
Introduction to the signal clock
calculus

Alexander Steen

Institut für Informatik
Freie Universität Berlin

February 14, 2013

1 / 19



Contents

1 Preliminaries
Signals and clocks
Signal kernel

2 Clock calculus
Motivation and goals
Synchronizations
Data-dependencies
Equation systems
Solving equation systems

3 Conclusion

2 / 19



Signals

Definition (Signal)
Let D be some domain. A signal X is a sequence
X = (xi)i∈I of values xi ∈ D.

A signal X is

present at instant t, if X carries a value at that
instant.

absent at instant t, if X carries no value at that
instant (write: X = ⊥).

3 / 19



Signals

Definition (Signal)
Let D be some domain. A signal X is a sequence
X = (xi)i∈I of values xi ∈ D.

A signal X is

present at instant t, if X carries a value at that
instant.

absent at instant t, if X carries no value at that
instant (write: X = ⊥).

3 / 19



Signals

Definition (Signal)
Let D be some domain. A signal X is a sequence
X = (xi)i∈I of values xi ∈ D.

A signal X is

present at instant t, if X carries a value at that
instant.

absent at instant t, if X carries no value at that
instant (write: X = ⊥).

3 / 19



Signals
Example

Example
As an example, three signals X ,Y ,Z are given by the
table below.

X

Y

Z

true false ⊥ true true ⊥ true false

false true ⊥ ⊥ true ⊥ false true

false true ⊥ true false ⊥ false true

t1 t2 t3 t4 t5 t6 t7 t8 . . .

4 / 19



Clocks

Definition (Clock)
Let c be the set of instants, at which the signal X is
present.
Then c is called the clock X , denoted X̂ .

Described formally by clock algebra

H = (U ,∪,∩, \,O)

5 / 19



Clocks

Definition (Clock)
Let c be the set of instants, at which the signal X is
present.
Then c is called the clock X , denoted X̂ .

Described formally by clock algebra

H = (U ,∪,∩, \,O)

5 / 19



Clocks
Boolean clocks

For a Boolean signal C , let

[C ] the set of instants at which C is present and
true

[¬C ] the set of instants at which C is present and
false

 It holds that [C ] ∪ [¬C ] = Ĉ and [C ] ∩ [¬C ] = O.

6 / 19



Clocks
Boolean clocks

For a Boolean signal C , let

[C ] the set of instants at which C is present and
true

[¬C ] the set of instants at which C is present and
false

 It holds that [C ] ∪ [¬C ] = Ĉ and [C ] ∩ [¬C ] = O.

6 / 19



Clocks
Boolean clocks

For a Boolean signal C , let

[C ] the set of instants at which C is present and
true

[¬C ] the set of instants at which C is present and
false

 It holds that [C ] ∪ [¬C ] = Ĉ and [C ] ∩ [¬C ] = O.

6 / 19



Clocks
Example

Example
Recall the example signals X ,Y ,Z .
Its easy to see that X̂ = Ẑ ⊆ Ŷ .

X

Y

Z

true false ⊥ true true ⊥ true false

false true ⊥ ⊥ true ⊥ false true

false true ⊥ true false ⊥ false true

t1 t2 t3 t4 t5 t6 t7 t8 . . .

7 / 19



The Signal language

Functions Let X := f (X1,X2, . . . ,Xn), s.t.

X is present ⇔ all Xi are present
x t = f (x t

1, x t
2, . . . , x t

n) for all t ∈ X̂

Delay Let X := Y $ n init −→v , s.t.

X is present ⇔ Y is present
x t+n = y t for t > n, vi otherwise.

8 / 19



The Signal language

Functions Let X := f (X1,X2, . . . ,Xn), s.t.

X is present ⇔ all Xi are present
x t = f (x t

1, x t
2, . . . , x t

n) for all t ∈ X̂

Delay Let X := Y $ n init −→v , s.t.

X is present ⇔ Y is present
x t+n = y t for t > n, vi otherwise.

8 / 19



The Signal language

Downsampling Let X := Y when C , s.t.

X is present ⇔ Y present and C = true
x t = y t for all t ∈ X̂

Det. merge Let X := Y default Z , s.t.

X is present ⇔ Y or Z are present
x t = y t if Y is present, z t otherwise.

Composition The | operator forces that all its operands
equations must hold in parallel

9 / 19



The Signal language

Downsampling Let X := Y when C , s.t.

X is present ⇔ Y present and C = true
x t = y t for all t ∈ X̂

Det. merge Let X := Y default Z , s.t.

X is present ⇔ Y or Z are present
x t = y t if Y is present, z t otherwise.

Composition The | operator forces that all its operands
equations must hold in parallel

9 / 19



The Signal language

Downsampling Let X := Y when C , s.t.

X is present ⇔ Y present and C = true
x t = y t for all t ∈ X̂

Det. merge Let X := Y default Z , s.t.

X is present ⇔ Y or Z are present
x t = y t if Y is present, z t otherwise.

