
The Synchronous Languages 12 Years Later

Tawatchai Siripanya

Seminar in Programming Language(19666)
Advisor: Lilit Hakobyan

Supervisor: Prof. Dr. Elfriede Fehr
Institute of Computer Science

Freie Universität Berlin
Date: 26.02.13

Abstract

The synchronous programming language is a prominent language used in
real-time embedded systems�typically in safety-critical embedded systems.
It has been used in diverse projects in many well known companies such
as Airbus, Scheider Electric, and Texas Instruments. Examples of the syn-
chronous programming language include: Esterel, Lustre, and Signal. These
languages have been developed more than 20 years [2]. The paper aimed to
review the history of the synchronous programming languages, what have
been achieved in the languages, what are their di�culties , and what majors
problems remain. We have found that the synchronous languages are suc-
cessful in the real-time embedded system industries. Their major problems
are compilation problems�especially the Esterel complication and handling
with arrays�it is still an open issue. The visual notations as part of the
language requirements tend to move forward and highlight good potential
features of the synchronous language.

Keywords: synchronous languages, Esterel, Lustre, Signal

Preprint submitted to Elsevier February 24, 2013

Contents

1 Introduction 3

2 Theoretical background 3

2.1 The philosophies of synchronous language 4

3 Successes and Improvements 5

3.1 How the languages have been commercialized 5
3.1.1 Lustre . 5
3.1.2 Esterel . 5
3.1.3 Signal . 6

3.2 Technologies developed for synchronous language 6
3.2.1 Handling of arrays . 6
3.2.2 Compiling . 7
3.2.3 Observers for Veri�cation and Testing 8

3.3 Di�culties and Unsolved Problems 8

4 Conclusion 9

2

1. Introduction

The synchronous languages have found their way in the industries as a
technology to model, specify, validate, and to implement real-time embedded
applications [2]. The languages are mostly used in safety-critical embedded
systems and applied in many projects such as a nuclear power plant project
(Schneider Electric), a part of the �ight control software (Airbus A340-600),
and the re-engineered track control system of the Hongkong subway (CS
Transport) [2]. The examples of the embedded control system are for in-
stance, �ight control system, �ight-by-wire avionics, and anti-skidding or
anti-collision equipment on automobiles. The well known synchronous lan-
guages are such as Esterel [5], Lustre [6], and Signal [10].

Time has passed since the �rst synchronous language has been introduced
in 1980s. It is interesting to review the history of the synchronous program-
ming languages, what have been achieved in the languages, what are their
di�culties , and what majors problems remain.

The �rst part of the paper describes the philosophy of the synchronous
language. The second part discusses the improvement of the language, em-
phasizes the technologies to compile the synchronous language and gives
insight of the di�culties, and the successes happened with the language.
Finally, the last part concludes the paper.

2. Theoretical background

The three synchronous languages (Esterel, Lustre, and Signal) are build
on a mathematical framework that allows us to prove the correctness of the
systems. The mathematical framework uses the combination of synchrony
and the deterministic concurrency. As described in [2], the three main re-
quirements of the synchronous language are concurrency, simplicity,and syn-
chrony. They can be described in the following:
(1) Concurrency�the language must support concurrency and rely on nota-
tions that express concurrency such as block diagrams, hierarchical automata,
or some imperative type of syntax. (2) Simplicity�the language must have
simplest formal model to easy to reason and easy to trace. Also, the parallel
composition of two processes must have clean semantics. (3) Synchrony�
the language must support the simple and frequently used "implementation
model" as shown in the �gure 1.

3

Figure 1: The �gure illustrates the implementation model that is simple and
frequently used (on the left (event driven), on the right (sample driven).
Source: [2]

2.1. The philosophies of synchronous language

Many synchronous approaches have been developed to solve problems in
safety-critical embedded systems. Their primary goal is to convince stake-
holders of the system that the design and its implementation are correct [2].
We can divide these approaches into four categories include: (1) Microsteps,
(2) Acyclic, (3) Unique �xpiont, and (4) Relation or Constraint.

1. Microsteps: We can de�ne a reaction of the system to be a sequence
of elementary microsteps. By doing so, we can insist that a reaction
remains operational [2]. In the microsteps approach, the components
of primitive systems are assumed to be sequences of elementary mi-
crosteps. This approach is used in Very High Speed Integrated Circuit
Hardware (VHDL), Verilog modeling languages, Harel's Statecharts,
and control system (to program programmable logic controllers) [2].

