Lecture 8:

ODI Synopsis, Probabilistic Counting and Multipath Aggregation

Rik Sarkar
Data aggregation

• The TinyDB approach:
 • Compute aggregation tree
 • Transmit data along the tree, with aggregation at intermediate nodes
 • Problem: Susceptible to failures/errors
 • If a message is lost, the entire aggregate it was carrying is lost
Papers

Aggregation by DAG

- Use a DAG instead of a tree.
- Each node has multiple parent, therefore multiple paths to the sink.
- Send $1/k$ data to each parent.
- A message failure loses at $1/k$ data instead of all data.

Experiments on Tree and DAG

Radiation strength at center aggregated over all nodes
Aggregation and routing

• Loss of message loses data
• DAG method is better, but still loses data depending on routing quality
• Can we have a method whose accuracy depends less on routing quality?
• Sending the entire data to all parents is safer
 – Sink will get the entire data if one arrives
 – Problem: Same data may arrive multiple times
 – Same data may be added multiple times
Order and duplicate insensitive (ODI) synopsis

• Synopsis: Small description
• ODI synopsis: representation of aggregates
• Order insensitive
 – Description does not change with order of input
• Duplicate Insensitive
 – Description does not change with duplication of input
• E.g. Max, Min
• What happens for count, sum?
Aggregation method

- Fault tolerant aggregation
- Use multi path routing to guarantee delivery
- Use ODI synopsis to prevent double counting

- Leaf nodes: **Synopsis generation**: $SG(.)$.
- Internal nodes: **Synopsis fusion**: $SF(.)$ combines two synopsis to create a new one.
- Root nodes: **Synopsis evaluation**: $SE(.)$ decodes the actual aggregate from synopsis.
Example: Synopsis for Max, Min

- **Synopsis generation**: $SG(.)$
 - The value itself
- **Synopsis fusion**: $SF(.)$
 - Take the Max/Min of the two inputs
- **Synopsis evaluation**: $SE(.)$
 - Output the synopsis
Building ODI Scheme

• What are the properties we need from synopsis?
• How to combine robust routing with synopsis?
• How to design ODI synopsis?
 – Count
 – Sum

Correctness of ODI

• A synopsis diffusion algorithm is ODI correct if SF(\()\) and SG(\()\) are order and duplicate insensitive.

• For any aggregation DAG, the final synopsis must be identical to the synopsis in a canonical left-deep tree.

• The output of SE must be independent of routing scheme:
 – Independent of order of message arrival
 – Independent of message duplication
ODI correctness and canonical representation

(a) Aggregation DAG

(b) Canonical left-deep tree
Test for ODI correctness

• **SG()**: preserves duplicates: if v is constant, SG(v) is constant: nodes with same data generate same synopsis
• **SF()** is commutative
• **SF()** is associative
• **SF()** is same synopsis idempotent, SF(s,s)=s

Theorem: These properties are necessary and sufficient.

Proof: Show that any DAG can be converted to a canonical left-deep tree with same output
Proof of ODI correctness

• Start from the given DAG.
• Duplicate a node with out degree k into k nodes

Duplicate preserving

S remains same
Proof of ODI correctness

- Reorder leaf nodes by increasing value of synopsis

Commutative, associative.

S remains same
Proof of ODI correctness

• Re-organize the tree s.t. adjacent leaves with same value are input to same SF node

Associative.
S remains same.
Proof of ODI correctness

- Replace $SF(s_2, s_2)$ by s_2

Same synopsis idempotent.

S remains same.
Proof of ODI correctness

• Reorder leaves by increasing canonical order

Commutative, associative.

S remains same.

QED!
Designing ODI synopsis

• We saw that Max, Min are ODI
• Translate all other aggregates sum, count etc to computation of Min

• Counting number of distinct elements in a multi-set
• Flajolet - Martin sketches : 1985
A detour: Probabilistic estimates

- What is the area of this region?
- Take a rectangle around it
- Throw random points
- See how many are inside
- Gives estimate of area

A detour: Probabilistic estimates

Fraction of points inside = fraction of area covered (in the limit)

More points gives better accuracy.
ODI synopsis: Count distinct

- Each sensor generates a sensor reading. Count the total number of different readings

- Use a bit vector S to encode (x)
- Use a hash function

```
1: i = 0;
2: while hash(x,i) = 0 do
3:     i = i + 1;
4: end while
5: S[i] = 1;
```
ODI computation (SG)

