
1Concurrent Programmin gConcurrent Programmin g
19530-V (WS01)19530-V (WS01)

Lecture 13:
Introduction to CSP

(Communicating Sequential Processes)

Dr. Richard S. Hall
 rickhall@inf.fu-berlin.de

Concurrent programming – January 29, 2002

2

Communicating Sequential ProcessesCommunicating Sequential Processes

	 This lecture is based on the book
"The Theory and Practice of Concurrency"

by A.W. Roscoe (Prentice-Hall 1998)

	 Communicating Sequential Processes (CSP)
� A language for describing processes that interact
� Invented by Tony Hoare
¤ First version in late 1970's and the second version in the early

to mid 1980's
¤ Our discussion will focus on a CSP dialect of the the second

version presented in Roscoe's book

� We will see many similarities to FSP

3

Fundamental CSP Conce ptsFundamental CSP Concepts

	 A CSP process is completely described by the
ways in which it can communicate with its
external environment

	 The most important first step in a CSP process is
choosing its alphabet of event communication
� An appropriate set of atomic interactions for the

world we are modeling
� The alphabet of all events is written ��

� In CSP, events are assumed to be instantaneous, i.e.,
the instant when an interaction is agreed.

4

Example Al phabetsExample Alphabets

	 { up, down, iszero } for a simple counter

	 { in.x, out.x | x F T } for a unit that inputs and
outputs values (of type T) on one channel each

	 { pay.x, change.x | x F M} �
{ cheddar.w, gouda.w, parmesan.w, ...| w F W}
where M is the set of money amounts, W is the
set of weights for a cheese shop

5

STOP ProcessSTOP Process

	 The simplest process is STOP
� Just like in FSP
� STOP performs no actions at all
� Can be convenient in specifications and also provides

a simple model of a deadlocked system

6

Prefixin gPrefixing

	 If P is a process and a F � is any communication,
then a G P says that
� a is offered until the environment accepts it and then

behaves like P

	 So just like in FSP, we can build processes like
� up G down G STOP

� pay.$5 G gouda.500g G cheddar.1kg G change.$1.23
G STOP

7

RecursionRecursion

	 We can create processes that communicate
forever by having them return to previous states
� P

1
 = up G down G P

1

� P
2
 = up G down G up G down P

2

� P
u
 = up G P

d

P
d
 = down G P

u

¤ This last one obviously creates two processes

8

ChoiceChoice

	 If A C � is any set of events and P(a) is a process
for each a F A, then ?x : A G P(x) says that
� The environment is offered the choice of A and then

behaves like the appropriate P(a)

	 Examples,
� RUN

A
 = ?x : A G RUN

A

� REPEAT = ?x : � G x G REPEAT

9

Guarded AlternativeGuarded Alternative

	 Using the guarded alternative construct, just like
in FSP, we can write
(a G P(a) | b G P(b) | ... | z G P(z))

	 Example
� COUNT

0
 = up G COUNT

1

COUNT
n+1

 = (up G COUNT
n+2

 | down G COUNT
n
)

10

Channels and In put/Out putChannels and Input/Output

	 An event in � consists [conceptually] of a channel name
plus zero or more data components
� e.g., up, cheddar.1kg, send.a.b.m
� The data components are sometimes used to transmit data

between processes and sometimes to create arrays of
channels

	 Often a process will want to allow all or some
communication on one of its channels
� c?x G P(x) where x F �
� c?x : A G P(x) where x F A

	 When output happens on a channel, it is written c!x G P
rather than c.x G P, these are almost synonymous (but
they are different when inputs and outputs are
mixed in same communication)

11

Channels and Guarded AlternativeChannels and Guarded Alternative

	 Provided they are one distinct channels, inputs and
outputs are allowed in the guarded alternative
construct

CS(0) = pay?x G CS(x)
CS(x) = (cheddar?w : {z FF W | z � V

C
 > x} G CS(x – w � V

C
)

| gouda?w : {z FF W | z � V
G
 > x} G CS(x – w � V

G
)

| parmesan?w : {z FF W | z � V
P
 > x} G CS(x – w � V

P
)

| pay?y G CS(x + y)
| change!x G CS(0))

