Concurrent Programmin ¢
19530-V (WS01)

Lecture 12:

Modeling Dynamic Systems &
Process Communication

Dr. Richard S. Hall
rickhall@inf.fu-berlin.de

Concurrent programming — January 22, 2002

Part 1: Modelingg-Dyaamics8ystems

In all of the models we have discussed and implemented
so far, threads are created during initialization and they
run until program termination (for the most part). What
about modeling programs where the number of active
threads varies during execution?

Dynarnic Thread Exarmp|sle

Golf Course Example

A golf course has a limited number of golf balls
available for its players. Players check out golf balls to
play golf and return them after they are finished. Expert
players, who never lose balls, only take one or two balls.
Novice players take more balls so that they have extras
In case any get lost. All players must return the same
number of balls they checked out, so they must buy
replacement balls if any are lost.

In this example, new players arrive dynamically.

This is an example of a resource allocation problenT

Modelingg[Dyrmamicss yistems

What is the perceived difficulty with using FSP /
LTS for dynamic systems?

These techniques require a static number of processe
in order to permit analysis

Dynamic systems do not have a static number of
processes

We will start by taking a quick look at the
implementation and model of tla&lf Course

(—T

92]

Golf Course ImpHementation

SimpleAllocator
available= 0 hired out=5

Players threads and their desired ball requests are created by
pushing the button corresponding button. Player names are
generated using an ordered letter from the alphabet
concatenated with the number of balls required. New player
threads temporarily appear in the “new” box and finishing
player threads temporarily appear in the “end” box.

Golf Course ImpHementation

public interface Allocator {
public void get(int n)
throws InterruptedException;
public void put(int n);

public class SimpleAllocator implements Allocator {
private int available;
public SimpleAllocator(int n) { available = n; }
public synchronized void get(int n)
throws InterruptedException {
while (n > available) wait();
available -=n;

public synchronized void put(int n) {
available +=n;
notifyAll();
}
}

i

Golf Course ImpHementation

public class Player implements Runnable {
private GolfCourse gc;
private String name;
private int nballs;
public Player(GolfCourse g, int n, String s) {
gc = g; nballs = s; name = s;

public void run() {
try {
gc.getGolfBalls(nballs, name);
Thread.sleep(gc.playTime);
gc.relGolfBalls(nballs, name);
} catch (InterruptedException ex) { }

}

:I.'.hread t = new Thread(new Player());
t.start();

i

Golf Course Model

const N=5 //maximum number of golf balls
range B=0..N /lavailable range

ALLOCATOR = BALL[N],
BALL[b:B] = (when (b>0) get[i:1..b]->BALL[b-i]
[putj:1..N]->BALL[b+j]).

LTS for N=2 o

put1]

putl]

Golf Course Model

range R=1..N /lrequest range

PLAYER = (need[b:R]->PLAYERIb]),
PLAYER[b:R] = (get[b]->put[b]->PLAYER[b]).

LTS for N=2

need[1]

10

Golf Course Model

How do we model the potentially infinite stream
of dynamically created players?

We can’t with FSP / LTS is the short answer, because
we cannot model infinite spaces

However, we can model infinite behaviors that are
repetitive
We do not need to model that each player is distinct

We model a fixed population of players who continuously
repeat the actions of playing

set Experts = {alice, bob, chris}
set Novices = {dave, eve}
set Players = {Experts, Novices}

11

Golf Course Model

HANDICAP =
({Novices.{need[3..N]},Experts.need[1..2]}
->HANDICAP)
+{Players.need[R]}.

[|[GOLFCOURSE = (Players:PLAYER
[|[Players::ALLOCATOR
[[HANDICAP).

HANDICAPdistinguishes between novices angexs.
Alphabet extension is used to ensure that vih&NDICAP
is conposed withPLAYERprocesses theare inhibited from
performing ary other need actions.

12

Part 2: Process Communication

In previous examples we have used processes interacting
through shared variables to illustrate concurrency issues.
Shared variables are simply one form of process
communication.

Now we examine alternative approaches to process
communication.

