0 by the elimination of
schizophrenia problems (definition 5) and the elimination of nonde-
terministic statements by introducing control variables [16]. Then,
the functions given in Figure 7 compute a tuple(C, A, R, I , T ,
Gs, Gd, Ss, Sd) = EQS ({}, st, ϕ, sp, kl, S) with the following
properties:

• C is the set of control variables used to computeS′

• A = in (S′)
• I = inst (S′)
• T = term (S′)
• Gs = gcmd (ϕ, surface (S′))
• Gd = gcmd (ϕ, depth (S′))
• Ss = surface (S′) andSd = depth (S′)

• Rcf(st, S
′) =

^
τ∈R

τ

The above assumptions mean that (1) for all inputs, all loop bodies
must not be instantaneous, and (2) if the start signalst occurs when
the control flow is already inside the statement, then the control
flow currently leaves the statement, i.e., there is no suspension and
the statement either terminates on its own or is killed by thekl
signal. Hence, already active statements must not be started, unless
they currently terminate.

As ‘suspend abortS when0 when0’ is equivalent toS, it fol-
lows that the above theorem allows us to compute the transition

function EQS (C, st, ϕ, sp, kl, P)
N := nothing;
case P of
nothing : return (C, 0, {}, 1, 0, {}, {}, P, P);
emit x, emit delayedx, y := τ , y := delayedτ , now σ :
return (C, 0, {}, 1, 0, {(ϕ, P)}, {}, P, N);

` : pause:
return (C, `, {X` = st ∨ sp ∧ `}, 0, `, {}, {}, N, P);

if σ then S1 elseS2 end :
return cond_EQS (C, st, ϕ, sp, kl, σ, S1, S2);

chooseS1 8 S2 end :
c := newvar();
return cond_EQS (C ∪ {c}, st, ϕ, sp, kl, c, S1, S2);

S1; S2 : return seq_EQS (C, st, ϕ, sp, kl, S1, S2);
S1 ‖ S2 : return par_EQS (C, st, ϕ, sp, kl, S1, S2);
S1 9 S2 :
c1 := newvar(); P1 := mk_suspend(0, S1,¬c1);
c2 := newvar(); P2 := mk_suspend(0, S2,¬c2);
σ := [in (S1) ∧ c1] ∨ [in (S2) ∧ c2];
P := mk_during(mk_par(P1, P2), σ);
return EQS (C ∪ {c1, c2}, st, ϕ, sp, kl, P);

do S while σ :
return dowhile_EQS (C, st, ϕ, sp, kl, σ, S);

suspendS whenσ :
return susp_EQS (C, st, ϕ, sp, kl, σ, S, 0);

weak suspendS whenσ :
return susp_EQS (C, st, ϕ, sp, kl, σ, S, 1);

abort S whenσ :
return abort_EQS (C, st, ϕ, sp, kl, σ, S, 0);

weak abort S whenσ :
return abort_EQS (C, st, ϕ, sp, kl, σ, S, 1);

local x in S end, local x : α in S end :
return local_EQS (C, st, ϕ, sp, kl, x, S);

during S holdsσ :
(C, A,R, I, T, Gs, Gd, Ss, Sd) := EQS (C, st, ϕ, sp, kl, S);
return (C, A, R, I, T, Gs, Gd ∪ {(A, now σ)}, Ss, Sd);

end case;
end function

function local_EQS (C0, st, ϕ, sp, kl, x, S)
(C, A, R, I, T, Gs, Gd, Ss, Sd) := EQS (C0, st, ϕ, sp, kl, S);
x0 := newvar();
Ss := subst_immediate(Ss, x, x0);
Sd := surfcondx0

x (T, ϕ, Sd);
return seq_EQS (C0, st, ϕ, sp, kl, Ss, Sd);

end function

function par_EQS (C0, st, ϕ, sp, kl, S1, S2)
(C1, A1, R1, I1, T1, G

1
s, G

1
d, S1

s , S1
d)

:= EQS (C0, st, ϕ, sp, kl, S1);
(C2, A2, R2, I2, T2, G

2
s, G

2
d, S2

s , S2
d)

:= EQS (C1, st, ϕ, sp, kl, S2);
A := A1 ∨ A2; R := R1 ∪ R2; I := I1 ∧ I2;
T := T1 ∧ ¬A2 ∨ T2 ∧ ¬A1 ∨ T1 ∧ T2;
Ss := mk_par(S1

s , S2
s);

Sd := mk_par(S1
d , S2

d);
return (C2, A, R, I, T, G1

s ∪ G2
s, G

1
d ∪ G2

d, Ss, Sd);
end function

function cond_EQS (C0, st, ϕ, sp, kl, σ, S1, S2)
st1 := st ∧ σ; ϕ1 := ϕ ∧ σ;
st2 := st ∧ ¬σ; ϕ2 := ϕ ∧ ¬σ;
(C1, A1, R1, I1, T1, G

1
s, G

1
d, S1

s , S1
d)

