Concurrent Programmin ¢
19530-V (WS01)

Lecture 13:
Introduction to CSP
(Communicating Sequential Processes

Dr. Richard S. Hall
rickhall@inf.fu-berlin.de

Concurrent programming — January 29, 2002

Communicating Sequential Processes

This lecture is based on the book
"The Theory and Practice of Concurrency"
by A.W. Roscoe (Prentice-Hall 1998)

Communicating Sequential Processes (CSP)
A language for describing processes that interact

Invented by Tony Hoare

First version in late 1970's and the second version in the early
to mid 1980's

Our discussion will focus on a CSP dialect of the the second
version presented in Roscoe's book

We will see many similarities to FSP

=

)

Fundamental CSP Concepfsts

A CSP process is completely described by the
ways in which it can communicate with its
external environment

The most important first step in a CSP process is
choosing itsalphabetof event communication

An appropriate set agftomicinteractions for the
world we are modeling

The alphabet of all events is writtén

In CSP, events are assumed to be instantaneous, i.e.,
the instant when an interaction is agreed.

(:

Examipte Alpbakbéts

{ up, down, iszero for a simple counter

{In.x, out.x | xe T } for a unit that inputs and
outputs values (of typ€) on one channel each

{ pay.x, change.x | ¢ M} U

{ cheddar.w, gouda.w, parmesan.w, ...pWV}
wherelVl is the set of money amounts,is the
set of weights for a cheese shop

STOP Process

The simplest process $8[OP
Just like in FSP
STOPperforms no actions at all

Can be convenient in specifications and also provides
a simple model of a deadlocked system

Prefixinog

If Pis a process aml< > is any communication,
thena — P says that

ais offered until the environment accepts it and then
behaves like>

So just like in FSP, we can build processes like
up - down- STOP

pay.$5- gouda.500g> cheddar.1kg> change.$1.23
- STOP

Recursion

We can create processes that communicate
forever by having them return to previous states

P, = up~ down- P,

P, = up~ down- up—- down P
P =up->P

P =down- P

This last one obviouglcreates twgrocesses

Choice

If A < 2 is any set of events afrda)is a process
for eachac A, then?x : A— P(x)says that

The environment is offered the choicefofind then
behaves like the approprigtéa)

Examples,
RUN = ?x:A- RUN
A A
REPEAT = ?xX = —» x - REPEAT

Guarded Alternative

Using theguarded alternativeonstruct, just like
in FSP, we can write
(a-P(a) | b>P()|...| 2 P(2))
Example
COUNT_ = up—~ COUNT,
COUNT = (up—~ COUNT _|down- COUNT)

10

Channels and InppltQuiwut

An event inz consists [conceptually] of a channel name
plus zero or more data components

e.g.,up, cheddar.1lkgsend.a.b.m

The data components are sometimes used to transmit data

between processes and sometimes to create arrays of
channels

Often a process will want to allow all or some
communication on one of its channels

c?x— P(x)wherex € ©

c?x: A- P(x)wherex € A
When output happens on a channel, it is written- P
rather tharc.x - P, these are almost synonymous (but
they are different when inputs and outputs are ‘
mixed in same communication) o~

11

Channels and Guarded Alternative

Provided they are one distinct channels, inputs ar
outputs are allowed in the guarded alternative
construct
CS(0) = pay?» CS(x)
CS(x) = (cheddar?w : { W[zx V_<x} > CS(X—wx V_)

| gouda?w : {# W | zxV_< X} » CS(x —wx V_)

| parmesan?w : {g W | zx V_ <x} - CS(X—wx V)

| pay?y—> CS(x +y)
| change!x> CS(0))

12

External Choice Oppetator

Theexternal choiceperator generalizes the
guarded alternativeonstruct

P [Q offers the environment the choice between the
initial actions ofP andQ and then behaves like the
one whose action is picked

Every guarded alternative can be replaced by

13

External vs. Guarded Choice

Consider guarded alternative asstepping-
stone"to understanding !, rather than actually
having a proper place in CSP

It is obvious that ifA N B = {} then

(?x : A->P(xX)) 1 (?x : B-> Q(X)) = ?2x : AU B - R(X)
whereR (x) is P(x) or Q(x) depending on whether
X IisinA orB

What happens wheih B+ {} ?

If the environment selects an initial event that is
common toP or Q in P[] Q then it isnon-
deterministic —=

14

Non-deterministic Choice

Since non-determinism can occur naturally, CSP
models it with the non-deterministic operatian

P11 Q can behave like or like Q

Examples

(a—» b- STOP)U (a—» c—~ STOP)or
a— (b~ STOPM c— STOP)

15

Conditional Choice

Neither[] nor[] are found in "ordinary"
programming languages
Another more convential "choice" construct is

If b then P else @lso written as
P«b» Q

16

Parallel Processes

Parallel process interact by handshake
communication (in which both parties have to
agree)
The simplest CSP parallel operakof| Omakes
two processes agree on everything
This is different from what we see in FSP
X A->P||?2X:B>Q=?x:ANnB-> (P || Q)
Example
P = (a~ a— STOP)L (b~ STOP)
Q = (a~ STOP)d (¢~ a— STOP)

P||Q=a STOP
because the processes only agree on

17

Alpirabetized Raralle] Qp prerator

Parallel process will not generally agree on all
communications
Some communications will be shared and some will
not be shared
If X'andY are subsets af, P || Qls the

combination wher®& andQ are assigned the
alphabets< andY, respectively

P must perform every communication’xnand

Q must perform every communicationiin

X MY are communications betweerandQ, _
with XY andY'X their independent actions |{2

18

Alpirabetized Raralle] Qo prerator

Example
(a—-b-b-> STOP)
has the behavior
a-b-c-b->STOP

because initially the only possible eveniis
(since the left hand side block}s then both
sides agree onand so no.