Composition The | operator forces that all its operands
equations must hold in parallel

9 / 19



The Signal clock calculus
Overview

Compilation techniques for

Extract synchronization contraints

Extract data-dapendency

Solve clock equations

Generate control structure

10 / 19



The Signal clock calculus
Overview

Compilation techniques for

Extract synchronization contraints

Extract data-dapendency

Solve clock equations

Generate control structure

10 / 19



The Signal clock calculus
Overview

Compilation techniques for

Extract synchronization contraints

Extract data-dapendency

Solve clock equations

Generate control structure

10 / 19



The Signal clock calculus
Overview

Compilation techniques for

Extract synchronization contraints

Extract data-dapendency

Solve clock equations

Generate control structure

10 / 19



The Signal clock calculus
Overview

Compilation techniques for

Extract synchronization contraints

Extract data-dapendency

Solve clock equations

Generate control structure

10 / 19



The Signal clock calculus
Motivation

We want

know if specification is consistent

Automatic code generation

Code that respects synchronization

Efficient code

11 / 19



The Signal clock calculus
Motivation

We want

know if specification is consistent

Automatic code generation

Code that respects synchronization

Efficient code

11 / 19



The Signal clock calculus
Motivation

We want

know if specification is consistent

Automatic code generation

Code that respects synchronization

Efficient code

11 / 19



The Signal clock calculus
Motivation

We want

know if specification is consistent

Automatic code generation

Code that respects synchronization

Efficient code

11 / 19



The Signal clock calculus
Synchronizations

Process Synchronisation

X := f (X1,X2, . . . ,Xn) X̂ = X̂1 = . . . = X̂n

X := U when C X̂ = Û ∪ [C ],{
[C ] ∪ [¬C ] = Ĉ

[C ] ∩ [¬C ] = O
X := U default V X̂ = Û ∪ V̂

X := Y $ n init −→v X̂ = Ŷ

12 / 19



The Signal clock calculus
Data-dependency

Process Dependency

each signal X X̂
X̂−→ X

X := f (X1,X2, . . . ,Xn) Xi
X̂−→ X ,f.a. 1 ≤ i ≤ n

X := U when C U
Û∩[C ]−→ X

X := U default V U
Û−→ X

V̂ \Û←− V
X := Y $ n init −→v none

13 / 19



The Signal clock calculus
Code generation

Generation for e.g. X := U default V given by

if present(X) then

if present(U) then

X := U

end if

if present(V) and not present(U) then

X := V

end if

end if

14 / 19



The Signal clock calculus
Equation systems

Example (Equation system of clocks)

Ĉ = Ĉ ′

Ĉ ′ = [D] ∪ [C1] ∪ Ĉ

[C ] = Ĉ1 = Ĉ2

[¬C ] = D̂

Ĉ3 = Ĉ1 = Ĉ2



Ĉ ′ = Ĉ

Ĉ1 = [C ]

Ĉ2 = [C ]

Ĉ3 = [C ]

D̂ = [¬C ]

Ĉ = [D] ∪ [C1] ∪ Ĉ

15 / 19



The Signal clock calculus
Equation systems

Example (Equation system of clocks)

Ĉ = Ĉ ′

Ĉ ′ = [D] ∪ [C1] ∪ Ĉ

[C ] = Ĉ1 = Ĉ2

[¬C ] = D̂

Ĉ3 = Ĉ1 = Ĉ2



Ĉ ′ = Ĉ

Ĉ1 = [C ]

Ĉ2 = [C ]

Ĉ3 = [C ]

D̂ = [¬C ]

Ĉ = [D] ∪ [C1] ∪ Ĉ

15 / 19



The Signal clock calculus
Equation systems

Example (Equation system of clocks (Cont.))

Solution given by



Ĉ ′ = Ĉ

Ĉ1 = [C ]

Ĉ2 = [C ]

Ĉ3 = [C ]

D̂ = [¬C ]

16 / 19



The Signal clock calculus
Solving equation systems

Idea:

Encode equation in a tree structure, called clock
trees

General approach:

Start with forest of clock trees

Fusion of clock trees

Repeat until inpossible

17 / 19



The Signal clock calculus
Solving equation systems

Idea:

Encode equation in a tree structure, called clock
trees

General approach:

Start with forest of clock trees

Fusion of clock trees

Repeat until inpossible

17 / 19



The Signal clock calculus
Solving equation systems

Idea:

Encode equation in a tree structure, called clock
trees

General approach:

Start with forest of clock trees

Fusion of clock trees

Repeat until inpossible

17 / 19



The Signal clock calculus
Solving equation systems

Idea:

Encode equation in a tree structure, called clock
trees

General approach:

Start with forest of clock trees

Fusion of clock trees

Repeat until inpossible

17 / 19



Conclusion

Clock calculus: Rich set of techniques

Extract synchronizations and data-dependency

Solve clock equations

Generate executable code

18 / 19



Conclusion

Clock calculus: Rich set of techniques

Extract synchronizations and data-dependency

Solve clock equations

Generate executable code

18 / 19



Conclusion

Clock calculus: Rich set of techniques

Extract synchronizations and data-dependency

Solve clock equations

Generate executable code

18 / 19



Conclusion

Clock calculus: Rich set of techniques

Extract synchronizations and data-dependency

Solve clock equations

Generate executable code

18 / 19



Conclusion

Clock calculus: Rich set of techniques

Extract synchronizations and data-dependency

Solve clock equations

Generate executable code

18 / 19



References I

Nebut, Mirabelle.
An Overview of the Signal Clock Calculus.
Electron. Notes Theor. Comput. Sci., 88: 39–54,
October, 2004.

Amagbegnon, Tochéou et al.
Arborescent Canonical Form of Boolean Expressions,
1994.

Amagbégnon, Pascalin.
Implementation of the data-flow synchronous
language SIGNAL.
SIGPLAN Not., 30(6): 163–173, June, 1995.

19 / 19


	Preliminaries
	Signals and clocks
	Signal kernel

	Clock calculus
	Motivation and goals
	Synchronizations
	Data-dependencies
	Equation systems
	Solving equation systems

	Conclusion

