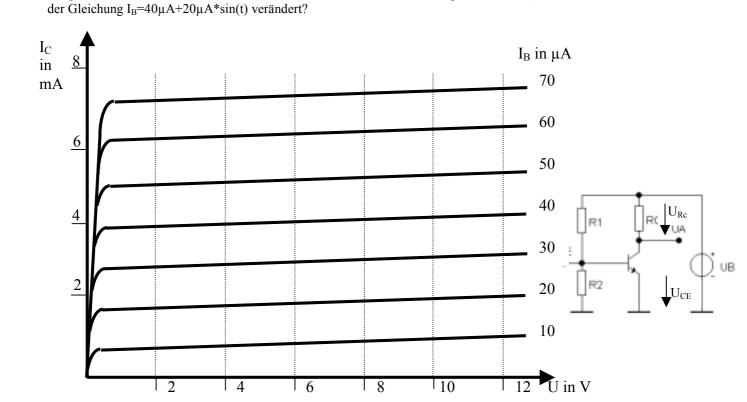
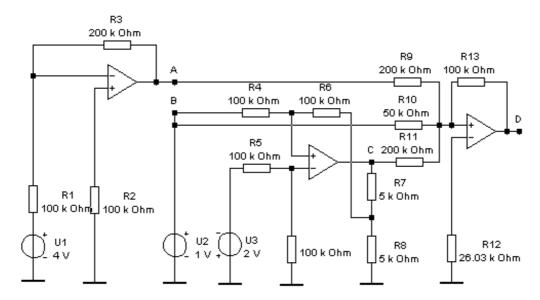
Institut für Informatik A

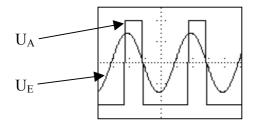

WS2001/2002

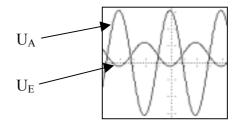
Klausur (4.2.2002) Physikalisch-elektrotechnische Grundlagen der Informatik

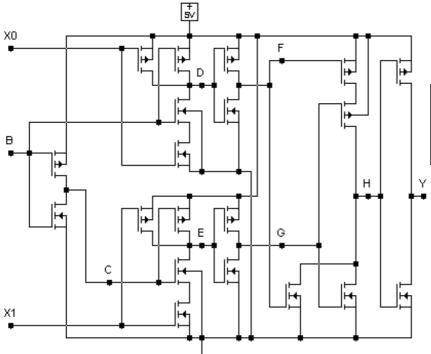
Sie grafisch in welchem Bereich sich U_{CE} verändern kann wenn I_{B} sich entsprechend


Dr.-Ing. Achim Liers

Name: Vorname: Mat.-Nr.: R3 1. Aufgabe (20 Punkte) 1 k Ohm Berechnen Sie für den dargestellten Schalterzustand die Spannung zwischen den Knotenpunkten A und B. Geben Sie die Polarität der R1 R2 Knotenpunkte A und B an. Welcher Strom fließt über den 2 k Ohm 2 k Ohm Widerstand R₃ wenn der Schalter S geschlossen wird? [S] U1 U2 2. Aufgabe (6 Punkte) 20 V Ц3 Berechnen Sie den Strom \underline{I}_1 (Betrag und Phase) über \underline{Z}_1 . Wie groß 12 V ist der Winkel zwischen \underline{I}_1 und \underline{U} ? Eilt \underline{I}_1 bezogen auf \underline{U} vor oder nach? Gegeben sind: $\underline{U} = 100e^{j20^{\circ}}V \quad \underline{Z}_1 = 10e^{-j20^{\circ}}\Omega$ $\underline{Z}_2 = 10e^{-j45^{\circ}}\Omega \quad \underline{Z}_3 = 10e^{+j45^{\circ}}\Omega.$ 3. Aufgabe (8 Punkte) Wie groß ist die Phasenverschiebung zwischen \underline{U}_R und \underline{U}_C bei $\underline{I}=1e^{j0^\circ}A$, $\underline{Z}_R=100e^{j0^\circ}\Omega$ und $\underline{Z}_C=100e^{-j90^\circ}\Omega$? Wie groß ist die Frequenz, wenn die Kapazität mit C=1,59 μ F gegeben ist? Ist \underline{U}_R oder \underline{U}_C voreilend? Ist der Winkel zwischen <u>U</u>_R und <u>U</u>_C frequenzabhängig? 4. Aufgabe (15 Punkte) Tragen Sie in die Abbildung den Arbeitspunkt mit $I_{B-AP} = 40\mu A$ und $U_{CE-AP} = 4V$ ein. \underline{U}_{C} Wie groß muss bei einer Betriebsspannung von 8V der Widerstand R_C sein? U_{R} Zeichnen Sie in die Abbildung die entsprechende Widerstandsgerade ein. Ermitteln


5. Aufgabe (20 Punkte)


Geben Sie die Berechnungsgleichungen und die Werte für die Spannungen U_A , U_B , U_C und U_D an den Knotenpunkten A, B, C und D als Funktion der Größen U_1 , U_2 , U_3 und der Widerstände R_1 bis R_{13} an.


6. Aufgabe (6 Punkte)

Welche Operationsverstärkerschaltungen können folgende Abhängigkeiten des Ausgangssignals U_A vom Eingangssignal U_E realisieren. Geben Sie die Schaltungsbezeichnungen unter den Abbildungen an.

Schaltung: Schaltung:

7. Aufgabe (19 Punkte)

Vervollständigen Sie die Wahrheitstabelle für die angegebene

Transistorschaltung.

X0	X1	В	C	D	Е	F	G	Н	Y
1	1	0							
0	1	0							
1	1	1							
1	0	1							

Geben Sie die Anzahl der enthaltenen NAND, NOR und NOT Funktionen an.

___mal NAND __mal NOR mal NOT