12

External Choice O peratorExternal Choice Operator

	 The external choice operator generalizes the
guarded alternative construct
� P � Q offers the environment the choice between the

initial actions of P and Q and then behaves like the
one whose action is picked

� Every guarded alternative can be replaced by �

13

External vs. Guarded ChoiceExternal vs. Guarded Choice

	 Consider guarded alternative as a "stepping-
stone" to understanding �, rather than actually
having a proper place in CSP

	 It is obvious that if A �� B = { } then
(?x : A G P(x)) � (?x : B G Q(x)) = ?x : A �� B G R(x)
where R(x) is P(x) or Q(x) depending on whether
x is in A or B

	 What happens when A �� B JJ { } ?
� If the environment selects an initial event that is

common to P or Q in P � Q then it is non-
deterministic

14

Non-deterministic ChoiceNon-deterministic Choice

	 Since non-determinism can occur naturally, CSP
models it with the non-deterministic operation ��

� P �� Q can behave like P or like Q

	 Examples
� (a G b G STOP) � (a G c G STOP) or

a G (b G STOP �� c G STOP)

15

Conditional ChoiceConditional Choice

	 Neither � nor �� are found in "ordinary"
programming languages

	 Another more convential "choice" construct is
� if b then P else Q also written as

P

 b �� Q

16

Parallel ProcessesParallel Processes

	 Parallel process interact by handshake
communication (in which both parties have to
agree)

	 The simplest CSP parallel operator P || Q makes
two processes agree on everything
� This is different from what we see in FSP
� ?x : A G P || ?x : B G Q = ?x : A �� B G (P || Q)
� Example
¤ P = (a G a G STOP) � (b G STOP)

Q = (a G STOP) � (c G a G STOP)

P || Q = a G STOP
because the processes only agree on a

17

Alphabetized Parallel O peratorAlphabetized Parallel Operator

	 Parallel process will not generally agree on all
communications
� Some communications will be shared and some will

not be shared

	 If X and Y are subsets of �, P
X
||

Y
 Q is the

combination where P and Q are assigned the
alphabets X and Y, respectively
� P must perform every communication in X and
� Q must perform every communication in Y

	 X �� Y are communications between P and Q,
with X¬Y and Y¬X their independent actions

18

Alphabetized Parallel O peratorAlphabetized Parallel Operator

	 Example
(a G b G b G STOP)

{a,b}
||

{b,c}
 (b G c G b G STOP)

has the behavior
a G b G c G b G STOP
because initially the only possible event is a
(since the left hand side blocks b); then both
sides agree on b and so no.

19

AlphabetsAlphabets

	 Since the alphabet of a process is simply the set
of actions it can perform, why do we need them?
� Because processes sometimes cannot perform all of

the actions we think they can, therefore it is vital that
we know clearly whether processes must agree on
some action

� Because sometimes it is useful to give a process a
bigger alphabet so it can stop another one from
performing some actions
¤ We have seen this in FSP, right?

20

Pantomime Horse Exam plePantomime Horse Example

	 In a pantomime horse an actor plays the front half
of the horse and an actor plays the back half

	 Suppose we have
� Front

F
||

B
 Back

F = {forward,backward,nod,neigh}
B = {forward,backward,wag,kick}
Front = forward G Front' � nod G Front
Back = backward G Back' � wag G Back

� The horse will never perform Front' and Back', it will
simply wag and nod forever

� This is summarized by the Step Law of
X
||

Y

21

Step Law of Step Law of
XX
||||

YY

	 Suppose
P = ?x : A G P'
Q = ?x : B G Q'
C = (A �� (X¬Y) P by itself

�� (B �� (Y¬X)) Q by itself
�� (A �� B �� X �� Y) interactions

then
P

X
||

Y
 Q = ?x : C G (P'

 x FF X �� P

X
||

Y

Q'

 x FF Y �� Q)

22

Dinin g Philoso phersDining Philosophers

	 We know the example from a previous lecture...

