Lecture 13:

Gossip Algorithms

Rik Sarkar
Gossip

• People talk to other people: information spreads
• Everyone has a piece of information
• Each node talks to another node at random
• Can we find an aggregate using this sort of information propagation?
 – Aggregates like sum, avg..
Gossip

• Advantages:
 – Fully distributed. No sink.
 – Fault tolerant: failure of many nodes do not affect the protocol
 – Can adapt to changing values: keep gossiping

• Issues:
 – Iterative method, converges to true value, never quite gets to the value
 – May take time to converge
 – May cost communication
Gossip-Based Computation of Aggregate Information, David Kempe, Alin Dobra, Johannes Gehrke, FOCS 03
A basic protocol: push sum

- Each node starts with a sum s_i and a weight w_i
- Initially, $s_i = \text{value at I}$ and $w_i = 1$ (contribution from one value)
- At each round, send $(s_i/2, w_i/2)$ to a random node, and set its own values also to $(s_i/2, w_i/2)$
- So, at each round, node I sends half of its value to someone
A basic protocol: push sum

- At each round, it also gets values and weights from some other nodes

Algorithm 1 Protocol Push-Sum

1: Let \(\{(\hat{s}_r, \hat{w}_r)\} \) be all pairs sent to \(i \) in round \(t - 1 \)
2: Let \(s_{t,i} := \sum_r \hat{s}_r, w_{t,i} := \sum_r \hat{w}_r \)
3: Choose a target \(f_t(i) \) uniformly at random
4: Send the pair \((\frac{1}{2}s_{t,i}, \frac{1}{2}w_{t,i}) \) to \(f_t(i) \) and \(i \) (yourself)
5: \(\frac{s_{t,i}}{w_{t,i}} \) is the estimate of the average in step \(t \)
• Hope:
 – Mass conservation: sum of all s_i is always total sum, sum of all w_i is always n
 – Eventually, everyone will have $1/n$ fraction of everyone else’s value
 – Eventually, everyone will have $1/n$ fraction of everyone else’s weight
 – So, value will be the average, weight will be $= 1$

• To compute sum:
 – One node (query node) has $w=1$, everyone else has $w = 0
Diffusion

- The value at each node is diffusing in the network until it is uniformly distributed
- Uniform distribution is a steady state
- How fast are the values diffusing? How long will it take for all the values to be at almost uniform distribution?
Contribution vectors

• Vector $V_{t,i}$: the fractional contribution of each other node to the weight at i

• So, $V_{t,i,j}$: Contribution of j to the weight at i after round t
- Error at a node:

\[\Delta_{i,t} = \max_j \left| \frac{v_{t,i,j}}{\|v_{t,i}\|_1} - \frac{1}{n} \right| \]
How fast does the protocol converge?

- Think of a potential function:

 \[\Phi_t = \sum_{i,j} (v_{t,i,j} - \frac{w_{t,i}}{n})^2 \]

- We show that this potential drops fast
• This potential reduces by at least half in each round.

Lemma 2.3 The conditional expectation of Φ_{t+1} is
$$E[\Phi_{t+1} \mid \Phi_t = \phi] = (\frac{1}{2} - \frac{1}{2n})\phi.$$

• How many rounds will it take to drop to ε?
Number of rounds

• Since the initial potential can be at most n
• To get Φ_t to some constant value will require $O(\log n)$ round

• To get the value to below ε will require $O(\log \frac{1}{\varepsilon})$ rounds
• Thus a total of $O(\log n + \log \frac{1}{\varepsilon})$ rounds in expectation
• We want this to happen with a good probability at least $1 - \delta$.
• Rounds: $O(\log n + \log \frac{1}{\epsilon} + \log \frac{1}{\delta})$
How fault tolerant is it?

• Suppose each message has a chance of failing, how fast does it converge?

Theorem 2.4 If $\mu < 1$ is an upper bound on the probability of message loss in each round resp. the fraction of failed nodes, then the diffusion speed T' in the presence of failures satisfies $T'(\delta, n, \varepsilon) \leq \frac{2}{(1-\mu)^2} T(\delta, n, \varepsilon)$.

Rik Sarkar. FU Berlin. Winter '11 - '12
Summary

• Completely decentralized
• Excellent fault tolerance
• Iterative & probabilistic method, not perfect
• Fast in some scenarios, may be slow in others
• Good for computing sums
• Can be extended to compute many types of linear functions, random sampling, quantiles etc