Introduction to the signal clock calculus

Alexander Steen

Institut für Informatik
Freie Universität Berlin

February 14, 2013

Contents

(1) Preliminaries

- Signals and clocks
- Signal kernel
(2) Clock calculus
- Motivation and goals
- Synchronizations
- Data-dependencies
- Equation systems
- Solving equation systems
(3) Conclusion

Signals

Definition (Signal)

Let D be some domain. A signal X is a sequence $X=\left(x_{i}\right)_{i \in I}$ of values $x_{i} \in D$.

A signal X is

- present at instant t, if X carries a value at that instant.

Signals

Definition (Signal)

Let D be some domain. A signal X is a sequence $X=\left(x_{i}\right)_{i \in I}$ of values $x_{i} \in D$.

A signal X is

- present at instant t, if X carries a value at that instant.
- absent at instant t, if X carries no value at that
instant (write: $X=\perp$).

Signals

Definition (Signal)

Let D be some domain. A signal X is a sequence $X=\left(x_{i}\right)_{i \in I}$ of values $x_{i} \in D$.

A signal X is

- present at instant t, if X carries a value at that instant.
- absent at instant t, if X carries no value at that instant (write: $X=\perp$).

Signals

Example

Example

As an example, three signals X, Y, Z are given by the table below.
X true false \perp true true \perp true false
Y false true $\perp \perp$ true \perp false true
Z false true \perp true false \perp false true

$$
\begin{array}{lllllllll}
t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} & t_{7} & t_{8} & \cdots
\end{array}
$$

Clocks

Definition (Clock)

Let c be the set of instants, at which the signal X is present.
Then c is called the clock X, denoted \widehat{X}.

Described formally by clock algebra

Clocks

Definition (Clock)

Let c be the set of instants, at which the signal X is present.
Then c is called the clock X, denoted \widehat{X}.

Described formally by clock algebra

$$
\mathcal{H}=(U, \cup, \cap, \backslash, \mathbb{O})
$$

Clocks

Boolean clocks

For a Boolean signal C, let

- [C] the set of instants at which C is present and true
- $[\neg C]$ the set of instants at which C is present and \rightsquigarrow It holds that $[C] \cup[\neg C]=\widehat{C}$ and $[C] \cap[\neg C]=\mathbb{O}$.

Clocks

Boolean clocks

For a Boolean signal C, let

- [C] the set of instants at which C is present and true
- $[\neg C]$ the set of instants at which C is present and false

Clocks

Boolean clocks

For a Boolean signal C, let

- [C] the set of instants at which C is present and true
- $[\neg C]$ the set of instants at which C is present and false
\rightsquigarrow It holds that $[C] \cup[\neg C]=\widehat{C}$ and $[C] \cap[\neg C]=\mathbb{O}$.

Clocks

Example

Example

Recall the example signals X, Y, Z. Its easy to see that $\widehat{X}=\widehat{Z} \subseteq \widehat{Y}$.
X true false \perp true true \perp true false
Y false true $\perp \perp$ true \perp false true
Z false true \perp true false \perp false true
$\begin{array}{llllllll}t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} & t_{7} & t_{8}\end{array}$

The Signal language

Functions Let $X:=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, s.t.

- X is present \Leftrightarrow all X_{i} are present
- $x^{t}=f\left(x_{1}^{t}, x_{2}^{t}, \ldots, x_{n}^{t}\right)$ for all $t \in \widehat{X}$

Delay Let $X:=Y$ \$ n init \vec{V}, s.t.

- X is present $\Leftrightarrow Y$ is present
- $x^{t+n}=y^{t}$ for $t>n, v_{i}$ otherwise.

The Signal language

Functions Let $X:=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, s.t.

- X is present \Leftrightarrow all X_{i} are present
- $x^{t}=f\left(x_{1}^{t}, x_{2}^{t}, \ldots, x_{n}^{t}\right)$ for all $t \in \widehat{X}$

Delay Let $X:=Y \$ n$ init \vec{v}, s.t.

- X is present $\Leftrightarrow Y$ is present
- $x^{t+n}=y^{t}$ for $t>n, v_{i}$ otherwise.

