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Part 1: Modelin g Dynamic S ystemsPart 1: Modeling Dynamic Systems

In all of the models we have discussed and implemented 
so far, threads are created during initialization and they 
run until program termination (for the most part).  What 
about modeling programs where the number of active 
threads varies during execution?
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Dynamic Thread Exam pleDynamic Thread Example

Golf Course Example
A golf course has a limited number of golf balls 
available for its players. Players check out golf balls to 
play golf and return them after they are finished. Expert 
players, who never lose balls, only take one or two balls. 
Novice players take more balls so that they have extras 
in case any get lost. All players must return the same 
number of balls they checked out, so they must buy 
replacement balls if any are lost.

In this example, new players arrive dynamically.

This is an example of a resource allocation problem.
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Modelin g Dynamic S ystemsModeling Dynamic Systems

	 What is the perceived difficulty with using FSP / 
LTS for dynamic systems?
� These techniques require a static number of processes 

in order to permit analysis
� Dynamic systems do not have a static number of 

processes

	 We will start by taking a quick look at the 
implementation and model of the Golf Course
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Golf Course Im plementationGolf Course Implementation

Players threads and their desired ball requests are created by 
pushing the button corresponding button. Player names are 
generated using an ordered letter from the alphabet 
concatenated with the number of balls required. New player 
threads temporarily appear in the “new” box and finishing 
player threads temporarily appear in the “end” box.
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Golf Course Im plementationGolf Course Implementation

public interface Allocator {
   public void get(int n)
       throws InterruptedException;
   public void put(int n);
}

public class SimpleAllocator implements Allocator {
   private int available;
   public SimpleAllocator(int n) { available = n; }
   public synchronized void get(int n)
      throws InterruptedException {
      while (n > available) wait();
      available -= n;
   }
   public synchronized void put(int n) {
      available += n;
      notifyAll();
   }
}
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Golf Course Im plementationGolf Course Implementation

public class Player implements Runnable {
   private GolfCourse gc;
   private String name;
   private int nballs;
   public Player(GolfCourse g, int n, String s) {
      gc = g; nballs = s; name = s;
   }
   public void run() {
      try {
         gc.getGolfBalls(nballs, name);
         Thread.sleep(gc.playTime);
         gc.relGolfBalls(nballs, name);
      } catch (InterruptedException ex) { }
   }
}
...
Thread t = new Thread(new Player());
t.start();
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Golf Course ModelGolf Course Model

const N=5    //maximum number of golf balls
range B=0..N //available range

ALLOCATOR = BALL[N],
BALL[b:B] = (when (b>0) get[i:1..b]->BALL[b-i]
            |put[j:1..N]->BALL[b+j]).

LTS for N=2
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Golf Course ModelGolf Course Model

range R=1..N //request range

PLAYER      = (need[b:R]->PLAYER[b]),
PLAYER[b:R] = (get[b]->put[b]->PLAYER[b]).

LTS for N=2

10

Golf Course ModelGolf Course Model

	 How do we model the potentially infinite stream 
of dynamically created players?
� We can’t with FSP / LTS is the short answer, because 

we cannot model infinite spaces
� However, we can model infinite behaviors that are 

repetitive
¤ We do not need to model that each player is distinct
¤ We model a fixed population of players who continuously 

repeat the actions of playing

set Experts = {alice, bob, chris}
set Novices = {dave, eve}
set Players = {Experts, Novices}



11

Golf Course ModelGolf Course Model

HANDICAP =
  ({Novices.{need[3..N]},Experts.need[1..2]}
      ->HANDICAP)
  +{Players.need[R]}.

||GOLFCOURSE = (Players:PLAYER
               ||Players::ALLOCATOR
               ||HANDICAP).

HANDICAP distinguishes between novices and experts.  
Alphabet extension is used to ensure that when HANDICAP 
is composed with PLAYER processes they are inhibited from 
performing any other need actions.
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Part 2:Part 2: Process CommunicationProcess Communication

In previous examples we have used processes interacting 
through shared variables to illustrate concurrency issues.  
Shared variables are simply one form of process 
communication.