:= EQS (C0, st1, ϕ1, sp, kl, S1);
(C2, A2, R2, I2, T2, G

2
s, G

2
d, S2

s , S2
d)

:= EQS (C1, st2, ϕ2, sp, kl, S2);
A := A1 ∨ A2; R := R1 ∪ R2; T := T1 ∨ T2;
I := σ ∧ I1 ∨ ¬σ ∧ I2;
Ss := mk_cond(σ, S1

s , S2
s);

Sd := mk_cond(σ, S1
d , S2

d);
return (C2, A, R, I, T, G1

s ∪ G2
s, G

1
d ∪ G2

d, Ss, Sd);
end function

function seq_EQS (C0, st, ϕ, sp, kl, S1, S2)
(C1, A1, R1, I1, T1, G

1
s, G

1
d, S1

s , S1
d)

:= EQS (C0, st, ϕ, sp, kl, S1);
st2 := st ∧ I1 ∨ ¬sp ∧ ¬kl ∧ T1;
ϕ2 := I1 ∧ ϕ ∨ T1;
(C2, A2, R2, I2, T2, G

2
s, G

2
d, S2

s , S2
d)

:= EQS (C1, st2, ϕ2, sp, kl, S2);
T := T1 ∧ I2 ∨ T2;
Gs := G1

s ∪ {(γ ∧ I1, α) | (γ, α) ∈ G2
s};

Gd := G1
d ∪ G2

d ∪ {(γ ∧ A1, α) | (γ, α) ∈ G2
s};

Ss := mk_seq(S1
s , mk_cond(I1, S

2
s , nothing));

Sd := mk_seq(S1
d, mk_cond(A1, S

2
s , nothing), S2

d);
return (C2, A1 ∨ A2, R1 ∪ R2, I1 ∧ I2, T, Gs, Gd, Ss, Sd);

end function

function dowhile_EQS (C0, st, ϕ, sp, kl, σ, S)
t := newvar();
st′ := st ∨ ¬sp ∧ ¬kl ∧ σ ∧ t; ϕ′ := ϕ ∨ t ∧ σ;
(C, A, R, I ′, T ′, Gs, Gd, Ss, Sd) := EQS (C0, st

′, ϕ′, sp, kl, S);

R := {[τ]T
′

t | τ ∈ R}; I := [I ′]T
′

t ; T := T ′ ∧ ¬σ;

Gs := {([γ]T
′

t , α) | (γ, α) ∈ Gs};

Gd := {([γ]T
′

t , α) | (γ, α) ∈ Gd}
∪{([γ]T

′
t ∧ T ′ ∧ σ, α) | (γ, α) ∈ Gs};

D := mk_seq(Sd, mk_cond(σ, Ss, nothing));
Sd := mk_dowhile(D, σ);
return (C, A, R, I, T, Gs, Gd, Ss, Sd);

end function

function susp_EQS (C0, st, ϕ, sp, kl, σ, S, wk)
sp′ := sp ∨ σ ∧ ¬kl;
(C, A, R, I, T, Gs, Gd, Ss, Sd) := EQS (C0, st, ϕ, sp′, kl, S);
if ¬wk then Gd := {(γ ∧ ¬σ, α) | (γ, α) ∈ Gd} end;
Sd := mk_suspend(wk, Sd, σ);
return (C, A, R, I, T ∧ ¬σ, Gs, Gd, Ss, Sd);

end function

function abort_EQS (C0, st, ϕ, sp, kl, σ, S, wk)
kl′ := kl ∨ σ;
(C, A, R, I, T, Gs, Gd, Ss, Sd) := EQS (C0, st, ϕ, sp, kl′, S);
if ¬wk then Gd := {(γ ∧ ¬σ, α) | (γ, α) ∈ G} end;
Sd := mk_abort(wk, Sd, σ);
return (C, A,R, I, T ∨ A ∧ σ, Gs, Gd, Ss, Sd) end;

end function

Figure 7: Translation of Quartz Statements to Equivalent Equation Systems

relationRcf(st, S) of S in form of an equation system. Note fur-
ther that the condition that a start signal should only occur when the
control currently leaves the statement is simply achieved by using
the modified start signalst′ := st ∧ (in (S) → term (S)), where
st is the original start signal.

Finally, let us consider the complexity of the translation. For this
reason, we defineLs(n) andLd(n) as the maxima of the lengths
of statementssurface (S) and depth (S), respectively, whereS
ranges over theQuartz statementsS of length≤ n. In [16], it
is proved that all control flow predicates can be computed in time
O(|S|) with some sharing of common subterms that is achieved by
abbreviating the predicates by new variables.