13

Messagye [Rassing

Instead of using shared variables, processes can
communicate by sending and receiving messages

Conceptually this means that the processes do not
share memory, but still reside on the same computer

A result of not sharing memory is that processes may
reside on different computers connected via a network

Since most distributed systems use some form of
message passing mechanism, it is easy to see that
concurrency is intimately tied to distributed systems

v)

14

Messagye [Rassing

Message passing primitive operations
send- send a message to someone else
recelve- receive a message from someone else

Two basic models fosend/ receiveprimitive

Synchronous= writing/reading a message blocks
until someone reads/writes

Asynchronous= writing/reading does not block,
written messages are buffered and if no message is
available the read operation returns immediately

These message primitives are one-way

Messages are transmitted from the sender to th
receiver Y

15

Message [Passing

How are messages addressed?
Addressed directly to the destination process
Addressed indirectly to some intermediate entity

One model of message passing using the notion
of achannel
Messages are sent to and received from a channel

A channel connects one sender and one receiver, thus
communication isne-to-one

V)

16

Synchronous Channel MessagcgeésRassgin g

send(e, c) send the value of the gressione to channet.
Theprocess callig send is blocked until the meggas
received lp anotheprocess.

v = receive(c) receive a value into local variabldrom a
channek. The callirg process is blocked until a megsas
sent to the channel.

Receiver

v = receive(c)

17

Selective Messagge-Receize

With blocking semantics it is inconvenient receiving from
multiple channels, therefore some message passing systems
implementing some form of selective receive; the general
form of a select statement is (this is not FSP):

select
whenG_ andv, =receivethan) =>S;
or whenG andv, = receive¢han,)) =>S ;
or whenG andv = receivethan)=>S ;
end

G; is a boolean guard which indicates thateeiveis
eligible if the guard i¢rue; the selectstatement chooses

an eligiblereceivefor which there is a sender waiting tj:i
send l

18

Selective Messagge-Receize

Some message passage implementations allow you to do a
polling receive (this is not FSP):

select
v = receivethan) => S;

else
S

ELSE;
end

If there is no sender readysendonchan then theelse
part is chosen for execution.

19

Modelincy<Symnchronogs\Messaigin g

Modeling the sender and receiver is straight-forward...

range M =0..9

SENDER = SENDER[0],

SENDER[e:M] = (chan.send[e]
->SENDER[(e+1)%10]).

RECEIVER = (chan.receive[v:M]->RECEIVER).

How do we model the channel entity?

20

Modelinoy<Symnchronogs\Messaigin g

Since sending and receiving arechronous we

know that this means that they share an action, in this
case, they are the same action. Therefore combining a
sender and a receiver is a matter of renaming.

||SynchMsg = (SENDER || RECEIVER)
Hchan/chan.{send, receive}}.

SENDER RECEIVER
chan

chan.send O——¢han.receive

Can we avoid renaming?

Modelincy<Symnchronogs\Messaigin g

To avoid relabeling, we can model the send action
directly aschan[e] and the receive action as
chan[v:M] . The only difference is thatraceiveis

modeled as a choice between a sétleélues, whereas

asendspecifies a specific value

Message Operation ESP Model
sende, chan chanle]
v =receivgchan) chan[e:M]

21

Modeling &efectiveMessa) @ & Reveive

Recall the car park example:

CARPARKCONTROL(N=4) = SPACESIN],
SPACES]i:0..N] = (when(i=0) arrive->SPACES]i-1]
| when(i<N) depart->SPACES][i+1]).

ARRIVALS = (arrive->ARRIVALS).
DEPARTURES = (depart->DEPARTURES).

ICARPARK = (ARRIVALS||CARPARKCONTROL(4)||DEPARTURES).

