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Abstrac? 

Berry, G. and G. Gonthier, The ESTEREL synchronous programming language: design, semantics, 

implementation, Science of Computer Programming 19 (1992) 87-152. 

We present the ESTEREL programming language which is especially designed to program reactive 

systems, that is systems which maintain a permanent interaction with their environment: real-time 

process controllers, communication protocols, man-machine interface drivers, etc. ESTEREL is a 

deterministic concurrent programming language. It differs from classical asynchronous languages 

by its synchrony hypothesis: the outputs of a system are conceptually synchronous with its inputs. 
The synchrony hypothesis permits a high-level modular programming style simpler and more 

rigorous than its asynchronous counterpart. We present the imperative primitives of ESTEREL 

and the temporal manipulations they permit. We give a small programming example. We present 

two mathematical semantics of ESTEREL, which are given by conditional rewrite rules and related 

by a correctness theorem. The behavioral semantics defines the behavior of programs in an 

uneffective way as the solution of tixpoint equations. The effective execution semantics computes 

actions to be performed by a conceptually infinitely fast execution machine. To relate the two 

semantics, we solve the causality problems that are inherent in synchronous formalisms. We show 

how the ESTEREL v2 and ESTEREL v3 compilers efficiently translate concurrent ESTEREL 
programs into efficient equivalent sequential automata that can be implemented in conventional 

sequential languages. We discuss the quality of this object code and the practical adequacy of 
the synchrony hypothesis. 

Nous presentons le langage ESTEREL, qui est specifiquement adapt& h la programmation des 

systemes reactifs, c’est a dire des systemes dont le rdle est de maintenir une interaction constante 

avec leur environnement: controleurs de processus en temps-reel, protocoles de communications, 

interfaces homme-machine etc. ESTEREL est un langage de programmation parallele dtterministe, 

qui differe des langages classiques par son hypotheses de synchronisme: les sorties du systeme 
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rtactif sent supposees conceptuellement synchrones avec ses entrees. Cette hypothese permet une 

programmation plus modulaire et plus simple que les techniques asynchrones classiques. Nous 

presentons les primitives imperatives du langage et les manipulations temporelles qu’elles permet- 

tent. Nous donnons un exemple de programme typique. Nous presentons deux s~mantiques 

mathematiques du langage: une semantique comportementale qui definit de facon non effective 

le comportement d’un programme, et une semantique d’execution qui permet de calculer effective- 

ment ces comportements et de resoudre les problemes de causalire inherents aux systemes 

synchrones. Ces deux s~mantiques sont donntes par des regles de reecriture conditionneiles. Elles 

sont reliees par un thtoreme de correction. Nous montrons comment les compilateurs ESTE,REL 
v2 et ESTEREL ~3 traduisent les programmes paralleles ESTEREL en automates sequentiels 

equivalents et tres efficaces. Nous discutons la qualite du code produit et la validiti pratique de 

I’hypothese de synchronisme. 

1. Introduction 

The ESTEREL programming language we present here is the oldest and presently 

most developed member of a novel family of synchronous languages, which also 

includes the LUSTRE [ 191 and SIGNAL [25] languages and the Statecharts formalism 

[26]. These languages are specifically designed to program reactive systems, a variety 

of computerized systems that includes real-time systems and all kinds of control 

automata. The mathematical semantics of ESTEREL was developed together with the 

language; the implementation .of ESTEREL is simply a physical realization of its 

semantics. The paper presents the language concepts and constructs, the mathemati- 

cal semantics, and the ESTEREL implementations that are now under distribution. 

See [8,9] for complete reference manuals and [6,7] for a short introduction to the 

ESTEREL programming style. 

1.1. Reactive systems and programs 

Many computer applications involve programs that maintain a permanent interac- 

tion with their environment, reacting to inputs coming from this environment by 

sending outputs to it. We follow Hare1 and Pnueli 1273 and call these reactive 

programs; we call a system whose main component is a reactive program a reactive 

system. Real-time process controllers, signal processing units, digital watches, video 

games are typical examples of reactive systems. Operating system drivers, 

mouse/keyboard interface drivers (e.g., menubar or scrollbar drivers), communica- 

tion protocol emitters and receivers are examples of reactive programs embedded 

in complex systems. Notice the input-driven character of reactive programs. 

It is often convenient to consider reactive programs as composed of three layers: 

l An interface with the environment that is in charge of input reception and 

output production. It handles interrupts, reads sensors, activates effecters; it 

transforms external physical events into internal logical ones and conversely. 
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l A reactive kernel that contains the logic of the system. It handles the logical 

inputs and outputs. It decides what computations and what outputs must be 

generated in reacting to inputs. 

l A data ~an~~~ng layer that performs classical computations requested by the 

reactive kernel. 

In the rest of this paper, we shall mostly be concerned with reactive kernels that 

constitute the central and most difficult part of reactive systems. In fact, EST~REL 

is not a full-fledged programming language, but rather a program generator used 

to program reactive kernels in the same way as YACC 1321 is used to program 

parsers from grammars. The interface and data handling must be specified in some 

host language. 

1.2. Deterministic reactive programs 

Determinism is an important characteristic of reactive programs. A deterministic 

reactive program produces identical output sequences when fed with identical input 

sequences. All examples above are deterministic if physical time is considered as 

an input among others. The importance of determinism cannot be overestimated: 

deterministic systems are one order of magnitude simpler to specify, debug, and 

analyze than nondeterministic ones. 

Purely sequential systems are obviously deterministic. But determinism does nof 

mean sequentiality. Most reactive systems can indeed be decomposed into concurrent 

deterministic subsystems that cooperate in a deterministic way. For example, a 

typical digitai wristwatch contains a timekeeper, a stopwatch, and an alarm, all of 

which naturally cooperate deterministically. Deterministic concurrency is the key 

to the modular development of reactive programs and, as we shall see, is only 

supported by synchronous languages such as ESTEREL. 

Some complex reactive systems can involve several subsystems running concur- 

rently on different processors and communicating with each other via asynchronous 

links (e.g., a distributed robot arm controher). Such systems are no longer globally 

deterministic. However, we think that it is always wise to isolate their deterministic 

reactive subsystems and to use our specific techniques for them. Thus we extend 

Hoare’s Communicating Sequential Processes approach into a more general Asyn- 

chronously Communicating Deterministic Reactive Systems approach. 

1.3. The current tools in reactive programming 

Before presenting ESTEREI., we briefly review the tools that are currentfy in use 

for reactive programming: 

l Deterministic automata (also called jinite state machines) are often used to 

program relatively small reactive kernels, typically in protocols or controllers. 

The interface part is realized using operating system facilities. Data handling 

is done by calling routines written in conventional languages. Automata 

obviously yield excellent and measurable run-time efficiency. They are also 
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mathematically well-known. Nontrivial correctness proofs can be performed 

by automatic temporal-logic formula checkers such as EMC [21], MEC [2], 

XESAR [39], or by automata observation systems such as AUTO [42,43]. 

However, the human design and maintenance of automata turns out to be very 

difficult and error-prone. Nontrivial automata are difficult to draw and impos- 

sible to understand when not drawn. Small changes in specifications can involve 

deep changes in automata. Run-time actions must be duplicated on many 

transitions, thus increasing the chance of misplacing an action. Above all, 

automata are purely sequential and do not support concurrency: combining 

concurrent automata into a single automaton is never an easy task. 

l Petri-Net inspired tools such as the GRAFCET [ 111 are widely used in program- 

mable controllers. They run on specific machines that do not easily communicate 

with each other and with conventional computers. Although they include crude 

concurrency primitives, they do not support proper hierarchical development. 

Interface and data handling facilities only support simple data types such as 

boolean, integers, or reals. The programming and debugging tools are poor. 

l Sequential tasks running under a “real-time” operating system are widely used. 

They provide some kind of concurrency by splitting a complex system into 

simpler communicating tasks, which can themselves be automata. Inter-task 

communication is often done by sharing memory, which is known to be 

error-prone. It can also use system communication primitives, which are gen- 

erally low-level and differ from one system to another, yielding ad-hoc and 

highly nonportable programs. The internal program behavior is nondeterminis- 

tic, unlike the applications one wants to treat. Task handling incurs run-time 

overhead. Execution times are hard to control. There are almost no generic 

simulation and debugging tools. 

l Concurrent programming languages such as ADA [l] or OCCAM [31] are more 

elaborate. They naturally permit hierarchical and modular program develop- 

ment. Their tasking mechanism and communication primitives are defined at 

the language level and are portable. They often provide their user with interface 

and data manipulation facilities, allowing him to program in a single language 

all the three layers defined in Section 1.1. Debugging environments exist or 

will exist. However, all classical concurrent languages are nondeterministic. 

The semantics of their time-handling primitives is somewhat vague. The execu- 

tion overhead can be important, and execution times are unpredictable. 

Quite amazingly, all the available techniques force the user to choose between 

determinism and concurrency, for they base concurrency on asynchronous 

implementation models where processes nondeterministically compete for computing 

resources. This leads to problems that are really unnatural when programming 

reactive systems and when reasoning about such programs: 

l Reactions can compete with each other. New inputs can arrive before the end 

of a reaction; actions and communications in charge of performing the current 
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reaction then compete with actions and communications in charge of starting 

the new reaction. Since there is no rule telling if and when a signal sent to 

another process will reach its destination, there is no systematic way of telling 

when a reaction is complete. The only practical solution is to guarantee the 

atomicity of each reaction. Generally this is not supported by the systems and 

languages and it is never easy to do by hand. 

0 Temporal primitives such as watchdogs (e.g., “do a task in less than 3 seconds”) 

have only tentative meanings, for nothing forces them to be accurately executed. 

Since they usually play a crucial role in real-time process control, one generally 

adds priority systems to improve the user confidence in time manipulations. 

Such additions burden programs and cannot be completely rigorous either. 

l Each subprocess has its own perception of the whole system. One is even 

guaranteed that two distinct subprocesses perceive dzjiirently their environment. 

For instance, a single sensor read by two concurrent processes within a single 

reaction will probably return two different values, since the read operations 

are done at different times. 

1.4. The synchrony hypothesis 

All the above problems disappear when one adopts the synchrony hypothesis: each 

reaction is assumed to be instantaneous-and therefore atomic in any possible sense. 

Synchrony amounts to saying that the underlying execution machine takes no time 

to execute the operations involved in instruction sequencing, process handling, 

inter-process communication, and basic data handling (e.g., additions). To “take 

no time” has to be understood in a very strong sense. First, a reaction takes no time 

with respect to the external environment, which remains invariant during it. Second, 

each subprocess also takes no time with respect to any other subprocess; subprocesses 

react instantly to each other. In synchronous languages, inter-process communication 

is done by instantly broadcasting events; all processes therefore share the same vision 

of their environment and of each other. Statements take time ifand only if they say 

so; temporal statements mean exactly what they say. For instance, the statement 

“await 30 MILLISECOND” lasts exactly 30 milliseconds, and the statement 

every 1000 MILLISECOND do emit SECOND end 

means that a SECOND signal is sent exactly every thousandth MILLISECOND; in an 

asynchronous formalism, a SECOND would never be synchronous with a MILLISECOND. 

Moreover, the “time” taken by a statement does not need to be measured in some 

predefined “universal time unit”. One can as well write exact statements such as 

every 1000 MILLIMETER do emit ME7ER end 

Synchrony is certainly natural from the user’s point of view: the user of a watch 

does not worry about the internal reaction times, as long as he perceives that his 

watch reacts instantly to his commands. Synchrony is also natural from the program- 

mer’s point of view: it allows to reconcile concurrency and determinism, to write 
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simpler and more rigorous programs, to reason about them (synchronous systems 

compose very well), and to dissociate the logic of a system from implementation- 

dependent features such as reaction times. 

Of course, one should wonder how realistic the hypothesis can be from an 

implementor’s point of view. It turns out that synchronous programs can be elhciently 

compiled into jiggly e@cient automu~a, yielding excellent run-time efficiency and 

predictability. Performance is as good as that of carefully hand-written code. The 

obtained automata can be automatically implemented in any classical programming 

language, achieving object code portability. They can also be used as input for 

automata verification systems. We stress that ESTEREL is a programming ~ang~uge 

yielding small and efficient object code, not simply an idealized specification 

language that forces its user to rewrite a program after the specification is finished. 

Notice that synchrony hypotheses are very classical in physics: instantaneous 

body interaction is the basis of Newtonian Mechanics, instantaneous propagation 

of electricity is the basis of KirchofI’s laws. Within their (broad) application range, 

they make reasoning about the world simpler than more exact nondeterministic 

models such as Quantum Mechanics.’ VLSI circuits rely on a similar but weaker 

synchrony hypothesis: all reactions take one clock cycle, no matter how complex 

they are inside; the SML reactive language 1151 is based on the same hypothesis. 

This kind of half-way synchrony accurately reflects how circuits work. To our belief, 

it lacks good compositionality properties and cannot be used as the basis of a general 

reactive programming language. 

1.5. The ESTEREL imperative programming language 

As we mentioned in the beginning, several languages or formalisms have fully 

adopted the synchrony hypothesis. They have roughly the same power, but they 

differ by their programming style. LUSTRE [19] and SIGNAL [25] are declarative 

data-flow languages very much in Kahn-MacQueen style [33]. The Statecharts [26] 

are based on a hierarchical presentation of automata using graphical structures 

named ~~igrff~~~ that support concurrency and communication. ESTEREL adopts a 

more classical imperative style. 

The ESTEREL statements handle either classical assignable variables that are local 

to concurrent statements and cannot be shared, or signals that are used to communi- 

cate with the environment and between concurrent processes. A signal carries a 

status, which is its presence or absence in a given reaction, and can carry a value 

of arbitrary type. The sharing law of signals is instantaneous broadcasting: within 

a reaction, all statements of a program see the same status and value for any signal. 

The events to which statements react are composed of possibly simultaneous occur- 

rences of signals. 

’ No one would compute billiard ball trajectories in Quantum Mechanics! 
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The ESTEREL statements fall into two classes: 

l Standard imperative statements like assignment, signal emission, sequencing, 

conditional, loop, trap-exit (or exception-block definition), and explicit concur- 

rency. These statements are supposed to be executed on an infinitely fast 

machine (so that the null statement nothing does nothing in no time!). 

l Temporal statements such as triggers (await event do.. . ), watchdogs 

(do watching event), or temporal loops (loop each event). 