Considering the definition ofsurface (S), it is then easily seen
thatLs(n+1) ≤ Ls(n)+C1 andLd(n+1) ≤ Ld(n)+Ls(n)+
n + C3 andLd(n + 1) ≤ Ld(n)+ Ls(n) +C2 holds. As the only
function obeying the recurrence relationf(n+1) = αf(n)+g(n)
is f(n) = αnf(0) +

Pn−1
i=0 αn−1−ig(i), it follows thatLs(n) is

of orderO(n), and thatLd(n) is of orderO(n2). Hence, we have
the following result:

LEMMA 1 (SIZE OF SURFACE AND DEPTH). Given any ba-
sic Quartz statementS, it follows for the statementssurface (S)
and depth (S) that their sizes are of ordersO(|S|) andO(|S|2),
respectively, provided that the control flow predicates are abbrevi-
ated as variables.

To analyse the entire complexity, note first thatEQS runs in time
O(|S|2) in case thatS contains no local declaration (proof by in-
duction). If surfaces were not copied, and are shared by using
pointers to them instead, this can even be done in timeO(|S|).
A proof for the general case is however very subtle and depends
on the chosen data structures. However, we claim that there is an
implementation that runs in timeO(|S|2), which is also the com-
plexity that is stated in [2].

PROPOSITION 1. For any basicQuartz statementS, there is a
translation procedure that runs in timeO(|S|2).

5. EXPERIMENTAL RESULTS
We have embedded the languageQuartz in the theorem prover
HOL [9], and have proved the correctness of the transformations of
this paper. Moreover, we have implemented a compiler forQuartz
in Java that is based on the transformations of this paper and the
circuit synthesis given in [15]. For a givenQuartz program, our
compiler either outputs an equation system or a file containingsc
code [8], which is one of the intermediate formats of theEsterel
compiler. Hence, we can use the code generators and optimizers
of theEsterel design tools. In particular, we can also use the very
sophisticatedEsterel tools for causality analysis.

For a generic version of moduleMultipleReincarnationn (cf. Fig-
ure 4), we obtained the results that are listed in table 1. Note that
the length ofMultipleReincarnationn is of orderO(2n), so that the
obtained C programs are essentially of the same size. The numbers
in the table are thereby the numbers of Boolean gates (and, or, and
not gates) that are generated in the circuit synthesis. As can be seen,
the size of thesc code generated from our compiler is only about
30% compared to the one generated with theEsterel compiler, and
it still remains smaller after optimization during translation tossc
code with theEsterel compiler.

6. REFERENCES
[1] G. Berry. The foundations of Esterel. In G. Plotkin,

C. Stirling, and M. Tofte,Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press, 1998.

Quartz Esterel
n sc ssc sc ssc

1 48 29 71 39
2 81 51 149 83
3 133 86 268 144
4 218 144 466 233
5 368 247 827 372
6 647 439 1535 605
7 1183 808 2920 1020
8 2232 1530 6056 1793
9 4306 2957 12589 3276
10 8429 5793 26557 6173

Table 1: Comparison of the code size (number of gates)
obtained by synthesizing a generic version of module
MultipleReincarnationn (Figure 4)

[2] G. Berry. The constructive semantics of pure Esterel, July
1999.

[3] G. Berry. The Esterel v5_91 language primer.
http://www.esterel.org, June 2000.

[4] F. Boussinot. SugarCubes implementation of causality.
Research Report 3487, INRIA, Sophia Antipolis Cedex,
France, September 1998.

[5] J. Brzozowski and C.-J. Seger.Asynchronous Circuits.
Springer Verlag, 1995.

[6] Cadence Design Systems,Inc. Website, 2000.
http://www.cadence.com.

[7] Esterel Web. Website, 2000. http://www.esterel.org.
[8] A. Girault and G. Berry. Circuit generation and verification

of Esterel programs. Research report 3582, INRIA,
December 1998.

[9] M. Gordon and T. Melham.Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge
University Press, 1993.

[10] N. Halbwachs and F. Maraninchi. On the symbolic analysis
of combinational loops in circuits and synchronous
programs. InEuromicro Conference, Como, Italy, September
1995.

[11] Jester Home Page. Website, 2000.
http://www.parades.rm.cnr.it/projects/jester/jester.html.

[12] L. Lavagno and E. Sentovich. ECL: A specification
environment for system-level design. InACM/IEEE Design
Automation Conference (DAC), 1999.

[13] S. Malik. Analysis of cycle combinational circuits.IEEE
Transactions on Computer Aided Design, 13(7):950–956,
July 1994.

[14] POLIS Homepage, 2000. http://www-cad.eecs.berkeley.edu/
[15] K. Schneider. A verified hardware synthesis for Esterel. In

F. Rammig, editor,International IFIP Workshop on
Distributed and Parallel Embedded Systems, pages 205–214.
Kluwer Academic Publishers, 2000.

[16] K. Schneider. Embedding imperative synchronous languages
in interactive theorem provers. InInternational Conference
on Application of Concurrency to System Design (ICACSD
2001). IEEE Computer Society Press, June 2001.
http://goethe.ira.uka.de/fmg/ps/Schn01a.ps.gz.

[17] T. Shiple, G. Berry, and H. Touati. Constructive analysis of
cyclic circuits. InEuropean Design and Test Conference
(EDTC), Paris, France, 1996. IEEE Computer Society Press.