CAR PARK

ARRIVALS arrive CARPARK depart DEPARTURES
CONTROL

22

23

ModelingySetectivel\ Messa @ 8 Reveive

For the car park, we do not need to change the model
for message passing
The when clauses diregtingp to receiver selection
The ARRIVALS andDEPARTURE processes are considered
to be sendig messges on channels forgsialing arrivals and
departures, regectively
In the original implementation, we implemented the
CARPARKCONTR@rocess as a monitor

For messge passimg, we inplement it as a thread that receives
messges fromARRIVALS andDEPARTURE$o indicate

when a car has arrived orpdeted, repectively
The implementation ofRRIVALSandDEPARTURES

are identical, they just send messages to channe‘—i
instead of invoking a method l

24

Modelincy/A&syinbhvonoas\/Messgirgin g

In asynchronous message passing the send operation
does not block, while the receive operation typically
blocks until a message is available

A portis an example of an asynchronous message
passing concept

Messages are held in a queue until received

A port may have many senders, but only one receiver,
thus communication isiany-to-one

25

Port Ojperdtions

send(e, p) send the value of the gressione to portp. The
process callig send is not blocked. The megeasqueued
at theport if a receiver is not waitm

v = receive(p} receive a value into local variabldrom a
port c. The callirg process is blocked if there are no
messges in the mesgg queue.

26

Conceptudlllllustedtion ofafRoit

Sender[1]
send(el, p)

Port p

Sender[2]
send(e2, p)

Receiver

v = receive(c)

Sender[n]
send(en, p)

Modelincy/A&syinbhvonoas\/Messgirgin g

Asynchronous message passing model not
simple as synchronous model, some of the
difficulties are

Message queues associated with a port are potentially

unbounded, we know this is a problem for FSP

27

as

We must adpt the same gproach we used for seplaores
and model thgueue as finite and allow an overflow error

Given the range of messages and the size of th

message queue, it is very easy for the state space of &

port model to explode

e

~

-

Modelincy/A&syinbhvonoas\/Messgirgin g

28

Assume that we aregain usirg an int@er value between 0 and 9...

range M =0..9
set S ={[M],[M][M]}
PORT /I empty state
= (send[x:M]->PORT[x]),
PORTI[h:M] /l one message queued

= (send[x:M]->PORT[x][h]
[receive[h]->PORT),
PORTIt: S][h:M] // two or more messages queued
= (send[x:M]->PORT[x][t][h]
[receive[h]->PORTI{]).

The setS defines the set of values that can be takethé tail
of thequeue when thgueue contains two or more megss;
essential it is a set ofypes for thePORTparameters.

Modelincy/A&syinbhvonoas\/Messgirgin g

To model a port that can queue up to four
messages, we must charig®

set S = {[M],[M][ML[M][M][MI}

With a queue for three messages, a LTS with
1111 states is generated; with four messages is a

total of 11111 states
Clearly these graphs are too big to view

We can abstract away the value of the messages

to examine the send and receive actions

29

(:

Modelincy/A&syinbhvonoas\/Messgirgin g

30

[|JABSTRACTPORT = PORT
{send/send[M],receive/receive[M]}.

This process simply ignores the value of the individual

messges, treatig all sends and receives as the same action.

This results in a siplified LTS with observable behavior, for

range M =0..3

31

Modelincy/A&syinbhvonoas\/Messgirgin g

SENDER = SENDER]0],
SENDER[e:M] = (port.send[e]->SENDER][(e+1)%10]).

RECEIVER = (port.receive[v:M]->RECEIVER).

|[AsynchMsg = (s[1..2]:SENDER || port:PORT || RECEIVER)
/{s[1..2].port.send/port.send}.

Analysis? It is possible to overflow the buffer...

Trace to property violation in port:PORT:
s.1.port.send.O
s.1l.port.send.1
s.1l.port.send.2
s.1.port.send.3

32

Rendezvous Messagge-Rassig g

In rendezvougnessage passing, a client sends a
request message to a server

Also referred to asequest-reoly message passing

Requests messages are queued GmAaRm in
FIFO order

Requests areany-to-one

The server accepts requests from the entry and
sends a reply message to client on completion

The client blocks waiting for the reply message
Replies arene-to-one —

33

Rendezvous Messagge-Rassig g

res = call(e, req}) send the valueeq as a rquest messe
which isqueued to the entre. The callirg process is blocked
until a rgply messge is received into the local variabes

req = accept(e) receive the value of theqaest mesgge from
the enty e into the local variableeq. If there are no guest
messgesqueued to the enty then the serverocess is
blocked.

reply(e, res} send the valugesas a rply messge to enty e.