As we have seen above with milliseconds and millimeters, the temporal primitives 

can be applied to any signal: each signal is thought of as defining an independent 

time scale. The style we promote in ESTEREL consists of freely mixing independent 

time scales. This favors the use of preemptive primitives such as watchdogs (that 

define for how long their body will be executed) and the nesting of such primitives. 

A typical ESTEREL statement looks like 

do 

every STEP do 

emit JUMP 

end 

watching 100 MEI’EB 

which exactly means “jump every step during 100 meters”. Alone the every STEP 

statement would last forever but it is killed after 100 METER by the enclosing 

watching statement that makes the whole statement terminate. Only a small example 

of ESTEREL programming will be given here, in Section 5. More elaborate examples 

can be found in [9]. 

The ESTEREL modules and module interface declarations are presented in Section 

2. We present the ESTEREL statements in two steps. First, we present a set of basic 

ESTEREL statements in Section 3, together with their intuitive semantics based on 

the notion of instruction duration. Then we present a richer, user-friendly set of plain 

ESTEREL statements in Section 4. We show how to accurately expand plain ESTEREL 

statements into basic ESTEREL. 

1.6. The mathematical semantics of ESTEREL 

The intuitive semantics of Section 3 can be turned into a formal denotational 

semantics that globally defines the output sequence of a program as a function of 

a timed input sequence. The denotational semantics is presented in [24]; it is not 

detailed here since it is useless for compiling algorithms. 

We present in detail two mathematical semantics, given by Plotkin-style rewrite 

rules [38]: the behavioral semantics and the computational semantics. Given an input 

I to a program P, both determine the output 0 and a new program P’ suited to 

treat the remaining inputs. The global temporal treatment of statements is therefore 

replaced by a local computation of each reaction. The behavior of a program on 

any input sequence can be computed in a step by step fashion. 
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The behavioral semantics is given in Section 5. It defines globally each reaction. 

As in Kirchoff’s electrical laws, the values 0 and P’ are solutions of fixpoint 

equations that express the sharing law and determine the instantaneous information 

exchanges between concurrent statements. Since we want the language to be deter- 

ministic, we must require solutions to exist and to be unique. However, the equations 

involve nonmonotonic operators (e.g., negative tests for signal presence). There is 

no immediate way of solving them and even of knowing whether unique solutions 

exist or not. 

We exhibit in Section 6 several kinds of paradoxical programs, that have very 

close electronic analogues. For example, we show a program that should mean 

“emit a signal S if and only if this signal is not present”; the electronic analogue is 

a nof gate whose output is plugged into its input. We also show a program that 

should mean “the current integer value S of a signal S satisfies S = S + 1”; the 

electronic analogue is a positive feedback obtained by plugging the output of an 

amplifier into its input. For these nonsense programs, the equations have no solution. 

We also exhibit programs for which the semantic equations have several solutions. 

In Section 7, we present the computational semantics of programs. Instead of 

defining behaviors in a global way, we compute them as results of sequences of 

actions of an execution machine. Signals are implemented using shared memory, 

with the following read/write discipline to enforce the sharing law: a signal cannot 

be read until it can no longer be written (apparently simpler disciplines fail to reject 

all incorrect programs). A calculus ofpotentials allows us to compute action sequences 

that satisfy this new law or to detect if such sequences do not exist. We st?te our 

main theorem: when correct action sequences do exist, they all terminate and yield 

the same results (in technical terms, the computational semantics has Church-Rosser 

and strong normalization properties [3]); furthermore, the results are exactly those 

defined by the behavioral semantics. This theorem establishes the deterministic 

character of correct reactions. 

1.7. From ESTEREL programs to automata 

The computational semantics of programs can be rather efficiently implemented; 

it can therefore serve as basis for an ESTEREL interpreter. However, this interpreter 

would not be fast enough for actual real-time applications. Our next step is to 

compile ESTEREL programs into sequential automata. This is the purpose of Section 

7. We use a variant of Brzozowski’s derivative algorithm [ 10,171, which was originally 

designed to transform regular expressions into automata. The idea is to formally 

iterate the computational semantic calculations, building a graph whose nodes are 

ESTEREL terms and whose arcs bear the action sequences. Starting from a node 

bearing the initial program, we compute all possible reactions iteratively. Each time 

a new reaction is computed, the target ESTEREL term is compared to the previously 

computed terms. This process is easily shown to terminate. 

Compiling is done very fast in the ESTEREL v3 system, which does not use the 

original ESTEREL language but a kernel reactive language described in [24]. For 
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instance, the digital wristwatch described in [8] compiles in about 5 seconds on a 

SUN3, yielding a 41-state automaton involving 2494 actions. This automaton can 

be easily translated into C, LISP, ADA, or more generally into any suitable host 

language. In final machine code, it would occupy about 3 Kbytes of memory and 

have very fast and predictable reaction times, comparable to those of hand-coded 

automata. To perform behavior analysis and proofs, the automaton can also be used 

as input to the above-mentioned automata verification systems EMC, AUTO, MEC, 

or XESAR. 

By itself, the translation to automata justi$es the synchrony hypothesis. If not 

instantaneous, run-time reactions are as fast as they can be. Microstep sequences 

only contain actions that must be done at run-time. Process handling and synchroniz- 

ation are done at compile time, therefore produce no actions. This is clearly the 

best way to be infinitely fast. 

As far as code size is concerned, the produced automata turn out to be minimal 

in most cases (we do not know exactly why). Unlike in asynchronous formalisms, 

automata explosion is not the rule. For programs that yield unreasonably big 

automata, the ESTEREL v3 system gives a way to replace the normal single automaton 

by a cascade of small automata that behave equivalently. See [9] for details. 

2. The ESTEREL module structure and the global declarations 

In both basic and plain ESTEREL, the programming unit is the module. A module 

has a name, a declaration part, a body, and ends with a period.’ 

module MOD : 

declaration part 

body 

The declaration part declares the external objects used by the module: data objects 

to be implemented in the data handling layer, signals and sensors that define the 

reactive interface. Their declarations are inter-dependent since signals and sensors 

can carry values of types declared in the data declarations. All objects must be 

declared before they are used. The declarations are similar in basic and plain 

ESTEREL; some restrictions apply to interface signals in basic ESTEREL. 

The body is an executable statement, written either in a restricted instruction set 

in basic ESTEREL or in a user-friendly instruction set in plain ESTEREL. The instruc- 

tion sets will be detailed in Sections 3 and 4. 

2.1. Data declarations 

Data declarations declare the types, constants, functions, and procedures that 

manipulate data. ESTEREL has a few primitive types described below, but no 

’ The lexical aspects of ESTEREL are classical; the 
identifiers in upper-case but this is not compulsory. 

are in lower case and reserved: we write 



96 G. Berry, G. Gonthier 

compound type constructors such as record or array. Complex data handling is 

done at an abstract level: data have abstract types and are manipulated by abstract 

functions and procedures only known by their names, to be implemented in a host 

language. See [S] for connecting ESTEREL declarations with actual definitions in 

host languages. 

2.1.1. Type declarations 

Basic E~TEREL has three primitive types: integer, boolean (with constants true 

and false), and triv (with a unique constant also called triv). These types are 

necessary to translate plain ESTEREL into basic ESTEREL (triv is used to turn plain 

ESTEREL pure signals into basic ESTEREL valued signals of type triv, see below). 

For user’s convenience, plain ESTEREL defines some other basic types such as string 

and float, with the classical syntax of string and float literals. 

The user can declare his own abstract types by listing them after the type keyword: 

type DOUBLE, TIME; 

2.1.2. Constant declarations 

One can declare constants of predefined or abstract types: 

constant MEASURE_NUMEXR : integer, PI : DOUBLE, NOON : TIME; 

Of course the types must have already been declared. The values are given in the 

host language, not in ESTEREL. 

2.1.3. Function declarations 

Functions are declared as usual: 

function SQRT (DOUBLE) : DOUBLE, 

EQUALTIME (TIME, TIME) : boolean; 

Functions are assumed to be free of side-effects. Their implementation is written in 

the host language. 

2.1.4. Procedure declarations 

Procedures have two argument lists: in a procedure call, the first list contains 

variables passed by reference and subject to side-effects (like var parameters in 

PASCAL or inout parameters in ADA); the second list contains expressions passed 

by value (like val parameters in PASCAL or in parameters in ADA). In the declaration, 

only the argument types are declared. For example, to add-in-place a number of 

seconds to a time. one can declare: 

procedure IN CREMENT_TIME_BY_SECONDS (TIME) (integer); 
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2.2. Interface declarations 

One must declare the signals and sensors that constitute the module’s reactive 

interface (a sensor is a degenerate kind of signal available in plain ESTEREL). One 

can also declare input relations that restrict possible input events and are important 

for compiling programs. 

Signals have instantaneous ticks (i.e., interrupts) that serve as control information 

for the temporal statements described in Sections 3 and 4. Clock pulses, button 

depressions, or message arrivals are typical examples of ticks. A signal S can also 

have a persistent value of some type, that can be accessed at any time in ESTEREL 

programs by the expression “KY’. For example, the value of a message signal can 

be the contents of the message. 

The following relation between ticks and values is assumed to hold for input 

signals: the value of a signal can change only when a tick occurs; in this case the 

new value instantly replaces the old value, which is lost. In our message example, 

the message value can only change when a new message is received. Hence, a 

program driven by the message ticks is guaranteed to correctly treat all messages. 

This fundamental relation between ticks and values will automatically hold for 

output and local signals (see the sharing law in the next section). 

In plain ESTEREL, there is a special sensor declaration for passive external devices 

such as thermometers, which yield values on demand but do not generate ticks. 

Only the value access operation “?” is available for sensors. 

2.2.1. Basic ESTEREL interface declarations 

In basic ESTEREL, there are only two kinds of interface signals: input signals and 

output signals. Input signals come from the environment; they cannot be emitted 

internally in basic ESTEREL. They are declared with the form: 

input S (type); 

Conversely, output signals are emitted towards the environment of the module by 

the “emit” statement: “emit S( exp)” emits a signal S with the value of the expression 

exp. Since control transmission is instantaneous in ESTEREL, several emitters can 

emit the same signal at the same time with different values, as in 

emit S(1) I( emit S(2) 

where “II” is the ESTEREL parallel operator. We call this phenomenon a collision. 

When collisions occur, we have to define the actual value ?S of the signal. Following 

Milner [36], we associate an associative commutative combination function comb 

with each signal S. If the emitters emit the values v, , vz, . . . , v,, the actual value 

of S is 

comb(q) comb(v,, . . . comb(v,-, , v,) . . )). 

An output signal declaration has the form: 

output S (combine type with comb) ; 
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where type and comb must already have been declared, with comb declared as 

function comb(type, type) : type; 

Here are some useful combination functions: 

1. In Ethernet-like local networks, signal broadcasting is physically realized on 

a cable. A special value NAK represents the collision of any two messages. One sets 

comb( u,, v2) = NAK for all U, and v2. 

2. In a request handling mechanism, several processes can request the same 

resource simultaneously, say by broadcasting their name. A natural choice is to take 

as result the set of these names. The appropriate combination operation is set union. 

3. In the digital watch programmed in [9], the timekeeper, stopwatch, and alarm 

can operate a beeper. The timekeeper beeps once a second, the stopwatch beeps 

twice a second, and the alarm beeps four times a second. If some of these units 

beep together, the resulting number of beeps per second is obtained by adding the 

individual numbers. Hence seven beeps per second occur when the three units beep 

together. We simply define a BEEP signal that carries an integer representing the 

required number of beeps and choose integer addition as the comb function. 

2.2.2. Plain ESTEREL interface declarations 

In practice, one often uses pure control signals whose values are meaningless, 

such as SECOND, METER, etc. In basic ESTEREL one has to declare such signals of type 

triv. In plain ESTEREL, one can simply omit the type declaration, writing 

input SECOND, hETER; 

output ALARM; 

Also, one may know that collisions will never take place for a given signal (this 

indeed tends to be the default case). The combination function can then be omitted: 

output SPEED (float); 

The ESTEREL compiler then checks that collisions can never appear. 

Basic ESTEREL establishes a sharp distinction between input and output signals. 

This restriction is relaxed in plain ESTEREL, which allows for signals that can be 

both input and output. A natural example is: 

inputoutput BUS-REQUEST; 

The semantics of inputoutput signals is a bit delicate and will not be detailed here. 

See [8] for details. 

Finally, sensors are declared in the following way: 

sensor TEMPERATURE (FAHRENHEIT) ; 

The compiler will check that temporal instructions such as delays are not applied 

to sensors (remember that only the “?” operator applies to them). 
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2.2.3. Relation declarations 

Relation declarations restrict the possible input events of a module. There are 

two kind of relations: 

1. incompatibility relations of the form S1 # S2 # S, ; such a relation states that the 

signals S1 , S, , and S, are mutually exclusive in input events; 

2. synchrony relations of the form S1 => S;; this relation tells that S2 will be 

present in an input event whenever S, is. 

Here is an example of relation declarations: 

relation LEFT_BU’lYON#RIGHT_BUTTON, 

SECOND=>HUNJlFXDTH_OF_SECOND; 

There are two reasons to use input relations. First, the specification may require 

signals not to appear together: for a watch, it makes no sense to go simultaneously 

in stopwatch and alarm mode. Second, relations are essential to reduce the size of 

the generated automaton. See Section 9.3 for details. 

3. The basic ESTEREL instruction set and its naive semantics 

We describe the expressions and statements used in basic ESTEREL, together with 

their intuitive semantics. The basic statements form the heart of ESTEREL. They are 

independent of each other. We use the meta-variables type, exp, and stat to range 

over types, expressions, and statements; we also use self-explanatory meta-variables 

in italics when necessary. 

ESTEREL expressions and statements manipulate variables and signals, which can 

be declared locally at any point. The variables and signals strongly differ in that 

only signals can be shared. Within statements, there is no difference between input, 

output, or local signals. 

3.1. Expressions 

Expressions are used in a classical way to denote values. They are built up from 

constants, variables, and signal values, by operators and function calls. They are 

strongly typed in a classical way (see [8] for precise type-checking laws). 

The constants are the natural numbers such as 123, the boolean constants true 

and false, and the user-defined constants declared in the module’s constant declar- 

ation part. The variables are classical identifiers (see variable declarations below). 

If S is a signal of type type, then ?S is an expression of type type that denotes the 

current value of the signal S at the time the expression is evaluated (see below). 