• Set $S[0] = 1$ with probability $\frac{1}{2}$
• If $S[0] == 0$, set $S[1] = 1$ with probability $\frac{1}{2}$
•

1: $i = 0$
2: while hash(x,i) = 0 do
3: $i = i + 1$
4: end while
5: $S[i] = 1$

Result: Earlier bits are likely to be set, while later bits are unlikely to be set

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{1}{16}$</td>
<td>....</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ODI computation (SF)

- Synopsis: bit vectors
- SG: bit vectors computed by hash
- SF: bitwise boolean OR
ODI computation (SE)

- **Synopsis**: bit vectors
- **SG**: bit vectors computed by hash
- **SF**: bitwise boolean OR
- **SE**: if i is the lowest index that is still 0, output $2^{i-1}/0.775351$
- **Idea**: a higher I means that there are more distinct elements

\[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array} \]

OR

\[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array} \]

\[\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array} \]

$i = 3$

How accurate is this method?

• Lemma: For $i < \log n - 2 \log \log n$, $S[i]=1$ with high probability (asymptotically close to 1). For $i > \frac{3}{2} \log n + \delta$, $S[i]=0$ w.h.p.

• The expected position of the first zero is
 $\log(0.775351n) + P(\log n)+o(1)$, where $P()$ is a periodic function with amplitude $< 10^{-5}$

• Error bound can be improved by using multiple copies
Counting distinct elements

• ODI correctness
• Duplicate insensitive. Using hash function, we get same $SG(x)$ for x every time
• Boolean OR is commutative, associative and same synopsis idempotent

• Total storage $O(\log n)$ bits
Robust Routing with ODI

• Use DAG in place of Tree
• Rings:
 – Nodes in ring j are j hops from query node q.
 – Aggregation: Nodes in ring j receive messages from nodes in ring j+1
Adaptive rings

• Handling network dynamics, node deletions etc
• Nodes at ring j can overhear their parents’ transmissions
• They monitor success rates of parents (no need for Acks!)
• If success rates are low, it connects to other nodes and sets them as parents
• Nodes at ring 1 transmit multiple times to ensure that the message gets across
Implicit acknowledgements

- Explicit acknowledgements
 - 3 way handshake
 - Used in wired networks
- Implicit acks
 - Used in wireless (broadcasts)
 - Suppose u sends message to v
 - u can also listen to v’s transmission and check that u’s value has been aggregated
 - Saves energy, time of sending acks
- Does not work with usual aggregates
 - U sends value 5 to v. Later hears v transmitting 20
 - U does not know if the transmission has been included
Implicit acknowledgement

• Synopsis enables implicit acknowledgements
 – U sends synopsis x to v
 – U hears v transmitting synopsis z
 – U checks : SF(x,z) = z?
 – If so, then the value is already included
 – Otherwise resend x.
Errors in data communication

• Algorithmic error
 – Due to randomization and approximation
 – Depends on algorithm
 – Can be reduced, by choice of algorithms, and sending longer messages

• Communication error
 – Depends on network dynamics and routing algorithms
Simulations

(a) Rings

(b) Adaptive Rings

Unaccounted node
Simulation: Sum computation

<table>
<thead>
<tr>
<th>Scheme</th>
<th>% nodes</th>
<th>Error (Uniform)</th>
<th>Error (Skewed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAG</td>
<td>< 15%</td>
<td>0.87</td>
<td>0.99</td>
</tr>
<tr>
<td>TAG2</td>
<td>N/A</td>
<td>0.85</td>
<td>0.98</td>
</tr>
<tr>
<td>RINGS</td>
<td>65%</td>
<td>0.33</td>
<td>0.19</td>
</tr>
<tr>
<td>ADAPT. RINGS</td>
<td>95%</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>FLOOD</td>
<td>≈ 100%</td>
<td>0.13</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Other ODI Synopsis

- Count
- SUM
- Second moment
- Uniform sample
- Most popular items
Sum

- Simple: for a value c, make c copies and count.
- When c is large, we set bits equivalent to c successive insertions
- First set $\delta = \log c - \log \log c$ bits to 1
- An element may need more bits with prob. $2^{-\delta}$
- Insert this elements by explicitly executing the algorithm
- SUM, count are fundamental. If we can do these, we can do many other things
Second moment

- Kth moment $\mu_k = \sum x_i^k$, where x_i is number of elements with value i
 - μ_0 is number of distinct elements
 - μ_1 is sum
 - μ_2 is square of L2 norm: variance

- There are sketch algorithms for frequency moments that can be turned into ODI synopsis using ODI sum