2. Acyclic: We can insist that a system behaves functionally, when the
block diagrams of control systems contain no zero-delay loops [2]. This
philosophy is used in Lustre.

3. Unique �xpoint: Each reaction of a system is assumed to be the solution
of a �xpoint equation. The system always behave functionally when
each reaction is a deterministic function of the form

{state, input} 7−→ {next state, output} (1)

However, to compile a program of this semantic becomes di�cult [2].
This approach is used in Esterel.

4

4. Relation or Construct: Each reaction of a system is assumed to be a
constraint. The reaction can have: zero solutions (no reaction form
the program), one solution of the form (1), and multiple consistent
solutions (nondeterministic behaviour) [2]. This approach is used in
Signal.

3. Successes and Improvements

This section discusses the successes and improvements of the synchronous
languages (Lustre, Esterel, and Signal). We begin to describe how the lan-
guages have been introduced to the market. Then, we introduce technologies
to compile the languages and its improvements. Finally, we describe how to
verify and test the synchronous languages, also introduce available veri�ca-
tion tools.

3.1. How the languages have been commercialized

3.1.1. Lustre

In 1980s, two big industrial projects were launched in France. These
projects were N4 series of nuclear power plants (Schneider Electric1) and the
Airbus A320 (Airbus Industries2) [2]. At that time, there were no tools for
highly safety-critical software available. The two companies have built their
own tools that based on synchronous data�ow fashion. Schneider Electric has
built SAGA and Airbus Industries has built SAO [2]. An ongoing research
between Schneider Electric and Lustre cooperation was the reason why SAGA
had to use Lustre [2]. Later, the company called Verilog has developed the
commercial version of SAGA. It has provided integration capabilities for
SAGA and SAO. This has introduced a so called Scade environment at the
time. In 2001, Esterel Technologies has brought the Scade from Verilog [2].

3.1.2. Esterel

Dassault Aviation3 has supported Esterel project from the beginning. The
company has used Esterel for a landing gear system and a fuel management
system of an air-plane [2]. In 1998, the French software company called

1http://www.schneider-electric.com/
2http://www.airbus.com/
3http://www.dassault-aviation.com/

5

"Simulog" has introduced Esterel in the market. In 1999, the Esterel Tech-
nologies has been found (It was prior a division of Simulog). Furthermore,
Esterel has been used by Texas Instrument4 to design a �ow (some parts
of C speci�cation have been rewritten in Esterel) [2]. The most signi�cant
strength of Esterel is the feature to generate an automatic test suite that
grantees state/transition coverage [2].

3.1.3. Signal

In 1980 CNET5 has supported Signal for the development [2]. The pri-
mary goal of Signal was to be a development language for signal processing
applications, which runs on digital signal processors (DSPs) [2]. Therefore,
features like data-�ow, graphical style, handling with arrays, and sliding win-
dows have been introduced in the language. In 1998, Signal has been a joint
trademark of CNET and INRIA [2]. In early nineties, Signal was licensed
to a French company called "TNI 6". In 1993, TNI has introduced an ap-
plication called Sildex tool to the market. Many versions of Sildex have
been distributed at the time. Sildex provides capabilities for users to work
with data-�ow diagrams, state diagrams, and applications from Matlab7(e.g.,
Simulink)[2]. After that, TNI and Snecma8 have cooperated. They have used
Signal for Aircraft engine control applications.

3.2. Technologies developed for synchronous language

This section presents technologies that develop for the synchronous lan-
guage. These include: Handling of arrays, Compiling, and Veri�cation and
Testing.

3.2.1. Handling of arrays

Arrays are powerful to structure programs and de�ne parametrized regu-
lar networks in a data�ow language such as Lustre [2]. The "map" operation
is an example how to apply one operation to the all elements in an array.
However, the number of types provided in the synchronous languages are

4http://www.ti.com/
5Centre National d'Etudes des Télécommunications, the former national laboratory for

research in telecommunications, now part of France Telecom(FTR&D)
6http://www.tni-valiosys.com
7http://www.mathworks.com/
8http://www.snecma.com

6

mostly limited to avoid manipulation of an array that causes an error. This
error is called "run-time array-index-out-of-bounds errors"[2] �one might
be avoided of. The concept of arrays has been �rst introduced in Lustre to
describe circuits [2]. Then, the Scade tool and the Sildex tool have used this
technology as well [2].