The operators are the usual integer and boolean operators (+, l , <=, etc). The 

function calls are standard (the function must be declared in the module’s declaration 

part). 
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3.2. Basic statements 

Here is the list of the basic statements: 

nothing dummy statement 

halt halting statement 

X := exp assignment statement 

call P (variable-list) (expression-list) external procedure call 

emit S( exp) signal emission 

star, ; stat2 sequence 

loop stat end in~nite loop 

if exp then stat, else stat, end conditional 

present S then stat, else stat, end test for signal presence 

do stat watching S watchdog 

stat, 11 stat, parallel statement 

trap T in stat end trap definition 

exit T exit from trap 

var X : type in stat end local variable declaration 

signal S (combine type with comb) in stat end 

local signal declaration 

The emit, present I and watching statements are specific to ESTEREL; they deal 

uniformly with input signals, output signals, or local signals declared by local signal 

declarations. An exit statement exits a control block defined by a trap statement. 

This kind of construct is well-known in LISP as the catch-throw or tag-exit construct, 

in ML as the failure construct, or in ADA as the exception construct. In our case, 

the interaction between exit and parallel statement has to be carefully defined; we 

shall give a first-class semantic status to trap-exit statements, instead of explaining 

them loosely as control-flow diverters. All other statements are common in imperative 

languages. Notice that the parallel statement can be used at any level; there is no 

static notion of process as in CSP [29]. 

In compound statements, the sequencing operator “;” has priority over the parallel 

operator “II”. When necessary, statements can be grouped by bracketing them with 

square brackets, as in “[stat, I] stat,]; stat,“. 

All variables, signals, or trap labels must be declared before they are used. Their 

declarations have static scope. Input, inputoutput, and output signals have global 

scope. 

Variables cannot be shared: if a variable is updated in one branch of a parallel 

statement, it cannot be read or updated in the other branch (a variable is updated 

by an assignment or a procedure call where it appears in the first argument list). 

The following additional restrictions apply to basic E~TEREL programs: 

l input signals cannot be internally emitted. 

l The present S statement and the value access ?S are not allowed for output 

signals. 
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These restrictions simplify the mathematical semantics. They are suppressed in plain 

ESTEREL (however, the compiler produces warnings when they are not satisfied). 

3.3. The intuitive semantics 

The intuitive semantics describes the behavior of a module on a given input 

history. Let us call input event the occurrence of one or possibly several simultaneous 

input signals coming from the environment. The module reacts to each input event 

by updating local variables and emitting local and output signals. The emitted output 

signals make up the output event sent to the module’s environment. This whole 

process is called the reaction to an input event. The reaction is assumed to be 

instantaneous: the output event is synchronous with the input event. A sequence of 

input events is called an input history; the events define the instants of the history. 

Reactions only occur on input events; the underlying execution machine is inactive 

between input events. 

The signals that constitute the events all obey the following sharing law: 

l A signal has a fixed status in each reaction: it is either present or absent. To 

be present, a signal must either be present in the input event if it is an input 

signal or be emitted by the program if it is a local or output signal. 

l A signal has a unique current value ?S in each reaction. If a signal is present 

in a reaction, its value is its current input value if the signal is input or is the 

combination of all the emitted values if the signal is output or local. If a signal 

is absent, its current value is the same as in the previous reaction. Before its 

first emission, the value of a local or output signal is the undefined value 1. 

(Intuitively, the sharing law should imply program determinism; as we shall see in 

Section 7, this is only true for “correct programs”.) 

Since variables are not shared between statements, they can be updated several 

times within a single reaction. Their initial value is also 1. 

The key idea of the intuitive semantics is to describe formally not only the actions 

performed by each statement (memory updates, signal emissions, or tests), but also 

their timing, that is, at which “instant” they are performed. Signal current values 

and in general all subprocess interaction will be defined solely in terms of timing. 

To describe this timing in a structural way, the semantics relies on four notions. 

First, the context of each statement in a program determines the instant this statement 

starts executing; second, the internal execution of this statement determines when 

it terminates, if it ever does. When a statement terminates on the same instant it 

starts, we say it terminates instantly, or that it is instantaneous. Almost everything 

in ESTEREL is instantaneous: expression computations, memory updates, communi- 

cation, and control transmission. Third, since ESTEREL has block exits, the execution 

of a statement can also determine when it exits a trap; a statement that exits a trap 

does not terminate in the above sense (however, it is inactive from there on). A 

statement that does not terminate nor exit a trap instantly is said to take time. 

Finally, a statement can be aborted or killed by some other part of the program, at 
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some instant; it is then prevented from performing any actions (or terminating, or 

exiting) from then on. 

The semantics is structural and describes the relations between these notions for 

statements and their substatements: 

l The module body starts upon reception of the first input event. It never 

terminates (it is therefore implicitly followed in sequence by a halt statement). 

l nothing performs no action and terminates instantly. 

0 halt performs no action and never terminates nor exit traps. 

l An assignment updates the memory and terminates instantly. 

l A procedure call updates the memory and terminates instantly. (Long computa- 

tions to be performed while the program is inning should not be realized by 

procedure calls. They should be realized by sending the arguments to some 

external computing devices and waiting for the results, using signals for value 

communication. A specific time-consuming exec primitive will be added to 

ESTEREL in subsequent versions.) 

l When it starts, an emit statement evaluates its expressions to a value, emits its 

signal with this value, and terminates. 

l The first statement of a sequence starts when the sequence starts. When the 

first statement exits a trap, so does the sequence (the second statement then 

never starts). When the first statement terminates, the second statement starts 

instantly and the sequence behaves as the second statement from then on. 

l The body of a loop starts when the loop starts. When the body terminates, the 

loop is instantly restarted. A loop never terminates. When the body exits a trap, 

so does the whole loop (hence exiting an outer trap is the only way to exit a loop). 

l When started, a conditional instantly evaluates its condition. If the condition 

is true, the then statement starts instantly and the conditional behaves as this 

statement from then on. The behavior is symmetric if the condition is false. 

l A present S statement acts as a conditional, the condition being the presence 

of the signal S in the current reaction. (Notice that this condition cannot be 

expressed by a boolean expression.) 

l A “do stat watching S” statement gives a time limit to the execution of its body 

stat; the limit is the next reaction where S is present. The body starts instantly 

when the watching statement starts. If the body terminates or exits a trap strictly 

before S occurs, so does the watching statement. Otherwise the watching 

statement terminates as soon as S occurs. In this case, the body is instantly 

killed wjt~~~t being executed; it performs no action and exits no trap.3 (Unlike 

in other languages, there is no implicit loop in a watching statement, which is 

not restarted when terminated.) 

’ Be careful: an S present in the reaction that starts the watching statement is not taken into account 

for termination; the watching statement described here was called “watching next S” in older versions 
of ESTEREL; next is always the default in the present version. 
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The two branches of a parallel start when the parallel starts. If one of the 

branches exits a trap, so does the parallel statement, and both branches are 

inactive from then on. If both branches exit several traps simultaneously, the 

parallel only exits the outermost trap, the other ones being discarded. Otherwise 

a parallel statement terminates if and when both its branches have terminated. 

A trap T construct defines an exit point for its body. The body starts instantly 

and determines the behavior of the trap statement until it terminates or exits 

a trap. If the body terminates or exits T, the trap statement instantly terminates. 

If the body exits an outer trap T’, so does the trap statement. 

An exit T statement exits T and doesn’t terminate. 

A local variable declaration declares a variable initialized to i and behaves as 

its body from then on. 

A local signal declaration declares a signal initialized to I, and behaves as its 

body from then on. 

Remarks on imperative statements 

A reaction can instantly execute several actions. The following statement executes 

two successive assignments to X and two signal emissions in the reaction that starts 

it: 

x := 1; x := x+1 

II 
emit S1; emit S2 

Even when they are done “simultaneously”, variable updates are done in the 

specified order; as expected, the final value of X is 2. On the contrary, because of 

the sharing law, the ordering between the two signal emissions is immaterial. One 

could just as well put them in parallel. 

There is a problem with loops. One can write absurd loops such as 

loop 

x := x+1 

end 

where one should instantaneously execute infinitely many additions and memory 

updates. To forbid this situation, we impose that the body of a loop cannot terminate 

instantly when started (this is detected at compile time). 

Notice that we introduced two conditional statements: “if” that tests boolean 

expressions, and “present” that tests for the presence of signals. We could as well 

introduce a boolean expression “present S” true if and only if S is present in the 

current reaction and use the form “if present S then. . . ” to test for the presence 

of S. However, signals and booleans behave differently: the presence and value of 

a signal are uniquely defined in a reaction, while a boolean variable can be updated 

several times in an instant; moreover, the watching primitive is available for signals 

and not for boolean expressions. 
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In conditionals, we allow ourselves to suppress nothing statements appearing 

after then or else keywords, together with the corresponding keyword. For example: 

if exp then stat end 

stands for 

if exp then stat else nothing end 

and 

present S else stat end 

stands for 

present S then nothing else stat end 

This form is especially useful for the present statement: “present S else stat end” 

is a test for absence of S. 

Finally, to illustrate the interaction between exit and parallel statements, let us 

analyze a toy example: 

trap Tl in 

trap T2 in 

x := 0 

II 
Y := 0; exit T2 

Z := 0; exit Tl; Z := 1 

end; 

u :=o 

end 

Here the assignments X := 0, Y := 0, and Z := 0 are performed simultaneously, as 

the actions of the parallel branches. The assignment Z := 1 is not performed since 

it follows in sequence an exit statement that does not terminate. The parallel 

branches exit both Tl and T2. Since the trap Tl construct encloses the trap T2 one, 

the T2 exit is discarded and only Tl is exited. Therefore the whole statement 

terminates instantly, and the assignment U := 0 is not executed. 

3.5, Remarks on temporal statements 

According to our sharing law, two simultaneous actions are executed in the same 

signal environment (for signals that are visible in both statements). This realizes 

communication by instantaneous broadcasting between emitters and receivers. 

Consider the following example, where S is an integer signal with addition as 



combination function: 

emit S(2); 

Y := ?S 

105 

II 
emit S(1); 

present S then 

X := ?S 

end 

Here the two emissions are simultaneous, the present statement sees S as present, 

and both X and Y receive the value ‘75 equal to 3 = I+ 2. 

The only way for a statement to take time is to involve a halt statement, which 

takes an infinite amount of time; conversely, a watching statement limits the time 

taken by its body. All temporal manipulations in basic ESTEREL are combinations 

of halt and watching statements. The simplest example of such an interaction is 

the following construct, which waits for the next occurrence of S and terminates: 

do halt watching S 

In plain ESTEREL, this construct is abbreviated into “await S". To simplify our 

examples, we also use this abbreviation in basic ESTEREL examples. 

To illustrate the temporal behavior of the watching statement, let us look at a 

simple example. Assume that 11, 12, and 13 are input signals and that 01 and 02 

are output signals. Let “II --+ 01” be a statement that emits 01 whenever it receives 

11 (in plain ESTEREL., we shall write “every immediate 11 do emit 01 end”, see the 

next section). Then the statement 

do 

11 --+ 01 

watching 12; 

emit 02 

emits 01 whenever it receives 11, up to the first reaction where 12 occurs in the input 

event, initial reaction excluded; when 12 occurs, 01 is not emitted since the body 

of the watching statement is not executed, and 02 is emitted since the watching 

statement terminates. Here are some behaviors: 

Jesus 11 13 11 I2 

output 01 E 01 02 

input I1 12 13 11 12 

output 01 E 01 02 

input E 13 I1 11 . 12 

output E E 01 02 

input 12 12 11 12 

output E 02 t E 

11 
E 

11 

E 

11 

E 

11 

E 
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In a watching S statement, the body is nof executed if the reception of S terminates 

the watching construct. We want to motivate this important choice. First, notice 

that the other choice, “execute the body action in the instant where S is present and 

terminate”, can be coded as 

trap T~INATE in 

stat; 

exit TEBMINATE 

II 
await S; 

exit !PERMINATE 

end 

The trap construct is exited either when stat terminates or when S occurs. In the 

latter case, stat is executed at the instant where S occurs, since it precedes the exit 

statement in a sequence. No simple reverse coding exists to obtain our original 

semantics for watching from this alternative one. 

Second, nesting watching statements establishes priorities between signals. Con- 

sider the example: 

do 

await Sl; 
X:=0 

watching S2 

The behavior is as follows: 

Sl occurs strictly before 52: when Sl occurs, X is set to 0 and the whole construct 

terminates. 

52 occurs strictly before Sl: the whole construct terminates when S2 occurs; the 

assignment is not executed. 

Sl and 52 occur simulta~eous~y~ the body of the watching S2 is not executed 

when the signals occurs; hence the whole construct terminates without executing 

the assignment, as in the previous case. 

Therefore the outermost signal S2 has instantaneous priority over the innermost 

signal Sl. 

Asynchronous languages usually possess watchdogs analogous to our watching 

statement but restricted to some “absolute time” measured in seconds (or worse, 

in some machine-dependent unit). Their semantics cannot be made completely 

rigorous. In ESTEREL, watching statements are well-defined and applicable to any 

signal, not just to absolute time; the nesting of watching statements on different 

signals is one of the bases of the ESTEREL programming style (see Section 5). 
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Let us finally mention a subtlety concerning local signals: a local signal can be 

emitted si~ultu~eou~ly in difirent scopes. Consider the example 

integer ) 

module FOO: 

input Sl (integer); 

output 52 (integer), 53 ( 

loop 

signal S (integer) in 

emit S(0); 

await Sl; 

emit S(1) 

II 
emit S2(?S); 

await S; 

emit S3(?S) 

end 

end 

When the loop starts, S is emitted with value 0 and S2 is output with value 0. Then, 

when Sl occurs, S is emitted with value 1 and S3 is output with value 1, the parallel 

and local signal de~laratjons terminate, the body of the loop is restarted instantly 

with S reinitialized, S is instantly emitted with value 0, and S2 is instantly output 

with value 0. The two simultaneous emissions of S don’t occur in the same instance 

of the local signal declaration and don’t have to be combined: this is clear when 

one unfolds once the loop before executing it. 

The semantics presented here treats correctly this example, while the initial 

semantics of ESTEREL [S] and the ESTEREL v2 system treated it incorrectly. 

4. The plain ESTEREL instruction set 

There are three kinds of extensions available in plain ESTEREL: extensions con- 

cerning the signals and the signal interface, some user-friendly statements, and the 

copytnodule directive for modular programming. We have already detailed the plain 

ESTEREL signals in Section 2; the copymodule directive will be described at the end 

of this section. 