Now we examine alternative approaches to process 
communication.
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Message Passin gMessage Passing

	 Instead of using shared variables, processes can 
communicate by sending and receiving messages
� Conceptually this means that the processes do not 

share memory, but still reside on the same computer
� A result of not sharing memory is that processes may 

reside on different computers connected via a network
� Since most distributed systems use some form of 

message passing mechanism, it is easy to see that 
concurrency is intimately tied to distributed systems
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Message Passin gMessage Passing

	 Message passing primitive operations
� send - send a message to someone else
� receive - receive a message from someone else

	 Two basic models for send / receive primitive
� Synchronous = writing/reading a message blocks 

until someone reads/writes
� Asynchronous = writing/reading does not block, 

written messages are buffered and if no message is 
available the read operation returns immediately

	 These message primitives are one-way
� Messages are transmitted from the sender to the 

receiver
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Message Passin gMessage Passing

	 How are messages addressed?
� Addressed directly to the destination process
� Addressed indirectly to some intermediate entity

	 One model of message passing using the notion 
of a channel
� Messages are sent to and received from a channel
� A channel connects one sender and one receiver, thus 

communication is one-to-one
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Synchronous Channel Messa ge Passin gSynchronous Channel Message Passing

send(e, c) - send the value of the expression e to channel c. 
The process calling send is blocked until the message is 
received by another process.

v = receive(c) - receive a value into local variable v from a 
channel c. The calling process is blocked until a message is 
sent to the channel.

Sender
send(e, c)

Receiver
v = receive(c)
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Selective Messa ge ReceiveSelective Message Receive

With blocking semantics it is inconvenient receiving from 
multiple channels, therefore some message passing systems 
implementing some form of selective receive; the general 
form of a select statement is (this is not FSP):

Gi is a boolean guard which indicates that a receive is 
eligible if the guard is true; the select statement chooses 
an eligible receive for which there is a sender waiting to 
send.

select
   when G

1
 and v

1
 = receive(chan

1 
) => S

1 
;

   or when G
2
 and v

2
 = receive(chan

2 
) => S

2 
;

   or when G
N
 and v

N
 = receive(chan

N 
) => S

N 
;

end
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Selective Messa ge ReceiveSelective Message Receive

Some message passage implementations allow you to do a 
polling receive (this is not FSP):

If there is no sender ready to send on chan then the else
part is chosen for execution.

select
      v = receive(chan

 
) => S;

   else
      S

ELSE 
;

end
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Modelin g Synchronous Messa gingModeling Synchronous Messaging

range M = 0..9
SENDER = SENDER[0],
SENDER[e:M] = (chan.send[e]
                  ->SENDER[(e+1)%10]).
RECEIVER = (chan.receive[v:M]->RECEIVER).

How do we model the channel entity?

Modeling the sender and receiver is straight-forward...
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Modelin g Synchronous Messa gingModeling Synchronous Messaging

||SynchMsg = (SENDER || RECEIVER)
             /{chan/chan.{send, receive}}.

Can we avoid renaming?

Since sending and receiving are synchronous, we 
know that this means that they share an action, in this 
case, they are the same action. Therefore combining a 
sender and a receiver is a matter of renaming.

SENDER RECEIVER

chan.send chan.receive
chan
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Modelin g Synchronous Messa gingModeling Synchronous Messaging

To avoid relabeling, we can model the send action 
directly as chan[e]  and the receive action as 
chan[v:M] . The only difference is that a receive is 
modeled as a choice between a set of M values, whereas 
a send specifies a specific value e.

Message Operation FSP Model
send(e, chan) chan[e]
v = receive(chan) chan[e:M]
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Modelin g Selective Messa ge ReceiveModeling Selective Message Receive

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = ( when(i>0)  arrive->SPACES[i-1]
                 | when(i<N)  depart->SPACES[i+1]).

ARRIVALS   = (arrive->ARRIVALS).
DEPARTURES = (depart->DEPARTURES).

||CARPARK = (ARRIVALS||CARPARKCONTROL(4)||DEPARTURES).