Called “rendezvoussince the client and server processes
meet and synchronize when the server performs a service__
for the client.

34

ModelinggFRentezvols\Messa)gin g

// Reply channels
set M = {replyA, replyB}

Il Create an entry from a port
|[ENTRY = PORT /{call/send, accept/receive}.

Il Server receives on port, replies on channel
SERVER = (entry.accept[ch:M]->[ch]->SERVER).

/I Client requests on port, receives on channel
CLIENT(CH='reply) = (entry.cal[CH]->[CH]->CLIENT).

35

ModelinggFRentexvols\Messa)gin g

[|[EntryDemo = (CLIENT(‘replyA) || CLIENT(‘'replyB)
[| entry:ENTRY || SERVER).

entry.call[M] entry:ENTRY SERVER
CLIENT entry.accept

Notice that we did nqgtrefix the clientprocesses like we
normally do; this is because tlparameter causes them to
have distinct gdhabets. For exapte, the gbhabet for
CLIENT (‘replyA) is:

{entry.call.replyA, replyA}

36

ModelinggFRentezvols\Messa)gin g

From the viewpoint of a client, other than syntactic
differences, a call on amtry is very similar to calling a
monitor access method. Only one client request at a time
can be serviced, thus mutual exclusion is guaranteed.

What is the only conceptual difference between the two?
The client thread is used to handle the request in monitor

methods, whereas the server thread is used to handle the
request in an entry.

37

Java Detour: Messagge’Rassif g

Sockets

A socketis an inter-process message passing
mechanism; similar to port as we have defined it

You can use sockets to create concurrency between
separate processes on separate machines

A socket address is an IP address and a port number

This port number has nothgnto do with aport, it is merey a
number to urquely distinguish sockets on particular
machine

The protocol for communication over a socket is
typically TCP, UDP, or RDP

38

Java Detour: Messagge’Rassif g

Connection-oriented socket
A stateful connection or stream (e.g., telephone)
Offers certain guarantees
Arrival, order

Local sockets (client-side) cannnectto a remote
socket

You listen for connections to a socket (server-side)

When a connection is detected you eanepithe
connection (server-side)

In Unix, to deal with many connection requests you
canselectthem (server-side, but not in Java < 1.4)

Transferring data via ordinargad/write
commands

39

Java Detour: Messagge’Rassif g

Datagram socket

Communicate by sending self-contained packets
(e.g., mailing a letter)

Does not offer guarantees
Arrival, order

You createa datagram socket
Simply receiveor senddata

40

Java Detour: Messagge’Rassif g

public class Server {
public Server() {
try {
ServerSocket s = new ServerSocket(1968);
while (true)

Socket cs = s.accept();
serviceClient(cs);

}

} catch (IOException ex) {
System.err.printin("Server: " + ex);
System.exit(-1);

}

public void serviceClient(Socket cs) {

try {
ObjectinputStream ois = new ObjectinputStream(cs.getinputStream());
System.out.println(ois.readUTF());
ObjectOutputStream oos = new ObjectOutputStream(cs.getOutputStream());
oos.writeUTF("Tschuess");
oos.flush();
cs.close();

} catch (IOException ex) {
System.err.printin("Server: " + ex);

/
7@5

41

Java Detour: Messagge’Rassif g

public class Client {
public Client() {

try {
Socket s = new Socket("heavy.inf.fu-berlin.de", 1968);
ObjectOutputStream oos = new ObjectOutputStream(s.getOutputStream());
oos.writeUTF("Hallo");
oos.flush();
ObjectinputStream ois = new ObjectinputStream(s.getinputStream());
System.out.println(ois.readUTF());
s.close();

} catch (IOException ex) {
System.err.printin("Client: " + ex);
System.exit(-1);

You will learn all about this stuff in distributed systems...

