
SIGNAL Clock Calculus – An overview

Alexander Steen∗

Freie Universität Berlin
Fachbereich Mathematik und Informatik

Institut für Informatik

Abstract:The compilation process of the synchronous programming language SIG-
NAL gives executable and efficient code that matches the input specifications. Several
techniques are necessary for analyzing the given specifications, solving equation sys-
tem of clocks and generating efficient code that controls the data-flow of the program.
The collection of these techniques is called clock calculus. This paper surveys the
principles of the compilation process and gives an brief overview over the implemen-
tation.

Contents

1 Introduction 2

2 Preliminaries 2

2.1 Signals . 2

2.2 Clocks . 2

2.3 The SIGNAL kernel . 3

3 Clock calculus 4

3.1 Boolean equation systems . 4

3.2 Data-dependency . 5

3.3 Code generation . 5

3.4 Solving the equation system . 7

3.5 Hierarchical representation of equations 8

4 Conclusion 9
∗a.steen@fu-berlin.de

mailto:a.steen@fu-berlin.de

1 Introduction

Synchronous programming languages allow automatic code generation out of specifica-
tions. While this enables the creation of safe executable code, the compilation process has
been intensively developed with focus on code efficiency. Various synchronous languages
have emerged, such as LUSTRE, ESTEREL, SIGNAL and SCADE. The first two languages
generate automatons out of the input specifications, while SIGNAL and SCADE generate a
sequential control structure.

This paper surveys the compilation process of signal, the so called clock calculus: A set of
techniques for the analysis of given data-flow programs, synchronization synthesis, analy-
sis of feasibility and code extraction. This paper will focus on the main ideas of the clock
calculus and give intuitive explanations for the approach of the SIGNAL compilation pro-
cess.
Since the implementation of the code-generations algorithms is very technical, only a
coarse-grained overview is be given.

2 Preliminaries

This section recalls the building blocks of the synchronous programming language SIG-
NAL. It is assumed that the basic ideas of general synchronous notions are well-known to
the reader; there are several introductions to different approaches [Hal10].

For the SIGNAL case, this section firstly presents signals and clocks [ABG94] as well as
some examples. Based on the given definitions, the language primitives of SIGNAL are
explained.

2.1 Signals

The variables of SIGNAL, called signals, are sequences of values of some domain D (e.g.
Boolean, integer, ...). A signal X = (xi)i∈I consists of values xi ∈ D, where for each
i ∈ I , X is said to be present at instant i. If X is not present at some instant i, X is called
absent and carries no value (written X = ⊥).

The set of all instants U , and therefore also I ⊆ U , is some countable set with total
ordering ≤.

2.2 Clocks

The clock of a signal X is the set of all instants I at which X is present. This means that
for the signal X = (xi)i∈I the clock of X is exactly I .

X

Y

Z

true false ⊥ true true ⊥ true false

false true ⊥ ⊥ true ⊥ false true

false true ⊥ true false ⊥ false true

t1 t2 t3 t4 t5 t6 t7 t8 . . .

Figure 1: Clocks of signals X,Y, Z

In general, the clock of some signal X is denoted X̂ . Since X̂ does not contain any
information about the values of X , multiple signals can share the same clock if they are
synchronous (i.e. present at the same set of instants). It follows directly that the property
of synchrony induces an equivalence relation on the set of signals, X̂ being associated to
the equivalence class of X with respect to the synchrony relation.

For any Boolean signal C, the expression [C] denotes the clock that contains the instants
of Ĉ at which C carries the value true. Analogously, [¬C] denotes the clock that contains
the instants of Ĉ at which C carries the value false.
Hence, [C] ∪ [¬C] = Ĉ and [C] ∩ [¬C] = O, where O is the empty clock.

The relations over clocks can be formalized using the clock algebraH given by:

H = (U,∪,∩, \,O)

where U denotes the set of all instants and O the empty clock.

Example Consider the signals X,Y, Z of Boolean given by figure . It is apparent that
(with correct continuation) X̂ = Ẑ ⊆ Ŷ . y

2.3 The SIGNAL kernel

This section recalls the basic statements of SIGNAL , statements being equations on sig-
nals. Amongst others, Benveniste et al. provided a complete description of the SIG-
NAL language and its formal semantics [BGJ91].