Recall the car park example:

ARRIVALS CARPARK
CONTROL

DEPARTURESarrive depart

CAR PARK
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Modelin g Selective Messa ge ReceiveModeling Selective Message Receive

	 For the car park, we do not need to change the model 
for message passing
� The when clauses directly map to receiver selection
� The ARRIVALS and DEPARTURES processes are considered 

to be sending messages on channels for signaling arrivals and 
departures, respectively

	 In the original implementation, we implemented the 
CARPARKCONTROL process as a monitor
� For message passing, we implement it as a thread that receives 

messages from ARRIVALS and DEPARTURES to indicate 
when a car has arrived or departed, respectively

	 The implementation of ARRIVALS and DEPARTURES 
are identical, they just send messages to channels 
instead of invoking a method
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Modelin g Asynchronous Messa gingModeling Asynchronous Messaging

	 In asynchronous message passing the send operation 
does not block, while the receive operation typically 
blocks until a message is available

	 A port is an example of an asynchronous message 
passing concept
� Messages are held in a queue until received
� A port may have many senders, but only one receiver, 

thus communication is many-to-one
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Port O perationsPort Operations

send(e, p) - send the value of the expression e to port p.  The 
process calling send is not blocked. The message is queued 
at the port if a receiver is not waiting.

v = receive(p) - receive a value into local variable v from a 
port c. The calling process is blocked if there are no 
messages in the message queue.
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Conce ptual Illustration of a PortConceptual Illustration of a Port

Sender[2]
send(e2, p)

Receiver
v = receive(c)

Sender[1]
send(e1, p)

Sender[n]
send(en, p)

Port p
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Modelin g Asynchronous Messa gingModeling Asynchronous Messaging

	 Asynchronous message passing model not as 
simple as synchronous model, some of the 
difficulties are
� Message queues associated with a port are potentially 

unbounded, we know this is a problem for FSP
¤ We must adopt the same approach we used for semaphores 

and model the queue as finite and allow an overflow error

� Given the range of messages and the size of the 
message queue, it is very easy for the state space of a 
port model to explode
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Modelin g Asynchronous Messa gingModeling Asynchronous Messaging

Assume that we are again using an integer value between 0 and 9...

range M = 0..9
set S = {[M],[M][M]}

PORT                   // empty state
   = (send[x:M]->PORT[x]),
PORT[h:M]              // one message queued
   = (send[x:M]->PORT[x][h]
     |receive[h]->PORT),
PORT[t: S][h:M]         // two or more messages queued
   = (send[x:M]->PORT[x][t][h]
     |receive[h]->PORT[t]).

The set S defines the set of values that can be taken by the tail 
of the queue when the queue contains two or more messages; 
essentially it is a set of types for the PORT parameters.
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Modelin g Asynchronous Messa gingModeling Asynchronous Messaging

	 To model a port that can queue up to four 
messages, we must change S to
� set S = {[M],[M][M],[M][M][M]}

	 With a queue for three messages, a LTS with 
1111 states is generated; with four messages is a 
total of 11111 states

	 Clearly these graphs are too big to view

	 We can abstract away the value of the messages 
to examine the send and receive actions
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Modelin g Asynchronous Messa gingModeling Asynchronous Messaging

||ABSTRACTPORT = PORT
          /{send/send[M],receive/receive[M]}.

This process simply ignores the value of the individual 
messages, treating all sends and receives as the same action.

This results in a simplified LTS with observable behavior, for 
range M = 0..3  :
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Modelin g Asynchronous Messa gingModeling Asynchronous Messaging

SENDER = SENDER[0],
SENDER[e:M] = (port.send[e]->SENDER[(e+1)%10]).

RECEIVER = (port.receive[v:M]->RECEIVER).

||AsynchMsg = (s[1..2]:SENDER || port:PORT || RECEIVER)
              /{s[1..2].port.send/port.send}.

Analysis?  It is possible to overflow the buffer...

Trace to property violation in port:PORT:
s.1.port.send.0
s.1.port.send.1
s.1.port.send.2
s.1.port.send.3
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Rendezvous Messa ge Passin gRendezvous Message Passing

	 In rendezvous message passing, a client sends a 
request message to a server
� Also referred to as request-reply message passing

	 Requests messages are queued on an entry in 
FIFO order
� Requests are many-to-one

	 The server accepts requests from the entry and 
sends a reply message to client on completion

	 The client blocks waiting for the reply message
� Replies are one-to-one
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Rendezvous Messa ge Passin gRendezvous Message Passing

res = call(e, req) - send the value req as a request message 
which is queued to the entry e. The calling process is blocked 
until a reply message is received into the local variable res.

req = accept(e) - receive the value of the request message from 
the entry e into the local variable req. If there are no request 
messages queued to the entry, then the server process is 
blocked.

reply(e, res) - send the value res as a reply message to entry e.