The extended instructions are derived from the basic ones by macro-expansion. 

Being the most powerful control structure, the trap-exit mechanism is heavily used 

in the expansions (we have already seen an example in the previous section). 

4.1. Miscellaneous easy extensions 

We give some extensions without detail (see [S] for exact expansions). One can 

initialize variables at declaration time (the appropriate assignment is generated). 
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One can declare several variables or signals in local variable or signal declaration. 

One can define a repeat loop of the form 

repeat exp times 

stat 

end 

The repeat construct expands into a loop nested within a trap, an if-then- else 

statement exiting the trap when the count expires. 

4.2. Occurrence counts and timeouts in watching statements 

In watching statements, it is often convenient to distinguish between the body’s 

normal termination and the timeout termination caused by the occurrence of the 

signal. For this, one adds a timeout clause: 

do 

stat, 

watching S 

timeout stat, 

end 

The expansion is easy: 

trap TERMINATE in 

do 

stat, ; 

exit TERMINATE 

watching S; 

stat, 

end 

In basic ESTEREL, a time limit is the next occurrence of some event; in plain ESTEREL, 

one allows two other forms of time limits. The first one is an occurrence count of 

the form “exp S”, where exp is an integer expression. For instance, one can build 

seconds from milliseconds in the following way: 

loop 

await 1000 MILLISECOND; 

emit SECOND 

end 

(This is still heavy and will be further improved later on.) The theoretical expansion 

uses an auxiliary local signal and a repeat loop (we leave this to the reader). In 

practice, occurrence counters are so useful that they are built-in primitives in the 

actual ESTEREL systems [8]. 

The second generalized occurrence form is called the immediate form. Remember 

that the starting event is not taken into account for timeout in a watching statement. 
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The following form takes it into account4: 

do 

stat 

watching immediate S 

The expansion is 

present S else 

do stat watching S 

end 

Occurrence counts and immediate occurrences are available for all the temporal 

statements described below. 

4.3. The upto statement 

The upto statement is similar to the watching statement, but it doesn’t terminate 

when its body terminates: only the timeout terminates an upto statement. The 

construct “do stat upto S” expands into 

do 

stat; 

halt 

watching S 

Unless its body exits some enclosing tag, an upto statement is guaranteed to take 

the exact time mentioned in its time limit. 

The upto statement was taken as primitive in the older versions of ESTEREL [5]. 

One can indeed define watching from upto; howeverwatching has several advantages 

as a semantic primitive (see [24]). 

4.4. Await statements 

We have already written “await S” for “do halt watching S”. To point out the 

dependency of a statement on the arrival of a signal S, one can also write 

await S do stat end 

instead of “await S; stat”. 

The most general form of the await statement is the multiple await. For example, 

one can write: 

await 

case SECOND do stat, 

case 2 METER do stat, 

case immediate ALARhI do stat, 

end 

4 Be careful: "watching immediate" was called “watching" in older versions of ESTPREL! 
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The first elapsed delay determines the case to execute. Unlike the similar selection 

statement found in classical asynchronous languages, ours is deterministic. If two 

delays elapse simultaneously, only the first case in the list order is selected. For 

instance, if there is no ALARM and if 2 MFIER and SECOND are reached simultaneously, 

only star, is executed. See the expansion in [S]. 

4.5. Temporal loops 

Let us come back to the production of seconds from milliseconds programmed 

above. A much simpler form is 

every 1000 ~~ISECO~ do 

emit SECOND 

end 

The expansion of “every S do stat end” is simply 

await S; 

loop 

do stat upto S 

end 

One first waits for the signal (or the signal’s occurrence count). One then starts the 

body stat; this body is restarted afresh at each occurrence of the signal (or of the 

signal’s occurrence count). 

The next temporal Ioop is similar but the body is started at once: 

loop stat each S 

expands into 

loop 

do stat upto S 

end 

4.6. exceptions 

Plain ESTEREL includes a general exception handling mechanism that extends 

the basic trap mechanism by allowing exit handlers and value passing. Here is an 

example of the general construct: 

trap ALARM (combine integer with +), 

~O_DIVIDE, SINAI in 

stat 

handle AL,ARhl do stat, 

handle ~O_DIVIDE do stat, 

end 
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We call stat the body and stat, and stat, the exception handlers. The body can 

contain generalized exit statements of the form “exit fU&b~(exp)” or “exit 

ZERO-DIVIDE". If such a statement is executed when executing the body then the 

body is instantly exited and the corresponding handler is instantly started if present 

(here TERMINATE has no handler). As far as values are concerned, valued exits behave 

much like signals: if several “exit ALARM( exp)” are raised then the value of the 

AL.ARM exit is obtained by combining the values with the addition function; this value 

can be accessed in the ALARM handler via the special expression 

??ALARh! 

The double question mark is used to distinguish exceptions from normal signals: 

the signals and exits don’t belong to the same name space. The expression “??AI_&W’ 

is only allowed in the ALARM handler. 

Several different exits can be raised simultaneously. If they belong to different 

trap constructs, only the outermost ones matter. If they belong to a single trap 

construct, the corresponding handlers are executed in parallel. 

See [8] for the general expansion of this statement. 

4.7. The copymodule directive 

Plain ESTEREL has a limited form of modularity, given by the directive 

copymodule MODULE 

This directive can appear anywhere in a statement’s place. It is replaced by the text 

of the copied module with consistency verifications for interface and declarations. 

Copying cannot be recursive but can be nested to any depth. Renamings are also 

allowed in the copying process, see [8]. See Section 5 and Appendix A for an example. 

5. A programming example 

As a simple but illustrative example, we program the reflex game machine 

described in detail in [9]; a more complex wristwatch example appears in the same 

paper. The full ESTEREL reflex game program is shown in Appendix A. 

5.1. The rejlex game specljications 

The player controls the machine with three commands: putting a coin in a COIN 

slot, to start the game; pressing a READY button, to start a reflex measure; pressing 

a STOP button, to end a measure. 

The machine reacts to these commands by operating the following devices: a 

numerical display DISPLAY that shows reflex times; a GO lamp that signals the 

beginning of a measure; a GAMEOVER lamp that signals the end of a game; a RED 

lamp that signals that the player has tried to cheat or has abandoned the game; a 

BELL that rings when the player hits a wrong button. 
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When the machine is turned on, the display shows 0, the GAME_OVER lamp is on, 

the GO and RED lamps are off. The player then starts a game by inserting a coin. 

Each game is composed of a fixed number MJxSUFZ_NUMEKR of reflex measures. A 

measure starts when the player presses the READY button; then, after a random 

amount of time, the GO lamp turns on and the player must press the STOP button as 

fast as he can. When he does so, the GO lamp turns off and the reflex time measured 

in milliseconds is displayed on the numerical display. A new measure starts when 

the player presses READY again. When the cycle of MEASURE_NUMEXR measures is 

completed, the average reflex time is displayed after a pause of PAUSE-LENGTH 

milliseconds and the GAME-OVER lamp is turned on. 

There are five exception cases. Two of them are simple mistakes and make the 

bell ring: 

l the player presses STOP instead of READY to start a measure; 

l the player presses READY during a measure. 

In the other three cases, the RED and GAME-OVER lamps are turned on, the GO lamp 

is turned off, and the game ends: 

l the player does not press the READY button within LIMIT-TIME milliseconds 

when he is expected to (one assumes that the player has abandoned the game); 

l the player does not press the STOP button within LIMIT-TIME milliseconds when 

he is expected to (that is, after the GO light turns on; this is also assumed to be 

an abandon); 

l the player presses the STOP button after he has pressed the READY button but 

before the machine turns the GO light on, or at the same time that this happens 

(this is a cheat!). 

A last anomaly appears if the player inserts a coin during a game. Then a new game 

is started afresh at once. 

5.2. The de&rations of REFLEXGAME 

There are three parameters to the game which are declared as integer constants. 

Notice that their values are not given in the ESTEREL program; they must be given 

in the host language. To determine the random delay length, we use an external 

function RANDOM also defined in the host language. 

The input declarations declare the millisecond time unit MS and the three user 

commands. Notice that no absolute time is predefined in ESTEREL: time is just one 

signal among others. As far as input relations are concerned, all input signals are 

assumed to be incompatible, except MS and STOP: if the player presses STOP simul- 

taneously with the occurrence of MS that terminates the random delay then he must 

be considered as a cheater. 

To control a lamp (say GO), we introduce two output signals ON and OFF (hence 

GO-ON and GO-OFF). We could as well use a single signal conveying a boolean value, 

as in the wristwatch example [9]. As well we have output signals for the display 

and to ring the bell. 
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5.3. An AVERAGE submodule 

We use a general-purpose submodule to compute the average response time. This 

simple module emits AVERAGE-VALUE whenever it receives INCREMENTAVERAGE with 

a new argument: 

module AVERAGE : 

input IN CREMENl_AVBRAGE( integer) ; 

output AVERAGE_VALLJE(integer); 

var TOTAL := 0 : integer, NUMBER := 0 : integer in 

every immediate INCREMENT-AVERAGE do 

TOTAL := TOTAL + ? INCREMENT -AVERAGE ; 

NuhlBER:=NuMBBR+1; 

emit AVERAGE-VALUE (TOTAL/NUMBER) 

end 

end. 

5.4. The body of REFLEXGAME 

The body is composed of two successive parts: some overall initializations and 

a main loop over a single game which is restarted whenever a coin is inserted. This 

main loop is simply controlled by an “every COIN” statement. Within a single game, 

we declare an ERROR exit to handle the cheating tentatives and an END-GAME exit to 

handle the normal game termination; we need this last exit since the actual statement 

that treats a single game is put in parallel with a copy of the AVERAGE module which 

never terminates. A single game is a sequence of a measure loop and a termination 

action (turning GAME-OVER on). Each measure is divided into three phases. In phase 

1, one waits for READY with a time limit of LIMIT-TIME MS, ringing the bell whenever 

STOP is pressed. This is easily written, nesting three temporal statements bearing on 

three different time units: 

do 

do 

every STOP do emit RING-BELL end 

upto READY 

watching LIMIT-TIME NLS timeout exit ERROR end 

Phase 2 consists of waiting for RANDOM MS while phase 3 is waiting for the STOP 

button. During these phases, pressing READY rings the bell: this is treated by putting 

an “every READY” statement in parallel with the phase 2 - phase 3 sequence. In 

phase 2, the specification says “STOP should not be pressed within RANDOM MS”; we 

rewrite this in the positive form “RANDOM MS should occur within a time limit of 

STOP”,in ESTEREL: 

do 

await RANDOM( ) MS 

watching STOP timeout exit ERROR end 
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This shows how useful temporal statements are for arbitrary signals and not just 

on some privileged absolute time unit. The full code is in Appendix A. It should 

be self-explanatory. 

6. The behavioral semantics of ESTEREL 

Our purpose is to give a mathematical definition of the semantics of basic ESTEREL. 

The intuitive semantics was given in terms of statement duration measured in signal 

occurrences. A formal denotational semantics corresponding to this intuitive concept 

is presented in [24]. The behavioral semantics we present in this section is different 

in spirit and more suited to practical implementations. Given any program and 

input event, it determines the output event generated by the program reaction and 

a new program able to handle subsequent input events. The duration semantics is 

replaced by a one-shot semantics involving program rewritings, in the spirit of 

natural deduction semantics based on structural deduction rules [38]. 

Usual natural deduction semantics are “executable”: their rules can be directly > 

used for building interpreters. The behavioral semantics presented here doesn’t have 

this property, since the treatment of the sharing law involves an “uneffective” fixpoint 

operation in the local signal declaration rule. However, the behavioral semantics 

serves as a formal dejinition of ESTEREL: any operational semantics should agree 

with it as far as input-output behavior is concerned. In Section 8, we present such 

a more effective but more complex execution semantics together with the theorem 

that ensures it agrees with the behavioral semantics. 

6.1. Formal deJnitions of events and histories 

An event 

E=S,(v,).S,(v,)..,S,(v,), n20, 

is a set of signals that are simultaneously emitted with the corresponding values. If 

S appears in E with value v, we write SE E, S(v) E E, and E(S) = v. Otherwise we 

write S@J E. The empty event is called E; it contains no signal. 

In semantic rules, we replace the ESTEREL notation comb(x, y) for signal value 

combinations in collisions by the more convenient notation x * ,y. We extend the 

combination operation to events, defining the synchronous product E = E, * E2 of 

two events E, and E2 componentwise on signals: 

S(U,)EE ifS(v, andSeEE,, 

S(V~)E E if S(v,)E E2 and SPZ E,, 

S(v 1*sv2)~E ifS(v, andS(u,)EEZ, 

S@E ifs&E, andS@E,. 

Clearly, E * E = E holds for any event E. 
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Events only contain positive information about emitted signals. To mode1 the 

persistence of values, we introduce complete events g that also include the value 

information of absent signals. Call a set of signals a sort 9. In a complete event, a 

signal of a given sort Y can appear either as S’(v) if S is emitted with value u or 

as S-(v) if S is not emitted and has current value U. 

AhistoryH=EO,E ,,..., E ,,,... is a possibly infinite sequence of events; H[n] 

denotes the finite history E,,, E,, . . . , E,. A complete history fi is a sequence of 

complete events &, that respects the persistence law for signal values. That is, it 

satisfies: 

S-E & implies E,(S) = I, 

S(v) E &+, implies g,(S) = U. 

Assume that all signals in a history H belong to a sort Y. Then the completion fi 

of H with respect to 9 is defined as follows, for each SE Y: 

S(I)E & iff S@ E,, 

S+(v)& iff S(v)E E,, 

S-(v) E &,+, iff S&E,+, and s,,(S) = v. 

Example. Consider the sort Y = {Sl, S2). Here is a history and its completion: 

H Sl(O) S2(1) e Sl(2) * s2(2) 

fi sl+(o) . S2_(1) SC(O) . S2+(1) Sl_(O) * s2_(1) s1+(2) . s2+(2) 

The current value of a signal S at the nth step in a history H is thus fifl(S). 

6.2. Module derivatives 

Given an input history I, a program P computes an output history 0 such that 

the nth output event 0, only depends on the input sequence I[n] formed by the 

first n events of I. A classical idea of natural semantics [34, 381 is to compute the 

output history in a step-by-step fashion. To apply this idea, we build a sequence of 

the form 

where the P, are basic ESTEREL programs and the i, are the complete events of the 

completed input history i associated with I (we need to use complete input events 

to treat the fact that input signal values are permanent). 