Functional expressions Function applications, also standard infix operators, can be
used. X := f(X1, X2, . . . , Xn). The resulting signal X is present if and only if all
the argument signals Xi are present. Then, at all instants i ∈ X̂ , the value xi of X is
xi = f(x

(1)
i , x

(2)
i , . . . , x

(n)
i), where x

(j)
i is the value of the signal Xj at instant i.

Delay Signals can be delayed by n instants using the delay operator:
X := Y $ n init −→v , where −→v = (v1, v2, . . . , vn) is a vector of length n. It defines
a signal X = (xi)i∈Ŷ which carries the values v1 . . . vn for the first n instants, and then
the value of Y shifted by n values.

Downsampling The process X := Y when C, where C is a Boolean signal, defines
the signal X with X̂ = Ŷ ∩ [C]. When X is present, it carries the same value as Y at that
instant.

Deterministic merge Two signals Y,Z can be merged into a signal X by
X := Y default Z. The resulting signal X carries the value of Y if Y is present and
the value of Z otherwise. If both Y and Z are absent, X is also absent.

Parallel composition Processes can be executed in parallel with the composition oper-
ator |. The parallel composition of multiple processes defines a system of equations such
that all equations of the composed processes hold at all instances.

3 Clock calculus

The compilation process of SIGNAL involves several steps of program analysis often called
clock calculus: The synchronizations of each process (means of its clocks) are used to rep-
resent the control of the system; an equation system of relations over clocks. Additionally
the data-flow of each process is analyzed, identifying the data-dependencies between mul-
tiple signals (e.g. signal X must be calculated before signal Y can be assigned). This
section introduces the data structures and algorithms used by the SIGNAL compiler to
infer information about the control and the dependencies of a program.

Generation of single loop code that matches the input specification and respects the stated
synchronization constraints follows the analysis of the clock calculus.

3.1 Boolean equation systems

Each primitive SIGNAL process inherently defines a relation over the clocks involved.
Consequently, a system composed out of multiple processes describes a system of these re-
lations, which is, an equation system of clock variables that describe the synchronizations
of the system. Note that these clock variables do not only consist of clocks of variables,
but also of clocks synthesized by undersampling.
As an example, consider the statement X := Y when C. Its synchronization can be
described using the clock algebra of section 2.2 by the equation X̂ = Ŷ ∩ [C].

For each primitive SIGNAL process, the clock synchronizations are given by table 1.

Process Synchronisation

X := f(X1, X2, . . . , Xn) X̂ = X̂1 = . . . = X̂n

X := U when C X̂ = Û ∪ [C],

{
[C] ∪ [¬C] = Ĉ

[C] ∩ [¬C] = O

X := U default V X̂ = Û ∪ V̂

X := Y $ n init −→v X̂ = Ŷ

Table 1: Synchronizations of SIGNAL processes [ABG94]

These equations can be identified by equivalent Boolean equations: Since any clock spec-
ifies the presence or absence of a signal, is appears intuitive to encode this with a Boolean
variable. The translation of the set operations used by the clock algebra into the proposi-
tional calculus is given by the following morphism:

(U,∪,∩, \,O) 7→ (true,∨,∧, (x, y) 7→ x ∧ ¬y, false)

Since for every Boolean signal the clocks [C] and [¬C] also depend on the value of C, we
need to encode this three-value logic ({true, false,⊥}) into a Boolean logic using two
variables [Neb04].

3.2 Data-dependency

The analysis of the data-flow of an process can reduced to the calculation of the data
dependencies of that process. Intuitively, a dependency can be understood as the necessity
that the value of some signal must be known in order to calculate the value of some other
signal. A program is compiled into a graph that described the data dependencies in the
following sense: The edge

X
h−→ Y

means that at each instant of the clock h, the value of X must be computed before the
value of Y can be determined; we say that Y depends on X [ABLG95]. Table 2 lists the
dependencies of each SIGNAL process.