3.2.2. Compiling

Esterel �rstly has three versions of compiler (V1,V2, and V3). The �rst
version was based on literal interpretation [2]. Then, it has been built further
to be based on automata using Brzozowski's algorithm [2]. The �rst three
versions of the Esterel's compiler based on automata work good for compil-
ing a small program. Many techniques have been introduced to optimize to
handle larger programs. However, none of the techniques can compile concur-
rent programs that have longer than 1000 lines [2]. The followers of automata
compilers are based on translating Esterel into digital logic[2]. This technique
can minimize the size of the executable programs and used in the version four
of Esterel (V4). However, it is incompatible with the prior compiler versions
(e.g., V3). To avoid this problem the V5 has been built, but it is slower than
automata-based 100 times because it is based on logic networks that poor
match to imperative languages [2]. In addition, Weil et al. [13] introduces a
resembling technique called "compiled-code discrete-event simulators". With
this technique, the program is divided into segments. Each one becomes a
separate C function and can be invoked by a centralized scheduler [2]. The
idea is used bei Weil et al. and it is then called "SAXO-RT". SAXO-RT can
compile all valid Esterel programs and it enables us to control the order of the
execution within a cycle [2]. Nevertheless, none of the described techniques
is considered satisfactory [2].

Signal: The complication of Signal is based on solving the abstraction of
the program. The program is described by clock and causality calculus [2].
The �rst compilation has been introduced in 1988 and it has not changed
since then.

To sum up, the compilation of synchronous language is di�cult [2]. Trace-
ability is the important requirement that designers of the safety-critical soft-
ware have to keep in mind. It is one of certi�cation constraints. Many com-
pilations have been introduced and have made di�erent tradeo�s between
e�ciency and traceability [2]. In [2] suggests to choose either of both. This
idea is used in Scade/Lustre compiler that is DO178B (Software Considera-
tions in Airborne Systems and Equipment Certi�cation) certi�ed.

7

3.2.3. Observers for Veri�cation and Testing

The synchronous observers (see [7] and [8]) provide us to specify prop-
erties of programs (to describe non-deterministic behaviours) [2]. The well
known technique is presented in [12]. With this technique, we �rst have to
describe unwanted traces of the program and second make sure that these
traces are not accepted by the automaton. In synchronous language, we can
use observers to specify safety properties. Also, they can be used to observe
variables or signals of interest. Two advantages of using observers include:
(I) We can specify the safety properties within the program itself (written in
the same language), and (II) observers can be executed (good for testing).
Furthermore, it can be run during execution that enable us to perform auto
test [2]. Many tools for veri�cation are available (see [3], [4], [7], [9], and
[11]).

3.3. Di�culties and Unsolved Problems

One di�culty in the synchronous programming language is compilation
of Esterel (described in the last subsection). Because Esterel has semantics
that include both control and data dependencies. Although many approaches
have been introduced, none of them is considered to be the best one. Also, the
compilation issue introduces a tradeo� between traceability (it is required for
certi�cation constraints) and e�ciency. Second, arrays handling is an open
issue that is still unsolved problems. A standard method to handle arrays
during compilation is not existed. Third, the way the components of a sys-
tem to communicate with each other depends on buses or serial lines of the
deployed architectures. In the real world system such as in process indus-
tries, automobiles, or aircraft�the components cannot be considered syn-
chronous. To this issue, the system designers have to �nd a solution for the
system themselves�a standard solution is unavailable among synchronous
programming languages. Finally, unlike the issues described above�say op-
portunities of these languages. Typically, applications in embedded system
have longer life time than normal applications such as operating systems.
Companies tend to use visual notations to model their applications �rst,
then generate the codes of of the notations. These notations are easy to use
for users and reusable. The modelling techniques used in synchronous lan-
guages are such as UML(Universal Modeling Language), Simulink/State�ow
a product from Mathlab [2] , and SyncCharts [1].