	 The fork process
FORK

i
 = (picksup.i.i G putsdown.i.i G FORK

i
)

� (picksup.i��1.i G putsdown.i��1.i G FORK
i
)

	 The philosopher process
PHIL

i
 = thinks.i G sits.i

G picksup.i.i G picksup.i.i�1
G eats.i G putsdown.i.i�1
G putsdowni.i G getsup.i G PHIL

i

	 Alphabets are AF
i
 and AP

i
, respectively

23

Dinin g Philoso phersDining Philosophers

	 The completed dining philosophers system is
formed by composing these ten pairs
{(FORK

i
, AF

i
), (PHIL

i
, AP

i
) | i FF {0,1,2,3,4}}

in parallel

24

Interleavin g OperatorInterleaving Operator

	 || and
X
||

Y
 make all partners allowed to

communicate a given event, synchronize on it,
the opposite is true of parallel composition by
interleaving, P ||| Q
� P and Q run independently of each other and any

event of P ||| Q occurs in exactly one of P and Q
� If both perform event a, then we get non-determinism

� If P = ?x : A G P' and Q = ?x : B G Q' then
P ||| Q = ?x : A �� B G

(P' ||| Q) �� (P ||| Q')

 x FF A �� B ��
(P' ||| Q)

 x FF A �� (P ||| Q')

25

Interleavin g ExamplesInterleaving Examples

	 An array of printers
Printer(n) = input?x G print.n!x G Printer(n)
Printroom = |||4

n=1
 Printer(n)

� This is non-deterministic because the user has no
control over which printer prints his file

	 Behavior of COUNT
0
 with single recursion

Ctr = up G (Ctr ||| down G Ctr)
� This effectively "spawns" off capabilities that remain

active while further calls are made
� This is very subtle

26

Usin g Interleavin gUsing Interleaving

	 The previous examples of interleaving were
pretty sophisticated and require that you really
understand the behavior you want

	 The most common use of ||| is as a substitute for

X
||

Y
 in cases where X and Y are disjoint

� This saves the effort of having to define alphabets,
for example
FORKS = FORK

0
 ||| FORK

1
 ||| ... ||| FORK

4

PHILS = PHIL
0
 ||| PHIL

1
 ||| ... ||| PHIL

4

AFS = {| picksup, putsdown |}
SYSTEM = FORKS

AFS
||
�
 PHILS

27

Generalized ParallelGeneralized Parallel

	 ||,
X
||

Y
, and ||| are all special cases of a single

operator, P || Q, called interface parallel

� This operator runs P and Q, making them synchronize
on events in X and independently on others

� P
X
||

Y
 Q = P || Q

P || Q = P || Q

P ||| Q = P || Q

	 P || Q = P
Y
||

Z
 Q where X = Y �� Z

X��Y

X

�

{}

X

28

Parallel Composition as Con junctionParallel Composition as Conjunction

	 Can be used to build trace specifications

	 Consider
� ROBOT

n,m
 = position.(n,m) - ROBOT

n,m

� north G ROBOT
n-1,m

� south G ROBOT
n+1,m

� east G ROBOT
n,m+1

� west G ROBOT
n,m-1

� If the "world" for the robot is a rectangle with the
corners { (0,0), (n,0), (n,m), (0,m) } then we can
constrict its movement with parallel composition
¤ See next slide...

29

Parallel Composition as Con junctionParallel Composition as Conjunction

	 Compose ROBOT with
� CT(east, west)

0
alphabet { east, west }

CT(west, east)
m

alphabet { east, west }

CT(north, south)
n

alphabet { north, south }

CT(south, north)
0

alphabet {north, south }

where
CT(a, b)

0
 = a G CT(a, b)

1

CT(a, b)
r
 = a G CT(a, b)

r+1

� b G CT(a, b)
r-1

 if r > 0