3.3 Code generation

In order to generate executable code, the dependency graph created out of the program
specification is transformed into a control structure that handles all the reactions of the
system. The code is generated by the following scheme:
Since variables only change their value during reactions, every access to variables is

Process Dependency

for each signal X X̂
X̂−→ X

for X := f(X1, X2, . . . , Xn) Xi
X̂−→ X , for all 1 ≤ i ≤ n

for X := U when C U
Û∩[C]−→ X

for X := U default V U
Û−→ X

V̂ \Û←− V

for X := Y $ n init −→v none

Table 2: Data dependencies of SIGNAL processes [ABG94]

Listing 1: Control of equation (1)

i f bC t h e n
b[C] := C
bX := bY and b[C]

i f bX t h e n
X := Y

end
end

Listing 2: Control of equation (2)

bX := bY or bZ
i f bX t h e n

i f bY t h e n
X := Y

end
i f bZ and n o t bY t h e n

X := Z
end

end

Figure 2: Example: The control of SIGNAL process

guarded by a test over its clock, enforcing the presence of the clock [Neb04]. The transla-
tion of clock equations into the propositional calculus, see section 3.1, is utilized to encode
the actual testing into Boolean values. This described pattern can easily be recognized in
the following two examples. X := Y when C and X := Y default Z. The syn-
chronizations of these statements are given by equation (1) and (2) respectively. Their
code is materialized by Listing 1 and 2 respectively shown in figure 2.

X̂ = Ŷ ∩ [C] (1)

X̂ = Ŷ ∪ Ẑ (2)

Since the code contains actual tests over the Boolean values associated to the clocks, they
must be chosen a definition that matches their synchronization specification. This is one
of the main goals of the clock calculus. As we have seen in the examples of figure 2,
some clocks can be inferred using a combination (intersection, union, difference) of other
clocks (listing 2, line 1). Those rewritings can be extracted using the synchronizations of
the processes presented in section 3.1.

In general, the transformation is not as easy as presented here, the problem is considered
NP-hard [ABLG95]. The general approach for solving Some clocks cannot be rewritten
in the above sense, they are free variables an considered as input that must be provided by
the execution environment.

3.4 Solving the equation system

From the previous section it is apparent that an efficient method for checking the presence
or absence of clocks is required. For that purpose, the Boolean equation system to be
solved is extracted from the system by applying the rules of table 1. The general approach
for solving this equation system is given by triangularization:
The equation system is transformed into a system of so called directed definitions, that is,
a system of equations of the form a = b◦ c, where a, b, c are clocks and ◦ is some operator
on clocks.

The main benefit of this structural representation is that the dependency graph of the pro-
gram contains no cycles. Finding this representation involves numerous problems:

• Multiple definitions: If the equation system contains more than one equation with
clock a on the left side, the equality of their respective right sides must be proven.

• Cycles: If the equation system contains cyclic dependencies, they have to be elimi-
nated.

• Complex relations: If equations are not of the form a = b ◦ c, e.g. given by a ◦ b =
c ◦̃ d, they need to be transformed into triangular form.

The SIGNAL compilation process involves solving this problems, mainly by using a rewrit-
ing system plus some heuristics, in order to achieve triangular form. But since this problem
is hard, the compiler is not complete: If no appropriate rewriting rule can be applied, an
input program may be refused although the system could be solved. In any case, if some
equalities cannot be proven or if some cycle cannot be eliminated, an input program is
considered temporal incorrect and refused [ABG94].

The generated control structure is optimized by using extra knowledge about clock inclu-
sions and clock equivalences. This allows to reduce the number of clocks and also reduces
the number of tests over the clock variables. Additionally, tests can be nested efficiently
by factorizing.

Example Consider the left equation system (equations (3) – (7)) as an example for an
equation system for a SIGNAL system by Amagbegnon et al. [ABLG95]. As mentioned
above, we now try to build a system of directed equations. The equations (3) and (5) –
(7) translate directly into equations (8) – (12) by reordering and using equalities. Equation
(13) is achieved by substitution of Ĉ ′ by Ĉ in (4).