Called “rendezvous” since the client and server processes 
meet and synchronize when the server performs a service 
for the client.
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Modelin g Rendezvous Messa gingModeling Rendezvous Messaging

// Reply channels
set M = {replyA, replyB}

// Create an entry from a port
||ENTRY = PORT /{call/send, accept/receive}.

// Server receives on port, replies on channel
SERVER = (entry.accept[ch:M]->[ch]->SERVER).

// Client requests on port, receives on channel
CLIENT(CH=‘reply) = (entry.call[CH]->[CH]->CLIENT).
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Modelin g Rendezvous Messa gingModeling Rendezvous Messaging

||EntryDemo = (CLIENT(‘replyA) || CLIENT(‘replyB)
              || entry:ENTRY || SERVER).

Notice that we did not prefix the client processes like we 
normally do; this is because the parameter causes them to 
have distinct alphabets. For example, the alphabet for 
CLIENT(‘replyA)  is:

{entry.call.replyA, replyA} .

CLIENT entry.call[M]
CLIENT

SERVER

entry.accept

entry:ENTRY
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Modelin g Rendezvous Messa gingModeling Rendezvous Messaging

From the viewpoint of a client, other than syntactic 
differences, a call on an entry  is very similar to calling a 
monitor access method. Only one client request at a time 
can be serviced, thus mutual exclusion is guaranteed.

What is the only conceptual difference between the two?

The client thread is used to handle the request in monitor 
methods, whereas the server thread is used to handle the 
request in an entry.
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Java Detour: Messa ge Passin gJava Detour: Message Passing

	 Sockets
� A socket is an inter-process message passing 

mechanism; similar to a port as we have defined it
� You can use sockets to create concurrency between 

separate processes on separate machines
� A socket address is an IP address and a port number
¤ This port number has nothing to do with a port, it is merely a 

number to uniquely distinguish sockets on a particular 
machine

� The protocol for communication over a socket is 
typically TCP, UDP, or RDP
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Java Detour: Messa ge Passin gJava Detour: Message Passing

	 Connection-oriented socket
� A stateful connection or stream (e.g., telephone)
� Offers certain guarantees
¤ Arrival, order

� Local sockets (client-side) can connect to a remote 
socket

� You listen for connections to a socket (server-side)
� When a connection is detected you can accept the 

connection (server-side)
� In Unix, to deal with many connection requests you 

can select them (server-side, but not in Java < 1.4)
� Transferring data via ordinary read/write

commands
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Java Detour: Messa ge Passin gJava Detour: Message Passing

	 Datagram socket
� Communicate by sending self-contained packets

(e.g., mailing a letter)
� Does not offer guarantees
� Arrival, order
� You create a datagram socket
� Simply receive or send data

40

Java Detour: Messa ge Passin gJava Detour: Message Passing

public class Server {
  public Server() {
    try {
      ServerSocket s = new ServerSocket(1968);
      while (true)
      {
        Socket cs = s.accept();
        serviceClient(cs);
      }
    } catch (IOException ex) {
      System.err.println("Server: " + ex);
      System.exit(-1);
    }
  }

  public void serviceClient(Socket cs) {
    try {
      ObjectInputStream ois = new ObjectInputStream(cs.getInputStream());
      System.out.println(ois.readUTF());
      ObjectOutputStream oos = new ObjectOutputStream(cs.getOutputStream());
      oos.writeUTF("Tschuess");
      oos.flush();
      cs.close();
    } catch (IOException ex) {
      System.err.println("Server: " + ex);
    }
  }
}
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Java Detour: Messa ge Passin gJava Detour: Message Passing

public class Client {
  public Client() {
    try {
      Socket s = new Socket("heavy.inf.fu-berlin.de", 1968);
      ObjectOutputStream oos = new ObjectOutputStream(s.getOutputStream());
      oos.writeUTF("Hallo");
      oos.flush();
      ObjectInputStream ois = new ObjectInputStream(s.getInputStream());
      System.out.println(ois.readUTF());
      s.close();
    } catch (IOException ex) {
      System.err.println("Client: " + ex);
      System.exit(-1);
    }
  }
}

You will learn all about this stuff in distributed systems...