The key point is to rewrite at each step the program P, into a new program P,,+l 

called the derivative of P,, with respect to f,. The derivative P,,+l is the ESTEREL 

program that computes the output history starting at step n + 1 from the input history 

starting at step n + 1. It has the same declarations as P,, but a different body. 
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Here is a simple illustrative example (using plain ESTEREL constructs): 

module P: 

input SECOND: 

output BEEP; 

await 2 SECOND do emit BEEP end; 

halt. 

The derivative by the empty event is the program itself. The derivative by the SECOND 

event is the program having as body 

await 1 SECOND do emit BEEP end; 

halt 

Upon reception of another SECOND, BEEP is emitted and the program stops; its body 

becomes the statement “halt” that accepts input but never produces output. 

The derivative technique transforms a temporal problem into two instantaneous 

ones: find the instantaneous reaction on an input and find the derivative. The 

technique was introduced by Brzozowski [ 171 to compute the automaton recognizing 

the language generated by a regular expression. 

6.3. Inductive rules 

The H relation between programs is deduced from a similar --+ relation between 

statements, which is defined by deduction rules that determine the transition of any 

ESTEREL construct from the transitions of its subconstructs. In order to handle 

control transmission and expression computation, the ---, relation has more com- 

ponents than the * relation. It has the form: 

E’.h,T 

(stat, P) - i (stat’, P’) 

with the following conventions: 

l p and p’ are memories that allocate the free variables of stat (memories are 

described below). 

l i is a complete event that represents the complete signal environment in which 

stat is executed. Its sort is the set of input signals and of local signals visible 

from stat. 

0 E’ is an event that contains the signals emitted by stat and their values. Its sort 

is the set of output signals and of local signals visible from stat. 

l b is a termination boolean having value tt if stat terminates and $ otherwise. 

l T is a set of trap labels that contains the labels of the exit statements executed 

by stat. Our treatment of parallel exits will slightly differ from the one we gave 

in the intuitive semantics, but remains equivalent; we said there “if the branches 

of a parallel exit several traps simultaneously, the parallel only exits the 

outermost trap the other ones being discarded”. Mimicking such a statement 
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in semantic equations would require a preorder between trap labels that is hard 

to compute in a structural way. Our formal solution will be to retain all labels 

exited by a parallel in the set T, and to choose the action to perform at the 

trap statement level: a trap T statement is considered as exited if its body 

exact/y exits the set {T}; otherwise, it simply propagates the other exits in T. 

Memories p are manipulated as follows: 

l There is an empty memory C#J that allocates no variable. 

l If p is a memory that allocates a set V of variables and if X is a variable, then 

p.(X = U) is a memory that allocates Yu {X}. 

l If p allocates ‘V and if XE ?V, then p(X) denotes the value of X, in p, defined by 

p.(X=v)(X) =21 

and 

p.(Y=u)(X) =p(X) ifX#Y. 

l If p allocates 7’ and if XE V, then p[X+ v] denotes the memory p where X 

receives the new value U. Formally, 

p.(X= u’)[Xt v] =p.(X= v) 

and 

p(Y=u’)[X+u]=p[X+v].(Y=v’) ifY#X. 

Notice that the memory handling respects static scoping: a memory p may allocate 

several times a variable X, but the accesses to X concern the most recent allocation. 

We are now in a position to define the relation between H and -+. Let stat be 

the body of a program M. For technical reasons, it is simpler to assume that a program 

body never terminates, adding a halt statement in sequence if needed. Then we set 

P + P’ iff (stat, 4) 9 (stat’, 4) 

where stat’ is the body of P’. The memory and exited label set are always empty, 

since we deal with syntactically correct programs for which there are no free variables 

or free exits. 

Within the structural induction that computes --$, the difficulty will be to correctly 

compute the status (presence or absence) of the signals and their values. The key 

idea of the behavioral semantics is to directly exploit the synchrony hypothesis: all 

statements for which a signal S is visible see the same status and value for this 

signal. For input signals, the status and value are simply determined by the input 

event of the global program. A local signal is seen as present by all statements in 

its scope if and only if it is emitted by some of them; the local signal rule below 

expresses this consistency constraint in a simple but non-effective way. 
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6.4. Expression evaluation 

In addition to the inductive rules for statements, we need expression evaluation 

rules of the form 

(exp, P)- u. i 

If C is a constant of semantic value c, the rule is 

The rule for a variable X is 

(XV PQP(X). 

If S is a signal, the rule for its value access ?S is 

(?S, P>i_ &S). 

The rules for operators and function calls are obvious and left to the reader. 

6.5. Inductive rules for statements 

6.51. Axiom of nothing 

A nothing statement terminates and leaves the memory unchanged: 

(nothing, p) T (nothing, p). 

6.5.2. Axiom of halt 

A halt statement doesn’t terminate and reproduces itself: 

(halt, P) + (halt, p). 

6.5.3. Rule for assignment 

An assignment statement updates the memory and terminates; it becomes nothing: 

(exp, P+ v 

(X : = exp, p) *(nothing, p[X+ v]) 
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65.4. Rule for procedure call 

The procedure call rule is similar to the assignment rule, and is left to the reader. 

The expression list is computed in the current memory and signal environment, and 

the external procedure updates the memory. A procedure call terminates. 

6.5.5. Rule for emit 

An emit statement emits the expression’s value and terminates: 

(exp, P++ u i 

(emit S(w), P) y (nothing, p) 

65.6. Rules for sequence 

If the first statement doesn’t terminate then the behavior of the sequence is that 

of the first statement. The sequence is rewritten into the sequence of the first derivative 

and of the second statement: 

(stat, 2 P) -(stat;) pi) 

(stat, ; stat2, p) +(stati; stat,, pi) 

If the first statement terminates then the second statement is executed in the memory 

state produced by the first one; the global rewriting is that of the second statement 

except that output signals are merged: 

E ;,rrs4 

(stat,, P+--+ g (stat:, Pi> 
E;.bz,T2 wt,, Pi) $ ------(stat;, Pi) 

E;‘E;.b2,T2 
(stat, ; stat,, p)- 

i 
(stat:, Pi) 

6.57. Rule for loop 

The rule performs an instantaneous unfolding of the loop into a sequence. Note 

that a loop can never terminate. 

(stat; loop stat end, p) 

(loop stat end, p)d “TT (stat’, p’) 
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65.8 Rule for if-then-else 

The boolean expression is instantly evaluated and the selected branch is instantly 

executed. Here is the rule for the frue case 

E;.b,.T, 
(if exp then stat, else stat, end, p)- 

B 
wt: 7 Pi) 

The rule for the false case is symmetric: 

(exp, P)- i false 
E;.b2,T2 

(stat,, p)- 
E 

wt;, Pi) 

(if exp then stat, else stat, end, p) 
E;.b2,T2 

-(stat: I P:) ~ 

6.5.9 Rules for present 

The rules for present are similar to the rules for if -then-else. If the signal is 

present in the current event, the then clause is instantly executed: 

S’El3 E;,b,,T, 
(stat,, P>--+ 

d 
(stat:, Pi) 

E;,b,.T, 
(present S then stat, else stat, end, p)- 

i 
(stat:, P:) 

Otherwise, the else clause is instantly executed: 

SEE 
E:,b2,T2 

(stat,, P) B - (stat;) p;> 

EJ+T, 
(present S then stat, else stat, end, p)- 

i 
(stat;, P;) 

6.5.10. Rule for watching 

A “do stat watching S” statement executes its body stat, which yields a derivative 

stat’. The derivative of the watching statement is 

present S else do stat’ watching S end 

that is “do stat’ watching immediate S” in plain ESTEREL: when receiving the next 

input, this derivative will terminate instantly if S is present, or will behave like “do 

stat’ watching S” if S is absent. This is precisely the intuitive behavior of watching. 

(stat, P) 7 (stat’, p’) 

E’,b,T 
(do stat watching S, p)- 

i 

{present S else do stat’ watching S end, p’) 
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65.11. Rule for parallel 

The branches are executed independently but in the same signal environment. 

Their output events are merged. Since there are no shared variables, the branches 

cannot update the same variable; the resulting memory 

is obtained as follows: 

l if p(X) = p;(X) = p;(X), then p’(X) = p(X); 

l if p:(X) f p(X) then p’(X) = p;(X); 

l if p;(X) # p(X) then p’(X) = p;(X). 

E;.h,,T, 
(stat, 2 P)- (stat!, Pi) (stat*, P> 

E:,b,.r2 

i 
-(stat;) pi) 

i 

(stat, II stat2, P) 

E;*E;,h,hb,,T,vT, 

i 
At(st4 II stat;, mew(p, ~4, ~2) 

65.12. Rules for trap 

The trap terminates if its body terminates or if the body’s exited label set contains 

exactly the trap’s label: 

(stat, P> y+ (stat’, p’) b= tt or T=(T) 

(trap T in stat end, p) F (nothing, p’) 

Otherwise the trap statement behaves as its body, except that its own label is 

removed from the exited label set (this handles correctly parallel exits from nested 

traps). 

(stat, p)+qstat’, p’) 

(trap T in stat end, p)v(trap T in stat’ end, p’) 

6.5.13. Axiom of exit 

An exit doesn’t terminate and puts its label in the exited label set: 

(exit T, p)w(halt, p) 
E 
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6.5.14. Rule for local variable declaration 

In order to retain the value of the variables from step to step when reacting to 

an input history, we slightly modify the basic ES~EREL variable declaration construct. 

The new construct is 

var Xa in stat end 

The “0” operator transforms any semantic value into an ESTEREL constant of the 

appropriate type. The new construct allows us to save the current value of a variable 

in the program text itself. The standard basic ESTEREL declaration initially sets this 

value to 1. 

The rule allocates the variable with the currently saved value, executes the body, 

and saves the new value for the next step: 

(stat, p.(X = v))? (stat’, p’.(X= v’)) 

(var Xa in stat end, p) T(var X=m in stat’ end, p’) 

6.5.15. Rules for local signal declaration 

These are the fixpoint rules that realize the sharing law. With respect to a declared 

signal S, we require the body to work in the environment that it builds itself: To retain 

values between execution steps we use the 0 operator introduced for variables. 

There is a slight problem due to the static scope of signals: the event l? may 

already contain a different signal having the same name S; we introduce the notation 

g\S to denote the complete event obtained by removing the S-component of I$ if 

present. 

The first rule applies when the signal is emitted by the body: the signal is then 

received by the body, the emitted and received values must coincide, and the new 

signal value is stored in the local signal declaration of the derivative: 

E’*S(u’),h,T 

(stat, P>- (B\S)*S+(o’) 
(stat’, p’) SEE’ 

E’,b,T 

The second rule applies when the signal is not emitted. Thus, it is not received and 

the previous signal value is retained from the declaration: 

(stat, P+--+ E”b’r (stat’, p’) S@ E’ 
(.C?\s)*s-(v) 

(signal Sa in stat end, p)x(signal Sa in stat’ end, p) 
i 



The ESTEREL synchronous programming language 

6.6. A simple example 

As a simple example, we study two reactions of the following program: 

module P: 

input I(integer); 

output O(combine integer with +); 

signal S(integer) in 

present I then emit S(?I+l); emit O(1) end 

123 

present S then 

emit O(?S); halt 

else 

await I 

end 

end. 

6.6.1. The input I is present 

First assume that I is present with value 3. According to the intuitive semantics, 

we guess that S is emitted with value 4, and 0 is emitted twice with values 1 and 4, 

yielding 5 as a combined value. The derivative P’ has body nothing11 halt. Hence 

the reaction should be 

We sketch the proof, omitting expression evaluations and the memory part that are 

useless here. The body of the declaration of S must be analyzed in the guessed 

complete event I+( 3) . S’( 4). Once this guess is made, the branches of the parallel 

statement can be analyzed in any order. We start by analyzing the first one. The 

emit rule yields 

emit S(?I+l) 
S(4),rr,M -nothing 

I+(i)S*(4) 

emit O( 1) *nothing 

The second sequence rule yields 

emit S(?I+l); emit O(l)wnothing 

The first rule for present yields 

present I then. . . end s(4)-0(l),fr.ynothing 
1+(3)6+(4) 

For the other half of the parallel, the rule for emit yields 

emit O(?S) *nothing 
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The axiom of halt and the second sequence rule yield 

emit O(?S); halt= 
1+(3)5‘(4) ha1t 

The first rule for present yields 

present S then ’ . . ends halt 

The rule for parallel combines the emissions and terminations of both branches: 

. . . 1) . . . s~f:~~~~~;~ nothing )I halt 

We can finally apply the first local signal rule to S. It yields 

0(5),fL~ 
signal S=m in ’ . . end- 

I*(3) 

signal S=@ in nothinglihalt end 

Our guess about s+(4) is easily seen to be the only possible one. The reaction is 

deterministic. 

6.6.2. 7’he input signal I is absent 

Here an intuitive analysis shows that S and 0 are not emitted. The parallel statement 

must be computed in the complete event I-(l) -S(I). The first present statement 

emits no signal and terminates: 

present I then . . . endenothing 

For the second present statement, the else part is evaluated, using the halt and 

watching rules (according to the definition of await) 

await I l_(:;y$CL,,present I else await I end 

The parallel rule yields 

. * . 11 . . . c’fiI1 
I-(l).s-(I) 

,nothingl]present I else await I end 

and we can apply the second local signal rule; 0 is not emitted, and the body is the 

resulting parallel statement above. As before, this is the only possible proof and 

the reaction is deterministic. 

7. Determinism and program correctness 

To establish a behavioral semantics proof, one has to guess the presence or 

absence of the local signals as well as their values. In the above example, there was 
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a unique correct guess found using the intuitive semantics. To build simulators and 

compilers, we need a more effective process to determine the presence and values 

of signals. Such a process will be presented in the next section. In the present 

section, we study the determinism of the behavioral semantics. 

According to our design rationale we want programs to be deterministic, hence 

to have a unique behavioral semantics for any input. However the sharing law is 

not enough to guarantee determinism: some programs have no semantics and some 

have several semantics. To simplify the discussion, all the examples given here will 

be closed programs without inputs and will yield problems on the execution of their 

initial reaction. 

Let us start with pure signal examples. The following program P, has two 

semantics: 

signal S in 

present S then emit S end 

end 

The signal S can be consistently considered as being emitted or not emitted. In both 

cases, the body becomes signal S in nothing end. 

Changing then into else yields a program P2 that has no behavioral semantics: 

signal S in 

present S else emit S end 

end 

The signal S should be emitted if and only if S is not present, which is clearly nonsense. 