The Signal language

Downsampling Let $X:=Y$ when C, s.t.

- X is present $\Leftrightarrow Y$ present and $C=$ true
- $x^{t}=y^{t}$ for all $t \in \widehat{X}$

Det. merge Let $X:=Y$ default Z, s.t.

- X is present $\Leftrightarrow Y$ or Z are present - $x^{t}=y^{t}$ if Y is present, z^{t} otherwise. The | operator forces that all its operands equations must hold in parallel

The Signal language

Downsampling Let $X:=Y$ when C, s.t.

- X is present $\Leftrightarrow Y$ present and $C=$ true
- $x^{t}=y^{t}$ for all $t \in \widehat{X}$

Det. merge Let $X:=Y$ default Z, s.t.

- X is present $\Leftrightarrow Y$ or Z are present
- $x^{t}=y^{t}$ if Y is present, z^{t} otherwise.

Composition The |operator forces that all its operands
equations must hold in parallel

The Signal language

Downsampling Let $X:=Y$ when C, s.t.

- X is present $\Leftrightarrow Y$ present and $C=$ true
- $x^{t}=y^{t}$ for all $t \in \widehat{X}$

Det. merge Let $X:=Y$ default Z, s.t.

- X is present $\Leftrightarrow Y$ or Z are present
- $x^{t}=y^{t}$ if Y is present, z^{t} otherwise.

Composition The | operator forces that all its operands equations must hold in parallel

The Signal clock calculus

Overview

Compilation techniques for

- Extract synchronization contraints
- Fxtract data-danendency
- Solve clock equations
- Generate control structure

The Signal clock calculus

Overview

Compilation techniques for

- Extract synchronization contraints
- Extract data-dapendency
- Solve clock equations
- Generate control structure

The Signal clock calculus

Overview

Compilation techniques for

- Extract synchronization contraints
- Extract data-dapendency
- Solve clock equations
- Generate control structure

The Signal clock calculus

Overview

Compilation techniques for

- Extract synchronization contraints
- Extract data-dapendency
- Solve clock equations
- Generate control structure

The Signal clock calculus

Overview

Compilation techniques for

- Extract synchronization contraints
- Extract data-dapendency
- Solve clock equations
- Generate control structure

The Signal clock calculus

Motivation

We want

- know if specification is consistent
- Automatic code generation
- Code that respects synchronization
- Efficient code

The Signal clock calculus

Motivation

We want

- know if specification is consistent
- Automatic code generation
- Code that respects synchronization
- Efficient code

The Signal clock calculus

Motivation

We want

- know if specification is consistent
- Automatic code generation
- Code that respects synchronization
- Efficient code

The Signal clock calculus

Motivation

We want

- know if specification is consistent
- Automatic code generation
- Code that respects synchronization
- Efficient code

The Signal clock calculus

Synchronizations

Process	Synchronisation
$X:=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$	$\widehat{X}=\widehat{X_{1}}=\ldots=\widehat{X_{n}}$
$X:=U$ when C	$\widehat{X}=\widehat{U} \cup[C]$,
	$\left\{\begin{array}{l}{[C] \cup[\neg C]=\widehat{C}} \\ {[C] \cap[\neg C]=\widehat{O}}\end{array}\right.$
$X:=U$ default V	$\widehat{X}=\widehat{U} \cup \widehat{V}$
$X:=Y$ \$ n init \vec{V}	$\widehat{X}=\widehat{Y}$

The Signal clock calculus

Data-dependency

Process	Dependency
each signal X	$\widehat{X} \xrightarrow{\hat{x}} X$
$X:=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$	$X_{i} \xrightarrow{\hat{x}} X$, f.a. $1 \leq i \leq n$
$X:=U$ when C	$U \xrightarrow{\hat{U} \cap[C]} X$
$X:=U$ default V	$U \xrightarrow{\hat{U}} x \stackrel{\hat{v} \backslash \hat{U}}{\leftrightarrows} V$
$X:=Y$ \$ n init \vec{V}	none

The Signal clock calculus

Code generation

Generation for e.g. $X:=U$ default V given by

```
if present (X) then
    if present(U) then
        \(\mathrm{X}:=\mathrm{U}\)
    end if
    if present(V) and not present(U) then
        \(\mathrm{X}:=\mathrm{V}\)
    end if
end if
```


