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Communicating Sequential ProcessesCommunicating Sequential Processes

	 This lecture is based on the book
"The Theory and Practice of Concurrency"

by A.W. Roscoe (Prentice-Hall 1998)

	 Communicating Sequential Processes (CSP)
� A language for describing processes that interact
� Invented by Tony Hoare
¤ First version in late 1970's and the second version in the early 

to mid 1980's
¤ Our discussion will focus on a CSP dialect of the the second 

version presented in Roscoe's book

� We will see many similarities to FSP
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Fundamental CSP Conce ptsFundamental CSP Concepts

	 A CSP process is completely described by the 
ways in which it can communicate with its 
external environment

	 The most important first step in a CSP process is 
choosing its alphabet of event communication
� An appropriate set of atomic interactions for the 

world we are modeling
� The alphabet of all events is written ��

� In CSP, events are assumed to be instantaneous, i.e., 
the instant when an interaction is agreed.
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Example Al phabetsExample Alphabets

	 { up, down, iszero } for a simple counter

	 { in.x, out.x | x F T }  for a unit that inputs and 
outputs values (of type T) on one channel each

	 { pay.x, change.x | x F M} �
{ cheddar.w, gouda.w, parmesan.w, ...| w  F W}
where M is the set of money amounts, W is the 
set of weights for a cheese shop
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STOP ProcessSTOP Process

	 The simplest process is STOP
� Just like in FSP
� STOP performs no actions at all
� Can be convenient in specifications and also provides 

a simple model of a deadlocked system
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Prefixin gPrefixing

	 If P is a process and a F � is any communication, 
then a G P says that
� a is offered until the environment accepts it and then 

behaves like P

	 So just like in FSP, we can build processes like
� up G down G STOP

� pay.$5 G gouda.500g G cheddar.1kg G change.$1.23 
G STOP
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RecursionRecursion

	 We can create processes that communicate 
forever by having them return to previous states
� P

1
 = up G down G P

1

� P
2
 = up G down G up G down  P

2

� P
u
 = up G P

d

P
d
 = down G P

u

¤ This last one obviously creates two processes
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ChoiceChoice

	 If A C � is any set of events and P(a) is a process 
for each a F A, then ?x : A G P(x) says that
� The environment is offered the choice of A and then 

behaves like the appropriate P(a)

	 Examples,
� RUN

A
 = ?x : A G RUN

A

� REPEAT = ?x : � G x G REPEAT
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Guarded AlternativeGuarded Alternative

	 Using the guarded alternative construct, just like 
in FSP, we can write
(a G P(a) | b G P(b) | ... | z G P(z))

	 Example
� COUNT

0
 = up G COUNT

1

COUNT
n+1

 = (up G COUNT
n+2

 | down G COUNT
n
)
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Channels and In put/Out putChannels and Input/Output

	 An event in � consists [conceptually] of a channel name 
plus zero or more data components
� e.g., up, cheddar.1kg, send.a.b.m
� The data components are sometimes used to transmit data 

between processes and sometimes to create arrays of 
channels

	 Often a process will want to allow all or some 
communication on one of its channels
� c?x G P(x) where x F �
� c?x : A G P(x) where x F A

	 When output happens on a channel, it is written c!x G P 
rather than c.x G P, these are almost synonymous (but 
they are different when inputs and outputs are
mixed in same communication) 
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Channels and Guarded AlternativeChannels and Guarded Alternative

	 Provided they are one distinct channels, inputs and 
outputs are allowed in the guarded alternative 
construct

CS(0) = pay?x G CS(x)
CS(x) = (cheddar?w : {z FF W | z � V

C
 > x} G CS(x – w � V

C  
)

| gouda?w : {z FF W | z � V
G
 > x} G CS(x – w � V

G  
)

| parmesan?w : {z FF W | z � V
P
 > x} G CS(x – w � V

P  
)

| pay?y G CS(x + y)
| change!x G CS(0))
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External Choice O peratorExternal Choice Operator