The next example P3 is similar to P, but involves two signals: 

signal Sl, S2 in 

present Sl then emit S2 end 

II 
present S2 then emit Sl end 

end 

There are again two possible behavioral semantics: either Sl and S2 are not emitted, 

or they are both emitted. Changing then into else yields a program P4 with another 

form of nondeterminism: 

signal Sl, S2 in 

present Sl else emit S2 end 

II 
present S2 else emit Sl end 

end 

There are again two solutions: either Sl is emitted and S2 is not, or Sl is not emitted 

and S2 is emitted. 
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Other problems appear with valued signals. Consider the program Ps: 

signal S(integer) in 

emit S(?S+C) 

end 

where C is an integer constant. When S is emitted its value 2) must satisfy n= u + c 

if c is the value of C. This equation has no solution for c # 0 and infinitely many 

solutions if c = 0. 

The above programs must clearly be rejected. Nondeterminism is, however, not 

a necessary condition for rejection; if we build P6 by changing in Ps the type integer 

into a type triv that has only one value, the semantics of P6 becomes unique; the 

semantics of ESTEREL programs should not depend on type implementation details 

and both P5 and P6 should be rejected for a common reason. 

All the problems are due to the fixpoint form of the local signal rule which does 

not respect the intuitive sequentiality constraints in program reactions. The “infinitely 

fast machine” on which we run programs should still behave sequentially as far as 

sequential control transmission is concerned. The first statement of a semicolon 

should be executed “before” its second statement, the test in a conditional or in a 

present statement should be computed “before” the then or else statements are 

started. As a consequence, the second statement of a semicolon (respectively the 

arms of a conditional or present statement) should not interfere with the execution 

of the first statement (respectively with the test). The programs P,-P4 above should 

be rejected for this reason. Similarly, the value of a signal should not be read 

“before” it is emitted, which is enough to reject Ps and P6. 

Very similar problems exist in synchronous circuits: the logical behavior of a 

circuit can be defined by fixpoint equations on transistor states, provided that the 

circuit does not contain races; races can appear whenever sequential propagation 

of electrical currents is not compatible with the topological structure. The program 

PI above is the ESTEREL version of a NOT gate with its output plugged into its input. 

More formally, we say that a signal is written by an emit statement and is read 

by a present test and by the ? operator. We say that the “before” relation is generated 

by sequences and tests. The right correctness condition is as follows: a signal should 

not be read if it can still be written. This determines correct executions; a program 

is correct (with respect to some input) if it can be correctly executed. Note that a 

simpler correctness condition such as “a signal should not be read before it is 

written” is not enough to reject programs P, , P3, and P4 above. 

Determining if a signal can be written from a given position in a program is in 

general unfeasible (in particular because of uninterpreted conditionals). We cannot 

therefore obtain necessary and sufficient correctness conditions. What we need are 

sufficient conditions that are effective and efficient enough to be used in compilers. 

l We can perform a static dependency analysis on signals, based on a structural 

control flow analysis; this analysis produces a signal dependency graph that 

contains an arrow from Sl to S2 whenever Sl is read before S2 is written in 
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some possible execution path. Any program that yields a cyclic dependency 

graph must be rejected. This technique is proved correct in [23] and is used in 

the ESTEREL ~2.2 compiler. It has two drawbacks: it sometimes rejects correct 

programs; when the graph is cyclic, the debugging information is limited to a 

list of cycles in the graph which is hard to exploit. 

l Following Boussinot [ 161 and Gonthier [24], we can consider that an ESTEREL 

program is executed on a conventional sequential machine; the zero time 

reaction hypothesis then amounts to not observing its computation time. Signals 

are handled by a shared memory with the above read/write discipline. This 

technique is technically more involved but yields better results. It is used in 

the ESTEREL v3 compiler. We present it in the next section. 

The notion of correctness presented above is local to each reaction. A program 

can be correct for some input and incorrect for another one. Assume that I is an 

input signal. Then the following program is incorrect if and only if I is received: 

signal S in 

present I then 

present S else emit S end 

end 

end 

We say that a program is locally correct if it is correct for all inputs. A program can 

also become incorrect after several reactions: 

signal S in 

await I; 

present S else emit S end 

end 

This program is locally correct; upon receiving I, it becomes the locally incorrect 

program P2. We say that a program is globally correct if it is locally correct and if 

any sequence of reactions only produces locally correct programs. 

8. An execution semantics 

This section presents an execution semantics and its local correctness criterion. 

The underlying execution machine is a conventional sequential machine. Signals 

are implemented as controlled shared variables with a read/write discipline that 

ensures that any signal has a unique well-defined status (emitted or not emitted) 

and a unique well-defined value in any reaction. Each reaction is realized by an 

execution, which is a sequence of elementary actions (also called microsteps as in 

[28]), followed by an expansion step that prepares the program for the next reaction. 

The expansion step can only be applied once the execution is properly halted. A 

program is said to be correct with respect to an input if it has a halted execution 
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for this input. That is, if the reaction can be completed while respecting the signal 

memory read/write discipline. 

The actions are determined by structural operational rules. The parallel operator 

interleaves the actions of its branches, as in usual asynchronous models. The 

execution of correct programs is therefore nondeterministic. However reactions of 

correct programs are deterministic: our main theorem states that all halted executions 

of correct programs yield the same final results that agree with the behavioral 

semantics after expansion, and, furthermore, that the behavioral semantics of correct 

programs is unique. Therefore our read/write discipline is a correct realization of 

the sharing law where this law makes sense. The proofs are omitted and not even 

sketched; they require the introduction of many technical concepts that are outside 

the scope of this paper. See [24] for complete proofs. 

8.1. The implementation of signals 

The structure of the signal memory is similar to that of the standard memory of 

variables; there are primitives to allocate cells, to write in cells, and to read cell 

values. However, cells also contain status information (written as an exponent) that 

describes the current status of their content. A cell can have four forms: 

(SL = v): The cell S has not yet been written in the current reaction (its content 

u is that of the previous reactions). 

(St = v): The cell S has already been written in the current reaction. Its current 

content is ZI. It cannot yet be read since other write operations can still occur. 

(St = v): The cell S has been written in the current instant, and it can no longer 

be written. Its content Y can be read as the current value ?S of the signal S, 

which is known to be present in the current reaction. 

(S = v): The cell S has not been written in the current reaction, and it can no 

longer be written. Its content v can be read as the current value ?S of the signal 

S, which is known to be absent in the current reaction. 

Signal memories 0 are constructed from the empty signal memory 4. If 8 is a 

signal memory, then &(S” = v), x E {I, t, +, -}, is also a signal memory. The read 

operation e(S) can only be performed if the cell status is + or -: 

&(S” = V)(S) = 2, if x E {+, -}, 

e.(s; = v)(s) = e(s) if s, f s. 

Similarly, one can test for the status of a signal in a memory: 

s” E e.(s:’ = U) iff 
{ 

y=x if S1 = S, 

s”~e ifSr#s. 

The result of writing a value ZJ in a cell S of a signal memory 0 is denoted by 

O[S+ v]. Writing is done in the most recently allocated occurrence of a signal, so 

e.(s;=o’)[stv]=(e[s+0])$3;=0’) fors,Zs. 
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There are two cases for the actual writing. If the memory has not yet been written, 

the new value replaces the old value and the memory state goes from S’ to S’; if 

the signal has already been written, the new value is combined with the old one 

using the combination function associated with S: 

0.(s’= v)[S‘+ u’] = e&S’= u’), 

&(S’= u)[S+ V’] = 8.(Si = U l s v’). 

There is no way to write in a cell of the form S+ or S-. The potential rules below 

show when a memory goes from SL to S- or from St to S+. 

To relate the execution semantics to the behavioral semantics, we have to relate 

signal memories to complete input events and output events. Given a program of 

input sort 4 and of output sort 0, we associate a signal memory Bf with any complete 

input event f. This memory allocates the signals in 9 and 6; it is composed of the 

cells 

(S” = 21) for all S”(v) E ?, 

(S’ = I) for all output signals SE 0. 

The order of the cells in f& is immaterial. Conversely, we associate with any final 

signal memory 13 an output event Oe containing all S(v) such that (St = V) is a cell 

of 19 (thus the sort of OH is the set of all SE B such that S’E 0; an output signal never 

gets a status + or -, but this does not matter, since it is never read internally). 

8.2. Computing actions 

The execution semantics is given by a set of rules that determine actions of the 

form: 

(stat, p, e)+(stat’, p’, ey. 

The action rules determine how the statements update the memories. Whenever 

writing triples (stat, p, O), we assume that p and 0 allocate the free variables and 

signals of stat. 

We also need three auxiliary sets of rules, which are presented either as rules 

with arrows or as equations with equal signs, the difference being somewhat 

immaterial here: 

l Expression evaluation rules govern evaluations of the form 

The signal memory discipline expresses that the “?S” operator can only be 

evaluated when the exponent of S in 8 is + or -. 

l Termination rules compute a partial function S(stat) = (b, T) where b is a 

termination boolean and T is a set of exited trap labels, as in the behavioral 

semantics. Termination rules are used only on terms that can perform no action. 
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Execution and termination were treated together in the behavioral semantics; 

here it is simpler to use separate rules for execution and termination. Termina- 

tion rules are used in two places: first, to detect completion of the current 

reaction; second, to start executing the second statement of a sequence when 

its first statement is terminated (a terminated statement has the form nothing, 

nothing (1 nothing, trap T in exit T end, etc.). 

l Potential rules compute the potential v(stat) of a statement, that is the set of 

signals that sfat can emit in some execution. Potentials are used to change the 

status of local signals in the signal memory: a signal goes from S’ to S- or 

from S’ to St when it can no longer be emitted, hence, when it does not belong 

to the potential of the current term. 

8.2.1. Action rules 

An assignment can act if its expression can be evaluated: 

(exp, p, e)+ ~1 

(X : = exp, p. 0) + (nothing, p[X+ u], 0) 

The rule for procedure calls is similar and left to the reader. 

An emission can be executed when its expression can be computed; it updates 

the signal memory 19 as described earlier: 

(exp, P, 0) + v 

(emit S (exp), p, 13) -+ (nothing, p, O[S + v]) 

If the first statement of a sequence can act, so can the sequence: 

(stat,, P, 0j-t wt;, P;, 0:) 

(stat,; stat,,p, e)+(stat;; stat2, pi, e:) 

If the first statement of the sequence is terminated, the second one can act (this is 

the only rule that connects execution and termination rules): 

T(stat,) = (tt, 0) (stat,, P, 0) + (stati, PS, W 

(stat,; stat,, p, O)+(stat;, pi, e;) 

A loop can act iff its body can; it then unfolds: 

(stat, p, 0)+ (stat’, p’, e’) 

(loop stat end, p, B)+(stat; loop stat end, p’, 0’) 

A conditional acts when it can compute its condition. It selects the corresponding 

branch: 

(exp, p, e) + true 

(if exp then stat, else stat, end, p, B)+(stat,, p, 0) 

(exp, P, f9 +-false 

(if exp then stat, else stat, end, p, B)+(stat,, p, 0) 
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Similarly, a present statement can act as soon as its signal has status + or -; it 

selects the corresponding branch (it is essential here that a ‘*present” statement 

can never be applied to output signals, which never get the + or - status): 

YE@ 

(present S then stat, else stat, end, p, O)+ (stat,, p, 0) 

(present S then stat, else stat, end, p, 0) + (stat,, p, f?} 

A watching statement acts as its body (remember that the temporal guard does not 

take effect immediately): 

(stat, p, 6)- {star’, pt, L9’) 

(do stat watching S, p, 0) + (do stat’ watching S, p’, 0’) 

A parallel statement can act as any of its branches (standard interleaving semantics): 

(stat,, PI @+ wt;, Pi 1 6) 

(stat*, P, @+(stati, Pi, 0;) 

(sfarl II statz, p, 8) + (stat, 11 stat;, pi, 0;) 

A trap statement can act iff its body can: 

(stat, p, B)+(stat’, p’, 0’) 

(trap T in stat end, p, 0) + (trap T in stat’ end, p’, 0’) 

A local variable declaration can execute its body after binding its variable. The 

value of the variable is kept in the variable declaration, as in the behavioral semantics: 

(stat, p.(x = U), 6) + (stat’, p’.(x = v’), 6) 

(var X = a in stat end, p, 0) + (var X a in stat’ end, p’, 8) 

A local signal declaration binds its signal in the current signal memory 8. As in the 

behavioral semantics, the binding is stored in the signal declaration; here we store 

the value and the current signal status. If the signal can no longer be emitted by 

the body, it is set to St if it was S’ and to S- if it was SL; this is the only place 

where potentials are used. After execution, the new signal state is stored in the 

signal dectaration. Let us define an auxiliary operation: 

i 

+ if x = t and S& a(stat), 

*(S, stat, x) = - if x = _L and Se n(stat), 

X otherwise. 

The local signal rule is then: 

)-’ = i(S, stat, x) (star, p, t3.(S’ = v)>+ (stat’, p’, &(S” = 0’)) 

(signal s” = q in stat end, p, @> + (signal S' = m in stat’ end, p’, 0’) 
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8.2.2. Expression evaluation 

A variable is evaluated as 
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usual: 

K P, e)+ P(X). 

A signal value can be accessed only when it has status + or -: 

SE0 or S+E.O 

(?S, P, 0) + c4 

An operator can operate as soon as its two arguments are computed: 

(expr, P, e>- VI (em,p, Q)+Q 

(e-v1 op ev2,p, e)+ vl op v2 

8.2.3. Termination rules 

The termination function can only be computed when execution is no longer 

possible. Assignments, emit statements, conditionals, and present statements that 

can directly act have no termination rule. A termination F(stat) is a pair of a 

termination status b and an exited label set T. We say that stat is terminated if b = tt 

(then T = 0); we say that stat is halted if b = ff and T = 0. 

Clearly, nothing is terminated and halt is halted: 

F(nothing) = (tt, 0), 

Y(halt) = (#,0). 

For sequences, there are two cases. If the first statement has a termination but is 

not terminated, so is the sequence; if the first statement is terminated and if the 

termination of the second statement is defined, the sequence has the same termination 

as the second statement (this rules handles actionless sequences such as “nothing; 

nothing”, “ nothing; exit T", etc.): 

if ~l(stah) = (IX T), 
if Y(stat,)=(tt,O) and F(stat,)=(b, T). 

The body of a loop must not be terminated. The termination is that of the body. 

y(loop stat end) = (#, T) if .Y(stat) = (& T). 