Ĉ = Ĉ ′

Ĉ ′ = [D] ∪ [C1] ∪ Ĉ

[C] = Ĉ1 = Ĉ2

[¬C] = D̂

Ĉ3 = Ĉ1 = Ĉ2

(3)

(4)

(5)

(6)

(7)



Ĉ ′ = Ĉ

Ĉ1 = [C]

Ĉ2 = [C]

Ĉ3 = [C]

D̂ = [¬C]

Ĉ = [D] ∪ [C1] ∪ Ĉ

(8)

(9)

(10)

(11)

(12)

(13)

All equations but the last are in triangular form. To transform equation (13) into triangular

form, we use that [C1] ⊆ Ĉ1
(9)
= [C] ⊆ Ĉ. This way, we can simplify [C1]∪ Ĉ to Ĉ. Since

[D] ⊆ D̂
(12)
= [¬C] ⊆ Ĉ, equation (13) yields Ĉ = Ĉ, so that it can be removed from the

equation system. The resulting equation system has triangular form. The clock Ĉ is a free
variable of the system. y

The compilation process must apply those rewriting rules effectively to create the trian-
gular system. The next section gives a brief overview over the technical details of the
implementation.

3.5 Hierarchical representation of equations

In order to efficiently apply rewriting and keep track of the triangular structure of the
equation systems, a tree-based representation of the equations is used.

For a Boolean signal C, the known partition [C] ⊆ Ĉ ⊇ [¬C] is represented by a partition
tree, whose edges are the set inclusion relations. An example is given by figure 3. The
representation of the whole equation system of synchronizations starts with representing
all directed definitions by a forest of clock trees. Then, two clock trees are iteratively
fusioned by inserting one tree into another:
Let T, T ′ be two clock trees with roots a, b (respectively), where b is defined by the directed
equation b = c ◦ d, and c and d are subtrees of T . Then the fusion of T ′ into T is applied
by adding the tree T ′ to the immediate children of the least common ancestor of c and d
in T .
This way, the subtree T ′, which is defined by the operands c and d, is placed directly
under the least common ancestor of these operands. This preserves the structural property
of triangularization and gives credit to clock inclusion relations which yield more efficient
nested if-tests [ABG94].
Intuitively, children in this trees are subset clocks of its parent.

The algorithm repeatedly tries to rewrite the equations to that they match the criteria of
the fusion step and then executes the fusion until this cannot be done anymore. The im-
plementation of the rewriting system was described by Besnard [Bes92].
The resulting tree-based representation of the equation systems over clocks are optimized
in the sense that the insertion step during the fusion chooses a parent with greatest depth.

Ĉ

[C][¬C]

Figure 3: Partition tree of Boolean signal C

This algorithm is described by Amagbegnon et al. [ABG94]. It involves the transformation
of the tree of clocks by a tree of BDDs and then applying factorization on the resulting
Boolean functions.

4 Conclusion

In this paper the SIGNAL clock calculus is overviewed: The set of techniques for trans-
forming a program of specifications into sequential single-loop code is outlined. It is
explained how equation systems of synchronization constraints are extracted out of the
code and how they are encoded into a Boolean equation system.

A coarse grained description of algorithms is given, involving the application of rewriting
rules and the representation of equation systems by trees of clocks. In particular, tests over
clocks are materialized by tests over Boolean. Due to tree-based encoding of the equation
systems, these tests are generated efficiently: Redundant tests are avoided by nesting.

References

[ABG94] Tochou Amagbegnon, Loc Besnard, and Paul Le Guernic. Arborescent Canonical Form
of Boolean Expressions. Technical report, 1994.

[ABLG95] Pascalin Amagbégnon, Loı̈c Besnard, and Paul Le Guernic. Implementation of the data-
flow synchronous language SIGNAL. SIGPLAN Not., 30(6):163–173, June 1995.

[Bes92] L. Besnard. COMPILATION DE SIGNAL: HORLOGES, DEPENDANCES, ENVIRON-
NEMENT. 1992.

[BGJ91] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous program-
ming with events and relations: the SIGNAL language and its semantics. Science of
Computer Programming, 16(2):103 – 149, 1991.

[Hal10] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Springer-Verlag,
Berlin, Heidelberg, 2010.

[Neb04] Mirabelle Nebut. An Overview of the Signal Clock Calculus. Electron. Notes Theor.
Comput. Sci., 88:39–54, October 2004.

	Introduction
	Preliminaries
	Signals
	Clocks
	The Signal kernel

	Clock calculus
	Boolean equation systems
	Data-dependency
	Code generation
	Solving the equation system
	Hierarchical representation of equations

	Conclusion