	 The external choice operator generalizes the 
guarded alternative construct
� P � Q offers the environment the choice between the 

initial actions of P and Q and then behaves like the 
one whose action is picked

� Every guarded alternative can be replaced by �
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External vs. Guarded ChoiceExternal vs. Guarded Choice

	 Consider guarded alternative as a "stepping-
stone" to understanding �, rather than actually 
having a proper place in CSP

	 It is obvious that if A �� B = { }  then
(?x : A G P(x)) � (?x : B G Q(x)) = ?x : A �� B G R(x)
where R(x) is P(x) or Q(x) depending on whether 
x is in A or B

	 What happens when A �� B JJ { }  ?
� If the environment selects an initial event that is 

common to P or Q in P � Q then it is non-
deterministic
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Non-deterministic ChoiceNon-deterministic Choice

	 Since non-determinism can occur naturally, CSP 
models it with the non-deterministic operation ��

� P �� Q can behave like P or like Q

	 Examples
� (a G b G STOP) � (a G c G STOP) or

a G (b G STOP �� c G STOP)
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Conditional ChoiceConditional Choice

	 Neither � nor �� are found in "ordinary" 
programming languages

	 Another more convential "choice" construct is
� if b then P else Q also written as

P 

 b �� Q
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Parallel ProcessesParallel Processes

	 Parallel process interact by handshake 
communication (in which both parties have to 
agree)

	 The simplest CSP parallel operator P || Q makes 
two processes agree on everything
� This is different from what we see in FSP
� ?x : A G P || ?x : B G Q = ?x : A �� B G (P || Q)
� Example
¤ P = (a G a G STOP) � (b G STOP)

Q = (a G STOP) � (c G a G STOP)

P || Q = a G STOP
because the processes only agree on a
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Alphabetized Parallel O peratorAlphabetized Parallel Operator

	 Parallel process will not generally agree on all 
communications
� Some communications will be shared and some will 

not be shared

	 If X and Y are subsets of �, P 
X
||

Y
 Q is the 

combination where P and Q are assigned the 
alphabets X and Y, respectively
� P must perform every communication in X and
� Q must perform every communication in Y

	 X �� Y are communications between P and Q, 
with X¬Y and Y¬X their independent actions
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Alphabetized Parallel O peratorAlphabetized Parallel Operator

	 Example
(a G b G b G STOP) 

{a,b}
||

{b,c}
 (b G c G b G STOP)

has the behavior
a G b G c G b G STOP
because initially the only possible event is a 
(since the left hand side blocks b); then both 
sides agree on b and so no.
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AlphabetsAlphabets

	 Since the alphabet of a process is simply the set 
of actions it can perform, why do we need them?
� Because processes sometimes cannot perform all of 

the actions we think they can, therefore it is vital that 
we know clearly whether processes must agree on 
some action

� Because sometimes it is useful to give a process a 
bigger alphabet so it can stop another one from 
performing some actions
¤ We have seen this in FSP, right?
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Pantomime Horse Exam plePantomime Horse Example

	 In a pantomime horse an actor plays the front half 
of the horse and an actor plays the back half

	 Suppose we have
� Front 

F
||

B
 Back

F = {forward,backward,nod,neigh}
B = {forward,backward,wag,kick}
Front = forward G Front' � nod G Front
Back = backward G Back' � wag G Back

� The horse will never perform Front' and Back', it will 
simply wag and nod forever

� This is summarized by the Step Law of 
X
||

Y
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Step Law of Step Law of 
XX
||||

YY

	 Suppose
P = ?x : A G P'
Q = ?x : B G Q'
C = (A �� (X¬Y) P by itself

�� (B �� (Y¬X)) Q by itself
�� (A �� B �� X �� Y) interactions

then
P 

X
||

Y
 Q = ?x : C G ( P' 

 x FF X �� P

X
||

Y

Q' 

 x FF Y �� Q )
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Dinin g Philoso phersDining Philosophers

	 We know the example from a previous lecture...