A watching statement has the same termination as its body: 

y(do stat watching S)= y(stat). 

As in the behavioral semantics, the termination of a parallel statement is obtainer 

from the termination of its branches: 

!Y(stat, 11 stat,) = (6, A bz, Tl u T2) 

if F(stat,)=(b,, T,) and .Y(stat2)=(b2, T2). 
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The terminations of a trap and of an exit are computed as in the behavioral 

semantics: 

y(trap T in stal end)=(bv(T={T}), T-(T)) if F(stat)=(b, T), 

F(exit T) = (.J {T}). 

Local variable and signal declarations simply propagate the termination of their 

body: 

y(var X in stat end) = y(stat), 

F(signal S in stat end) = y(stat). 

8.2.4. Potential rules 

The potential ~(stat) of a statement stat is the set of signals it can emit in some 

of its executions. We compute potentials by a simple structural control flow analysis. 

To perform the structural induction, we compute extended potentials $(stat) = 

(rr, b, T) where r is the potential of stat, where the boolean termination status b is 

true iff stat can terminate in some execution path, and where the exited label set T 

is the set of trap labels that sfat can exit in some execution path. The potential of 

a statement stat is then defined by 

r( stat) = m iff &( slat) = (v, b, T). 

The computed termination status (b, T) is similar to the termination status computed 

by the termination rules; it is really a statically computed approximation of it, which 

represents the termination information that we can get without executing a state- 

ment.5 A termination status like (tt, {T}) can never be obtained from termination 

rules; it can however be obtained when computing potentials, since it represents 

the information that a statement can terminate and can also exit a trap labeled T, 

as in “if exp then nothing else exit T end”. 

The extended potentials of nothing, halt, and assignments are trivial: 

&(nothing) = (0, ff, fl), 

%halt) = (@,.& 0), 

4(X:= exp) = (0, tt, 0). 

An emit statement adds its signal to the potential and terminates: 

&(emit S(exp)) = ({S}, tf, $3). 

If the first statement of a sequence cannot terminate, the extended potential of the 

sequence is that of the first statement: 

+sW = (7~1 ,fJ; TJ 
&(stat, ; stat,) = (v, ,& T,) 

5 The potential rules implemented in the ESTEREL v3 system are a bit finer than the one presented 
here, see [24]. 
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If the first statement of a sequence can terminate, the extended potential of the 

sequence is obtained by taking the union of the potentials of the first and second 

statements, the termination boolean of the second statement, and the labels poten- 

tially exited by both statements: 

7;( stat,) = (7r, , tt, T,) %sW = (r.2, bz, TJ 

7;(stat,; stat,)=(~,~~~, bZ, T,u T2) 

The extended potential of a loop is obtained from that of its body by returning the 

fs boolean termination status, since a loop can never terminate: 

&(stat) = (rr, b, T) 

&(loop stat end) = (z-,8, T) 

For a conditional or a present statement, the potential is the union of the potentials 

of the branches. The conditional can terminate iff one of its branches can and a 

label can be exited iff it can be exited by one branch: 

%star,) = ‘,m,, h, 7-1) 3-b) = (~2, bz, TJ 
&(if exp then stat, else stat, end) = (v, u rTT2, b, v bZ, T, u T2) 

%.-M = (n,, b,, T,) %=~t,) = (~2 > bz, Td 

&(present S then stat, else stat, end) = (R-, u r2, b, v bZ, T, u T2) 

The extended potential of a watching is that of its body: 

$(do stat watching S) = &(stut). 

The potential of a parallel is the union of the potentials of its branches; a parallel 

can terminate if both branches can terminate; it can exit a label if one branch can: 

%star,) = (~1, b,, Td 6(-t,) = (nz, bz, T,) 

&(stut, (1 stat,) = (niT1 u r2, b, A b2, T, u T2) 

The potential of a trap statement is that of its body; the trap statement can terminate 

if its body can terminate or exit T; the label T is removed from the exited label set: 

G(stut) = (n-, b, T) 

+?(trap T in stat end) =(rr, b v (TE T), T-(T)) 

An exit generates the corresponding exited label: 

&(exit T) = (o,fl, {T}). 

A local variable declaration does not affect potentials: 

&(var X in stat end) = &(stat). 

Finally, a local signal declaration removes its signal from the potential: 

FXstut) = tn. b. T) 

&(signal S in stat end) = (T\S, b, T) 



The ESTEREL synchronous programming language 135 

8.3. The confluence properties of executions 

A reaction is realized by a finite well-terminated execution sequence. As in the 

behavioral semantics, we shall always assume that a program body is followed in 

sequence by a halt statement, so that it can halt but never terminate. We shall also 

assume that all local signals have initial status and value I, i.e., that all local signal 

declarations “signal S in stat end” are initially replaced by “signal S’=m in stat 

end”. 

Definition. An execution is a sequence 

(stat, p, B)+(stat,, PI, Or)+. . .+M%, Pn, &I>. 

It is maximal if (stat,, p,,, 0,) has no further action. It is halted if .T(stut,) = (fi 0). 

For any halted execution, (stat,, p,,, 0,) is called the result of the execution. 

Halted execution sequences do not always exist. A statement such as 

loop x := X+1 end 

has neither maximal nor halted execution sequences. The programs P,-P6 of Section 

7 have no halted execution sequences. Consider for example P, , that is the statement 

signal S in 

present S then emit S end 

end 

in the empty variable and signal memories. The potential of the present statement 

is {S}. Therefore the signal execution rule imposes to find an execution of the triple 

(present S then emit S end, 4, 4.(S)). 

The rule for present cannot be applied to such a triple, since it requires the exponent 

to be + or -. No action step is possible. Hence the only execution of P, is the 

empty one. But the termination of P, is undefined, since there is no termination 

rule for emit. Therefore the only possible execution is not halted. The programs 

P,-P, are rejected in the same way, using the rule for ? instead of the rule for 

present for Ps and PG. 

When halted executions do exist, there can be several executions for a reaction, 

since the parallel execution rule is nondeterministic: if the two branches of a parallel 

can act, the parallel can act as any of them. The confluence properties ensure that 

all these sequences yield the same result, or in other words, that the order of actions 

is immaterial. This first property is classically called strong confluence [30]: 

Theorem 1 (Strong confluence theorem). For any two distinct actions 

(stat, P, Q+(st4, P’l, 6) 
and 

(stat, P. 0) + (.-t;, P:, w 
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there exist stat”, p” and 0” such that 

(stat:, pi, f3:)+ (stat”, p”, 19”) 

and 

(stat;, pi, O;)-+ (stat”, p”, 8”). 

From this theorem, it is easy to deduce the global confluence property 

execution sequences, that really expresses the determinism of reactions: 

of halted 

Corollary 2 (Global confluence theorem). Let P be a program of body stat, let T be 

an input event, let 0 = 0~ be the corresponding signal memory. If (stat, 4, 0) has a 

halted execution sequence, then it has no injinite execution sequence, all its maximal 

sequences are halted, and they all yield the same result. 

8.4. The expansion step 

Unlike in the behavioral semantics, the statement that appears in the result of a 

reaction is not directly ready for the following reaction. Three things must be done 

first 

l 

a 
Reset the local signal status to I in local signal declarations. 

Turn “do stat watching S” statements into “present S else do stat watching S 

end”. This expansion was done on the fly in the behavioral semantics (see the 

rule for watching). It is easier to do at the end of execution sequences in the 

execution semantics. 

Perform some cleanup: for example, a halted term such as “nothing; halt” 

must be transformed into “halt” to match the behavioral semantics. 

The following equations describe the expansion step: 

g(nothing) = nothing 

g(halt) = halt 

8(stat, ; stat,) = 
kT( stat,) if Y(stat,) = (tt, 0) 

‘8(stat,); stat, otherwise 

%?(loop stat end) = %‘(stat); loop stat end 

8(do stat watching S) =present S else do g(stat) watching S 

?T(stat, I/ stat,) = %(stat,) 11 E(stat,) 

i 

nothing if y(trap T in stat end) = (tt, 8) 

g(trap T in stat end) = trap T in %‘(stat) end 

otherwise 

%(var X=@ in stat end) = var X=a in %(stat) end 

Z?(signal S” = q in stat end) = signal SL =a in %?(stat) end 
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8.5. Equivalence of the behavioral and execution semantics 

We are now in a position to state our main theorem: the execution semantics 

matches the behavioral semantics. We first associate a reaction with a halted 

execution sequence followed by an expansion step: 

Definition. Let P be a program of body stat, let i be a complete input event. We 1 
say that P is causally correct with respect to I and write 

if stat has a halted execution sequence of the form 

(stat, ~,0f)+(stat’, #, 0’) 

such that the body of P’ is equal to S(stat’) and that 0 is equal to the output event 

E6# determined by 8’. 

Theorem 3 (Correctness and determinism theorem). Let P be a program, let f be a 

complete input event such that P is causally correct in 0;. There exist a unique program 

P’ and a unique output event 0 such that 

P-% P’ and PgP’. 
i 

8.6. An execution example 

To illustrate the execution semantics, we sketch the executions of the example 

of Section 6.6, that is: 

module P: 

input Ifinteger); 

output O(combine integer with +): 

signal S(integer) in 

present I then emit S(?I + 1); emit O(1) end 

II 
present S then 

emit O(?S); halt 

else 

await I 

end 

end. 
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8.6.1. The input 1 is present 
Assume that I is present with value 3. The initial signal memory is 4. (I+ = 3).(0’ = 

J-). When entering the body of the local signal declaration, we compute the potential 

{S, 0) and therefore add (S’ = I) to the signal memory. The “present S” statement 

cannot act; we must execute the “present I” statement first. This present statement 

selects its first branch. This ends the first action, which yields the term: 

signal S'=Q in 

emit S(?I+l); emit O(1) 

present S then 

emit O(?S); halt 

else 

await I 

end 

end. 

The potential is unchanged. One must execute the first “emit” statement of the 

sequence. The S cell of the signal memory becomes (St = 4). The second action 

therefore yields the following term: 

signal St = @ in 

nothing; emit O(1) 

present S then 

emit O(?S): halt 

else 

await I 

end 

end. 

The potential of the body is now (0). Hence the S cell of the signal memory on 

which the body executes is (S+=4). Since “nothing” is terminated, both the “emit 

0” and the “present S” statement can be executed. We have to choose one of them. 

Let us choose the “present” one. The third action yields the term 

signal S' = @ in 
nothing; emit O(1) 

II 
emit O(?S); halt 

end. 
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Then the two emissions of 0 can be executed in any order. After the two corresponding 

actions, we get the halted term 

signal S’ = m in 

nothing 

II 
nothing; halt 

end 

in the signal memory {~#~.(I’=3).(0’=5)). Therefore O(5) is output. The expansion 

step clears the status of S and the second nothing, leaving the term 

signal S' = @j in 

nothing 

II 
halt 

end. 

8.6.2. The input I is absent 
We enter the local signal declaration as before. In the first 

I” statement selects its second branch “nothing”, leaves 

unchanged and yields the term 

action, the “present 

the signal memory 

signal S’ = LiJ in 

nothing 

II 
present S then 

emit O(?S); halt 

else 

do halt watching I 

end 

end. 

The potential of the body becomes {0}, the body’s S signal memory becomes (S=L). 

The second action selects the “else” branch of the “present” statement, yielding 

the halted term 

signal S = IYL in 

nothing 

I/ 
do halt watching I 

end. 

The execution is finished. The expansion step prepares the term for the next reaction, 
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transforming it into 

signal S = 0 in 

nothing 

present I else 

do halt watching I 

end 

end. 

9. Compiling ESTEREL programs into deterministic automata 

The execution semantics is effective and can be used as a basis for building 

interpreters of the language. Such interpreters exist in the ESTEREL ~2.2 and ESTEREL 

v3 systems. Their performances are reasonable (say reaction times of l/l00 to l/l0 

second), but not sufficient for real-time applications. In this section, we show how 

to produce very efficient sequential automata that are behaviorally equivalent to a 

source ESTEREL program. The algorithm is similar to the Brzozowski algorithm for 

translating regular expressions into finite automata (see [lo, 171). We discuss the 

pros and cons of this compiling technique and the practical validity of the synchrony 

hypothesis. 

9.1. compiling pure synchronization programs 

We first study the simple case of pure synchronization programs, that is of programs 

that only contain pure signals (no variables, constants, nor values of any kind). For 

such programs, only the presence or absence of signals matter. The memory parts 

are useless in the semantics equations. 

A pure synchronization program P has finitely many possible input events t 

corresponding at most to all sets of input signals. Thus P has finitely many immediate 

derivatives P' such that P--% P'. The next theorem shows that this finiteness property 

also holds for general de~~atives of P, that is for programs P' obtained after arbitra~ 

long sequences of reactions 

Theorem 4. Any pure synchronization program has only ~nitely many der~uati~es. 

We can therefore completely replace a program P by its reaction graph considered 

as a finite state automaton with derivatives as states. The automaton starts in state 

P. Given a current state P' and an input ?, the automaton emits an output event 0 

and goes to state P” iff P'TP". 



The reaction graph can be fully computed at compile rime; at run-time, the program 

texts are useless and can simply be replaced by state numbers. For example, the 

program 

module P: 

input I; 

output 0: 

signal S in 

emit 0; 

loop 

await I; 

await I do emit S end 

await S do emit 0 end 
end 

end. 

yields the automaton 

state 0: 

t:+output 0; got0 1 

I + output 0; got0 1 
state 1: 

e+goto 1 

I+goto 2 

state 2: 

e+goto 2 

I + output 0; got0 1 

where “output 0” means “emit the output signal 0” and “goto n” means “the 
current reaction is over, treat the next reaction from state n”. The body of state 2 is 

signal S in 

present I else await I end; emit S 

present S else await S end; emit 0 

I; 
loop 

await I; 

await I do emit S end 

await S do emit 0 end 
end 

end. 
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Notice that our algorithm translates a concurrent program into a sequential one. 

Concurrency is treated at compile time, not at run-time. Notice also that the local 

signal S completely disappears in the compiled code. A local signal acts as an auxiliary 

nonterminal in a parser generator [32]. Writing modular programs that use many 

local signals for better architecture yields no run-time overhead. 

9.2. Compiling general ESTEREL programs 

Although they manipulate data, general ESTEREL programs can be translated to 

automata almost as simply as pure synchronization ones. The key idea is to keep 

the memory actions formal at compile time since they can only be performed at 

run-time. An automaton transition then consists of a sequence of run-time actions 

(more precisely of a tree of actions due to conditionals). 

