The Information Retrieval "data model"

Introduction: IR – XML - DBS
- Boolean Model
- Vector space Model
- (Probabilistic Model)
- Evaluation of Retrieval effectiveness

Data models
- Databases
 - Rigid data models: relational, object-oriented
 - Database conformant to schema
 - Semantics of query q: subset of database
 - No texts, images, ... (originally)
- Semi structured DB / XML
 - Schema more flexible – if any
 - Many schema items
 - Text plays a big role
 - Semantics of queries: substructure of DB
- Information Retrieval
 - Data model: objects are sequences of terms
 - Semantics of query q: all database ordered by similarity to q (Ranking)
The Information Retrieval model

- **Document model**
 - $D = \text{"set of documents"}$
 - $K = \{k_1, \ldots, k_n\}$ set of index terms
 - $K \sim$ set of all words occurring in the database
 - Typically very large

For every $d_j \in D$, $k_i \in K$ there is a weight $w_{i,j} \geq 0$, $w_{i,j} \in \mathbb{R}$, k_i does not occur in d_j => $w_{i,j} = 0$

$d_j' = (w_{1,j}, \ldots, w_{n,j})$ is the document representation of d_j

identify d_j' and d_j in most cases, i.e.

$D = \{d_j | d_j = (w_{1,j}, \ldots, w_{n,j})\}$

i.e. a document is a high dimensional vector of real numbers, most of them are 0, each component represents a term $\in K$.

Boolean retrieval

- **Model**
 - $wij = 1$ if term k_i occurs in document d_j, else 0
 - Query language: boolean expression of $k_i \in K$
 - Evaluation of a query q:
 - let $d_j \in D$ a document vector of 0 and 1,
 - if $q = k_i$ then d matches q iff $d_{ij} = 1$
 - if $q = "q_1 \text{ AND } q_j"$ q matches d_j if q_1 matches d_j and q_2 matches d_j
 - if $q = "q_1 \text{ OR } q_j"$ q matches d_j if q_1 matches d_j or q_2 matches d_j
 - if $q = "\text{NOT } q_1"$ q matches d_j if q_1 does not match d_j

- **Implementation**
 - Conceptually simple
 - Efficient query evaluation
Boolean retrieval

- **Issues**
 - Very restrictive evaluation: binary decision
 Wanted: mapping \(s: Q \times D \to [0,1] \)
 \(Q \) is the set of all queries
 - Every term has the same influence on the result
 Wanted: weight should reflect "importance" of term
 - Example:
 term "system" occurs in many technical documents
 many times, term "recovery" only sometimes.
 In a search for "recovery AND system" both have the same significance.
 - For \(q = "k_1 OR…. k_j" \) a document matches if at least one term matches.
 No difference if one or all terms match.

Coordinate level match

- Let \(q \) be in disjunctive normal form:
 \(q' = \text{DISJ} (t_{i1} \text{ AND } t_{i2} \text{ AND}….\text{AND} t_{ik}), t_{ij} = 0 \) or 1

Example: \(q = (\text{XML or DTD}) \) and \(\text{parser} \)
\(q' = (111) \text{ OR } (101) \text{ OR } (011) \)
 - Extend each disjunctive term by 0's for all terms in \(K \) not occurring in \(q \)
 - \(q' = (0000100011000) \text{ OR } … = qSig_1 \text{ OR}…\text{OR} qSig_k \)

\[
s(q,d) = \max (qSig_i * d)
\]
\((*) : \text{scalar product} \)

Means: the more query terms are in document, the better
Boolean Retrieval

- Discussion
 (+) Ranking
 (+) number of matching query terms in document d define rank of d
 (-) Rank dependent on number of query terms
 (-) Documents with many terms tend to be ranked higher
 (-) Terms which occur frequently in documents are treated in the same way as infrequent terms

- Requirement
 - More general term weights
 - Normalization of ranking s(q, d)

Vector space model

- Model
 - Documents: points in a |K| = n – dimensional vector space.
 - Weights normalized
 e.g. 0 <= w <= 1
 - Terms are independent of each other ("orthogonal")

- Queries ….
 … are (formally) documents(!): q = (q1, q2, ….qn)

- Needed: measure of similarity between document and query, e.g. vector difference.
Vector space: similarity function

- Heuristic similarity functions
 - Scalar product?
 \[w_1j^*q_1 + w_2j^*q_2 + \ldots + w_nj^*q_n \]
 Not bounded, may become arbitrarily large
 - Cosine measure
 \[
 \cos \phi = \frac{d_j \cdot q}{|d_j| \cdot |q|} = \frac{\sum w_{ij}q_i}{\sqrt{\sum w_{ij}^2} \cdot \sqrt{\sum q_i^2}}
 \]
 Measures angle between query vector and document.