	 The fork process
FORK

i
 = (picksup.i.i G putsdown.i.i G FORK

i
)

� (picksup.i��1.i G putsdown.i��1.i G FORK
i
)

	 The philosopher process
PHIL

i
 = thinks.i G sits.i

G picksup.i.i G picksup.i.i�1
G eats.i G putsdown.i.i�1
G putsdowni.i G getsup.i G PHIL

i

	 Alphabets are AF
i
 and AP

i
, respectively
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Dinin g Philoso phersDining Philosophers

	 The completed dining philosophers system is 
formed by composing these ten pairs
{(FORK

i
, AF

i
), (PHIL

i
, AP

i
) | i FF {0,1,2,3,4}}

in parallel
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Interleavin g OperatorInterleaving Operator

	 || and 
X
||

Y
 make all partners allowed to 

communicate a given event, synchronize on it, 
the opposite is true of parallel composition by 
interleaving, P ||| Q
� P and Q run independently of each other and any 

event of P ||| Q occurs in exactly one of P and Q
� If both perform event a, then we get non-determinism

� If P = ?x : A G P' and Q = ?x : B G Q' then
P ||| Q = ?x : A �� B G

(P' ||| Q) �� (P ||| Q')


 x FF A �� B ��
(P' ||| Q) 

 x FF A �� (P ||| Q')
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Interleavin g ExamplesInterleaving Examples

	 An array of printers
Printer(n) = input?x G print.n!x G Printer(n)
Printroom = |||4

n=1
 Printer(n)

� This is non-deterministic because the user has no 
control over which printer prints his file

	 Behavior of COUNT
0
 with single recursion

Ctr = up G (Ctr ||| down G Ctr)
� This effectively "spawns" off capabilities that remain 

active while further calls are made
� This is very subtle
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Usin g Interleavin gUsing Interleaving

	 The previous examples of interleaving were 
pretty sophisticated and require that you really 
understand the behavior you want

	 The most common use of ||| is as a substitute for 

X
||

Y
 in cases where X and Y are disjoint

� This saves the effort of having to define alphabets,
for example
FORKS = FORK

0
 ||| FORK

1
 ||| ... ||| FORK

4

PHILS = PHIL
0
 ||| PHIL

1
 ||| ... ||| PHIL

4

AFS = {| picksup, putsdown |}
SYSTEM = FORKS 

AFS
||
�
 PHILS
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Generalized ParallelGeneralized Parallel

	 ||, 
X
||

Y
, and ||| are all special cases of a single 

operator, P || Q, called interface parallel

� This operator runs P and Q, making them synchronize 
on events in X and independently on others

� P 
X
||

Y
 Q = P || Q

P || Q = P || Q

P ||| Q = P || Q

	 P || Q = P 
Y
||

Z
 Q where X = Y �� Z

X��Y

X

�

{}

X
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Parallel Composition as Con junctionParallel Composition as Conjunction

	 Can be used to build trace specifications

	 Consider
� ROBOT

n,m
 = position.(n,m) - ROBOT

n,m

� north G ROBOT
n-1,m

� south G ROBOT
n+1,m

� east G ROBOT
n,m+1

� west G ROBOT
n,m-1

� If the "world" for the robot is a rectangle with the 
corners { (0,0), (n,0), (n,m), (0,m) } then we can 
constrict its movement with parallel composition
¤ See next slide...
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Parallel Composition as Con junctionParallel Composition as Conjunction

	 Compose ROBOT with
� CT(east, west)

0
alphabet { east, west }

CT(west, east)
m

alphabet { east, west }

CT(north, south)
n

alphabet { north, south }

CT(south, north)
0

alphabet {north, south }

where
CT(a, b)

0
 = a G CT(a, b)

1

CT(a, b)
r
 = a G CT(a, b)

r+1

� b G CT(a, b)
r-1

  if r > 0