{a,b}”{b,c} (b-c—-b-STOP)

19

Alpirabets

Since the alphabet of a process is simply the set
of actions it can perform, why do we need them?

Because processes sometimes cannot perform all of
the actions we think they can, therefore it is vital that
we know clearly whether processes must agree on
some action
Because sometimes it is useful to give a process a
bigger alphabet so it can stop another one from
performing some actions

We have seen this in FSPRght?

20

Pantomime Horse Exampljele

In a pantomime horse an actor plays the front hal
of the horse and an actor plays the back half

Suppose we have
Front ||, Back

F = {forward,backward,nod,neigh}

B = {forward,backward,wag,kick}
Front = forward- Front'] nod— Front
Back = backward> Back'[] wag— Back

The horse will never perforfront'andBack; it will
simply wag and nod forever

This is summarized by ttétep Law of||,

(:

21

Step Law of ||,

Suppose

P=7X:A->FP

Q=?2x:B->Q'

C= (AN XY) P by itself
U (B N (Y'X)) Q by itself
UANBNXNY) interactions

then

PILQ=7x:C>(P«xeX»P

ll

Q«xeY»Q)

22
Dininay [Phiiicsm pdiers
We know the example from a previous lecture...

The fork process
FORK = (picksup.i.i- putsdown.i.i> FORK)

[(picksup.©1.i » putsdown £1.i —~ FORK)
The philosopher process
PHIL = thinks.i— sits.i

— picksup.i.i» picksup.i.i61
— eats.i> putsdown.igpl
— putsdowni.i~ getsup.> PHIL

Alphabets aré\F- andAP, respectively

23

Dininay FPhiiics pdier s

The completed dining philosophers system is
formed by composing these ten pairs
{(FORK,, AF), (PHIL, AP) | i€{0,1,2,3,4}}

in parallel

24

InterleavinogCPp ex&aior

land || make all partners allowed to

communicate a given event, synchronize on it,
the opposite is true of parallel composition by
interleaving P ||| Q

P andQ run independently of each other and any
event ofP ||| Qoccurs in exactly one ¢fandQ

If both perform event a, then we g&in-determinism
If P=72x:A~PandQ = ?x: B~ Q'then
Pll|Q=?x:AJB—

P QYT(P Il Q)
£xeANB»

(Pl Q¥ xeA» (Pl Q)

25

InterleavinogcExam eles

An array of printers
Printer(n) = input?* print.n!x - Printer(n)

Printroom = [f|_, Printer(n)

This is non-deterministic because the user has no
control over which printer prints his file
Behavior ofCOUNT0 with single recursion

Ctr = up— (Ctr ||| down» Ctr)

This effectively "spawns" off capabilities that remain
active while further calls are made

This is very subtle

(:

26

Using |l irtetteaving g

The previous examples of interleaving were
pretty sophisticated and require that you really
understand the behavior you want

The most common use pfis as a substitute for
. in cases wherg andY are disjoint

This saves the effort of having to define alphabets,

for example
FORKS = FORK([|| FORK]| ... ||| FORK
PHILS = PHIL_|[| PHIL || ... ||| PHIL

AFS = {| picksup, putsdown [}
SYSTEM = FORKSAFS”Z PHILS

27

Generalized Parallel

b I, and|||are all special cases of a single
operatorP || Q calledinterfaceparallel
X

This operator rung andQ, making them synchronize
on events irX and independently on others

P.UL Q=P Q
XY

PIIQ=P]IQ
)

P P
Il Q&= {JI Q

P Q=P ||, QwhereX =Y N Z
X

28

Parallel Composition as Conjuijatiotion

Can be used to build trace specifications
Consider
ROBOT = position.(n,m) - ROBOT
~ Onorth>ROBOT
] south— ROBOTMm
[] east> ROBO'I'n’m+l
[west—> ROBOT .

If the "world" for the robot is a rectangle with the

corners { (0,0), (n,0), (n,m), (0O,m) } then we can

constrict its movement with parallel composition—=
See next slide...

29

Parallel Composition as Conjuijatiotion

© Compose ROBOT with

+ CT(east, wesf) alphabef east, west }
CT(west, east) alphabef east, west }
CT(north, south) alphabe{ north, south }
CT(south, north) alphabet{north, south }
where
CT(a, b} =a—- CT(a, b)
CT(a, b)=a—- CT(a, b)

+1

O b CT(a, b), ifr>0

-1