Weights

- How to assign weights to documents / queries
 - Manual weight? Impossible! (more or less)

- Document frequency
 - Remember: infrequent terms are typically more significant than frequent ones
 "the" compared to "car"
 - Hypothesis: importance of a term depends on number of documents it occurs in
 - Justification: Zipf's law
 "Frequency of an event is inversely proportional to its significance"\(^1\)
 (Human Behaviour and the Principle of Least effort (G. Zipf 1949))
 (see http://information-retrieval.de/irb)
 - Consistent to information theory (Shannon)

 \[w \propto \frac{1}{DF(t)} \]
 i.e. number of documents, \(t \) occurs in

\(^1\)my formulation
Weights

- **Term frequency**
 - Hypothesis
 - Term frequency TF i.e. the frequency of a term t within a document d characterizes contents of d
 - Term frequency f_{tj} is a function of term t and document d_j

- **Normalization**
 - TF should not be linear
 - normalization heuristics
 - e.g. $f_{tj} = 1 + \log f_{tj}$
 - or $f_{tj} = K + (1-K) \frac{f_{tj}}{\max_i f_{ij}}$
 - IDF should be independent from number of documents
 - normalization heuristics
 - e.g. $w_t = \log (1 + N/f_t)$, $N =$ number of documents
 - or $w_t = \log (1 + f_{\max} / f_t)$
 - many other heuristics...

Cumulative weight of term t in document j

$$w_{tj} = f\left(\frac{TF}{1/DF}\right) = f\left(TF, IDF\right)$$

IDF = inverse document frequency

- Weight of term t in document d_j ("TF / IDF heuristics")

$$w_{tj} = r_{tj} \cdot w_t$$

- Weight of a query term

$$w_{tq} = q_t \cdot w_t$$

$q_t =$ weight relative to query.

Typical: $q_t = 1$ ("All terms equally important")
Cosine measure

\[
\cos(d_j, q) = \frac{d_j \cdot q}{|d_j| \cdot |q|} = \frac{\sum_{t \in d_j \cap q} w_{tj} \cdot w_t}{\sqrt{\left(\sum_{t \in d_j} w_{tj}^2\right) \cdot \left(\sum_{t \in q} w_t^2\right)}}
\]

\[
= \frac{1}{(W_j \cdot W_q)} \cdot \sum_{t \in d_j \cap q} (1 + \log f_{t,j}) \cdot (1 + \log (N/f_t))^2
\]

Note: document frequency has double influence - counts in \(d_j\) as well as \(q\). Reasonable?

Most often used:

\[
\cos(d_j, q) = \frac{1}{(W_j \cdot W_q)} \cdot \sum_{t \in d_j \cap q} (1 + \log f_{t,j}) \cdot (1 + N/f_t)
\]

\[\Rightarrow\] Ranking of result set

Issues:
- Efficient implementation
- Evaluation of "retrieval effectiveness"
- Many more similarity measures.
- Specific measures for Web documents (e.g. Google: "page rank")

Implementation of vector space model

- **Inverted file**
 - Terms \(t\)
 - \(df\)
 - \(D_o f_{t,j}\)
 - Index file, e.g. B+ tree, suffix tree
 - Postings lists, suited for boolean queries and similarity search

Most values may be calculated in advance and put into the posting list, e.g. \(1 + \log f_{t,j}\) but \(f_{t,j}\)
Evaluation

- Issues
 - Subjectiveness of judgement
 - How relevant is a document with respect to a query?
 - Elaborate, costly empirical tests required
 - many queries, many individual judgements
 - for each query, mean of judgements?

- Evaluation model
 - Ideal observer: knows relevant documents for each query
 - Check for each query q
 - how many relevant documents found
 - how many irrelevant documents found
 - Calculate mean over many queries

Recall and precision

Recall:
- fraction of relevant documents found of all relevant documents
- \(R = \frac{r}{r+v} \)

Precision:
- fraction of relevant documents found of all documents found
- \(P = \frac{r}{r+n} \)

How to evaluate ranking order?
Evaluation

Recall-Precision Graph

<table>
<thead>
<tr>
<th>Recall level</th>
<th>Precision %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
</tr>
</tbody>
</table>

Recall level n:
- n % of all relevant Documents have been found for a particular query and document set!

RC curve:
- Precision at recall level n

Summary of first part

- **Data models**
 - **structured**
 - Logic based DM: RDM, ORDM, OODM
 - Semi-structured, XML
 - **unstructured**
 - String based:
 - Word sequences: IR
 - Bit strings: images
 - Bit string sequences: Video

- **Issue today:** not just one data model appropriate for an application
- **Solution today:** user defined types (txt, XML, image) in (object) relational systems
- **To come:** data in a network --> **Distributed Databases**