The actions operate on globally allocated variables. An object code variable is 

allocated for each explicitly declared variable or valued signal of the source code. 

Other implicit variables are allocated, such as occurrence or repeat loop counters, 

booleans indicating input signal presence, etc. The following actions can appear in 

transitions: 

l Assignments: They are generated by source assignments, by explicit or implicit 

variable initializations, and by valued signal emissions (a source emit statement 

generates an assignment to the signal’s variable). 

l External procedure calls: They are generated simply by source procedure calls. 

l Tests. Three kinds of tests are generated: boolean expression tests appearing 

in conditionals, decrement-and-tests of internal counter variables (for signal 

occurrences or repeat statements), and tests for presence of input signals 

(instead of generating a transition per input event as suggested before, it is 

better in practice to test for the presence of input signals on call-by-need basis). 

l Output signal emissions: They transmit the emission of a signal to the program’s 

environment. 

The actions are gathered in an action table, the transitions referring to entries in 

that table. Notice that the synchronization needed for the internal communication 

of values is simply implemented by the order of the assignments in the transitions; 

thus it generates no code. 

The reflex game program generates a six-state automaton that is presented in 

Appendix B. See [8] for more details. 

9.3. Time and space ejjiciency of the generated code 

The run-time efficiency of the automaton object code is obvious. Only actions 

that must be done at run-time appear in the transitions. As we already mentioned, 

communication by pure internal signals generate no code-which is a way to say 

that they are really infinitely fast. Communication by valued local signals is done 

by assignments and therefore as fast as possible. There is no process handling 

overhead. 
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If not infinitely fast, the generated code is essentially as fast as it can be, comparable 

to carefully hand-written low-level code. By itself, this justiJies the synchrony 

hypothesis: if our code is not fast enough for a given target machine then there 

might be no implementation of the desired reactive program on this machine, at 

least at reasonable cost. Furthermore, since the code is sequential, the reaction speed 

is measurable on any given processor. The user can verify whether its speed require- 

ments will be satisfied at run-time. 

We have no general result concerning space efficiency; this question is less clear. 

As for grammar parsers, it is easy to build examples that produce an exponential 

blow-up in size. In practice, the obtained automata tend to be of reasonable size; 

they are almost always minimal or close to minimal (the same property holds for 

Brzozowski’s original algorithm-the reason is not yet completely understood). 

When produced in a host language, the automaton is generated in a compact byte 

code form [8]. For example, the reflex game automaton occupies about 300 bytes, 

and the automaton of the wristwatch program presented in [9] occupies 2.5 Kbytes. 

There can be two causes of size explosion: the number of transitions from each 

state or the number of states. The input signaZ relations presented in Section 2 allow 

to control the first case. If a program has n input signals, it has 2” possible input 

events, i.e., sets of input signals. Input relations dramatically reduce this number. 

For example, if all signals are declared to be incompatible, the number of input 

events decreases to n + 1 (including the empty event). The relations of the game 

example decrease the number of input events from 16 to 9. The user should always 

be aware of the importance of relations when compiling programs. The number of 

states is less controllable, as for parser generators. However, the size of practical 

applications is reasonable most of the time, say from 10 to 100 states. One has to 

notice that the “internal moves” of a program do not generate states, unlike in 

asynchronous formalisms: the states really correspond to observable input-output 

states. To our belief, this is a major advantage of deterministic synchronous formal- 

isms over nondeterministic asynchronous ones. Furthermore, it is often possible to 

obtain dramatic size reductions by splitting big automata into cascades of small 

automata. The ESTEREL v3 compiler can automatically perform such splits in some 

particular cases. We shall not discuss this subject here, see [8,97 for details. 

9.4. Ejiciency of the compiling process 

The derivative algorithm is used as such in the ESTEREL v2 system, which is 

written in LE_LISP [ZO]. It involves two rather expensive operations: the symbolic 

evaluation of programs on given inputs, the storing and compa~son of program 

text (or trees). It also involves a complex dynamic memory handling that requires 

garbage collection in practice. To fix ideas, our standard wristwatch example (an 

average size nontrivial program) compiles in 60 seconds on a SUN 3 machine, within 

1.5 Mbyte of memory. Bigger programs can require an order of magnitude more 

time and space. 
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The ESTEREL v3 compiler is based on a deeply optimized version of our algorithm 

(a similar but much simpler optimization to the original Brzozowski algorithms for 

regular expressions is presented in [lo]). 

First, ESTEREL programs are translated in a low-level intermediate code that 

compiles away their control ~t~et~re, while preserving concurrency. The translation 

is structural, so that application of the cop~~ule directive (inter-module linking) 

can be done at this code level. Then, the code is symbolicaIly executed to extract 

the automaton. This is done by operating an abstract exemption machine on the code. 

This machine has very simple execution states (basically described by a pair of 

stacks) and simple operations. Derivatives are represented by sets of program 

pointers: they are easy to compare and inexpensive to store. Moreover, the execution 

machine outputs the automaton and its transitions directly as a stream (without 

backpatching). It operates in very little memory with a simple allocation strategy 

and no garbage collection. Thus the v3 compiler can be implemented in a more 

traditional imperative language (we chose C++ [40]). 

All of this makes the v3 compiler considerably more efficient than its predecessor. 

On the SUN 3 workstation, the wristwatch example now compiles in less than 6 

seconds, using about 100 Kbytes. The payoff is even larger on bigger programs, 

since the v3 compiler is immune to the garbage collector thrashing that occurs in 

v2 on larger examples. Compiling in v3 is qualitatively different, since the perform- 

ance of the compiler is more limited by the size of its output than by its own 

time/space requirements. 

10. Conclusion 

We have presented in detail the ESTEREL programming language, its temporal 

constructs based on the synchrony hypothesis, its mathematical semantics, and its 

currently available implementations, ESTEREL v2 and ESTEREI. v3, that translate 

concurrent synchronous programs into sequential automata. The ESTEREL v3 

implementation is now developed on an industrial basis. Numerous examples have 

been successfully treated in different areas such as real-time process control, graphics 

[22], and communication protocols. We believe that the practical interest of syn- 

chronous programming compared to classical asynchronous programming is now 

weIl-established in the framework of reactive systems. We pursue our work in the 

folIowing areas: 

* Language design: The kernel synchronous calculus developed by the second 

author [24] will allow us to implement temporal statements that are not yet 

available in ESTEREL, such as process suspension. The rather weak module 

structure of ESTEREL will be extended to support hierarchicai module 

definitions, following the Standard MC module structure [35,37]. 

l Implementution: The ESTEREL v3 compiler is already efficient. But we can still 

gain speed by improving the internal coding of objects. Several codings of the 
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output automaton should also be available to match various time/space ratio 

constraints. 

l Programming environments: We are currently building an interactive program- 

ming environment using the CENTAUR system [12]. We plan to implement 

advanced features such as visual source stepping of programs (this is of course 

harder for a concurrent language than for a sequential one, but determinism 

should help keep the environment simple). The same source stepping facilities 

should be available from the source or compiled code: we know how to maintain 

object/source correspondences at low cost. 

l ESTEKEL program prouing: This is a very important area in practice, since 

reactive programs can control devices for which safety is critical. We mentioned 

various kinds of available proof techniques. They must be evaluated on real 

examples. We must build nice interfaces between the ESTEREL compilers and 

the proof systems so that non-specialists can aiso perform proofs. 

* Large-scale experiments: Obviously, the synchronous programming style is not 

yet completely understood. For large applications, it is clear to us that mixed 

synchronous/asynchronous strategies will be needed. There should be no tech- 

nical difficulty to asynchronously run communicating synchronous automata. 

But only experiments will show where it is reasonable 

between synchronous and asynchronous techniques. 

to put the boundary 
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Appendix A. The reflex game E~TEHEL program 

module REFLEX_GAMEZ: 

constant LIMIT_TIN, ~-~~, PAUSE-ECU : integer; 

function RANDOM0 : integer; 

input MS, COIN, READY, STOP; 

relation MS # COIN # READY, COIN # STOP, READY # STOP; 

output DISPLAY(integer1, 
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GO-ON, GO-OFF, 

GAME_OVER_ON, GAME_OVER_OFF, 

RED-ON, RED-OFF, 

RING-BELL; 

% overall initializations 

emit DISPLAY(O); 

emit GO-OFF: 

emit GAME-OVER-ON; 

emit RED-OFF; 

% loop over a single game 

every COIN do 

% initializations 

emit DISPLAY(O); 

emit GO-OFF; 
emit GAME-OVER-OFF; 

emit RED-OFF: 

% exception handling 

trap END-GAME, ERROR in 

signal IN CREMENT_AVERAGE(integer), 

AVERAGE_VALUE(integer) in 

copymodule AVERAGE 

repeat MEASURE-NUMBER times 

% phase 1 

do 

do 

every STOP do emit RING-BELL end 

upto READY 

watching LIMIT-TIME N1s timeout exit ERROR end; 

% phases 2 and 3 

trap END_MEASURE in 

every READY do emit RING-BELL end 

II 
% phase 2 
do 

await RANDOM0 MS 

watching STOP timeout exit ERROR end; 

emit GO-ON; 

% phase 3 

do 
var TIME:=0 : integer in 
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d0 

everyMSdo TIME:=TIME+lend 

UptoSTOP; 

emitDISPLAY(TIME); 

emit INCREMENT-AVERAGE (TIME) 

end 

watchingLIMIT_TIMEMStimeoutexitERROR end; 

emitGO_OFF 

exitEND_MEASURE 

1 
end 

end; 

% final display 

await PAUSELENGTHMSdo 
emit DISPLAY(? AVERAGE-VALUE) 

end; 

exitEND_GAME 

end 

handle ERRORdo 

emitRED_ON; 

emitGO_OFF 

end; 

%end of the game 

emit GAME-OVER-ON 

end. 

Appendix B. The REFLEX-GAME automaton 

B. 1. Memory allocation 

vo : boolean (presence of signal MS) 

Vl : boolean (presence of signal COIN) 

v2 : boolean (presence of signal READY) 
v3 : boolean (presence of signal STOP) 
v4 : integer (value of signal DISPLAY) 
V5 : integer (value of signal IN CREMENT-AVERAGE) 
V6 : integer (value of signal AVERAGE-VALUE) 

v-7 : integer (count variable) 

V8 : integer (count variable) 
v9 : integer (count variable) 
VlO : integer (source variable TIME) 
Vll : integer (count variable) 
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V12 : integer (count variable) 

v13 : integer (source variable TOTAL) 

V14 : integer (source variable NUMBER) 

B.2. Actions 

B.2.1. Test expressions for input signals 

Al : VO (presence of MS) 

A2 : Vl (presence of COIN) 

A3 : V2 (presence of READY) 

A4 : V3 (presence of STOP) 

B.2.2. Output signal actions 

A5 : output DISPLAY(V4) 

A6 : output GO-ON 

A7 : output GO-OFF 

A8 : output GAMGOVERON 

AS : output GAMKOVEROFF 

A10 : output RED-ON 

All : output RED-OFF 

Al2 : output RINGBELL 

B.2.3. Assignment actions 

A13:V4 :=0 

Al4 : v4 :=o 

Al5 zV-7 := -NUMBER 

Al6 : V8 := LIMIT-TIME 

Al7 : V9 := RANDOM() 

Al8 : VlO := 0 

A19 : VlO := VlO+l 

A20 : v4 :=VlO 

A21 :v5 :=VlO 

A22 : Vll := LIMIT-TIME 

A23 : V12 := PAUSE-LENGTH 
A24 : v4 := V6 

A25 : V13 := 0 

A26 : V14 := 0 

A27 : v13 := v13+v5 

A2.8 : V14 := V14+1 

A29 : V6 := V13/14 
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A30 : Vi’>0 
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B.2.5. Decrement and test expressions 

A31 : deer V7 

A32 : deer V8 

A33 : deer V9 

A34 : deer VI1 

A35 : deer V12 

B.3. The automaton 

The full automaton has six states. We only list states 4 (READY pressed, waiting 

for GO-ON) and 5 (GO-ON emitted, waiting for STOP). For input tests, we recall the 

input signal, as in A2 [COIN]. For output actions, we recall the output signal, as in 

All {RED-OFF}. 

State 4 
if Al [MS] then 

if A33 then 

A22; A18; A6 {GO-ON}; goto 5 

else 

got0 4 

end 

end; 

if A2 [COIN] then 

A14; A15; 

if A30 then 

A16; A25; A26; 

A5 {DISPLAY}, A7 {GO-OFF]; 

A9 {GAME_OVER_OFF}; All {RED-OFF}; goto 2 

else 

A23; A25; A26; 

A5 {DISPLAY}: A7 {GO-OFF}; 

A9 {GAMEOVEROFF}; All {RED-OFF]; goto 3 

end ; 

end; 

if A3 [READY] then Al2 {RING-BELL); goto 4 end; 

if A4 [STOP] then 

~7 {GO-OFF]; ~8 (GAME_• VRR~N]; 

A10 {RED-ON}; goto 1 end; 

got0 4 
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State 5 

if Al [Us] then 

if A34 then 

A7 {GO-OFF}, A8 {GAMKOVER-ON}; A10 {RED-ON}; goto 1 

else 

if A4 [STOP] then 

A20; A21; 

if A31 then 

A23; A27; A28; A29; 

A5 {DISPLAY}; A7 {GO-OFF}; goto 3 

else 

A16; A27; A28; A29: 

A5 {DISPLAY}; A7 {GO-OFF}; goto 2 

end 

end; 

A19; goto 5 

end 

end; 

if A2 [COIN] then 

A14; A15: 

if A30 then 

A16; A25; A26; 

A5 {DISPLAY}; A7 {GO_OFF}; 

A9 {GAhE_OVER_OF'F}; All {RED-OFF}; goto 2 

else 

A23; A25; A26; 

A5 {DISPLAY}; A7 {GO-OFF}; 

A9 {GAME_OVER_OFF}; All {RED-OFF}; goto 3 

end 

end 

if A3 [READY] then Al2 {RING-BELL} goto 5 end; 

if A4 [STOP] then 

A20; A21; 

if A31 then 

A23; A27; A28; A29; 

A5 {DISPLAY}; A7 {GO-OFF}; goto 3 

else 

A16; A27; A28; A29; 

A5 {DISPLAY}; A7 {GO-OFF}; goto 2 

end 

end; 

got0 5 
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