8

4. Conclusion

The synchronous languages are mostly used in the industries as a tech-
nology to model, specify, validate, and to implement real-time embedded
applications. Because of its clean semantics built-in with a common math-
ematical framework, it is primary used in safety-critical embedded systems.
Esterel is the oldest programming language of the synchronous languages
which include: Lusterel, Signal, etc. All three languages have been used in
real big projects and have been supported from well known companies�that
was how people introduce new programming language into the market in the
earlier years. All synchronous languages provide ability to model a system
(e.g., UML, Simulink, and SyncCharts) and then code generation, because
the requirements of the language from the beginning required notations such
as block diagrams, hierarchical automata, and some imperative type of syn-
tax. Like most of programming languages, the synchronous languages have
di�culties and unsolved problems such as di�culties with the compilation
(e.g., Esterel) and handling with arrays. Nevertheless, the languages provide
easy to use virtual notations that attract users nowadays and potentially
more popular in the future.

References

[1] André, C., Oct. 2004. Computing synccharts reactions. Electron. Notes
Theor. Comput. Sci. 88, 3�19.
URL http://dx.doi.org/10.1016/j.entcs.2003.05.007

[2] Benveniste, A., Caspi, P., Edwards, S. A., Halbwachs, N., Guernic, P. L.,
Simone, R. D., 2003. The synchronous languages twelve years later. In:
Proceedings of the IEEE. pp. 64�83.

[3] Borgne, M., Marchand, H., Rutten, r., Samaan, M., 1996. Formal veri-
�cation of signal programs: Application to a power transformer station
controller. In: Wirsing, M., Nivat, M. (Eds.), Algebraic Methodology
and Software Technology. Vol. 1101 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, pp. 271�285.

[4] Bouali, A., 1997. Xeve : an esterel veri�cation environment : (version
v1_3). Tech. rep.
URL http://hal.inria.fr/inria-00069957

9

http://dx.doi.org/10.1016/j.entcs.2003.05.007
http://hal.inria.fr/inria-00069957

[5] de Simone, R., Ressouche, A., 1994. Compositional semantics of esterel
and veri�cation by compositional reductions. In: CAV. pp. 441�454.

[6] Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D., 1991. The syn-
chronous data�ow programming language lustre. In: Proceedings of the
IEEE. pp. 1305�1320.

[7] Halbwachs, N., Lagnier, F., Raymond, P., 1993. Synchronous observers
and the veri�cation of reactive systems. In: AMAST. pp. 83�96.

[8] Halbwachs, N., Raymond, P., 1999. Validation of synchronous reactive
systems: From formal veri�cation to automatic testing. In: ASIAN. pp.
1�12.

[9] Jeannet, B., 2003. Dynamic partitioning in linear relation analysis: Ap-
plication to the veri�cation of reactive systems. Formal Methods in Sys-
tem Design 23, 5�37.

[10] Le Guernic, P., Gautier, T., Le Borgne, M., Le Maire, C., 1991. Pro-
gramming Real-Time Applications with Signal. Proceedings of the IEEE
79 (9), 1321�1336.
URL http://hal.inria.fr/inria-00540460

[11] Marchand, H., Bournai, P., LeBorgne, M., Guernic, P. L., 2000. Syn-
thesis of discrete-event controllers based on the signal environment. In:
IN DISCRETE EVENT DYNAMIC SYSTEM: THEORY AND APPLI-
CATIONS. pp. 325�346.

[12] Vardi, M. Y., Wolper, P., 1986. An automata-theoretic approach to
automatic program veri�cation (preliminary report). In: LICS. pp. 332�
344.

[13] Weil, D., Bertin, V., Closse, E., Poize, M., Venier, P., Pulou, J., 2000.
E�cient compilation of esterel for real-time embedded systems. In: Pro-
ceedings of the 2000 international conference on Compilers, architecture,
and synthesis for embedded systems. CASES '00. ACM, New York, NY,
USA, pp. 2�8.
URL http://doi.acm.org/10.1145/354880.354882

10

http://hal.inria.fr/inria-00540460
http://doi.acm.org/10.1145/354880.354882

	Introduction
	Theoretical background
	The philosophies of synchronous language

	Successes and Improvements
	How the languages have been commercialized
	Lustre
	Esterel
	Signal

	Technologies developed for synchronous language
	Handling of arrays
	Compiling
	Observers for Verification and Testing

	Difficulties and Unsolved Problems

	Conclusion