The Signal clock calculus

Equation systems

Example (Equation system of clocks)

$$
\begin{cases}\widehat{C} & =\widehat{C}^{\prime} \\ \widehat{C}^{\prime} & =[D] \cup\left[C_{1}\right] \cup \widehat{C} \\ {[C]} & =\widehat{C_{1}}=\widehat{C_{2}} \\ {[\neg C]} & =\widehat{D} \\ \widehat{C_{3}} & =\widehat{C_{1}}=\widehat{C_{2}}\end{cases}
$$

The Signal clock calculus

Equation systems

Example (Equation system of clocks)

$$
\left\{\begin{array} { l l }
{ \widehat { C } } & { = \widehat { C ^ { \prime } } } \\
{ \widehat { \widehat { C } ^ { \prime } } } & { = [D] \cup [C _ { 1 }] \cup \widehat { C } } \\
{ [C] } & { = \widehat { C _ { 1 } } = \widehat { C _ { 2 } } } \\
{ [\neg C] } & { = \widehat { D } } \\
{ \widehat { C _ { 3 } } } & { = \widehat { C _ { 1 } } = \widehat { C _ { 2 } } }
\end{array} \left\{\begin{array}{l}
\widehat{C}^{\prime} \\
\widehat{C_{1}} \\
\widehat{C_{2}}
\end{array}=[C]=\left[\begin{array}{ll}
\widehat{C_{3}} & =[C] \\
\widehat{D}=[\neg C] \\
\widehat{C}=[D] \cup\left[C_{1}\right] \cup \widehat{C}
\end{array}\right.\right.\right.
$$

The Signal clock calculus

Equation systems

Example (Equation system of clocks (Cont.))
Solution given by $\left\{\begin{array}{l}\widehat{C^{\prime}}=\widehat{C} \\ \widehat{C_{1}} \\ \widehat{C_{2}} \\ \widehat{C_{2}} \\ \widehat{C_{3}} \\ \widehat{D} \\ \widehat{D} \\ \end{array}=[\neg] \quad[\square]\right.$

The Signal clock calculus

Solving equation systems

Idea:

- Encode equation in a tree structure, called clock trees

General approach:

- Start with forest of clock trees
- Fusion of clock trees
- Repeat until inpossible

The Signal clock calculus

Solving equation systems

Idea:

- Encode equation in a tree structure, called clock trees

General approach:

- Start with forest of clock trees
- Fusion of clock trees
- Repeat until inpossible

The Signal clock calculus

Solving equation systems

Idea:

- Encode equation in a tree structure, called clock trees

General approach:

- Start with forest of clock trees
- Fusion of clock trees
- Repeat until inpossible

The Signal clock calculus

Solving equation systems

Idea:

- Encode equation in a tree structure, called clock trees

General approach:

- Start with forest of clock trees
- Fusion of clock trees
- Repeat until inpossible

Conclusion

- Clock calculus: Rich set of techniques
- Extract synchronizations and data-depenclency
- Solve clock equations
- Generate executable code

Conclusion

- Clock calculus: Rich set of techniques
- Extract synchronizations and data-dependency - Solve clock equations
- Generate executable code

Conclusion

- Clock calculus: Rich set of techniques
- Extract synchronizations and data-dependency
- Solve clock equations
- Generate executable code

Conclusion

- Clock calculus: Rich set of techniques
- Extract synchronizations and data-dependency
- Solve clock equations

Generate executable code

Conclusion

- Clock calculus: Rich set of techniques
- Extract synchronizations and data-dependency
- Solve clock equations
- Generate executable code

References I

图 Nebut, Mirabelle.
An Overview of the Signal Clock Calculus.
Electron. Notes Theor. Comput. Sci., 88: 39-54,
October, 2004.

- Amagbegnon, Tochéou et al.

Arborescent Canonical Form of Boolean Expressions, 1994.
: Amagbégnon, Pascalin.
Implementation of the data-flow synchronous language SIGNAL.
SIGPLAN Not., 30(6): 163-173, June, 1995

